
HAL Id: hal-04483536
https://hal.science/hal-04483536v1

Preprint submitted on 9 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Human-machine collaboration: ordering mechanism of
rank-2 spin liquid on breathing pyrochlore lattice

Nicolas Sadoune, Ke Liu, Han Yan, Ludovic D.C Jaubert, Nic Shannon, Lode
Pollet

To cite this version:
Nicolas Sadoune, Ke Liu, Han Yan, Ludovic D.C Jaubert, Nic Shannon, et al.. Human-machine
collaboration: ordering mechanism of rank-2 spin liquid on breathing pyrochlore lattice. 2024. �hal-
04483536�

https://hal.science/hal-04483536v1
https://hal.archives-ouvertes.fr


Human-machine collaboration: ordering mechanism
of rank−2 spin liquid on breathing pyrochlore lattice

Nicolas Sadoune,1, 2 Ke Liu,1, 2, 3, 4 Han Yan,5, 6, 7, 8 Ludovic D.C. Jaubert,9 Nic Shannon,5 and Lode Pollet1, 2

1Arnold Sommerfeld Center for Theoretical Physics, LMU Munich, Theresienstr. 37, 80333 München, Germany
2Munich Center for Quantum Science and Technology (MCQST), 80799 München, Germany

3Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences,
University of Science and Technology of China, Hefei 230026, China

4Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics,
University of Science and Technology of China, Shanghai 201315, China

5Theory of Quantum Matter Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0412, Japan
6Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581 Chiba, Japan

7Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
8Smalley-Curl Institute, Rice University, Houston, TX 77005, USA

9CNRS, Université de Bordeaux, LOMA, UMR 5798, 33400 Talence, France
(Dated: February 19, 2024)

Machine learning algorithms thrive on large data sets of good quality. Here we show that they can also excel in
a typical research setting with little data of limited quality, through an interplay of insights coming from machine,
and human researchers. The question we address is the unsolved problem of ordering out of a spin–liquid phase
described by an emergent rank–2 U(1) gauge theory, as described by [H. Yan et al., Phys. Rev. Lett. 124, 127203
(2020)]. Published Monte Carlo simulations for this problem are consistent with a strong first–order phase
transition, but were too noisy for the form of low-temperature order to be identified. Using a highly–interpretable
machine learning approach based on a support vector machine with a tensorial kernel (TKSVM), we re-analyze
this Monte Carlo data, gaining new information about the form of order that could in turn be interpreted by
traditionally-trained physicists. We find that the low-temperature ordered phase is a form of hybrid nematic
order with emergent Z2 symmetry, which allows for a sub-extensive set of domain walls at zero energy. This
complex form of order arises due to a subtle thermal order-by-disorder mechanism, that can be understood from
the fluctuations of the tensor electric field of the parent rank-2 gauge theory. These results were obtained by a
back-and-forth process which closely resembles a collaboration between human researchers and machines. We
argue that this “collaborative” approach may provide a blueprint for solving other problems that have not yielded
to human insights alone.

I. INTRODUCTION

Condensed matter physics has the fascinating property that
phenomena which are difficult to realize in the natural world
can emerge from complex models. Well-known examples are
magnetic monopoles, which are natural excitations of spin-ice
materials1,2 and whose quantum fluctuations offer a tunable
version of QED,2–4 and Kitaev magnets, which support Majo-
rana fermions.5,6 Recently, there has been a flurry of activity
in realizing even more exotic higher-rank gauge fields7–9 as a
source for fractons, which are excitations of reduced mobility
emerging in novel types of topological order,10–12 and which
are also promising for quantum computing. Clearly, opening a
window for strongly correlated physics, emergent gauge fields,
and/or fractionalization, requires competing interactions hin-
dering long-range order, which is the hallmark of frustration.
A world of opportunity is therefore awaiting in frustrated mag-
nets. However, precisely because of the wide range of possible
outcomes, numerical simulations of frustrated magnets are no-
toriously difficult to perform, showing a strong tendency to fall
out of equilibrium at low temperatures. And even where sim-
ulations converge, results can still be challenging to interpret.
As a consequence, many interesting questions about the emer-
gent phenomena found in frustrated models at low temperature
remain out of reach.

Another area where great advances have been made in the

past decade is in the application of machine learning tech-
niques to complex data sets. Where it is interpretable, and
can be trained without prior assumptions, machine learning
can perform a role similar to a human researcher, constructing
a classification scheme for different phases of matter “from
scratch”. A number of different calculations of this type have
been carried out for frustrated models,13–18 and have proved ca-
pable of reproducing complicated phase diagrams for systems
with emergent gauge symmetry,15,17 and even of identifying
magnetic phases not previously anticipated by other means.19

Nonetheless, how “AI” will impact on research into novel
phases of matter, and the way in which it will change patterns
of work, remains an open question.

This paper has two objectives: firstly, to solve a complex
physics problem, in an active field of research related to emer-
gent gauge fields; and secondly, to show how this solution
becomes possible through an interaction between human and
machine learning. The problem we consider is an archetypical
“hard problem” in frustrated magnetism: using numerical sim-
ulation of a model which supports many (quasi–)degenerate
states to identify a complex and previously unknown form of
order at low temperatures. More specifically, we address the
form of low–temperature magnetic order which descends from
a spin liquid described by an emergent rank−2 gauge field, in
a model motivated by breathing–pyrochlore magnets.

In earlier work by Yan et al. [Ref. 20], traditional methods
based on the calculation of structure factors within Classical
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Monte Carlo simulation, were used to establish both the exis-
tence of a rank–2 U(1) spin liquid at finite temperature, and
to identify a transition into an ordered phase at low tempera-
tures. However, this approach failed to pinpoint the form of
low–temperature order, on account of difficulty of converg-
ing simulations at low temperatures. Here we revisit those
simulations, and show what is gained by analyzing data using
a variant of a support vector machine with tensorial kernel
(TKSVM).14–16 This highly–interpretable form of machine
learning is employed without prior training or supervision.
Through a step-by-step iteration of the insights derived from
human and machine learning, we are able to successfully iden-
tify both the unknown ground state order, and the mechanism
through which it occurs. We argue that this back–and–forth
process resembles a collaboration between human researchers
and “machine”, an approach which may yield success in other
difficult research problems.

The model in question is the Heisenberg antiferromagnet on
the breathing pyrochlore lattice with Dzyaloshinskii-Moriya
(DM) interactions on alternating tetrahedra is known to sup-
port a rank-2 gauge field theory.20,21 Descending from this
higher-rank gauge field, Monte Carlo simulations showed the
onset of an undefined magnetic order at very low temperature,
Tc ∼ 10−3J where J is the antiferromagnetic exchange cou-
pling [Fig. 2]. The model is essentially a “worst-case scenario”
for Monte Carlo (MC) simulations, where a joint heatbath,
parallel-tempering and overrelaxation algorithm could not sat-
isfactorily thermalise the ordered phase [Fig. 3]. We believe
this difficulty to thermalize is revealing of the naturally com-
plex magnetic texture of a higher-rank gauge field, making
our approach a test case for such questions. This is where AI
helped us extract the relevant information out of noisy and in-
complete numerical data and, together with analytical support,
refine the MC simulations.

