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a b s t r a c t

A lagrangian method to numerically solve the L2 optimal mass transfer problem is pre-
sented. The initial and final density distributions are approximated by finite mass particles
having a gaussian kernel. Mass conservation and the Hamilton–Jacobi equation for the
potential are identically satisfied by constant mass transport along straight lines. The
scheme is described in the context of existing methods to solve the problem and a set of
numerical examples including applications to medical imagery are presented.

! 2011 Elsevier Inc. All rights reserved.

1. Introduction

The optimal mass transfer problem, also known as the Monge–Kantorovich problem (see [1,2]), consists in finding a plan
to transport a certain quantity of mass from a starting configuration to a final one, minimizing a given cost functional. Opti-
mal transport theory has recently been revived and developed providing theoretical tools for the analysis of phenomena such
as geophysical flows [3], nonlinear electrodynamics [3–5], collapsing sand piles [6], crowd motion [7]. An exhaustive over-
view of the theory can be found in [8–10].

In this work we focus on the numerical solution of the L2 optimal mass transfer problem in Rd, where d is the number of
space dimensions. Let q0(n) and q1(x) be two non-negative scalar (density) functions with compact support X0 and X1,
respectively. We assume that

Z

X0

q0ðnÞdn ¼
Z

X1

q1ðxÞdx ¼ 1: ð1Þ

Let x = X(n) be a smooth one-to-one map taking X0 onto X1 that verifies the jacobian equation

det rnXð Þq1ðXðnÞÞ ¼ q0ðnÞ: ð2Þ

As a consequence, we have that "X # X0
Z

X
q0ðnÞdn ¼

Z

XðXÞ
q1ðxÞdx: ð3Þ

The jacobian equation (2) has many admissible solutions. Among all these mappings, the objective of this paper is to describe
a lagrangian method to find X⁄(n) such that
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Z

X0

q0ðnÞkX
$ðnÞ % nk2dn 6

Z

X0

q0ðnÞkXðnÞ % nk2dn ð4Þ

for all smooth one-to-one mappings X(n). This functional measures the cost of the mass transport by a weighted square dis-
tance function. Other classes of optimal transport problems can be defined by introducing different norms instead of the
above. We concentrate on the L2 case because of its links with continuum mechanics [3] and since the solution of this prob-
lem finds applications in oceanography [11], shape optimization [12], computer vision [13] and image processing [14].

Mainly two classes of methods to solve this problem in realistic applications were proposed. One idea (see [15]) is to look
for a mapping between the initial and final condition by solving an appropriate partial differential equation up to steady
state. The computational cost of this approach is that of finding the asymptotic solution of d transport equations. The main
drawback is that, apart from accuracy, the convergence rate to the asymptotic solution may be poor. A different path is fol-
lowed in [16], where a time-like variable is introduced and the space–time mapping between the initial and final mass dis-
tribution is found by a saddle point method that requires the solution of a Poisson problem in space and time at each
iteration. The merit of the latter formulation is to show the links between the least action principle and the optimal mass
transfer problem. From the computational view point, however, the time-like variable introduces additional unknowns to
be solved for. In the next sections we will summarize the formulation at the base of these two approaches in order to intro-
duce an alternative solution method where no partial differential equations are numerically solved to approximate the opti-
mal map.

2. The Angenent–Haker–Tannenbaum (AHT) gradient flow

Let us recall a basic theoretical result on the L2 optimal mass transfer problem (see [17,10,18]): there is a unique optimal
map X⁄(n) characterized as the unique map transferring q0(n) to q1(x) which can be written as the gradient of some convex
function W(n):

X$ðnÞ ¼ rnWðnÞ; ð5Þ

in other words if we find a map that can be expressed as in the equation above and that satisfies Eq. (2), than this is the opti-
mal map. Such a consideration is at the base of the AHT method [15].

In the following we recast AHT method in a continuum mechanics framework. Let x ¼ Xðn; tÞ be a smooth one-to-one
mapping such that Xðn;0Þ ¼ XiðnÞ and let the initial map Xi(n) satisfy the jacobian equation (2). The objective is to make this
initial map evolve toward the optimal map by a gradient method, without altering the distribution q1(x).

