
HAL Id: hal-04483416
https://hal.science/hal-04483416v1

Submitted on 29 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

MSense: boosting wireless sensing capability under
motion interference

Zhaoxin Chang, Fusang Zhang, Jie Xiong, Weiyan Chen, Daqing Zhang

To cite this version:
Zhaoxin Chang, Fusang Zhang, Jie Xiong, Weiyan Chen, Daqing Zhang. MSense: boosting wireless
sensing capability under motion interference. The 30th Annual International Conference on Mobile
Computing and Networking (ACM MobiCom ’24), ACM, Sep 2024, WashingtonD.C., United States.
�10.1145/3636534.3649350�. �hal-04483416�

https://hal.science/hal-04483416v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


MSense: Boosting Wireless Sensing Capability Under
Motion Interference

Zhaoxin Chang1, Fusang Zhang2, Jie Xiong3, Weiyan Chen4, Daqing Zhang1,5
1SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris,

2Institute of Software, Chinese Academy of Sciences and University of Chinese Academy of Sciences,
3Microsoft Research Asia and University of Massachusetts Amherst,

4China Mobile Research Institute, 5Peking University

ABSTRACT
Wireless signals have been widely utilized for human sens-
ing. However, wireless sensing systems face a fundamental
limitation, i.e., the wireless device must keep static during
the sensing process. Also, when sensing fine-grained human
motions such as respiration, the human target is required
to stay stationary. This is because wireless sensing relies
on signal variations for sensing. When device is moving or
human body is moving, the signal variation caused by the
target area (e.g., chest for respiration sensing) is mixed with
the signal variation induced by device or other body parts,
failing wireless sensing. In this paper, we propose MSense, a
general solution to deal with motion interference from wire-
less device and/or human body, moving wireless sensing one
step forward towards real-life adoption. We establish the
sensing model by taking both device motion and interfering
body motion into consideration. By extracting the effect of
body and device motions through pure signal processing,
the motion interference can be removed to achieve accurate
target sensing. Comprehensive experiments demonstrate the
effectiveness of the proposed scheme. The achieved solu-
tion is general and can be applied to different sensing tasks
involving both periodic and aperiodic motions.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mo-
bile computing systems and tools.

KEYWORDS
Wireless sensing, Motion interference cancellation, Body
motion and device motion interference, MmWave radar

1 INTRODUCTION
Wireless signals have demonstrated their sensing capabilities
in many applications including vital sign monitoring [21, 41],
gesture recognition [26, 46], activity sensing [27, 61], track-
ing [6, 35], vibration detection [23, 57], and material iden-
tification [8, 47]. In recent years, various types of wireless
signals have been utilized for sensing purposes, including
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(a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

Figure 1: Scenarios of wireless sensing under device
and/or body motion: (a) Eye blinking detection in a
moving car. (b) Respirationmonitoring during exercise.
(c) Gesture recognition using robot-carried device.

Wi-Fi [34, 50], RFID [53, 66], LoRa [62, 64], UWB [16, 48],
LTE [13, 18], mmWave [49, 58] and acoustic signals [37, 39].

Althoughwireless sensing has achieved promising progress,
wireless sensing still faces a fundamental limitation, i.e., it
works under stationary conditions. Take respiration sens-
ing as an example. The human target is required to stay
stationary for sensing. If the target is running on a tread-
mill or walking, it is very difficult to extract the respiration
information. During the sensing process, the wireless de-
vice used for sensing also needs to be stationary. If we place
the device on a moving robot or hold it in hand with just
small involuntary motions, the sensing performance severely
degrades. This is because the underlying principle behind
wireless sensing is that target motions can influence signal
propagation, causing signal variations at the receiver. By
analyzing the signal variations, target motion information
can be inferred. However, when device is moving or/and the
human body is moving, the signal variations caused by these
interference motions are mixed with the signal variations
caused by the target area (e.g., chest for respiration), failing
wireless sensing. In real life, we do have a lot of scenarios
with device motions or/and body motions. For example, as
shown in Figure 1a, when we try to sense the driver’s eye
blinks for fatigue driving detection, the car movements bring
motions to both device and human body. Similarly, as shown
in Figure 1b, when monitoring vital signs during exercise,



the whole body moves dramatically, inducing strong mo-
tion interference. When we place the sensing device on a
moving robot for sensing as shown in Figure 1c, the device
motion also causes severe interference. These large motion
interference can easily bury the small variations induced by
target (e.g., eye blink and respiration).