As a summary, we have found the nature of the long-range
ordered phase, as illustrated in Fig. 1a. The machine could
identify two distinct order parameters that brought to light
a two-step ordering mechanism. First a traditional energetic
selection into a continuously degenerate ground state mani-
fold, followed by an entropic selection via thermal order by
disorder.22,23 Initializing the Monte Carlo simulations with the
learned structure has led to well converged data [Fig. 8]. An-
other iteration of human-machine collaboration then unveiled a
zero-energy sub-extensive dynamics, which is neither a global
nor local symmetry of the system, but an emergent Z2 sub-
system symmetry [Fig. 9]. The emergence of a sub-extensive
symmetry is markedly unusual for a realistic two-body Hamil-
tonian, since it typically requires an artificially complex set of
interactions, as seen e.g. in fractonic matter.10–12 As a conse-
quence, this sub-extensive symmetry leads to a hybridization
of linear (dipolar) and quadratic (quadrupolar) magnetic orders.
The dipolar order breaks spin-rotation, spin-permutation and
translational symmetries, while the quadrupolar order addition-
ally breaks lattice-rotation symmetry giving rise to an emergent
nematicity. Finally, we could rationalize the order parameters
found by the machine as descending from fluctuations of the
tensor electric field E of the rank-2 gauge theory.

(a) (b)

FIG. 1. (a) Ground-state spin configuration. The breathing py-
rochlore lattice is made of two inequivalent types of corner-sharing
tetrahedra, labeled by A in blue and B in red. Our model consists of
nearest-neighbor interactions, with antiferromagnetic exchange every-
where, and Dzyaloshinskii-Moriya (DM) interactions on A-tetrahedra
only [Eq. 1]. The ground state is coplanar and nematic in the sense
that it breaks lattice-rotation symmetry. The ordering mechanism
comes from a thermal order-by-disorder selection within the emergent
rank-2 U(1) gauge field. See App. A for relevant definitions. (b) The
FCC cubic unit cell comprises 16 sites forming four A- and one
B-tetrahedron. Considering the centre of the four A−tetrahedra, it
forms the minimal unit cell of the face-centred-cubic (FCC) lattice.
This cluster will be used for analysing rank-2 results.

II. MODEL

The model is a classical Heisenberg antiferromagnet on the
breathing pyrochlore lattice, decorated by DM interactions on
one of the two types of tetrahedra [Fig. 1a]. The Hamiltonian
reads as follows:

H = J
∑
⟨ij⟩

Si · Sj +D
∑

⟨ij⟩∈A

dij · (Si × Sj). (1)

The position of sites as well as the DM vectors dij are specified
in App. A. The model came to prominence because of the pos-
sibility of realizing an exotic rank−2 U(1) spin liquid for nega-
tive D < 0.20 Furthermore, materials such as Ba3Yb2Zn5O11

have parameters in this regime for the A-tetrahedra, although
the antiferromagnetic interactions on the B-tetrahedra might
be too small.24–26 For JB = JA = J = 1 and D = 0 the
model reduces to the standard Heisenberg antiferromagnet on
the pyrochlore lattice, displaying the well-understood rank-1
classical spin liquid behavior for T → 0, and this behavior
crosses over at higher temperature to a standard paramagnet.

For positiveD > 0, the ground state is a simple all-in all-out
ordered phase at low temperature.20 However, at negative D <
0 below the rank−2 U(1) spin liquid, the system was found
to order in some fashion that was ill understood because of
thermalisation issues. All that was known was the presence of
Bragg peaks in the structure factor at finite q =W wavevector,
possibly co-existing with other phases. The properties of this
phase are the subject of this paper, and we shall fix J = 1 and
D = −0.0141.
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FIG. 2. The phase diagram of our model presents three distinct
regimes before ordering upon cooling:20 a paramagnet, a rank-1 spin
liquid (the Heisenberg antiferromagnet) and a rank-2 spin liquid,
as illustrated from the evolution of the specific heat Ch (red) and
reduced susceptibility χT (blue). The ordered phase is separated from
paramagnetic fluctuations by three orders of magnitude in temperature
T . The vertical dashed and solid lines are respectively crossovers
and a phase transition. Our goal is to understand the nature of the
“unknown order” below the transition at Tc. The system size is N =
8192, the DM term is set to D = −0.0141J and the x−axis is in
logarithmic scale.

III. SIMULATIONS BEFORE AI INPUT

We performed Monte Carlo simulations following the proce-
dure of Ref. 20 for system size up to 27 648 spins (N = 16L3)
of length |S| = 1/2. Starting from a random spin config-
uration, the system is annealed from high temperature to a
temperature T during 106 Monte Carlo steps, then thermalised
at T for another 106 Monte Carlo steps, and finally data are
collected for statistical averaging during 107 MC steps. Each
MC step is made of N single-spin-flip updates via the rejec-
tionless heatbath algorithm and five overrelaxation updates
sweeping through the entire lattice. Overrelaxation is a micro-
canonical update with spin rotation around the local molecular
field for each spin; we include both π rotations (the largest
one) and random ones. Every 100 MC steps, there is parallel
tempering between neighbouring temperatures (126 temper-
atures in parallel between T = 0 and 0.0025J). Based on
our experience with classical Monte Carlo simulations, in ad-
dition to the generic and rather powerful overrelaxation and
parallel-tempering algorithms, these simulation parameters are
an order of magnitude longer in time and bigger in system size
than what is usually necessary to completely characterise a
typical phase transition in a frustrated magnet. Nonetheless,
we see in Fig. 3 that while it is possible to spot the presence of
long-range order, we cannot properly thermalise the magnetic
order at very low temperatures. As a consequence it is unclear
if the order with Bragg peaks at q =W is really (part of) the
ground state and if it co-exists, or not, with other phases.

The reasons for this issue are multiple. On a fundamental
level, our problem is the ordering mechanism descending from
a higher-rank gauge field. As was shown in Ref. 20, the rank-
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FIG. 3. Monte Carlo simulations before AI input show a phase
transition at Tc ≈ 8. 10−4J in the (a) energy, (b) specific heat and (c)
order parameter for wavevector q = W order (corners of the Brillouin
zone) for system size L ∈ {4, 6, 8, 10, 12}. Simulations have been
slowly annealed from high temperature during thermalisation. There
are, however, noticeable finite-size effects and thermalisation issues
below T ∼ 10−3J . Details of simulations are given in Sec. III.
The energy in panel (a) has been shifted by +J S2 = +1/4 for
convenience.

