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Quantum gravitational tunneling effects are expected to give rise to a number of interesting observ-
able phenomena, including, in particular, the evolution of black holes at the end of their existence or
the emergence of the early universe from a quantum phase. Covariant Loop Quantum Gravity pro-
vides a framework to study these phenomena, yet a precise identification of tunneling processes is still
not known. Motivated by this question, we consider a related, simpler case, that of Ponzano-Regge
amplitudes: we find a detailed analogy of a class of simple transition amplitudes with tunneling

processes in non-relativistic quantum mechanics.

I. INTRODUCTION

Predicted corrections to general relativity of first
order in A are generally too small to be observed. An
alternative strategy to find signatures of quantum
gravity is to search for processes forbidden in the
classical theory, such as quantum gravitational tun-
neling. A concrete realization of spacetime tunnel-
ing, attracting attention recently because of its phe-
nomenological implications, is the quantum transi-
tion of a black hole to a white hole, which could hap-
pen at the end of the Hawking evaporation [THI2].
This proposal joins a longstanding interest in the
quantum bounce, which, in Loop Quantum Gravity,
is expected to replace the classical Big Bang sin-
gularity [I3HI7], potentially with a tunneling phe-
nomenon [I8H2T].

Covariant Loop Quantum Gravity is a
background-independent, Lorentzian, sum-over-
histories quantization of general relativity perfect
for studying these phenomena. In particular, the
recent progress in the computation of the black-
to-white hole tunneling [22H26] have highlighted
some conceptual and technical difficulties, among
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them: defining what tunneling means in a theory
of spacetime, specifying suitable boundary data,
computing the Lorentzian spinfoam amplitude,
finding meaningful physical quantities to calculate,
and interpreting the results. Spinfoams are the
spacetime analogs of Feynman graphs, and fre-
quently covariant Loop Quantum Gravity is referred
to as spinfoam theory.

This work focuses on the meaning of quantum ge-
ometric tunneling and how this manifests in a spin-
foam theory. We study a specific transition ampli-
tude in the relatively simple context of the Ponzano-
Regge spinfoam model and how we can interpret this
process as the tunneling of quantum geometry. The
Ponzano-Regge model is the most straightforward
example of a spinfoam theory. It describes Euclidean
quantum gravity in three dimensions. This choice
isolates some of the open conceptual questions and
avoids the complications of the full theory. Our syn-
thesis of results in the literature allows us to detail
several analogies with the tunneling of a point par-
ticle through a potential barrier in the path integral
formulation of quantum mechanics.

II. THE PONZANO-REGGE SPINFOAM
THEORY

The Ponzano-Regge spinfoam theory is a path in-
tegral quantization of three-dimensional (3D) Eu-
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FIG. 1. The tetrahedral spin network at the boundary of
a Ponzano-Regge vertex. Each node is dual to a bound-
ary triangle of the tetrahedron.

clidean gravity. It is regularized on a simplicial 2-
complex and assigns transition amplitudes to three-
valent spin network states at the boundary. The
states of the theory describe two-dimensional quan-
tum surfaces discretized with FEuclidean triangles
dual to the nodes of the boundary spin networks.
The spinfoam amplitude provides the quantum dy-
namics of these surfaces and decomposes into local
amplitudes associated with the vertices of the 2-
complex, which are dual to tetrahedra. We assume
that the reader is familiar with the basic concepts
of this theory. We summarize the few elements we
need here, and refer to the original work [27] and the
literature for more in-depth presentations (e.g., see
[28-32] and references therein).

At the boundary of a spinfoam vertex, we find
the tetrahedral spin network depicted in Fig. |1 We
label the four nodes (dual to each triangle) with
a=1,---,4 and the oriented links with an oriented
couple ab and a spin j,;. The spins are eigenval-
ues of the length squared operator ng and give the
length of the tetrahedral edge the spin network link
Crosses

Eab =hG V jab(jab + 1) 3 (1)

with ju, a half-integer. For the remainder, we work
in units with the 3D Planck length set to one, ({p =
hG =1).