Our plan is therefore to compute the variation of the cost functional

I ¼
Z

X0

q0ðnÞkXðn; tÞ % nk2dn; ð6Þ

with respect to t. To do so, we need some preliminary steps. We introduce the inverse mapping n = Y(x, t), that, for given value
of the parameter t and space coordinate x 2X1 retrieves the corresponding n 2X0. In other words x ¼ XðYðx; tÞ; tÞ and hence

rnX ¼ ðrxYÞ%1; ð7Þ
@tY þ U 'rxY ¼ 0; ð8Þ

where Uðx; tÞ ¼ @tXðn; tÞ. If Xðn; tÞ has to take X0 onto X1, 8t 2 Rþ, then "x 2 oX1 and 8t 2 Rþ;Uðx; tÞ ' n ¼ 0, where n is the
normal to oX1. As an initial condition for the inverse map we take Y(x,0) = Yi(n) with YiðxÞ ¼ X%1

i ðxÞ. Let also assume that
x ¼ Xðn; tÞ is mass preserving 8t 2 Rþ so that

det rxYðx; tÞð Þq0ðYðx; tÞÞ ¼ qðxÞ; ð9Þ

and

det rxYðx;0Þð Þq0ðYðx;0ÞÞ ¼ q1ðxÞ; ð10Þ

thanks to Eq. (7). On the other hand, mass conservation can be written also

@tqþrx ' ðqUÞ ¼ 0; ð11Þ

with initial condition q(x,0) = q1(x).
The derivative of the cost functional with respect to t is then

@tI ¼
d
dt

Z

X0

q0ðnÞ kXðn; tÞk
2 % 2Xðn; tÞ ' n

h i
dn ¼ d

dt

Z

X1

q0ðYðx; tÞÞkxk
2det rxYðx; tÞð Þdx% 2

Z

X0

q0ðnÞ@tXðn; tÞ ' ndn

¼ d
dt

Z

X1

qðx; tÞkxk2dx% 2
Z

X1

qðx; tÞUðx; tÞ ' Yðx; tÞdx: ð12Þ
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The vector field Y(x, t) can be decomposed as the sum of a divergence-free vector field Yx(x, t) and the gradient of a scalar
potential W(x, t), according to the classical Helmoltz decomposition. Hence, W ¼ D%1

x ðrx ' YÞ, Yx ¼ Y %rxD%1
x ðrx ' YÞ and

Yx ' n = 0 on oX1. We now take

U ¼ Yx

q ; ð13Þ

and as a consequence it follows that @tq = 0, i.e., q(x,t) = q1(x). Then, in Eq. (12)

d
dt

Z

X1

qðx; tÞkxk2dx ¼ d
dt

Z

X1

q1ðxÞkxk
2dx ¼ 0; ð14Þ

and
Z

X1

qðx; tÞUðx; tÞ ' Yðx; tÞdx ¼
Z

X1

Yxðx; tÞ ' Yxðx; tÞdxþ
Z

@X1

Wðx; tÞYxðx; tÞ ' ndx ¼
Z

X1

Yxðx; tÞ ' Yxðx; tÞdx: ð15Þ

In summary, by taking U(x, t) as in Eq. (13) we have found an optimal descent direction for the minimization of I:

@tI ¼ %2
Z

X1

Yxðx; tÞ ' Yxðx; tÞdx; ð16Þ

together with an evolution equation for Y(x, t)

@tY þ
Yx

q1
'rxY ¼ 0; ð17Þ

such that the forward map Xðn; tÞ satisfies

det rnXðn; tÞð Þq1ðXðn; tÞÞ ¼ q0ðnÞ; ð18Þ

8t 2 Rþ. The minimum of the functional will be reached when Yx(x, t) = 0, i.e., when Y =rxW.
This approach to the solution of the optimal mass transfer problem is important because of its links with polar factoriza-

tion of vector fields [17] and generalized Boussinesq equations [3]. However, from the numerical point of view it suffers from
some drawbacks in that one should build Xi(n) and this is not always an easy task. Moreover even when Eq. (8) is carefully
integrated in time by a high order scheme, mass is not exactly conserved at the discrete level. Therefore if the initial map is
far from the minimum and many gradient step iterations are needed, the error in mass conservation may be large. More re-
cently, in [19], it was proposed to directly solve the minimization of (6) under mass conservation constraint, by a sequential
quadratic programming approach. This method, however, leads to an optimization problem of the size of the spatial grid
resolution.