2 gauge field itself descends from a rank-1 gauge field with
a broader phase space manifold, namely the Coulomb spin
liquid of the Heisenberg antiferromagnet on pyrochlore. It is
the DM term on A−tetrahedra of Hamiltonian (1) that selects
the rank-2 gauge field. This means that the ordered phase we
are investigating is separated from paramagnetic fluctuations
by two successive crossovers into more and more constrained
configurational manifolds [Fig. 2]. Monte Carlo simulations
are thus particularly constrained in phase space around Tc and
can easily be trapped in local free-energy minima.
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This is where parallel tempering would usually help, by
shuffling spin configurations across temperatures. But here
the issue is not only that the transition temperature is far from
paramagnetic fluctuations. The visible jumps in energy and
order parameter in Fig. 3(a,c) suggest a first-order transition.
This strongly hinders the efficiency of parallel tempering,
because the discontinuity in energy essentially prevents spin
configurations from crossing the transition temperature. Hence
one cannot rely on parallel tempering to help thermalise the
ordered phase. In addition, the energy jump in Fig. 3(a) is of
the order of 10−4J . Such a tiny energy selection is consistent
with the double crossover mentioned above but, keeping in
mind that we are at proximity of a highly degenerate spin
liquid, it also suggests a competition between multiple phases
that are quasi-degenerate in free energy. Finally, the q = W
Bragg peaks implies a large magnetic unit cell made of 32
sites, which is another complication in itself for the local
heatbath algorithm.

Our point is that, even if not necessarily systematic, we ex-
pect thermalization issues to be relatively natural consequences
of higher-rank gauge fields. Being governed by tensorial con-
straints and a multiplicity of conserved quantities, these exotic
phases are inherently complex, and it comes as to no-surprise
for their ordering mechanisms to be unconventional. With
these caveats in mind, our goal is to show how AI is able to
help us, taking advantage of what it does best: extracting useful
information out of noisy and incomplete data.

IV. THE MACHINE LEARNING ALGORITHM

Our machine learning algorithm, the tensorial kernel
support vector machine (TKSVM), has been developed in
Refs. 14,16,15. The inner working of the TKSVM algorithm
are not necessary to understand the present work, as there are
no algorithmic developments here, and we refer to App. B
for a concise introduction to the method. It is, however, im-
portant to know its input requirements and output. TKSVM
takes as input Monte Carlo snapshots of the spin configurations
(typically 500-1000 of them) between two different data sets.
Since the Hamiltonian parameters are fixed, we will compare
different temperatures, in particular above and below Tc. It
also requires as input the definition of a (typically small) clus-
ter of sites, specified by the user. TKSVM builds on these
clusters on a tensorial basis up to a predefined rank. Rank
one can be thought of as dipolar magnetic order, rank two as
quadrupolar order etc. The stochastic quantities defined on this
cluster are obtained by averaging spin configurations over the
full lattice. This significantly reduces the data’s dimension to a
dependence on the size of the cluster. The output of TKSVM
is the decision function used to separate data into sets with
different characters. This comprises structure factors (in the
term of a coefficient matrix) and a bias term. The bias, usually
used to extract phase diagrams by TKSVM, plays no role in
this work. The structure factors encode the order parameters
squared, and can be interpreted by the user. In other words, in
the (simplified) setting when the machine strips all the infor-

FIG. 4. Rank−1 coefficient matrix. On the x- and y-axis are
all possible spin components {Sx

1 , S
y
1 , S

z
1 , S

x
2 , . . . , S

z
128}, ommitted

because of the large size of the matrix. Every entry of the 384× 384

matrix represents the weight of a contraction Sa
i S

a′

i′ assigned by
TKSVM during the learning process. Left: Full rank−1 pattern
based on a 128−site cluster (8 cubic unit cells). Right: Zoom into
three different spin-contraction blocks with specific spin indices i, i′,
revealing similar structure but different overall magnitude.

mation differentiating two data sets down to a single scalar, the
decision function encodes the local order parameter of Landau
theory reflecting symmetry breaking between the two data sets.
An additional strength of TKSVM is that even in the absence
of order, it is able to measure local constraints hinting at a po-
tential classical spin liquid candidate. The extent of the locality,
for both the order parameter and the spin-liquid constraint, is
limited by the cluster size. As an illustrative example we refer
to Ref. 15 where TKSVM successfully reproduced the phase
diagram of the classical XXZ model on the pyrochlore lattice
computed by Taillefumier et al.:27 it found, and interpreted,
the ordered in-plane ferromagnetic and nematic phases, but
also identified and interpreted the crossovers between the high-
temperature paramagnet and spin-ice, as well as the one with
the Heisenberg spin liquid. Given this success and the tensorial
nature of the higher-rank gauge fields, TKSVM is our method
of choice to tackle this conundrum.

A. Rank−1 results

Without prior knowledge of the phase, it is natural to start
with the rank−1 kernel to probe potential magnetic orders.
Rank−1 means that we consider quantities which are linear
combinations of the spin components of the cluster, or in other
words dipolar forms of magnetic order. As the complexity of
the feature vector grows linearly at rank−1,16 we can use very
large clusters consisting of multiple lattice unit cells. Provided
a phase is purely magnetic and has a perfect translational sym-
metry, the rank−1 patterns learned with different cluster sizes
should converge to a stable, regular, structure. The magnetic
order parameter can then be inferred and justified a posteriori
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FIG. 5. Rank−2 coefficient matrix of dxyA for the A− tetrahedra.
In this example, spins are constrained in the spin xy plane. The
dimension of the matrix is 144× 144.

by measuring it in new Monte Carlo simulations.
However, in the unknown phase below Tc, we do not observe

evidence of a stable rank−1 pattern even when using very
large clusters up to 128 sites in Fig. 4. Instead, the learned
patterns display sample-dependent irregular weights that are
inconsistent with long-range dipolar order. This suggests that
magnetic orders do not reflect the correlations in the system
fully, and we shall further inspect the data at rank−2.

B. Rank−2 results

Rank−2 means that we consider quantities which are
quadratic combinations of the spin components of the cluster,
or in other words quadrupolar forms of magnetic order. The
choice of the cluster at rank−2 is also guided by the lattice
structure. Natural choices include a single A-tetrahedron,
singleB-tetrahedron, and FCC cubic unit cells of the breathing
pyrochlore lattice consisting of 16 spins [see Fig. 1b]. We
found that considering the A-tetrahedron and B-tetrahedron
separately reveals all the information of the phase. After
obtaining results for these clusters separately, they need to
be combined to understand the structure of the ground states.
Alternatively, using a FCC unit cell as a cluster directly reveals
the ground state structure, at the price of a more involved
interpretation and some redundancy from the fourA-tetrahedra
contained in the cluster. For simplicity, we will present the
information extracted from A- and B-tetrahedra successively.