The Ponzano-Regge vertex amplitude in the spin
network basis is given by the Wigner {65} symbol
33]

: J12 J13 J14
Avlar) = { Js4 Joa J23 } ' 2
A general transition amplitude provides the dynam-
ics of a quantum surface. These amplitudes are given
by products of the local amplitudes, A,, summed
over the intermediate quantum numbers, which im-
plements the path integral sum over histories.

III. THE CLASSICAL EVOLUTION

The path integral of ordinary quantum mechanics
is dominated, in the semiclassical limit, by classi-
cal paths. Classical paths are solutions of the equa-
tions of motion of the underlying classical theory,
and the transition amplitude between an initial and
final state (z¢ and x1) reduces to

Xy .
/ D[x]ezS[x] s
zo

where S[z.] is Hamilton’s principal function, i.e. the
action evaluated on a solution of the equations of
motion, z.(t), compatible with the boundary condi-
tions.

A similar scenario is realized in the Ponzano-
Regge spinfoam theory. The underlying classical
theory is three-dimensional Regge calculus, a dis-
crete version of General Relativity in Euclidean
spacetime. This section briefly reviews the key fea-
tures of Regge calculus we need in this work.

In the first-order formulation [34, [35], the funda-
mental variables are the lengths of the edges of the
triangulation and the dihedral angles between two
triangles sharing that length in a tetrahedron. The
edge lengths and their dual angles are symplectically
conjugate. The equations of motion fix the angles as
functions of the lengths to be the dihedral angles of
an Euclidean tetrahedron (see Appendix |A]). They
also require that the dihedral angles around a bulk
length sum to 27, ensuring the flatness of 3D gravity.

Viewed as a canonical theory, Regge calculus de-
scribes the evolution of two-dimensional surfaces us-
ing Hamilton’s principle function [32], 36} [37]. Each
surface comprises a collection of triangles glued to-
gether along their edges. The lengths of the edges
of all triangles must satisfy triangle inequalities to
ensure they exist. This is a constraint on the bound-
ary data of the theory. At the quantum level,
three-valent spin networks represent quantum sur-
faces, and triangle inequalities are required by SU(2)
gauge invariance at the nodes (dual to triangles).
The dynamics of classical three-dimensional canon-
ical gravity can be encapsulated as a series of local
moves gluing Fuclidean tetrahedra to a surface (in
all possible ways) [37]. The corresponding Hamilton
function,

1 9%S[z] piSl.]
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SR(‘gab) = Z ¢ab(£ab) gab ) (4)
ab

is the Regge action evaluated on a flat Euclidean
tetrahedron with lengths /,;, and external dihedral
angles ¥4p, and is the fundamental building block of
all discrete classical solutions.



For concreteness, we focus on one specific exam-
ple: the evolution of a surface discretized by two
triangles sharing one edge into a surface discretized
by two triangles sharing a different edge (left panel
of Fig. . The two surfaces share four boundary
lengths that we assume are fixed once and for all.
The remaining two lengths ¢12 and ¢34 completely
characterize the two surfaces. We evolve one surface
into the other by gluing in an Euclidean tetrahedron
(see right panel of Fig. [2)).

U3y

l12
FIG. 2. Left panel. A simple canonical evolution of a
surface discretized with two triangles (bottom pair, in
blue) to a surface discretized with two triangles (top pair,
in red). Right panel. We evolve the bottom surface into
the top surface by gluing them to form an Euclidean
tetrahedron.

Not all surfaces characterized by triangle-allowed
values of ¢15 and f34 are compatible with classical
canonical evolution. Fortunately, an elegant and ef-
ficient criterion uses the tetrahedral volume to dis-
tinguish between classically allowed and classically
forbidden evolution.

