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1 Mathematical model

1.1 Main variables and mathematical setup

We consider two cell population densities n1(t, x, y) (representing the NT) and n2(t, x, y) (repre-
senting the PSM) evolving in time t and in space (x, y). We opt for a 2D spatial model, describing
a 10µm-thick cross-section of the 3D embryonic tissues. The choice of a 2D spatial representation
reflects that the depth of the tissues can be considered small compared with other lengths (average
depth of the NT and PSM is 50µm). It is also consistent with the fact that most of our biological
data at hand are in 2D.
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In addition to its density ni(t, x, y), each tissue is described through its local velocity vector
vi(t, x, y), evolving in time and space. Furthermore, we will consider the total pressure p(t, x, y)
exerted in both tissues indistinctly. To sum up, our main variables are:

• n1(t, x, y): cell density of NT,

• n2(t, x, y): cell density of PSM,

• v1(t, x, y): tissue velocity of NT,

• v2(t, x, y): tissue velocity of PSM,

• p(t, x, y): total pressure of the tissues.

These quantities are defined over a rectangular domain Θ = [0, l] × [0, L], corresponding to a
zone confined between the two lateral plates (at x = 0 and x = l) and posteriorly to the last formed
somites (at y = 0).

1.2 Equations for the dynamics of the tissues

The dynamics of the tissues is modeled by the following equations, for all t ≥ 0 and (x, y) ∈ Θ,

∂tn1 +∇ · (n1v1) = n1g1

(
1−

(
n1

nmax

)α)
+

+
κ1

δ
χIZδ∩NT , (1)

∂tn2 +∇ · (n2v2) = n2g2

(
1−

(
n2

nmax

)α)
+

+
κ2

δ
χIZδ∩PSM , (2)

−β1∆v1 + µv1 = −∇p, (3)

−β2∆v2 + µv2 = −∇p, (4)

p = ϵ
n

nmax − n
, n = n1 + n2. (5)

These equations include tissue mechanical properties (viscosity, friction, pressure), cell prolif-
eration and injection from the PZ: the detailed modeling assumptions for each of them are given
below.

Mechanical properties. We consider that both tissues are viscous, and confer them with vis-
cosity parameters, respectively β1 and β2. In (3) and (4) we use the Brinkman law to govern the
velocities v1 and v2 of each tissue. The parameter µ represents the friction between the tissue and
its surroundings. The friction coefficients for the PSM and the NT are both taken equal to µ: we
made this assumption as, to our knowledge, the friction of the NT with its surrounding tissues is
not a known parameter in literature and has not been measured.

In addition, the pressure law (5) is a function of the total density (the sum of n1 and n2), which
allows tissue segregation (if segregation is imposed at initial time t = 0), [3]. The pressure is taken
singular at n = nmax which represents the maximal density inside the tissues measured in vivo.
This form of the pressure law provides an upper bound on the cell densities, which is particularly
relevant in the context of vertebrate embryo development and the tissues we want to model ([3],
[2]).
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Figure 1: Plot of the cell proliferation function given by g2

(
1−

(
n2

nmax

)α)
+

in Equation(2) with

respect to the tissue density n2 ranging between 0 and 1.5× nmax.

Cell proliferation. In the evolution equations on the densities (1)-(2), the first term of the
reaction terms (on the right-hand side) represents cell proliferation. The growth rates are taken
as (reversed) sigmoidal functions with a saturating density equal to nmax. The steepness of the
sigmoid is determined by the exponent α. The parameter g1 (respectively, g2) represents the
intrinsic proliferation rate of the NT (respectively, the PSM), that is, the theoretical proliferation
rate in absence of saturating effects. The saturation effect accounts for the transition of cellular
type, as well as possible dorso-ventral migration, in most anterior, most dense, regions of the NT
and PSM where 3D structures such as the somites start to form.