For each of the four A-tetrahedra, the (sub-)decision func-
tion is

dsA ∼ (cs1)
2 + (cs2)

2, (2)

where s ∈ {xy, yz, zx} labels a global spin plane which spon-
taneously breaks the spin permutation symmetry of the Hamil-
tonian [Eq. (1)]. The precise order is thus defined by two
effective order parameters c1 and c2 that are quadratic func-

tions of spin components,

cyz1 =
1

16

(
(Sy

0 − Sy
1 + Sz

2 − Sz
3 )

2 + (Sz
0 − Sz

1 − Sy
2 + Sy

3 )
2
)

cxz1 =
1

16

(
(Sx

0 + Sz
1 − Sx

2 − Sz
3 )

2 + (Sz
0 − Sx

1 − Sz
2 + Sx

3 )
2
)

cxy1 =
1

16

(
(Sx

0 + Sy
1 − Sy

2 − Sx
3 )

2 + (Sy
0 − Sx

1 + Sx
2 − Sy

3 )
2
)

(3)

cyz2 =
2

16
(Sy

0 − Sy
1 + Sz

2 − Sz
3 )(S

z
0 − Sz

1 − Sy
2 + Sy

3 )

cxz2 =
2

16
(Sx

0 + Sz
1 − Sx

2 − Sz
3 )(S

z
0 − Sx

1 − Sz
2 + Sx

3 )

cxy2 =
2

16
(Sx

0 + Sy
1 − Sy

2 − Sx
3 )(S

y
0 − Sx

1 + Sx
2 − Sy

3 ). (4)

As TKSVM is conceived to learn the optimal order param-
eters, we can reversely infer maximally ordered spin config-
urations by maximizing dsA. These fully ordered states are
potential ground states. Note that in order to facilitate the
interpretability of TKSVM we shall not average over Monte
Carlo samples in which different spin planes are spontaneously
selected; in fact, it suffices to analyze all samples separately.
With no loss of generality, we consider a state where the or-
dering develops in the spin xy plane, whose corresponding
TKSVM pattern (coefficient matrix) is illustrated in Fig. 5. The
extraction of an analytical expression for the decision function
from its graphical representation is discussed in App. C.

The form of the Eq. (2) suggests cs1 and cs2 can be viewed as
independent order parameters. Therefore, we can maximize
them separately and then check the consistency of their solu-
tions. First, maximizing (cxy1 )2 (i.e. solving (cxy1 )2 = 1) leads
to a manifold of spin configurations parametrized by an angle
θ ∈ [0, 2π],

S0 =

cos θ
sin θ
0

 S1 =

cos θ + π
2

sin θ + π
2

0


S2 =

cos θ − π
2

sin θ − π
2

0

 S3 =

cos θ + π
sin θ + π

0

 , (5)

as illustrated in Fig. 6a. Maximizing (cxy2 )2 falls into the same
structure of Eq. (5). Its evolution as a function of θ is plotted
in Fig. 6b and shows that (cxy2 )2 is maximised for four discrete
values only:

θ ∈
{
π

4
,
3π

4
,
5π

4
,
7π

4

}
. (6)

The U(1) manifold of Eq. (5) belongs to the ground state
of the traditional pyrochlore antiferromagnet with negative
DM interactions on all tetrahedra,28–30 i.e. without breathing
anisotropy. Indeed, applying the spin configuration of Eq. (5)
to Hamiltonian (1), we recover its ground-state energy per
bond28

Ebond
A =

1

6
(−2J + 2

√
2D). (7)
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Spatial

layer

Maximal

weight
(S0 · S1) (S0 · S2) (S0 · S3) (S1 · S2) (S1 · S3) (S2 · S3)

missing

config.

yz w1 = 1 -1 ±1 ∓1 ∓1 ±1 -1 P (Λ⋆1
E ) = 0

xz w2 = 1 ±1 -1 ∓1 ∓1 -1 ±1 P (Λ⋆2
E ) = 0

xy w3 = 1 ±1 ∓1 -1 -1 ∓1 ±1 P (Λ⋆3
E ) = 0

TABLE I. Collinear ground states on B-tetrahedra. In each case there are two possible solutions, reflecting the Z2 symmetry. The leftmost
column describes which spatial layer possesses the Z2 symmetry, while the rightmost column indicates which of the three possible configurations
of the B-tetrahedra, defined in Eq.(23), is not allowed.

(a)

(b)

FIG. 6. Order-by-disorder in A−tetrahedra. (a) Example of a
state maximising both cxy1 and cxy2 with θ = 7π/4 in Eq.( 5). The
bonds that lie inside the spin-plane (0−3 and 1−2) have anti-parallel
spins. (b) The spin-plane-specific quantities cxy1 and cxy2 as well as
the energy per bond [Eq. (7) with J = 1 and D = −2] as functions
of the parametrisation angle θ. Note that in the decision function
Eq. (2) the term cxy2 appears squared, meaning that configurations
with cxy2 = −1 are also maxima of the decision function.

Since Eq. (7) is independent of θ, any selection of specific θ
values is necessarily due to thermal order by disorder (ObD),
i.e. the selection is entropic rather than energetic. In the stan-
dard model without breathing anisotropy, the ObD mechanism
selects the q = 0 ψ3 long-range order,28–30 which corresponds
to θ equals to either 3π

4 or 7π
4 for all tetrahedra, and is illus-

trated in Fig. 6a. However, in our model where DM terms
disappear on B−tetrahedra, the ground-state manifold is en-
larged and the machine finds two additional solutions on the
A−tetrahedra, θ ∈

{
π
4 ,

5π
4

}
.

The ordering mechanism is thus a two-step process; first,

the selection of the U(1) manifold [Eq. (5)], and second, the
coalescence on special points of the manifold via thermal
order-by-disorder [Eq. (6)]. It is remarkable that the machine
is able to extract both sets of solutions, by which we can infer
the order-by-disorder phenomenon, out of noisy numerical
data.

Now let us focus on the other type of tetrahedra, with only an-
tiferromagnetic couplings (no DM terms). The (sub-)decision
function on the B-tetrahedra is identified as

dB ∼
[
w1 (S0 · S1 + S2 · S3) + w2 (S0 · S2 + S1 · S3)

+w3 (S0 · S3 + S1 · S2)
]2
. (8)

The values of the weights w1, w2, w3 can be read off from the
TKSVM patterns, satisfying

w1 + w2 + w3 = 1, maxwi = 1, (9)

where the maximal wi is related to the ordering spin plane in
dsA. Under this constraint, dB can be intuitively maximized if
the four spins in a B-tetrahedron are collinear. The solutions
are listed in Table I, and Fig. 7a shows an example of the
coefficient matrix when the ordering is in the spin xy plane
with w3 = 1.