To address the device motion, a recent work [65] proposed
to adopt a static object such as a wall in the surrounding
environment as a reference to cancel out the effect of device
motion. Although efficient, this method only works with pe-
riodic target motions. Furthermore, this method could not be
applied to address body motions. Several approaches [15, 20,
55, 71] were proposed to deal with interference from human
body leveraging deep learning methods. However, even with
deep learning, these methods still only work with periodic
target motions (e.g., vital sign monitoring). The underlying
principle is that the periodicity of the target motions differs
dramatically from that of the body movements. However,
many real-world applications involve aperiodic motions such
as hand gestures. Furthermore, even for respiration which is
usually periodic, people are more interested in those abnor-
mal part (e.g., apenea) which is aperiodic. In scenarios with
motion interference from both human body and device (e.g.,
sensing in a moving car), the problem becomes even more
challenging.
In this paper, we propose MSense, a general solution to

deal with motion interference induced by human motions
and device motions in wireless sensing. For the first time, we
model the effect of target motions together with device and
body motions. First of all, we find that the signal received
at the receiver may contain signals reflected from different
body parts. For mmWave radar with a bandwidth of 4 GHz,
the range bin resolution is around 5 cm, which is capable of
separating signal reflected from the head and signal reflected
from the leg into two different bins. However, the signal
reflected from the eye and the signal reflected from themouth
have a path length difference smaller than the range bin
resolution and therefore they fall in the same bin. In this case,
the two signals can not be separated in the time domain. We
therefore further utilize the antenna array widely available
at the commodity mmWave hardware to separate signals in
the spatial domain.
After we obtain the signal reflected just from the target

area (e.g., eye area for blink detection), this signal contains
not just the information of target motion but also the infor-
mation of body motion (interference) and device motion (in-
terference). To address this challenge, we leverage one obser-
vation: while the reflection signal from the target area carries
the information of target, body motion and device motion,
some reflection signals from other body parts may contain
just the information of body motion and device motion. In
this case, the undesired motion interference can be canceled

out to obtain clean target motion information. However, we
also notice that signals reflected from different body areas
can contain distinct body motions. Therefore, we need to
select an area with the same body and device motions as
the target area for interference motion cancellation. For ex-
ample, for eye blink detection, the forehead-reflected signal
contains motion information of head and device. The eye-
reflected signal contains motion information of head, device,
and eye (i.e., target). These two signals can be used for in-
terference motion cancellation. On the other hand, a signal
reflected from the neck which contains motion information
of neck and device can not be used for cancellation. To select
the most appropriate reflection signal for cancellation, we
maximize an objective function based on the known clean sig-
nal pattern (e.g., eye blink-induced signal variations contain
sparse short pulses in time domain). Note that this solution
is independent of the periodicity of the target motion.

We implement MSense using a commodity mmWave radar
(TI IWR1843BOOST). We conduct comprehensive experi-
ments to validate the effectiveness of the proposed approach.
We employ three representative applications to evaluate the
sensing performance: i) in-vehicle eye blink, yawn, and nod
detection (i.e., with both body and device motion interfer-
ence); ii) respiration monitoring during exercise (i.e., with
just body motion interference); and iii) hand gesture recog-
nition when the mmWave device is placed on a moving
robot (i.e., with just device motion interference). For all three
applications, our system achieves highly accurate sensing.
The main contributions of this work are summarized as fol-
lows.
• We address one important practical challenge, i.e., device
and body motion interference in wireless sensing in this
work. We believe this is one critical step toward real-life
adoption of wireless sensing.

• We propose a signal processing scheme to remove body
and device motion interference without a need of training
or learning.

• We implement MSense and comprehensively evaluate its
performance. We employ three representative sensing
tasks to demonstrate the effectiveness and generalization
of our system. Experiments show that our approach can
be applied to sense both periodic and aperiodic motions.

2 PRELIMINARY
In this section, we first present the background knowledge
of mmWave radar signals and then introduce the traditional
sensing scheme under static conditions.