Cell injection. Still in equations (1)-(2), the second term of the right-hand-side accounts for
cell injection from the PZ. The flux of new cells from the PZ into each of the tissues is denoted κ1

and κ2 in respectively the NT in (1) and the PSM in (2). These new cells are added only at the
elongating tip of each tissue in a region denoted IZδ ∩NT for the region of entry of new cells in
the NT and IZδ ∩ PSM for that of the PSM1, see Figure 2. We define the entry zone as a thin
rectangular of width δ that moves over time, translating according to the elongation dynamics.
More precisely, as the PZ is attached to the NT at its posterior tip, we determine the posterior tip
denoted ytip as the following,

ytip(t) := argminy∈[0;L]

{
n1(t, xmid, y) ≥

nmax

2

}
,

where xmid = l/2 is the central position in the NT along the lateral axis. We then define the entry
zones as,

IZδ(t) ∩NT = [a1; b1]×
[
ytip(t)−

δ

2
; ytip(t) +

δ

2

]
,

with [a1; b1] the width of the zone initially occupied by the NT, and,

IZδ(t) ∩ PSM = ([a2; b2] ∪ [a′2; b
′
2])×

[
ytip(t)−

δ

2
; ytip(t) +

δ

2

]
,

1In equations (1)-(2) χ is the indicator function.
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(a) T = 0 hours. (b) T = 6.4 hours. (c) T = 12 hours. (d) T = 20 hours.

Figure 2: Evolution of the injection zone (yellow rectangle) of the NT and PSM: IZδ∩(NT∪PSM)
in the wild-type simulation.

Figure 3: Plot of the densities at initial time: the NT (middle tissue) flanked with two PSM on
the right and on the left.

with [a2; b2] and [a′2; b
′
2] the width of the zone initially occupied by respectively the left and the

right PSM (of equal width), see Figure 2. Values for ai and bi, i = 1, 2 and for a′2, b
′
2, as well as

more details on the initial condition are given in Section 1.3.

Remark 1 (Modeling of the PZ). The PZ could as well be modeled as a third tissue, leading to a
model with three population densities: this alternative framework would introduce more modeling
hypotheses, more parameters, and overall more complexity to our study. Here our strategy is to
focus on the PSM and the NT and to not consider the PZ per se but only its contribution to the
formation of those two tissues as an injection zone.

1.3 Numerical simulation

Numerical setting and initial condition. The numerical domain Θ is taken as the rectangle
[l × L] = [300µm × 4500µm]. We consider the embryo with a portion of the NT and of the PSM
already formed: we consider that the NT initially occupies a zone of length L/3 = 1500µm and
of width 71µm. It is centered in x, that is, [a1; b1] = [114µm; 185µm], and it is flanked with two
PSM on the right and on the left, with length L/3 = 1500µm and width of 100µm each, which
corresponds to [a2; b2] ∪ [a′2; b

′
2] = [0µm; 100µm] ∪ [200µm; 300µm]. Experimental data indicate

that the density in the NT is approximately constant and higher than that of the PSM which
displays a clear antero-posterior density gradient [1]. We define n1 as the measured density in the
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NT, n2 as the maximum density quantified in the PSM anteriorly and n2 as the minimal density
quantified in the PSM posteriorly, see Section 3.1. As per our measurements of the tissue densities
(see Section 3.1), and measurements in literature by [1], we have,

n1 =
0.017 cells

µm2
, n2 =

0.013 cells

µm2
, n2 =

0.011 cells

µm2
.

We take the initial NT density as follows,

n1(t = 0, x, y) = n1χ0≤y≤L/3.

As for the PSM, we impose the density gradient on the initial condition, as follows,

n2(t = 0, x, y) = n2χ0≤y≤L/8 +
(
n2 − γ(y − L/8)2

)
χL/8≤y≤L/3,

where γ =
n2−n2

(L/3−L/8)2 is computed such that the PSM density antero-posterior gradient ranges

between n2 and n2.
The initial condition is shown in Figure 3.

Remark 2. In the main and supplementary text we write all the quantities (e.g densities, length,
width) in physically relevant units (cells/micrometer, micrometer). The units in the figures are in
the international unit system (cells/meter, meter).

Boundary conditions. The lateral numerical walls correspond to the lateral plate, while the
upper wall, at the anterior of the vertebrate body, corresponds to the last formed somites. Consid-
ering all those as dense structures, we set the no flux boundary conditions for the densities, as well
as homogeneous Dirichlet conditions for the velocities (no-slip condition) on all the boundaries,
that is,

vi = (vix , viy ) = 0, (nivi) · ν = 0, i = 1, 2, on ∂Θ.

These conditions state that no density can flow out of the walls, and that when cells come in
contact with these walls they strongly adhere to them. The posterior boundary is a theoretical
wall, all simulations are stopped before the tissues reach this boundary.