3. Action minimization

In [20] it is shown that the optimal mass transfer problem is equivalent to the flow of a pressureless ideal compressible
fluid. Consider a time-dependent density function q(x,s) defined in Rd such that

qðx;0Þ ¼ q0ðxÞ ð19Þ

and

qðx; TÞ ¼ q1ðxÞ: ð20Þ

The variable s stands now for time and it plays a different role compared to the parameter t of the previous section. It can be
shown (see [20]) that the optimal mass transfer problem is equivalent to the minimization with respect to U(x,s) of the time
integral of the kinetic energy (the action) associated to the transport:

J ¼ 1
2

Z T

0

Z

Rd
qðx; sÞkUðx; sÞk2dxds; ð21Þ

subject to Eqs. (11), (19) and (20).
Introducing a space–time lagrange multiplier w(x,s), the Euler–Lagrange equations for the constrained minimum of J are

@swþ U 'rw ¼ kUk
2

2
; ð22Þ

U ¼ rw: ð23Þ

and because initial and final conditions are given for q(x,s), no conditions are imposed on w(x,s).
In [16], the action minimization problem under constraint is solved by the Uzawa algorithm. The main disadvantage of

this approach is that the discretization of the additional time dimension is such that the size of the discrete problem is mul-
tiplied by N, if N is the size of the resolution in one space direction.
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An important property of the optimal transport easily follows from this formulation. Indeed, an evolution equation for the
potential can be obtained substituting Eq. (23) into Eq. (22):

@swþ
jrwj2

2
¼ 0; ð24Þ

which is an Hamilton–Jacobi equation that describes a transport along straight lines. This can be seen by taking the gradient
of the equation above to obtain

@sU þ ðU 'rÞU ¼ 0; ð25Þ

which shows that the velocity U(x,s) is constant along a characteristic, i.e., the velocity is constant along rays in space and
time. In fact, this means that if n is the lagrangian coordinate and Xðn; sÞ the map between x and n at time s, we have

UðXðn; sÞ; sÞ ¼ VðnÞ; ð26Þ

where V(n) is the initial velocity. Deriving the above equation with respect to s, we find Eq. (25).

4. Mass transport along straight lines

The plan is now to use a lagrangian representation of the density distribution to impose mass conservation. We consider a
set of particles such that

qðx; sÞ (
XNp

j¼1

cjðtÞrðx% XjðsÞÞ ð27Þ

where Np is the number of particles, Xj is the particle coordinate and rj = r(x % Xj(s)) is a regularization of a Dirac mass
satisfying

Z

Xr

rðnÞdn ¼ 1; ð28Þ

where Xr ) Rd is the support of the regularizing kernel r. Let XðsÞ ¼
SNp

j¼1XjðsÞ, with Xj(s) the support of rj. We have that
Z

XðsÞ
@sqþr ' ðqrwÞð Þdx ¼

d
ds

Z

XðsÞ
qdx; ð29Þ

and substituting Eq. (27)

d
ds

Z

XðsÞ
qdx ¼ d

ds

Z

XðsÞ

XNp

j¼1

cjðsÞrjdx ¼
XNp

j¼1

d
ds cjðsÞ

Z

XðsÞ
rj

 !
dx; ð30Þ

which reduces to

d
ds

Z

XðsÞ
qdx ¼

XNp

j¼1

@scjðsÞ: ð31Þ

In the following we assume that

@scjðsÞ ¼ 0; ð32Þ

so that the mass conservation equation is identically satisfied. As a consequence, the time invariant quantity cj can be inter-
preted as the mass of the jth particle.

Let us now take

XjðsÞ ¼ nj þ VðnjÞs; ð33Þ

where nj is the position of the particle at s = 0 and V(nj) is the initial velocity of the particle. This equation translates the fact
that the velocity is constant along straight lines. Thanks to this assumption, Eq. (25) is identically satisfied.

4.1. Reconstruction of the initial condition

The discretization of q(x,s) verifies the mass constraint by Eq. (32) and the particle trajectories Xj(s) are such that U(x,s)
respects Eq. (25). We now choose the time-invariant coefficients cj in such a way that the initial mass distribution
q(x,0) = q0(x) is approximated in a least-square sense.