2.1 MmWave Radar Primer
MmWave radar refers to radar that operates in the millime-
ter wave frequency band. As shown in Figure 2a, mmWave



radar transmits signals to the environment. Then, part of the
signals are reflected by static objects and the human target.
By capturing the reflected mmWave signals, the range, ve-
locity, and angle of each object can be estimated. Currently,
frequency-modulated continuous wave (FMCW) technology
is typically used by mmWave radars for signal modulation,
utilizing chirp as the basic signal unit. The transmitted chirp
signal can be represented as:

𝑆𝑇 (𝑡) = 𝐴𝑇 cos 2𝜋 (𝑓𝑐𝑡 +
1
2𝑘𝑡

2), (1)

where𝐴𝑇 , 𝑓𝑐 , and𝑘 are the amplitude, starting frequency, and
chirp slope, respectively. The transmitted chirp propagates
in the environment and then is reflected back to the radar
by the objects. Because the distances from each object to the
radar are different, the propagation path lengths and time
delays of the reflected signals from each object are different.
Therefore, the received signal is composed of multiple copies
of the transmitted chirp with different delays and attenuation.
After capturing the received signal, FMCW radar mixes it
with the transmitted chirp and employs a low-pass filter to
obtain the intermediate frequency (IF) signal denoted by:

𝑆 (𝑡) =
𝑁∑︁
𝑛=1

𝐴𝑛 cos (2𝜋
2𝑘𝑅𝑛
𝑐

𝑡 + 4𝜋 𝑓𝑐𝑅𝑛
𝑐

), (2)

where 𝑁 , 𝐴𝑛 , 𝑅𝑛 , and 𝑐 are the number of objects that reflect
signal, the amplitude of 𝑛-th object-reflected signal, the dis-
tance of 𝑛-th object, and the speed of light, respectively. It
can be seen that the IF signal of FMCW radar is composed of
multiple cosine components. Each cosine signal corresponds
to an object’s reflection signal, and its frequency ( 2𝑘𝑅𝑛

𝑐
) is

determined by the distance of the object from the radar. The
amplitude and phase of each frequency component contained
in the IF signal can be obtained by performing Fast Fourier
Transform (FFT) on the IF signal, which can generate several
frequency bins. According to Equation 2, if there is an object
reflecting signal at a distance of 𝑅𝑛 , after performing FFT on
the IF signal, the bin with a frequency of 𝑓 =

2𝑘𝑅𝑛
𝑐

shows a
high magnitude peak. Therefore, by observing the frequency
spectrum obtained after performing FFT on the IF signal, we

(a) Sensing scenario. (b) Range profile.

Figure 2: MmWave radar-based sensing primer.

can estimate at which distances objects exist. This opera-
tion of estimating the target distance is called Range-FFT.
The frequency bin in the FFT result is denoted as range bin.
Performing Range-FFT on each chirp can obtain the range
estimation results at different moments to obtain the range
profile.

Figure 2b shows an example of the range profile. When the
movement of an object (i.e., human walking) is large enough
to cause the distance to change significantly (i.e., the range
bin where the object is located changes), the movement of the
object can be tracked on the range profile. On the contrary,
subtle target motion (e.g., respiration) may be not enough
to cause the change of its range bin, making it cannot be
observed directly on the range profile. Fortunately, subtle
motion can be estimated by extracting the phase change of
the range bin where the target is located over time, providing
more fine-grained sensing granularity than only measuring
range bin change. Note that the phase of a range bin can be
directly extracted from the result of Range-FFT. According
to Equation 2, the Range-FFT result of the range bin where
the object with distance 𝑅𝑛 is located can be represented as:

𝑦𝑛 (𝑡) = 𝐴𝑛𝑒 𝑗
4𝜋 𝑓𝑐
𝑐
𝑅𝑛 (𝑡 ) = 𝐴𝑛𝑒

𝑗𝐾𝑅𝑛 (𝑡 ) , (3)

and the phase can be extracted as:𝜑 (𝑡) = 𝐾𝑅𝑛 (𝑡) = 4𝜋 𝑓𝑐
𝑐
𝑅𝑛 (𝑡).