Alternatively, the collinearity on the B-tetrahedra can also
be derived from the constraints on the A−tetrahedra derived in
the previous section. Without losing generality, we again take
dxyA as an example. The four solutions of (cxy2 )

2
= 1 can be

divided into two classes

cxy2 = 1 : S0 =
1√
2

1
1
0

 S1 =
1√
2

−1
1
0


S2 =

1√
2

 1
−1
0

 S3 =
1√
2

−1
−1
0

 , (10)

cxy2 = −1 : S0 =
1√
2

 1
−1
0

 S1 =
1√
2

1
1
0


S2 =

1√
2

−1
−1
0

 S3 =
1√
2

−1
1
0

 , (11)

up to a global sign flip which preserves the value of cxy2 .
Eqs. (10) and (11) correspond to θ ∈

{
π
4 ,

5π
4

}
and

{
3π
4 ,

7π
4

}
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(a) (b)

FIG. 7. (a) Rank−2 coefficient matrix of dB for the B− tetrahedra. Left: All blocks have the same structure but different weights. In this
example, the z-component is missing because of the global spin-plane selection. Right: Absolute block-weight products of the left pattern.
(b) Ground-state configuration with ordering in the xy plane. The value of cxy2 is uniform within a A-tetrahedron layer, but alternates over
different layers (cf. the upper two blue tetrahedra vs the lower two). In this example, the spin ordering plane coincides with the spatial plane.

respectively. Measurements of this machine-learned quantity
show that cxy2 = ±1 alternates through the z direction, as
shown in Fig. 7b. As a B-tetrahedron shares spins with four A-
tetrahedra, it has to take two collinear spins from Eq. (10) and
then two spins with the same collinearity from Eq. (11). Oth-
erwise, it cannot satisfy the staggered distribution cxy2 = ±1.
This long-range order breaks spin-rotation, spin-permutation
and translational symmetry.

V. SIMULATIONS AFTER AI INPUT

Equipped with the patterns learned by the machine learning
algorithm and the corresponding algebraic expressions, we
go back to the Monte Carlo simulations. The simulations are
now not slowly annealed from high temperature, but rather
quenched into the configuration of Fig. 1a at temperature T ,
followed by 106 MC steps of thermalisation, and 107 MC
steps for measurements. Paving the lattice with the ground
state found by the machine requires alternating along the z
direction, the xy−layers of spin configurations as in Fig. 7b
with their time-reversal symmetric. This naturally forms a
32-site magnetic unit cell [Fig. 1a]. We have again 126 temper-
atures equally spaced between 0 and 0.0025J . The results are
shown in Fig. 8, computed for the same physical parameters
mentioned in Sec. III.

These new MC simulations converge nicely and confirm
the stability of the ground state found by the machine. The
transition is now violently first order, whose hysteresis explains
the shift of the transition temperature Tc between 0.8 10−3J
in Fig. 3 and 1.5 10−3J in Fig. 8. Quenched simulations in the
latter case provide an upper bound of Tc, while slow annealing
has more difficulty in finding the ordered phase and provides a
lower bound to Tc. The c1 and c2 order parameters correctly
describe the ground state, with a noticeably stronger finite-
size dependence for the latter; a common consequence of the

order-by-disorder mechanism.31 Finally, the order parameter
mq=W now saturates at T = 0, which means there is a priori
no co-existence of other phases.

VI. EMERGENT Z2 PLANAR SYMMETRY

We now put the machine-learned quantities together and dis-
cuss an emergent planar-flip symmetry, which will also resolve
the origin of the irregular weights in Fig. 4. For simplicity,
we continue to consider the ground state as Fig. 1a as an ex-
ample, where the order is developed in the xy plane and the
planar symmetry acts on spatial xy planes. In general these
two planes do not need to coincide, but this does not affect
our discussion: the spin-order plane is manifest from the c1
and c2 parameters, while the direction of the spatial planar-flip
symmetry can be known from the largest weight in dB .

Given the collinearity on the B-tetrahedron, the decision
function Eq. (8) reduces to

dB ∼ (−w1 − w2 + w3)
2 = (w3)

2. (12)

Here we have used the solutions in Eqs. (10) and (11) (or
equivalently the corresponding configuration in Table I) and
the weight relation in Eq. (9). As in this example maxwi =
w3 = 1, the relation Eq. (9) reduces to w1 + w2 = 0.

Eq. (12) manifests a property of dB that it is invariant under
flipping a specific pair of spins, which can be (S0,S3) or
(S1,S2) in the current example. Nevertheless, as spins in a
B-tetrahedron belong to different A-tetrahedra, in order to
preserve the value of the order parameters c1 and c2, one has
to flip all spins in the two neighbouring A-tetrahedra. This
procedure is then repeated to further A-tetrahedra neighbours,
and closes only after flipping all A-tetrahedra in an entire layer,
as illustrated in Fig. 9.

Namely, there is an emergent subsystem symmetry acting
on individual ordering layers of A-tetrahedra (equivalently,
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FIG. 8. Monte Carlo simulations after machine input shows a
phase transition at Tc ≈ 1.5 10−3J in all three order parameters: (a)
the average of the maximum value of c1, (b) c2 and (c) the order
parameter for wavevector q = W order (corners of the Brillouin
zone) for system size L ∈ {4, 6, 8, 10, 12}. Simulations have been
quenched into the state of Fig. 1a for each temperature.

two adjacent B-tetrahedron layers, while only the bottom or
top half of each B-layer is transformed). As a consequence,
the system “hybridizes” rank−1 and rank−2 orders. This
is a rather unconventional emergent property for an ordered
phase; such sub-extensive zero modes usually require to be
artificially enforced via either a global or local symmetry of
the system10–12 !

Since this planar spin flip is sub-extensive – it scales as L2

– we expect it to be dynamically robust. Pragmatically, let’s
assume that while cooling down the system, such a planar spin
flip takes place. This is quite possible since it costs zero energy
and the transition is violently first order [Fig. 8]; once the cubic

(a)

(b)

FIG. 9. Planar Z2 symmetry. (a) All A-tetrahedra within one layer
are flipped (indicated in green), thereby changing the value of ΛE

in the two neighbouring B-layers. On B-tetrahedra, only intra-layer
bonds connecting two A-tetrahedra from the same layer are affected
by the transformation. (b) Projection onto the xy-plane; for simplicity
not all spins are drawn. This example shows a case where the normal
on the spin plane coincides with the normal on the layer-partitioning,
but in general we can also construct ground states where the two
normals do not coincide.

symmetry is broken in favour of a given plane (here the xy
plane), two far-away layers of A−tetrahedra may likely order
independently from each other. As a result, the long-range
dipolar order with Bragg peaks at q =W found in Fig. 8 will
be perturbed by multiple planar spin flips at random positions
in the system. And since there is a vanishingly small probabil-
ity to move L2 spins coherently in the thermodynamic limit,
such energetically degenerate spin configuration should remain
stable over very long time scales. This mechanism explains the
origin of the irregular weights in Fig. 4, and probably played
an important role in the difficulty to interpret previous Monte
Carlo simulations, by hindering the ordering mechanism and
hiding the magnetic dipolar order. As a result, the magnetic
order will be long-range in the plane, but only partial – and
possibly even vanishing – in the orthogonal direction. Such
states break lattice-rotation symmetry and we dub them “hy-
bridized nematic order”, whose director of the nematic state is
orthogonal to the planar spin flips.