The squared volume of a Euclidean tetrahedron,
V2, can be computed directly from the lengths
of its edges and their connectivity using the Cay-
ley—Menger determinant. The formula is detailed
in Appendix [A] An ordered set of edge lengths {¢°}
form a Euclidean tetrahedron if and only if they sat-
isfy the triangle inequalities for each of the faces and
satisfy V2(¢¢) > 0. The corresponding evolution is
classically forbidden if V2(¢¢) < 0.

In Fig3] we visualize the evolution of surfaces in
the ¢12 and ¢34 configuration space, while keeping
other lengths fixed (£13 = 623 = 10 and 514 = £24 =
15). Each value of £15 represents an initial surface,
and each value of /34 represents a final surface. All
surfaces satisfying triangle inequalities fit within a
rectangle (pictured here by the darkened border).

Vertical lines in Figl3| represent any possible evo-
lution of the initial surface, while horizontal lines
represent any possible (backward) evolution of the
final surface. In blue, we highlight the classically al-
lowed evolution region associated with an Euclidean
tetrahedron with V2 > 0. Conversely, the classically
forbidden region, associated with a tetrahedron with
V2 <0, is depicted in red.

Specific pairs of hypersurfaces, such as those with
l12 = 5 and f34 = 11 (the solid lines of Fig. , in-
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FIG. 3. The configuration space of the initial and final
surfaces in terms of ¢12 and /34 for fixed lengths f15 =
lo3 = 10 and f14 = f24 = 15. We color in blue the
classically allowed region (VZ(£45) > 0), and in red the
classically forbidden region (V2(£ss) < 0). The green
solid lines and dashed black lines are examples of initial
and final surfaces compatible with classically allowed and
classically forbidden evolution, respectively.

tersect within the classically allowed region. This
intersection implies the possibility of classical evo-
lution, enabling one surface to transition into the
other via an Euclidean tetrahedron.

In contrast, pairs of surfaces like those with £15 =
15 and ¢34 = 22 (dashed in Fig. [3)) intersect in the
classically forbidden region, indicating the absence
of classical evolution connecting the latter pair of
surfaces.

Does the intersection of surfaces within the clas-
sically forbidden region correspond to another vi-
able but non-classical geometry? Indeed, it does.
Observe that if we use the same expression for
dihedral angles (momenta) as a function of the
lengths, Eq. , it is necessary to analytically con-
tinue these angles to purely imaginary values (as
V2(ly) < 0 in (A2)), see [287 ].

Also, note the impossibility of embedding the
two surfaces in Euclidean space since V2(£4,) < 0.
Nonetheless, by complexifying the dihedral angles,
we can successfully embed the surfaces as a tetra-
hedral region of Minkowski space, with signature
(=,+,4). This complexification arises from the
need to take dot products across the light cone, as

discussed in [38], 39].

IV. THE QUANTUM TRANSITION
AMPLITUDE

In the quantum theory, transition amplitudes
characterize the evolution of quantum states. In
the example we are studying, the boundary state is
the tetrahedral three-valent spin network, depicted
in Fig. The relationship between spins j,; and



lengths is defined by . At the lowest order, the
transition amplitude is determined by a Ponzano-
Regge vertex amplitude, as specified in . In the
semiclassical regime, characterized by large quan-
tum numbers, the amplitude has been exten-
sively studied [27] 28] [40H42].

If the evolution between the boundary surfaces
is classically allowed (the surfaces form a Euclidean
tetrahedron with V2({,, > 0)), the Ponzano-Regge
transition amplitude for large quantum numbers is
well approximated by

Ay w ——
2¢/127V (Las)

exp (iSR[Eab] + zg) +cc., (5)
where we interpret the Regge action of the Euclidean
tetrahedron Sg[¢ep] as Hamilton’s principal function
computed on a solution of the equation of motion of
Euclidean Regge calculus in three dimensions. This
is the spinfoam equivalent of (3, where the path in-
tegral is dominated by the classical paths compatible
with the boundary data.