Then, the displacement of the object can be calculated as
Δ𝑅𝑛 = 𝑐

4𝜋 𝑓𝑐 Δ𝜑 . For instance, target motion with a displace-
ment of 1 mm can induce a phase change of 1.03𝜋 (𝑓𝑐 = 77
GHz). Thus, phase information extraction is the basis for
fine-grained sensing tasks.

2.2 Sensing Under Static Conditions
In this section, we present the basis of traditional fine-grained
sensing using body reflection signals under static conditions.
As shown in Figure 3a, a radar emits signals and receives
signals reflected from various body areas. Since the distance
from each body area to the radar is different, the reflected
signal of the human body will appear on multiple range
bins. However, reflected signals from different body areas
with similar distances to the radar may lie within one range
bin and thus cannot be distinguished. Specifically, two ar-
eas cannot be distinguished when the distance difference
between them is smaller than the range resolution. The range
resolution of the mmWave radar is determined by the band-
width of the chirp signal, which is 𝑅𝑟𝑒𝑠 = 𝑐

2𝐵 , where 𝐵 is the
bandwidth [5]. Due to this limited range resolution, reflected
signals from body areas with a similar distance to the radar
will be in the same range bin and mixed. In the case shown
in Figure 3a, chest, abdomen, and leg areas are in the same
range bin #4.
Here, we first present the model of body-reflected signal

without device and body motion. Assume that the person



(a) Illustration of body re-
flections.

(b) Signal in range bin #4 on
I-Q plane.

Figure 3: Sensing based on body reflection under static
conditions.

in Figure 3a has no movement other than breathing. Within
range bin #4, chest and abdomen areas have displacement
induced by respiration, which is the target motion to sense.
Meanwhile, other areas (i.e., the area between neck and chest,
and leg area) keep static. Therefore, based on Equation 3, the
reflected signal in range bin #4 is a composition of multi-area
reflected signals:

𝑦 (𝑡) =
𝑃∑︁
𝑝=1

𝐴𝑝𝑒
𝑗𝐾𝑅𝑝 (𝑡 )

=
∑︁
𝑝∈𝑃𝑠

𝐴𝑝𝑒
𝑗𝐾𝑅𝑝0 +

∑︁
𝑝∈𝑃𝑑

𝐴𝑝𝑒
𝑗𝐾𝑅𝑝0𝑒 𝑗𝐾Δ𝑅𝑡𝑎𝑟 (𝑡 )

= 𝐻𝑠 + 𝐻𝑡𝑎𝑟𝑒 𝑗𝐾Δ𝑅𝑡𝑎𝑟 (𝑡 ) ,

(4)

where 𝑃 , 𝑃𝑠 , and 𝑃𝑑 are the set of all points, static points,
and dynamic points respectively. 𝐴𝑝 , 𝑅𝑝0, and Δ𝑅𝑡𝑎𝑟 (𝑡) are
the amplitude of the 𝑝-th point-reflected signal, the initial
distance of the 𝑝-th point, and the breath-induced displace-
ment (target motion) over time. The points in an area can be
represented as one vector due to the same motion pattern.
As shown in Figure 3b, the signal in range bin #4 is a super-
position of two static vectors 𝐻𝑠1 and 𝐻𝑠2, which represent
the signals reflected from two static areas, and a dynamic
vector 𝐻𝑡𝑎𝑟𝑒 𝑗𝐾Δ𝑅𝑡𝑎𝑟 (𝑡 ) on the I-Q plane. Two static vectors
mix together as one static vector 𝐻𝑠 . The dynamic vector
rotates with respect to the static vector. As a result, the phase
of the composite signal 𝑦 (𝑡) also changes with respiration
motion. Therefore, by extracting the phase change of the
composite signal, the breath waveform can be restored.

3 PRINCIPLE OF BODY AND DEVICE
MOTIONS ELIMINATION

In this section, we first present the body-reflection model
under body and device motion. Then, we propose a model-
based approach to eliminate the effect of body and device
motions on the target sensing task.