Model parameters. We give here the values of the model’s parameters used in the numerical
simulations for the wild-type embryo. We first recall the parameters and the values (or ranges) that
could be quantified experimentally. References for parameters found in the literature are provided,
and for parameters we measured, the protocol measurements are detailed in the corresponding
sections.

• g1 ≈ 1
10.83 [hour−1]. The cell proliferation rate in the NT was measured in [1] using EdU.

• κ1 ≈ 0.046 [cells · hour−1 · µm−1]. Using image analysis on transgenic quail embryos, we
measured on the Imaris software the entry of new cells from the PZ into the NT over a
region of width equals to tissue width, length equal to 100µm and depth equals to 10µm.
The method is detailed in the corresponding section.

• β1 ≈ 104 − 105 [Pa · s]. The viscosity of the NT was measured in [5] (PhD thesis) using
pipette aspiration technique. We note here that β1 > β2 according to [5], meaning that the
NT is more viscous than the PSM.

• g2 ≈ 1
8.75 [hour−1]. The cell proliferation rate in the PSM was measured in [1] using EdU.
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• κ2 ≈ 0.128 [cells · hour−1 · µm−1] (in the left and right PSM). Using image analysis on
transgenic quail embryos, we measured on the Imaris software the entry of new cells from
the PZ into the PSM over a region of width equals to tissue width, length equal to 100µm
and depth equals to 10µm. The method is detailed in the next section.

• β2 ≈ 104 − 105 [Pa · s]. The viscosity of the PSM was measured in [7], [6], [5] using pipette
aspiration technique.

• µ ≈ 1012 − 1013 [Pa · s · m−2]. The friction between the PSM and its surrounding tissues
(NT, lateral plate, ectoderm, endoderm) was estimated in [7], [6], [5].

• nmax ≈ 0.02 [cells ·µm−2]. We measured the maximal densities in the tissues (see Section 3.1
for protocol). It can also be deduced from [1] where an averaged density map was represented
along the antero-posterior axis of the vertebrate embryo, see [1].

• l and L are equal to 300µm and 4500µm respectively.

• δ: we choose the width of the entry zone δ to be equal to one mesh cell length.

• ϵ = 1. This free parameter controls the congestion pressure p. It was fixed such that we
obtain the right elongation speed of the tissues.

• α = 8. This parameter controls the steepness of the sigmoid growth function. It was fixed
such that we obtain the right elongation speed of the tissues.

For the numerical simulations we take the following values:
g1 g2 κ1 κ2 β1 β2 µ nmax l L δ ϵ α

1/10.83 1/8.75 0.046 0.128 3 · 104 2 · 104 1012 0.02 300 4500 214.2857 1 8

Numerical scheme. The mathematical model was simulated using a finite volume scheme on
a staggered grid. All the numerical simulations were performed using Matlab 2022a. We use
N2 = 212 mesh cells, with space steps ∆x = l

N = 14.2857µm and ∆y = L
N = 214.2857µm.

The time step is dependent on the CFL (Courant-Friedrichs-Lewy) condition which varies at each
iteration depending on the velocity, for details on the implementation and the numerical scheme see
[3]. We simulate until we reach the final time set to T = 20 hours of developmental time. Simulation
frames are saved every 6 minutes (of developmental time) to generate the supplementary movies,
which corresponds to the time between frames in the time-lapse movies of quail embryos.

1.4 The mathematical model for the PSM and the notochord

To simulate the PSM and the Notochord, the model equations (1)–(5) remain unchanged, with now
n1 and v1 standing for the density and velocity vector of the Notochord. The only modifications are
the values of the parameters, now adapted to the Notochord. This implies taking the injection rate
(previously denoted as κ1) in the Notochord equal to zero, as measured in vivo (main manuscript
Figure 3). We change the proliferation rate (previously g1) and take it equal to 1/23.5 hours, as
measured and averaged in [1]. Finally, we adjusted the initial density in the Notochord, measured
and detailed in Section 3.1, resulting in a value of 0.016 cells/µm2. The viscosity parameter of the
Notochord remains equal to that of the NT as they are both epithelial and tubular.
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Figure 4: Schema of the tissues with the numerical mesh in the background. To obtain the central
velocities, we compute the average velocities in the PSM and the in the NT on the mesh cells
colored in gray respectively in mid PSM and mid NT and along the antero-posterior axis.