What if the classical evolution of the boundary
data is forbidden? The spinfoam transition am-
plitude is still not vanishing. In the semiclassical
regime, we can approximate the Ponzano-Regge ver-
tex amplitude with the asymptotic expression[27]

A
1

Ay ————exp (—5%[0, 6
ST e Skl ©
where S%[lqp] = —iSg[lap) is the analytic continu-

ation of the Regge calculus Hamilton function for
a classically forbidden evolution. The (Euclidean)
dihedral angles are analytically continued to com-
plex values with positive imaginary parts. There-
fore, Re S [¢ab] > 0, and the resulting amplitude
A, is exponentially suppressed, as expected for a
classically forbidden process. The volume is purely
imaginary, and the extra imaginary unit cancels the
im/4 phase of (f).

This is the perfect example of a tunneling process
of quantum geometries in spinfoam theories. Evo-
lution between two surfaces (states), which is clas-
sically forbidden, can be realized quantum mechan-
ically. The process is rare, as the transition am-
plitude is exponentially suppressed. The path in-
tegral is dominated by the analytic continuation of
a solution of the classical equations of motion, and
the analytic continuation to the classically forbidden

1 This formula was discussed in the original paper, and we
report it as is. We plan to re-derive it in the future using
coherent states-based asymptotic analysis techniques [43]

).

FIG. 4. Pictorial representation of a local tunneling
bubble. We highlight the initial and final surfaces of
the bubble in blue and red. Illustration generated with
ChatGPT 4.0.

trajectory of Hamilton’s principal function charac-
terizes the suppression. The next section discusses
the various analogies with more familiar tunneling
scenarios in quantum mechanics.

As a concluding remark, we note that both sur-
faces involved in a tunneling event are legitimate
Fuclidean surface triangulations. The evolution af-
ter or before a tunneling event does not necessarily
exhibit anything unusual and can adhere to entirely
classical dynamics. In this sense, the tunneling event
can be viewed as a completely isolated bubble within
an otherwise standard Euclidean evolution, as artis-
tically illustrated in Fig. [

V. DISCUSSION

In conclusion, we analyze the analogies, effectively
serving as a dictionary, between the tunneling of
quantum geometries and the well-understood phe-
nomenon of a point particle tunneling through a po-
tential barrier in quantum mechanics.

Consider a point particle of mass m in one dimen-
sion impinging on a potential barrier of width L and
height V4 (see Fig. . We will assume the particle
has fixed energy Ej.

Can the particle traverse the barrier? The kinetic
energy of the particle in the region inside the barrier
is

p2

Einzi
k 2m

=Ey—-V. (7)

We encounter two main scenarios. In the first sce-
nario, where the particle’s energy exceeds the bar-
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FIG. 5. A one-dimensional potential barrier.

rier height (Fy > Vp), the particle possesses suffi-
cient energy to go over the barrier without unusual
phenomena. The transition amplitude in the semi-
classical limit A~ < 1 is dominated by the classical
trajectory over the barrier. The transition ampli-
tude is dominated by the classical action evaluated
on the classical equation of motion

A(Erin > 0) et L5 (Eo—Vo) (8)

In contrast, when the particle’s energy is less than
the barrier height (Ey < Vp), it lacks the requisite
energy to cross the barrier conventionally. How-
ever, quantum mechanics allows a tiny probabil-
ity for the particle to tunnel through the poten-
tial barrier. The momentum of the particle within
the barrier is ill-defined. However, we can define it
by analytic continuation to purely imaginary values
p = i+/2m|(Ey — Vp)|. The transition is classically
forbidden. There are no classical paths that domi-
nate the path integral in the semiclassical limit, and
the amplitude is exponentially suppressed

A(Egin < 0) x e~ IV 5 Bo=Vol 9)

The suppression is regulated by the classical action
evaluated on the analytic continuation of a classical
solution (with imaginary momentum).