Given q(x,0) on a regular cartesian mesh, a simple choice consists in placing the particles in the nodes where q(x,0) > d0,
d0 being the smallest density that is considered. At the discrete level, the approximation problem is then formulated as an
optimization problem for the cj:
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cj ¼ arg min
dj

XNg

k¼1

qðxk;0Þ %
XNp

j¼1

djrðxk % Xjð0ÞÞ
" #2

8
<

:

9
=

;; ð34Þ

where Ng is the number of grid points where the error is evaluated. The particle initial positions Xj(0) = nj are given and coin-
cide with the grid points where the density is above a certain threshold. Other more sophisticated choices, like for example
adapting the particle distribution to q(x,0), can lead to better accuracy. However, if the initial position of the particles is gi-
ven, the reconstruction of the initial density distribution always amounts to a quadratic optimization problem in the coef-
ficients cj that can be solved by a linear system. The computational cost of this step is negligible since the size of the problem
is Np * Np and the number of particles is usually of the order of 103–106, according to resolution and the number of space
dimensions.

4.2. Potential velocity field and reconstruction of the final condition

The mass cj of each particle is now determined from the approximation of the initial condition. The particles move along
straight lines and the particle mass remains constant along these trajectories. Two conditions for the minimum of (21) are
hence satisfied. We still have to enforce that the velocity field is potential and that the final condition on the density distri-
bution is verified. In order to do so, we assume that the components of the velocity are expressed as centered finite differ-
ences in the respective directions of a scalar function whose values on the grid are wl. Denoting by Djl the elements of the
discrete centered gradient operator, we have that the velocity of each particle is Vj ¼

PNd
l¼1Djlwl, where Nd is of the order of Np.

Next, an optimization problem with respect to wl is solved to approximate the final mass distribution. We have

wl ¼ arg min
Wl

EðWlÞ
! "

¼ arg min
Wl

XNg

k¼1

qðxk; TÞ %
XNp

j¼1

cjrðxk % nj %
XNd

l¼1

DjlWlTÞ
" #2

8
<

:

9
=

;: ð35Þ

The gradient of the above function can easily be computed so that the numerical solution of this problem is solved by a
steepest descent method or by quasi-Newton iterations.

Mollifying kernels r(n) with compact support can be used, although the support must be large enough to keep some
desirable properties. In cases in which, for example, a fragmentation process takes place, or simply in cases in which the den-
sity supports at times s = 0 and s = T have null intersection, compact support kernels with small enough support may result
in having @E=@Wl ¼ 0 from the first optimization step because the error vanishes where the support of the kernel is non-zero
and vice versa.

In order to possibly speed up convergence toward the minimum, a penalization can be added to EðWlÞ:

EpðWlÞ ¼ EðWlÞ þ b
XNp

j

cj
k
PNd

l¼1DjlWlk2

2
; ð36Þ

where b 2 Rþ. The actual effect on convergence of the penalization term is studied in the numerical experiments hereafter.
In summary, in the discrete problem that we have formulated mass conservation, mass transport along straight lines and

potential velocity field are exactly satisfied at the discrete level. The initial and final mass distribution are approximated in a
least square sense. Of course, the problem solution is independent of T. We kept the notion of the time variable s in case the
intermediate states of the mapping are to be computed. This is an inexpensive task thanks to Eq. (33).

5. Preliminary numerical tests

In the following numerical experiments we use the gaussian kernel

rðnÞ ¼ 1
ð‘

ffiffiffiffi
p
p
Þd

exp % jnj
2

‘2

 !
; ð37Þ

where ‘ is the kernel characteristic length.
The first test is relative to a problem where the initial density distribution is uniform and the final one shows concentric

compressions and rarefactions. The error in the initial and final density distributions is studied as a function of the discret-
ization parameters. The other examples are aimed at analyzing the performance of the proposed solution method in more
critical cases where density distributions with sharp boundaries are given or mass fragmentation phenomena occur. These
cases are paradigmatic of situations that are encountered in medical imagery problems. The last two applications show re-
sults in this sense.