2 Quantification of model outputs

2.1 Velocity, sliding and elongation quantification

To plot the tissue velocities (main manuscript Figures 3E,Supplementary Figure 4A-B, Supple-
mentary Figure 5B-D) and the sliding (main manuscript Figures 2G, 3F, 4D) between the tissues
(NT and PSM, NC and PSM) we computed the central velocities in each tissue, defined below.
The method we use is very close to the analysis done in [1], which facilitates the comparison of
numerical simulations and in vivo quantifications.

Central velocity. We compute the central velocity at five given heights yj0 , ...yj4 , equally spaced
along the antero-posterior axis. For each given height jk, we consider three mesh cells (i0 − 1, jk),
(i0, jk) and (i0 + 1, jk) centered within the width of the NT, see Figure 4. We then compute the
mean central velocity of the NT at y = yjk as,

V 1(yj) =
v1i0−1,jn

1
i0−1,j + v1i0,jn

1
i0,j

+ v1i0+1,jn
1
i0+1,j

n1
i0−1,j + n1

i0 j + n1
i0+1,j

, for j = j0, ..., j4.

The plot of the velocity profile is generated based on the velocities averaged over the final hour
of the simulation to accurately compare with the velocity quantification in the vertebrate embryo
(see Section 3.3). We do similar computations for the PSM and Notochord velocities.

Sliding. To obtain the sliding in Figure 2G (main manuscript), we subtract the NT central
velocity computed previously from the PSM central velocity, and we plot this difference. The
sliding in Figure 3F (main manuscript) is obtained similarly with the NT central velocity replaced
with the Notochord central velocity.
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Elongation dynamics. To plot Figure 4E (main manuscript) which depicts the dynamics of
elongation, we simply plot the evolution of ytip(t) defined in 1.2.

2.2 Sensitivity analysis and scoring

A sensitivity analysis consists in varying individually each model parameter, while keeping all
the others unchanged, and quantify the changes in the outputs thus obtained. We conducted a
sensitivity analysis on the model by varying each of the parameters: g1, g2, β1, β2, ϵ, µ, κ1, κ2 by
a reduction/increase of 10%, 20%, 30%, 40%, 50% of their original values (wild-type) determined
in Section 1.3. To each variation of a single parameter corresponds a simulation, and for each
simulation, we evaluate the deviation of the model outputs from the wild-type simulation (simulated
with the parameters from Section 1.3). For all simulations we assess the model outputs at the same
time point T0 = 17 hours, which corresponds to the end of the validity of the fastest simulation
(before the tissues encounter the posterior boundary of the numerical domain). The quantified
output changes are the following:

• The profiles of the NT and PSM densities (n1 and n2)

• The profile of the pressure p

• The profile of the PSM and NT lateral velocities v1x , v2x

• The profile of the PSM and NT posterior velocities v1y , v2y

• The NT and PSM widths

• The elongation rate

For each fixed parameter P, we denote by P0 the value of the parameter used in the wild-type
simulation (listed in Section 1.3) and by Pi the deviated values. More precisely,
P = parameter type
P0 = parameter value in wild-type simulation
Pi = value increased (or decreased) of i× 10%, for i = −5 . . . 5, that is, Pi = P0(1 + i/10).

For any given output F among the outputs listed above, and any given parameter P, we denote
by F (P0) the value of the output of the wild-type simulation and by F (Pi) the value of the output
of the simulation with the deviated parameter Pi. With these notations, we assign for each output
F the following score.

If F is defined as a function on the whole domain Θ (velocities, densities, pressure), we take,

Output score(P 7→ F ) =

√√√√ 1

10

∑
i∈{−5,..,5}\{0}

(
P0

∥F (P0)∥2
∥F (P0)− F (Pi)∥2

|Pi − P0|

)2

,

where ∥ · ∥2 is the L2 norm. If F is a scalar output (width, elongation rate) we take,

Output score(P 7→ F ) =

√√√√ 1

10

∑
i∈{−5,..,5}\{0}

(
P0

|F (P0)|
|F (P0)− F (Pi)|

|Pi − P0|

)2

.

Finally the parameter score S(P) is based on the root mean square of all the output scores, more
precisely,

S(P) = Parameter score(P) :=

√ ∑
F output

(Output score(P 7→ F ))
2
.
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Figure 5: Schema of the tissues. The black contoured area represents the fixed section
secWT = [0, 1900]× l in the Wild-type case used for the computation of the score.

This yields the score represented in Supplementary Figure 5E.