The parallelism between a point particle pen-
etrating a potential barrier and the tunneling of
Euclidean three-dimensional geometries is striking.
The volume squared of the tetrahedron plays the
role of the particle’s kinetic energy. Depending on
the volume squared or the kinetic energy sign, we de-
cide if the evolution—compatible with the boundary
data—is classically allowed or forbidden. The dihe-
dral angles are symplectically conjugate momenta
to the length variables, making their analogy to the
particle momenta less surprising. Nonetheless, it is
remarkable that the tunneling trajectory is charac-
terized by the analytic continuation of these mo-
menta to complex values. The transition amplitude

dominated by these tunneling trajectories is expo-
nentially suppressed, and the suppression is provided
by the classical action evaluated on the tunneling
trajectory.

We find one more suggestive analogy following [?
]. We can interpret the imaginary dihedral-angle
momenta as a Wick rotation of the theory, t — i7,
commonly understood as a signature change. At
the same time, we interpret the classically forbidden
evolution of quantum geometries not as Euclidean
tetrahedral dynamics but as gluing in a Lorentzian
tetrahedron with a spacelike boundary, and this can
be understood as a (brief and local) change of space-
time signature.

We have disentangled the question of tunneling
of quantum geometries from the complication of
spinfoam theories by considering the simplest model
available, the Ponzano-Regge model. In doing so,
we have provided the first concrete analysis of tun-
neling processes in spinfoam theory. We leave to
future exploration the quantitative study of the
classically forbidden trajectories in Regge calculus
and their connection with gravitational instantons
[45]. A similar scenario should also be realized
in more physically appealing spinfoam theories for
four-dimensional Lorentzian gravity. Preliminary
studies in this direction show very promising appli-
cations to cosmology [T5HI9] and black holes [22H26].

This is a first step in the direction of more fully
understanding and characterizing purely quantum
gravitational processes, and there are still many
open questions. Tunneling processes of quantum ge-
ometries will soon play a major role in the search
for physical signatures of covariant Loop Quantum
Gravity. A natural next step is to understand how to
compute tunneling probabilities and physically mea-
surable quantities (e.g., halve-lives) in terms of the
spinfoam amplitude.
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Appendix A: Formulas for the geometry

This appendix collects a few useful geometrical formulas for Euclidean tetrahedra. The dynamical variables
in Regge gravity are the lengths of the edges of the Euclidean tetrahedra.

We can derive all the geometrical quantities of the tetrahedron as a function of the lengths starting from
the Cayley-Menger matrix

1 1 1 1
0 4, 8, 8,
%2 (2) 614 ‘634 (Al)
%3 6%4 (2) 634

23 624 634 0

Q
Il
=== O

L
14
14
The squared volume of the tetrahedron is given by V?2(£.p) = ﬁ det C. The squared area of any triangle is
given by S2(lyp) = —% det C,, where C, is the minor of C where we in which the row and column with the
lengths not involving a have been eliminated. (For example, to get the area of the triangle 1 we eliminate the
last row and column). The formula for S2(¢,;) is just Heron’s formula for the area of an Euclidean triangle,
and the formula for V2({,;) was first derived by Piero della Francesca in the 15th century. The advantage of

using the Cayley-Menger matrix in 3D is marginal, but this matrix can be readily generalized to arbitrary
dimensions, a valuable feature.

The external dihedral angle v,; dual to the length £,; involves the volume of the tetrahedron and the area
of the two triangles that have £, as edge

IR

sinap(ap) = 250 (Lap)Sp(lap)

(A2)

(Here, we have left V/V2 unsimplified to emphasize that V2 < 0 arises in the continuation of this formula to
the Lorentzian case.) This formula expresses the sine of the dihedral angle as a function of just the lengths.

For a classically forbidden geometry, V' (¢,5) is purely imaginary. Since £, > 0 and S, (€45) > 0 necessarily
sintap(Lap) is also purely imaginary. We can express the analytic continuation of the Euclidean dihedral
angle in terms of the (real) Lorentzian boost angles ¥L; as

Q/Jab(gab) = Xab(gab) + iwlfb(zab) )

where the factor xu,(¢ap) = 0 or 7 and the sign of wgb(gab) must be fixed depending on whether the dihedral
angle is co-chronal or anti-chronal [38] [39] [44].

(A3)
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