To conclude, we should mention that among all of the ener-
getically degenerate states connected by Z2 symmetry, three
of them have the 16-site cubic unit cell of Fig. 7b paving the
entire lattice. They possess two planar symmetries rather than
only one, e.g. planar xy- and yz-symmetries with the corre-
sponding weights w1 = w3 = 1, w2 = −1, cf. table I. But
any planar spin flip as in Fig. 9 would immediately break the
fragile cubic symmetry.
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VII. RELATION TO Td IRREPS

TKSVM learns order parameters in the language of the raw
data, namely, the ordinary spin degrees of freedom. To gain
more insight, we can cast the machine-learned quantities in
terms of the irreducible representations of the point group Td,31

which is the human way of thinking.
At this moment we take a step back and recall the construc-

tion of the rank-2 U(1) gauge theory of Refs. 7, 9, 20, and 32
and in particular the fluctuations of the electric field E. Rank-2
U(1) spin liquids satisfy a Gauss law with vectorial character,
∇iEij = ρj , where E is a symmetric, traceless rank-2 tensor.
Hamiltonians defined as sums of terms living on individual
tetrahedra (such as the one considered here) can always be
decomposed into (coarse-grained) fields mX transforming as
the irreps of Td, the symmetry group of a tetrahedron,31

H =
1

2

∑
A,X

aA,Xm2
X +

1

2

∑
B,X

aB,Xm2
X , (13)

where the A(B) sum runs over all A(B) tetrahedra, and X
runs over the irreps {A2, E, T2, T1+, T1−}.31 In case of the
standard Heisenberg antiferromagnet without DM interactions,
one has

0 < aA2 = aE = aT2 = aT1− < aT1+ . (14)

It follows that the fields mA2 ,mE ,mT2 ,mT1− are free to
fluctuate in the ground state, which can be combined into the
rank-2 tensor E. Imposing that E must be traceless symmetric,
and requiring the continuity of the mX fields20 it is necessary
to gap out the mT2 and mA2 fields on theA−tetrahedra, which
can be achieved by introducing negative DM interactions on
top of the original Heisenberg interactions on theA−tetrahedra.
Then at low temperature, on A−tetrahedra, only the mE and
mT1− fields enter into the ground state; mT2

and mA2
can be

set equal to 0. The resulting tensor electric field is20

E =


2√
3
m1

E mz
T1−

my
T1−

mz
T1−

− 1√
3
m1

E −m2
E mx

T1−

my
T1−

mx
T1−

− 1√
3
m1

E +m2
E

 . (15)

Furthermore, the condition mT1+ = 0 on B-tetrahedra im-
poses

∂iEij = 0 (16)

for E living on the A−tetrahedra, which becomes the
Gauss law of a rank-2 U(1) theory. This is the Hamiltonian
considered in this work.

Going back to the ordered phase of interest in this paper,
and using the irreps of a tetrahedron31 which are reproduced
in Table II, the two order parameters found in the decision
function in dsA can be expressed as

cs1 =
1

4
(∥mT1−∥2 + ∥mE∥2) (17)

cs2 =
1

4
(∥mT1−∥2 − ∥mE∥2). (18)

We see that cs1 reproduces the ground-state constraint of
the rank-2 U(1) gauge theory, but with an additional index
s ∈ {xy, xz, yz} for the spontaneous selection of a spin plane.
The order parameter cs2 is nevertheless an emergent quantity
that is not evident from direct symmetry arguments. The
meaning of the ground-state condition cs2 = ±1 now becomes
more intuitive in this irrep basis. Order by disorder ensures
that an A-tetrahedron is either fully on mT1− or on mE . The
alteration of cs2 = ±1 further means that the system can be
viewed as staggered layers of mT1− and mE A-tetrahedra.

For the B-tetrahedron, it is more convenient to use the bond
irreps reproduced in Eq. (A1),33 by which the decision function
dB becomes

dB ∼
[
aA1ΛA1 + aE,1ΛE,1 + aE,2ΛE,2

]2
, (19)

with

aA1
=

√
2

3
(w1 + w2 + w3) (20)

aE,1 =

√
1

3
(2w1 − w2 − w3) (21)

aE,2 = w2 − w3. (22)

Maximizing dB then requires ΛA1
≡ −

√
2
3 and that ΛE

can only take the following three configurations,

Λ⋆1
E =

(
4√
3

0

)
Λ⋆2

E =

(
−2√
3

2

)
Λ⋆3

E =

(
−2√
3

−2

)
, (23)

which are the three maxima of ∥ΛE∥2 under the condition of
minimal ΛA1 .

These three configurations are transformed by the Z2 planar
symmetry, as depicted in Fig. 10. Nevertheless, we can infer
the distribution of ΛE , {P (Λ⋆1

E ), P (Λ⋆2
E ), P (Λ⋆3

E )}, over all
the B-tetrahedra from the weights of dB in Eq. (8). Specifi-
cally, we denote a⋆1

E ,a
⋆2
E ,a

⋆3
E to be the respective coefficients

in the extreme cases where all B-tetrahedra are in the same
ΛE configuration,

a⋆1
E =

(
−4√
3

0

)
, a⋆2

E =

(
2√
3

−2

)
or a⋆3

E =

(
2√
3

2

)
. (24)

In addition, aA1
=
√
2/3 reflects the ground state condition

ΛA1
= −

√
2/3 which is independent of ΛE . The general

coefficients aA1
, aE,1, aE,2 are then solved from a set of linear

equationsaA1
aA1

aA1

a⋆1E,1 a⋆2E,1 a⋆3E,1

a⋆1E,2 a⋆2E,2 a⋆3E,2


P (Λ

⋆1
E )

P (Λ⋆2
E )

P (Λ⋆3
E )

 =

aA1

aE,1

aE,2

 . (25)

Here the first equation reduces to the normalisation of the
distribution

∑
i P (Λ

⋆i
E ) = 1, equivalent to

∑
i wi = 1. In the

example of Fig. 7a, the weights are given by w1 = −w2 = 0.4
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(a)

(b)

FIG. 10. (a) Triangle formed by the maxima of ∥ΛE∥2 together with
the Z2 bond flip relations. (b) Z2 symmetry operation acting onto
one bond, thereby mapping one maximum to another. Bonds with
anti-parallel spins are highlighted in green.

and w3 = 1 which translates to aA1
=
√
2/3, aE,1 =

√
1/3 ·

0.2 and aE,2 = −1.4. Solving the linear system for these
values yields

P (Λ⋆1
E ) = 0.3 P (Λ⋆2

E ) = 0.7 P (Λ⋆3
E ) = 0. (26)

In general there is always one vanishing P (Λ⋆i
E ), which is

equivalent to have maximal weight maxwi = 1 and can be as-
sociated with the spatial orientation of the planar Z2 symmetry,
as listed in Table I.