In all test cases the reconstruction of the final condition was attained by a constant step gradient descent method. The
most computationally intense simulation, the two-dimensional mass splitting phenomenon, takes about 1 h on a standard
laptop. In the next pictures, when isocontours are shown, 25 levels equally distributed between the minimum and the max-
imum value of the scale are drawn.
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5.1. Recovering a wavy density distribution

The initial density distribution is q(x,0) = 1 for x 2 [0,1] * [0,1]. We consider a velocity distribution

Uðx; 0Þ ¼ Krðsinð2pxkxk2Þ expð%ðkxk2=g2ÞÞÞ;

where K = 1.00e % 2, x = 4 and g = 0.25. The initial density distribution and the velocity field are propagated in time accord-
ing to Eqs. (11) and (25). Once the density distribution at time T = 1 is found, we solve the optimal mass transfer problem. In
Fig. 1 the initial and final density distributions are represented. Rarefactions and compression zones can be identified accord-
ing to the grey scale. The space resolution of the figure is 200 * 100. In this test case the resolution is intentionally not
uniform.

Three different grid resolutions were considered, 100 * 50, 200 * 100, and 400 * 200. For such resolutions, placing par-
ticles where density is larger than the density maximum divided by 1000, leads to the following number of particles: 1.25e3,
5.00e3 and 2.00e4, respectively. The minimization of E was stopped when the difference between the gradient norm of two
subsequent iterations was less than 1.0e%4. The results are presented in Tables 1–3.

First of all we remark that b has a reduced influence on the results. !T slightly decreases with b increasing, but then this
effect is saturated. Of course !0 is independent of b. We have that !0 ? 0 as ‘? 0, since in the limit case cj equals the local
value of the initial density distribution. Increasing the grid resolution, the number of particles increases and the error on the
final resolution is systematically decreasing.

The error !T is not monotonically decreasing with the kernel length. There is a trade off between accuracy on the initial
and final density distributions, depending on the ratio between the grid size and the kernel length. However, the optimal
kernel length decreases with increasing grid resolution, as it should for consistency. No significant trend appears in the num-
ber of iterations except that in general the number of iterations increases as b does.

The values of jqðxk; TÞ %
PNp

j cjrðxk % nj % VjTÞj=qðxk; TÞ are shown in Fig. 2, when the resolutions used are 200 * 100 and
400 * 200 and ‘ = 1.00e%2, b = 5.0e%3. The error is concentrated on the boundaries and in the higher density zones.

Fig. 1. Density distribution at time (a) T = 0, (b) T = 1.

Table 1
Resolution 100 * 50. !0 is the L2 relative error on the initial density distribution, !T on the final. Ni is
the number of iterations to minimize E, i.e., such that the gradient norm variation is below 1.0e%4.

‘ b !0 !T Ni

2.00e%2 5.0e%4 6.776e%4 6.078e%4 230
1.80e%2 5.0e%4 6.120e%4 4.437e%4 269
1.60e%2 5.0e%4 5.398e%4 3.185e%4 336
1.40e%2 5.0e%4 4.648e%4 2.821e%4 409
1.20e%2 5.0e%4 3.871e%4 4.076e%4 522

2.00e%2 1.0e%3 6.776e%4 5.882e%4 328
1.80e%2 1.0e%3 6.120e%4 4.078e%4 380
1.60e%2 1.0e%3 5.398e%4 2.641e%4 627
1.40e%2 1.0e%3 4.648e%4 2.326e%4 508
1.20e%2 1.0e%3 3.871e%4 3.748e%4 623

2.00e%2 5.0e%3 6.776e%4 5.434e%4 561
1.80e%2 5.0e%3 6.120e%4 4.040e%4 481
1.60e%2 5.0e%3 5.398e%4 2.622e%4 572
1.40e%2 5.0e%3 4.648e%4 2.302e%4 493
1.20e%2 5.0e%3 3.871e%4 3.727e%4 620
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5.2. Mass splitting: recovering a one-dimensional exact map

In this subsection we study the accuracy of the scheme proposed in a case where the exact map X⁄(n) is known. The dif-
ficulty is that the mass splits and that the initial and final densities are not uniformly differentiable, whereas the kernels used
to represent the density distributions are uniformly differentiable. The initial density, of mass 1, is a hat function defined
between %1 and 1. The final density distribution, of equal mass, is represented by two hat functions, symmetrically placed

Table 2
Resolution 200 * 100.

