

Electronic State-to-State Modeling of a Recombining Nitrogen/Argon Plasma

Ulysse Dubuet, Pierre Mariotto, Christophe O. Laux, Marie-Yvonne Perrin

► To cite this version:

Ulysse Dubuet, Pierre Mariotto, Christophe O. Laux, Marie-Yvonne Perrin. Electronic State-to-State Modeling of a Recombining Nitrogen/Argon Plasma. The XXV Europhysics Conference on the Atomic and Molecular Physics of Ionized Gases, Jul 2022, Paris, France. hal-04483562

HAL Id: hal-04483562 https://hal.science/hal-04483562

Submitted on 29 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Electronic State-to-State Modeling of a Recombining Nitrogen/Argon Plasma

U. Dubuet, P. Mariotto, C.O Laux, M.Y. Perrin Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, France

I. Context

Radiative heat flux on afterbody heatshield is poorly known, which leads to oversizing of **heatshield** (up to 50% of total heatshield mass [1]).

Radiative heat flux is controlled by **atomic recombination**.

Our goal is to model atomic recombination of N with a Collisional Radiative (CR) model validated versus experiments in a recombination tube. A vibronic-specific and an electronic-specific CR models are presented and compared.

II. Experiment

Recombination tube experiment [4,5] designed to study N-atom recombination:

III. State-to-State (StS) Models

Comparison between a vibronic-specific StS CR model [6] and the reduced electronic-specific StS CR model assuming Boltzmann distributions of the vibrational levels.

Species	Vibspecific	Elecspecific	
Ν	142 levels (ungrouped)	142 levels (ungrouped)	
Ar	3 level	1 level	
N ₂	X, $v \le 48$; A, $v \le 30$ B, $v \le 33$; C, $v \le 28$ W, $v \le 39$; B', $v \le 57$ A', $v \le 6$; a, $v \le 50$ a', $v \le 58$; b, $v \le 48$	10 electronic levels	
N^+	1 level	1 level	
Ar^+	1 level	1 level	
N_2^+	X, $v \le 63$; A, $v \le 65$ B, $v \le 37$	3 electronic levels	
Electrons	_	_	
Processes included:			
 Excitation Dissociation Ionization Predissociation 	 Dissociative Recombination Charge exchange Quenching, Energy Transfer and Pooling Radiation 		

10^{-12} 0 2 4	6 8 10 z [cm]	12 14		E [eV]
Differences between		Ν	N ₂ (B)	N ₂ (C)
results (best fit simulation) at	Elecspecific	<1% ; ~6%	Factor 20 ; ~71%	~24% ; Factor 3.5
10 and 15 cm:	/ Vibspecific	$\sim 36 \%$; $\sim 16\%$	Factor 2.5 ; Factor 56	~50% ; Factor 2.4

V. Conclusions

We reduced a vibronic-specific StS CR model into an electronic-specific StS CR model assuming Boltzmann distributions of the vibrational levels and compared them with absolute population measurements in a N₂/Argon recombining plasma. The reaction rate coefficients should be multiplied by 5 to correctly predict N recombination. Both models predict N and N₂(C) populations within a factor 4. There are larger discrepancies for N₂(B), due to the partial equilibrium between N₂(B,v) and N₂(A,v \geq 8) that are not captured by electronic-specific StS CR models.

Deferences

Future work will include concatenation of the electronic-specific model with NO electronic-specific model [7] and comparison with measurements in an Air/Argon mixture.

	I\elelelices
[1] Pavlosky J. E. and L. G. St Leger, 1974, NASA TN-7564	[4] Tibère-Inglesse, A. C. <i>et al.</i> , 2019 , <i>PSST</i> , 28 (7): 075018
[2] West, T. K., C. O. Johnston, and S. Hosder, 2017 , <i>JTHT</i> , 31(2):294–306	[5] Tibère-Inglesse, A. C. <i>et al.</i> , 2021 , <i>PSST</i> , 30 (12): 125020
[3] Johnston, C. O. and A. M. Brandis, 2015 , <i>JSR</i> , 52(1):105–19	[6] Mariotto P., 2022 , <i>Ph.D. thesis</i> , Université Paris-Saclay

[7] Dubuet U., Mariotto P., Perrin M.-Y., Laux C. O., 2021, AIAA SciTech 2021 Forum, AIAA 2021-0445