VIII. CONCLUSION

Although artificial intelligence brings the opportunity to
automate many of the routine, repeated, tasks which arise in
scientific research, it remains an active field of research on
how far AI will have an impact on the creative, conceptual,
and problem-solving aspects of science. Here, we have shown
how poorly thermalised Monte Carlo simulations benefit from
cooperation with AI, and how this helped us understand an un-
conventional and complex magnetic texture. The noisy Monte
Carlo data in the unknown phase served as input to the ma-
chine, which, at rank 2, discerned certain patterns from which
the structure of the phase could be laid bare.

It could be inferred that there are three global spin planes,
xy, xz, and yz which spontaneously break the spin rotation
symmetry on the A-tetrahedra. The first effective order pa-
rameter, c1, is compatible with the ground state manifold and

energy of a single A−tetrahedron. Since c1 can be expressed
in terms of the irreps fields mX used in the definition of the
tensor electric field E [Eqs. (15) and (17)], it means that the
machine was able to extract the relevant degrees of freedom
involved in the fluctuations of the rank-2 electric field. This is
rather remarkable since the TKSVM algorithm was not taught
how the electric field looks like. Instead, it detected the E
fluctuations as a relevant pattern out of noisy numerical data.

The second effective order parameter, c2, indicates the selec-
tion of four specific states [Eq. (6)] out of the U(1) manifold
brought to light in the previous step by c1. This selection
cannot be explained by considering A−tetrahedra alone since
the U(1) manifold is degenerate. It is thus necessarily a con-
sequence of the entropic gain taking place when connecting
A−tetrahedra together via the intervening antiferromagnetic
B−tetrahedra. In other words, the ordering mechanism of our
model is a thermal order-by-disorder mechanism due to the
Gauss-law constraints imposed on the rank-2 electric field.

There is in addition a remaining planar Z2 subsystem
symmetry where flipping all spins on a A-layer leaves its c2
value invariant. The ground state is thus a rare instance of what
we call a “hybridized nematic order”, with the co-existence
of dipolar (rank-1) and quadrupolar (rank-2) orders due to an
emergent subdimensional symmetry.

Our study illustrates how numerical simulations can be en-
hanced from cooperation with machine learning algorithms. In
our case, it was crucial to have a very strongly interpretable
algorithm, but also analytical and group-theoretical arguments
were indispensable. We do not expect all noisy simulations to
be tractable this way. For instance, the critical slowing down
witnessed in second-order phase transitions would be espe-
cially challenging, since it requires updates acting at different
length scales. That being said, our approach is sufficiently
general that it can be applied to a variety of complex unknown
phases. What immediately comes to mind are other frustrated
magnets such as the Kitaev magnets. As the TKSVM algorithm
has also been extended to quantum problems,34 our strategy is
not confined to classical physics, and could even be combined
with the field of quantum simulation.

The “collaborative” nature of the interactions between hu-
man researchers and machines described in this paper become
possible wherever the output of machine–learning can be trans-
lated into a form which can be understood and manipulated by
humans, such as the equations implied by the decision function
of a support vector machine. While the TKSVM is ideally
suited to such an approach, it is not the only interpretable
form of machine learning, and even approaches that are not
directly interpretable, such as deep neural networks, may pro-
vide critical insights into unsolved problems. As such this
model of collaboration offers one possible paradigm for AI-
driven research in an age in which human and machine have
complementary strengths.
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Appendix A: Definitions and Conventions

In this Appendix we provide lattice and model definitions,
and our conventions for the order parameters of the irreps of
the Td group.

The sites of an A-tetrahedron are located at

r0 =
a

8
(1, 1, 1) r1 =

a

8
(1,−1,−1)

r2 =
a

8
(−1, 1,−1) r3 =

a

8
(−1,−1, 1)

relative to the center of an A-tetrahedron, as in.35 Here, a is
the length of the FCC unit cell. The sites of a B-tetrahedron
are located at −r0,−r1,−r2,−r3 relative to the center of a
B-tetrahedron.

The bond dependent DM-interaction vectors are defined
as28,36

d01 =
(0,−1, 1)√

2
d02 =

(1, 0,−1)√
2

d03 =
(−1, 1, 0)√

2

d12 =
(−1,−1, 0)√

2
d13 =

(1, 0, 1)√
2

d23 =
(0,−1,−1)√

2

In Table II we provide explicit expressions for the order
parameters breaking the point-group symmetry of a single
tetrahedron,20,31 used to describe learned TKSVM order pa-
rameters on an A-tetrahedron.

In Eq. (A1) below we provide the definition of bond order pa-
rameters transforming according to the A1, E and T2 irreps.33

Here the four vectors S0−3 refer to the four spins forming a
B-tetrahedron.



ΛA1

ΛE,1

ΛE,2

ΛT2,1

ΛT2,2

ΛT2,3


=



1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
3

− 1
2
√
3

− 1
2
√
3

− 1
2
√
3

− 1
2
√
3

1√
3

0 1
2 − 1

2 − 1
2

1
2 0

0 0 − 1√
2

1√
2

0 0

0 − 1√
2

0 0 1√
2

0

− 1√
2

0 0 0 0 1√
2





S0 · S1

S0 · S2

S0 · S3

S1 · S2

S1 · S3

S2 · S3


(A1)

Appendix B: TKSVM

This section aims at providing the reader with the essential
working principles of the tensorial-kernel support vector ma-
chine (TKSVM). The TKSVM approach is an interpretable
and (quasi-)unsupervised machine learning algorithm devel-
oped in Refs. 14,16,15 and recently also extended to quantum
problems.34

Considering classical O(3)-spin configurations (ie, Monte
Carlo snapshots) x = {Sa

i |i = 1, 2, ..., N ; a = x, y, z}, the
first step of TKSVM is the construction of feature vectors
ϕ = {ϕµ} consisting of degree-n monomials from x

ϕµ = ⟨Sa1
α1
Sa2
α2
. . . San

αn
⟩cl, (B1)

where ⟨· · · ⟩cl represents a lattice average over pre-determined
non-overlapping clusters, each containing r spins, where
α1, . . . , αn label spins within the cluster, and where µ =
{α1, a1; . . . ;αn, an} denotes a composite index. The tensorial
feature space spanned by {ϕµ} hosts any potential classical
spin-order of degree n that fits within the pre-defined cluster
of size r. Following the construction of feature vectors from
the input data, TKSVM detects the underlying order during the
learning stage, provided that the user made a suitable choice
of the hyper-parameters n and r. The optimal choice of n
and r are unknown a priori. Therefore we choose clusters in
accordance with the unit-cell of the lattice and Hamiltonian
interactions, and increase n systematically on a trial-and-error
basis until TKSVM succeeds. In this approach n = 1 allows
the detection of magnetic orders, and higher n > 1 detects
multipolar orders and emergent local constraints.