‘ b !0 !T Ni

1.40e%2 5.0e%4 3.979e%4 2.633e%4 173
1.20e%2 5.0e%4 3.729e%4 1.675e%4 177
1.00e%2 5.0e%4 3.249e%4 8.646e%5 245
0.80e%2 5.0e%4 2.566e%4 5.408e%5 399
0.60e%2 5.0e%4 1.873e%4 4.704e%4 140

1.40e%2 1.0e%3 3.979e%4 2.655e%4 161
1.20e%2 1.0e%3 3.729e%4 1.678e%4 184
1.00e%2 1.0e%3 3.249e%4 8.852e%5 236
0.80e%2 1.0e%3 2.566e%4 5.703e%5 393
0.60e%2 1.0e%3 1.873e%4 4.859e%4 142

1.40e%2 5.0e%3 3.979e%4 2.673e%4 189
1.20e%2 5.0e%3 3.729e%4 1.768e%4 196
1.00e%2 5.0e%3 3.249e%4 1.019e%5 244
0.80e%2 5.0e%3 2.566e%4 7.522e%5 360
0.60e%2 5.0e%3 1.873e%4 3.855e%4 230

Table 3
Resolution 400 * 200.

‘ b !0 !T Ni

1.00e%2 5.0e%4 8.288e%5 3.737e%5 230
0.85e%2 5.0e%4 7.108e%5 2.754e%5 204
0.70e%2 5.0e%4 5.921e%5 3.420e%5 307
0.55e%2 5.0e%4 4.790e%5 9.985e%5 390
0.40e%2 5.0e%4 3.573e%5 2.704e%4 193

1.00e%2 1.0e%3 8.288e%5 3.821e%5 219
0.85e%2 1.0e%3 7.108e%5 2.770e%5 213
0.70e%2 1.0e%3 5.921e%5 3.517e%5 326
0.55e%2 1.0e%3 4.790e%5 9.998e%5 410
0.40e%2 1.0e%3 3.573e%5 3.004e%4 195

1.00e%2 5.0e%3 8.288e%5 3.975e%5 250
0.85e%2 5.0e%3 7.108e%5 2.821e%5 245
0.70e%2 5.0e%3 5.921e%5 3.519e%5 278
0.55e%2 5.0e%3 4.790e%5 1.021e%4 334
0.40e%2 5.0e%3 3.573e%5 4.455e%4 227

Fig. 2. Relative error on the final density distribution. Resolution: (a) 200 * 100, (b) 400 * 200.
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about the vertical axis and defined between %1 and 0, 0 and 1, respectively. The exact optimal map can be determined in this
case by simply integrating the jacobian equation.

In Fig. 3 the results obtained with 80 grid points are contrasted to the exact solution. On the left, the initial density dis-
tribution, on the right the final one. In Table 4 the results of the numerical solution are presented. In particular, we consider
the error !T defined as before. Also, we consider the error !a, the L2 norm of the difference between the exact solution and the
result of the simulation, computed with an higher order quadrature. In this case it is possible to compute such an error since
both the exact solution and the one resulting from the simulation are defined for all values between%1 and 1. Finally, we can
compute Emap, the L2 error between the exact map and the one obtained in the simulation. Since we actually compute the
potential, this is a more stringent error since it is relative to a differentiated quantity. As before, the errors systematically
decrease with increasing grid resolution. Also, the optimal kernel length decreases as the number of points increases.

5.3. Two-dimensional mass splitting

We investigate the two dimensional case of a final density distribution obtained using a potential that is just C0. The
velocity field is discontinuous and hence the mass distribution is fragmented. In Fig. 4 the density at time T = 0 and T = 1
are shown. At the beginning, the distribution is a normalized paraboloid. The potential from which the velocity field derives
is 0.01jx % 0.1sin(4p y) % 0.5j.

The image is assigned on a 200 * 100 grid and the number of particles used is about 5e3. The number of iterations for the
algorithm to converge is approximately 1500. In Fig. 5(a) the solution obtained by numerically solving the optimal transport
problem is shown. All the details of the fragmentation process are correctly recovered. In Fig. 5(b) the relative error on the
final image in the case of 200 * 100 resolution is represented. The relative error is not concentrated along the singularity, but
on the external boundary, since there the density values are close to 0.
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Fig. 3. Density distribution at time (a) T = 0, (b) T = 1. The grid resolution is N = 80.

Table 4
Np is the number of particles, ‘ is the kernel length, !T is the error computed on the actual grid, !a is
the error computed with respect to the exact solution, and Ep is the error on the mapping, i.e., on the
gradient of the exact potential. The regularization was set to b = 5e%4.