Remark 3. When comparing simulations at T0 = 17 hours, some exhibit a severe reduction in the
elongation rate (e.g reducing the PSM growth by 50%), resulting in shorter tissues. To compare
tissue densities, pressure, and velocities with those of the wild-type simulation, the comparison is
restricted to regions occupied by the tissues. The aim is to overlap the two simulations (Wild-type
and deviated) as closely as possible, at least over a limited area. This is achieved by computing the
output scores S(P) only on sections of fixed dimension (1900µm × l) that vary along the antero-
posterior axis. We fix the section in the wild-type case as secWT = [0, 1900] × l (Figure 5) and
vary the section in deviated simulations along the axis to evaluate which one gives the best score
for the deviated simulation. We then choose the best (minimal) score S given by the section. This
yields,

S(P) = min
ai∈[0,L−1900]

{S(P)|secWT,secvar},

where S(P)|secWT,secvar is computed over secWT = [0, 1900] × l for the wild type and secvar =
[ai, ai + 1900]× l for the section in the deviated simulation.

3 Quantifications in the vertebrate embryo

In what follows we provide the details of how density and cell injection measurements were acquired
using Imaris software.

3.1 Density measurements

We used quail embryos with DAPI staining to measure tissue densities in the PSM, NT and No-
tochord on the Imaris software (using the Spot function). In each tissue, we measure the total
number of cells inside regions of length 100µm, of width that of the tissue, and of depth 10µm
in the PSM, NT and Notochord. These cross-sections were taken in the mid-depth of the tissue.
Measurements were taken in three locations along the antero-posterior axis: anterior (at the level
of the somite), mid (800µm downwards from the somite) and posterior (800µm downwards from
the middle location).
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3.2 Injection measurements

We used live movies of transgenic quail embryos Tg(PGK1:H2B-chFP) where each cell nucleus is
stained [4, 1], to quantify cell injection from the PZ into the PSM (main manuscript Figure 1E),
the NT (main manuscript Figure 1E) and the Notochord (main manuscript Figure 3B) on the
Imaris software (using Spot and Track functions). First, we changed the reference frame from the
laboratory frame to the frame of the moving posterior tip to better capture cell exit. This can
be achieved by averaging cell velocities inside the PZ and shifting the reference frame to follow
that of the average velocity computed. We defined regions with a length of 100µm, a width equal
to that of the tissue (denoted as w), and a depth of 10µm within the PSM, NT, and Notochord.
These cross-sections were taken in the mid-depth of the tissue. They were strategically positioned
at the most posterior part of each tissue to effectively capture cell entry. We tracked nuclei (of
diameter 8µm) over one hour of live imaging to estimate cell velocities. The resulting velocities
were averaged to determine a mean velocity denoted v. Finally, we use the corresponding tissue
density computed from the DAPI embryos (explained in Section 3.1) denoted ρ and compute the
number of injected cells per hour in each tissue using the following formula:

Number of injected cells per hour = ρ× v × w.

To obtain the model parameters κ1 and κ2 we divide by the length of the analyzed injection region,
that is 100µm.

3.3 Velocity quantification and sliding

We used live movies of transgenic quail embryos to quantify cell velocity within each tissue (NT and
PSM) and inter-tissue sliding. First we changed the reference frame from the laboratory frame to
the frame of the last formed somite. This can be achieved by computing the average velocity of cells
within the last formed somite and shifting the reference frame to correspond to the average velocity
computed. To obtain cell velocities in each of the PSM and of the NT, we first create a reference
axis along the antero-posterior axis, specifically going from the last formed somite, denoted ymin,
to the end of the neural tube, denoted ymax. We denote this distance by d = ymax−ymin. We then
detect and track cells (of diameter 8µm) in 5 regions of size 0.1d × 0.1d × 10µm3 equally spaced
along the antero-posterior reference axis [ymin, ymax], over one hour of live imaging. Cell velocities
were averaged in each spot, and the velocities at each spot was plotted per embryo (Supplementary
Figure 4C-D). Finally, to obtain the sliding, for each embryo, we subtract the average NT velocities
obtained from the PSM average velocities and average the resulting sliding to obtain the plot. The
same computations were done for the transgenic quail embryo electroporated with p27.
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Activity-driven extracellular volume expansion drives vertebrate axis elongation. 2022.

[7] Ido Regev, Karine Guevorkian, Anupam Gupta, Olivier Pourquié, and L. Mahadevan. Rectified
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