A central concept of SVM methods is the decision function d.
The decision function can be written as a product d = VtĈV
up to a constant known as the bias. Here, V is a vector made
of input data and Ĉ = {Cµν} is the output of the machine in
the form of a coefficient matrix measuring correlations of ϕµ,

Cµν =
∑
k

λkϕµ(x
(k))ϕν(x

(k)), (B2)

where the Lagrange multiplier λk denotes the weight of the
k-th sample. The non-vanishing entries of Cµν identify the
relevant basis tensors of the tensorial feature space, and their
interpretation yields analytical expressions of the underlying
order parameters. As TKSVM has never learned nor seen any
of the different phases, it has the advantage of being unbiased
in identifying them. Compared to a human approach where one
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order parameter definition in terms of spin components
mA2

1

2
√
3
(Sx

0 + Sy
0 + Sz

0 + Sx
1 − Sy

1 − Sz
1 − Sx

2 + Sy
2 − Sz

2 − Sx
3 − Sy

3 + Sz
3 )

mE

(
1

2
√
6
(−2Sx

0 + Sy
0 + Sz

0 − 2Sx
1 − Sy

1 − Sz
1 + 2Sx

2 + Sy
2 − Sz

2 + 2Sx
3 − Sy

3 + Sz
3 )

1

2
√
2
(−Sy

0 + Sz
0 + Sy

1 − Sz
1 − Sy

2 − Sz
2 + Sy

3 + Sz
3 )

)

mT1+

 1
2
(Sx

0 + Sx
1 + Sx

2 + Sx
3 )

1
2
(Sy

0 + Sy
1 + Sy

2 + Sy
3 )

1
2
(Sz

0 + Sz
1 + Sz

2 + Sz
3 )



mT1−


−1

2
√
2
(Sy

0 + Sz
0 − Sy

1 − Sz
1 − Sy

2 + Sz
2 + Sy

3 − Sz
3 )

−1

2
√
2
(Sx

0 + Sz
0 − Sx

1 + Sz
1 − Sx

2 − Sz
2 + Sx

3 − Sz
3 )

−1

2
√
2
(Sx

0 + Sy
0 − Sx

1 + Sy
1 + Sx

2 − Sy
2 − Sx

3 − Sy
3 )



mT2


1

2
√
2
(−Sy

0 + Sz
0 + Sy

1 − Sz
1 + Sy

2 + Sz
2 − Sy

3 − Sz
3 )

1

2
√
2
(Sx

0 − Sz
0 − Sx

1 − Sz
1 − Sx

2 + Sz
2 + Sx

3 + Sz
3 )

1

2
√
2
(−Sx

0 + Sy
0 + Sx

1 + Sy
1 − Sx

2 − Sy
2 + Sx

3 − Sy
3 )


TABLE II. Order parameters for breaking the point-group symmetry of a single tetrahedron,20,31 used to describe learned TKSVM order
parameters on an A-tetrahedron. The fields mX transform according to irreducible representations A2, E, T1+, T1−, T2 of the tetrahedral point
group TD . The four spins S0−3 forming an A-tetrahedron are located at positions r0−3 defined earlier.

would define an order parameter and then test it on the Monte
Carlo data, the approach in TKSVM is blind to specifying order
parameter candidates and looks for all possibilities within the
search space spanned by the rank-r monomials defined on the
cluster of size n.

Appendix C: Pattern Interpretation

The last step of TKSVM consists of constructing the an-
alytical expression of the underlying order from the internal
parameters of the learning model. This is achieved by reading
off and interpreting the graphical representation (pattern) of
the coefficient matrix. Since the underlying order in this case
is fairly complex, we shall discuss the procedure for a subset
of the full pattern for the A-tetrahedra only. Specifically, we
start by considering the block with spin indices (2 3, 3 0); see
the upper zoomed-in panel of Fig. 5.

Reading off the terms from the block pattern with coeffi-
cients approximated as ±1 yields the expression

[dA](2 3,3 0) ∼
+ (Sy

2S
x
3 )(S

x
3S

x
0 ) + (Sy

2S
x
3 )(S

y
3S

y
0 )− (Sx

2S
y
3 )(S

x
3S

x
0 )

− (Sx
2S

y
3 )(S

y
3S

y
0 ) + (Sy

2S
y
3 )(S

x
3S

y
0 ) + (Sy

2S
y
3 )(S

y
3S

x
0 )

− (Sx
2S

x
3 )(S

x
3S

y
0 )− (Sx

2S
x
3 )(S

y
3S

x
0 ).

(C1)

In order to reshape the expression into a sum over square
magnitudes of rank-2 order parameters, we factorize the feature
components and assign the coefficients (signs) in consistency

with other block patterns (2 3, 2 3), (3 0, 3 0) and (3 0, 2 3)

[dA](2 3,3 0) + [dA](3 0,2 3) + [dA](2 3,2 3) + [dA](3 0,3 0) ∼
(−Sy

2S
x
3 + Sx

2S
y
3 − Sx

3S
x
0 − Sy

3S
y
0 )

2

+ (+Sx
2S

x
3 − Sy

2S
y
3 − Sx

3S
y
0 − Sy

3S
x
0 )

2.

(C2)
We factorize even further, which requires to consider some
more block patterns∑

ij,i′j′∈{0,2,3}

[dA](i j,i′ j′) ∼

−
(
(Sx

0 − Sy
2 − Sx

3 )
2 + (Sy

0 + Sx
2 − Sy

3 )
2
)2

−
(
2(Sx

0 − Sy
2 − Sx

3 ) · (S
y
0 + Sx

2 − Sy
3 )
)2
.

(C3)

This expression already contains a substantial part of the full
decision function. Comparing to the definition of cxy1 and
cxy2 in eqs. 3 and 4, respectively, reveals that only the terms
including S1 are missing.
Extending the interpretation to the full pattern, we arrive at the
expression

dA =
∑
ij,i′j′

∈{0,1,2,3}

[dA](i j,i′ j′) ∼ −
(
(cxy1 )2 + (cxy2 )2

)
. (C4)

Note that the overall minus sign is of technical origin and is
arbitrary in each TKSVM run, hence it can be dropped. The
sign convention in eq. 2 is chosen to match with the signs in the
existing definition of mT1− , see its third component in Table II
for comparison. Furthermore a factor of 1/16 was introduced
to normalize the order parameters to 1 when saturated (deep in
phase).
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