Np ‘ !T !a Emap

10 2.00e%1 1.74e%2 8.30e%2 1.16e%1
10 1.75e%1 1.63e%2 8.44e%2 1.14e%1
10 1.60e%1 1.71e%2 8.51e%2 1.15e%1

20 1.60e%1 1.52e%2 3.39e%2 0.92e%1
20 1.50e%1 1.43e%2 3.10e%2 0.91e%1
20 1.40e%1 1.21e%2 2.93e%2 0.90e%1

40 1.15e%1 1.00e%2 1.60e%2 0.79e%1
40 1.10e%1 0.95e%2 1.51e%2 0.77e%1
40 1.05e%1 0.93e%2 1.46e%2 0.74e%1

80 8.50e%2 8.91e%3 9.98e%3 0.55e%1
80 7.50e%2 7.13e%3 8.41e%3 0.51e%1
80 7.00e%2 6.75e%3 7.54e%3 0.53e%1
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5.4. Application to medical imagery

One possible application of optimal transport techniques concerns medical imagery and, in particular, non-rigid registra-
tion, see for example [14]. Image registration is the process of establishing a common geometric reference frame between
two or more data sets possibly taken at different times.

Registration has a substantial recent literature devoted to it, with numerous approaches effective in varying situations, as
described in [21]. These range from optical flow to computational fluid dynamics, to various types of warping methodologies.
One class of methods is based on variational techniques, where the characterization of the desired transformation is embod-
ied in the definition of the functional to be minimized. A mass preserving mapping that minimizes the distance may be of
practical interest thanks to certain desirable properties: it is parameter free, symmetrical and the minimizer of the distance
functional involved is unique. However, in the present context, image registration is used moreover as a challenging numer-
ical illustration.

The first example discussed is relative to a thorax scan presenting lung noduli, while the second example is relative to the
morphing of an image showing lung tissue attacked by cancer.

5.4.1. Thorax scan
In Fig. 6 the initial and final thorax scans are shown. The objective is to find an optimal mapping between the two geom-

etries. The images have a resolution of 200 * 200 and the number of particles used is approximately 2.0e4. The number of
iterations to reach convergence, due to the complexity of the geometry was 2500.

In Fig. 7 the result of the computation is presented. On the left the solution obtained by applying the transformation to the
first image is shown, on the right there is the actual scan. The main difference is in the normalization of grey scale: in order to
perform a registration based on the optimal transport problem, the mass of the two density distributions must be the same
and therefore the grey scale of the final image is modified so that it has the same ‘‘mass’’ of the initial image. Despite the
complexity of the geometry, the agreement is quite good.

In Fig. 8(a) the relative error on the final image is shown. It is higher in the region where there are sharp boundaries, as
expected. The error is basically due to the gaussian kernel spreading sharp boundaries. In Fig. 8(b) the potential of the trans-
formation is shown.

Fig. 4. Reference density distributions, resolution 200 * 100, at time (a) T = 0, (b) T = 1.

Fig. 5. (a) Density at time T = 1 for the computed optimal solution, (b) relative error on the final image.
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5.4.2. Tissue morphing
A growing tumor can be associated to a certain displacement field. This field can be computed as the optimal plan that

realizes the mapping between the scans. A portion of a lung scan representing tissue affected by cancer is considered and in
Fig. 9 two images are shown. The first image represents the original tumor (T = 0), which is then treated and its area de-
creases (T = 1). The space resolution of these images is 128 * 128 pixels, which is the original resolution of the scan. In
Fig. 10 the result of the optimal flow is compared to the actual image. The grey scale has slightly changed and this is due
to the fact that the mass (the integral of the density over the domain) is decreased when the tumor is collapsed, so that a
renormalization of the grey scale was necessary in order to enforce the mass conservation constraint. Apart from this, the
agreement is good and no particular error structure emerges from the computation.

In Fig. 8(b) the relative error with respect to the normalized image is shown.

Fig. 6. Thorax image scan at (a) T = 0, (b) T = 1 (corresponding to an evolution of six months); Courtesy Institute Bergonié, Bordeaux.

Fig. 7. On the left: optimal transport result at T = 1; on the right: the true image at the same time.

Fig. 8. Residual of the final image in the case of (a) thorax non-rigid registration, (b) tissue mapping for a regressing tumor.
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6. A three-dimensional application

The objective of this section is to provide a discussion of the present approach computational viability to recover a non-
trivial density distribution. Again, we take an example from medical imagery. The problem is to map a uniform mass distri-
bution in a cube to a density distribution that corresponds to the magnetic resonance imaging (MRI) of a human head.

Gaussian kernels evaluated on a sub-domain of 512 points and three different grid resolutions were employed: 153, 303

and 603. The simulations were stopped when the L2 norm of the residual, as defined for the previous numerical tests, was
divided by a factor 100 with respect to its initial value.

In Fig. 11 the initial and final densities are represented at the highest resolution and in Fig. 12 cuts in different planes of
the same distribution show the complexity of the geometry to be recovered. In Fig. 13 planes with the isocontours of the
residual are represented, superposed to the solution. The residual is negligible everywhere except for some spots, corre-
sponding to the sharpest details of the target distribution.

In Table 5 we report the computational time per gradient iteration (Tit), and the number of gradient iterations (It). The
computations were performed on a standard laptop computer. As before, Np is the number of particles, ‘ the kernel length
and b, the penalisation, is equal to 2e%2 for all the resolutions. If the number of particles is Np and the grid points are N, using
global kernels (kernels whose support is the whole domain) leads to a computational time per gradient iteration scaling with
Np * N ( N2. But, as discussed, a simple truncated kernel evaluation leads to a linear scaling with Np. This trend is indeed
confirmed by the evolution of the computational time per iteration as a function of the number of particles in Table 5.
The AHT method [15] has also a computational cost per iteration which is proportional to N, whereas in the Uzawa method
[16] the cost of one iteration scales more than linearly because the computation of the gradient is obtained thanks to a fast
Poisson solver in d + 1 dimensions.

Overall, the possible advantages of the present method reside mainly in the exact mass conservation and in the fact that
Np might be significantly smaller than N, since a particle is present only where mass is present. The actual computational
bottle neck is rather linked to the number of gradient iterations to get to the minimum. However, this is a common issue
to all methods based on optimization, i.e., the AHT and the Uzawa scheme. Of course, a full discussion of this issue should
involve the initial image, i.e., how far from the solution the minimization starts, the width of the scale spectrum of the target

Fig. 9. Tissue scan at (a) T = 0, (b) T = 1 (corresponding to an evolution of three months); Courtesy Institute Bergonié, Bordeaux.

Fig. 10. On the left: Monge result at T = 1; on the right: the true image at the same time.
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image, and the actual minimization method employed. In this direction, a promising approach seems to be a multilevel opti-
mization where the initial density distribution on a finer grid is obtained from the solution of a Monge problem on a coarser
grid.

Fig. 11. Density distribution at time (a) T = 0, (b) T = 1.

Fig. 12. Slices of the final density distribution: (a) XZ planes, (b) Z planes.

Fig. 13. (a) Contour lines of the residual distribution in the X plane; (b) contours of residual in YZ planes.

Table 5
Computational cost per gradient iteration (Tit), and the number of gradient iterations (It).

Np ‘ Tit It

153 1.2e%3 1.2s 1000
303 2.4e%4 9s 1100
603 1.6e%4 72s 4000
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7. Conclusions

We described a lagrangian method to solve the L2 optimal transport problem. The main idea is to identically satisfy the
mass conservation equation as well as the Hamilton–Jacobi equation for the potential. The initial and final conditions on the
density distribution are relaxed, and they are satisfied in a least-square sense. This approach does not require the numerical
solution of any PDE, since the problem solution amounts to the minimization of a non-linear function with respect to scalar
values (the potential) defined on a subset of the discretization grid. In the numerical tests, we show that the error in the
potential or in the representation of the initial and final density distribution systematically decreases by increasing the num-
ber of discretization points, and hence, of mass particles. The test cases show also that the method recovers critical mass
splitting phenomena, even with sharp boundaries. Some paradigmatic applications in medical imagery are also presented
in order to investigate performance in real life problems. One draw back of this approach is that, because of the regulariza-
tion kernel, sharp images may be blured if the resolution is not high enough. However, the examples presented suggest that
such phenomenon is acceptable, and since the kernel characteristic length can be decreased as the grid refinement is in-
creased, this effect is less and less relevant. Finally, the formulation described here is one of the possible implementations
of the idea of letting mass particles move along rays to satisfy mass conservation and the non-linear transport equations
resulting from the minimum conditions. Other kernels, or other minimization problems taking the initial and final conditions
as hard constraints can be defined based on the same approximation. These approaches are currently under scrutiny.
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