3.1 Modeling Body and Device Motion
Interference

In this section, we involve body and device motion in the
body reflection model presented in Section 2.2. We use eye-
blinking detection in a moving car as an example to ana-
lyze the effect of body and device motion on target sens-
ing. When the human body and device are static, the clos-
ing and opening of the eyelids caused by blinking can in-
duce a subtle phase change in eye-reflected signal. Thus, by
monitoring the phase change of eye-reflected signal, blink-
ing can be detected [22]. In a mobile scenario (i.e., a mov-
ing car), due to the car’s bump, the human body also has
body motion. Meanwhile, the device also vibrates with the
car. For now, all signal propagation path lengths change
with body and device motion. Figure 4 illustrates the path
length variation under body and device motions. For tar-
get area (i.e., eye area in this example), in addition to tar-
get motion (Δ𝑅𝑡𝑎𝑟 (𝑡)), target area also exhibits irrelevant
body motion (Δ𝑅𝑏𝑜𝑑𝑦,𝑡𝑎𝑟 (𝑡)). On the other hand, device mo-
tion (Δ𝑑𝑑𝑒𝑣 (𝑡)) causes target area reflected path length to
change (Δ𝑅𝑑𝑒𝑣,𝑡𝑎𝑟 (𝑡)). Therefore, the change of target area
reflected path length is Δ𝑅𝑡𝑎𝑟 (𝑡)+Δ𝑅𝑏𝑜𝑑𝑦,𝑡𝑎𝑟 (𝑡)+Δ𝑅𝑑𝑒𝑣,𝑡𝑎𝑟 (𝑡).
Similarly, the path length change of a non-target area is
Δ𝑅𝑏𝑜𝑑𝑦,𝑚 (𝑡) +Δ𝑅𝑑𝑒𝑣,𝑚 (𝑡), where Δ𝑅𝑏𝑜𝑑𝑦,𝑚 (𝑡) and Δ𝑅𝑑𝑒𝑣,𝑚 (𝑡)
are the body motion and device motion induced path length
change for the𝑚-th area, respectively. To this end, the signal
of the range bin (Equation 4) with human target should be

Figure 4: Illustration of the effect of body and device
motion on signals reflected from different body areas.



modified as:
𝑦′ (𝑡) =𝐻𝑡𝑎𝑟𝑒 𝑗𝐾 (Δ𝑅𝑡𝑎𝑟 (𝑡 )+Δ𝑅𝑏𝑜𝑑𝑦,𝑡𝑎𝑟 (𝑡 )+Δ𝑅𝑑𝑒𝑣,𝑡𝑎𝑟 (𝑡 ) )

+
𝑀∑︁
𝑚=1

𝐻𝑚𝑒
𝑗𝐾 (Δ𝑅𝑏𝑜𝑑𝑦,𝑚 (𝑡 )+Δ𝑅𝑑𝑒𝑣,𝑚 (𝑡 ) ) ,

(5)

where 𝑀 is the number of areas without target motion.
Therefore, due to the existence of body and device motions,
there is no static component in the body reflection signal.
Static vectors in the model under static condition (in Sec-
tion 2.2) also become dynamic vectors. It can be seen from
Equation 5 that there are two terms of interference that
prevent us from extracting motion information (Δ𝑅𝑡𝑎𝑟 (𝑡)) re-
lated to the sensing target task using traditional approaches:
i) the random body and device motions (Δ𝑅𝑏𝑜𝑑𝑦,𝑡𝑎𝑟 (𝑡) +
Δ𝑅𝑑𝑒𝑣,𝑡𝑎𝑟 (𝑡)) in the sensing target area; ii) the motions of
other body areas (

∑𝑀
𝑚=1𝐻𝑚𝑒

𝑗𝐾 (Δ𝑅𝑏𝑜𝑑𝑦,𝑚 (𝑡 )+Δ𝑅𝑑𝑒𝑣,𝑚 (𝑡 ) ) ) is su-
perimposed with the target area reflected signal. Note that
different body areas can have distinct movement patterns.
For example, the head can nod and shake, so it can have differ-
ent movement patterns from the chest during the bumping of
the car. Thus, the range bin where the target area is located
may be superimposed with signals from other areas with
different body motion patterns. On the other hand, since
device motion causes the length of each signal reflection
path to change simultaneously, the signal variation patterns
caused by device motion in the reflected signals of different
body areas are similar.
Figure 5 shows the interference of body and device mo-

tion on eye blink detection and respiration monitoring. For
both sensing tasks, we first collect signals in static condi-
tions, i.e., the device and body keep stationary during the
sensing process. For eye blink detection, millimeter-scale
phase changes caused by five blinks can be clearly identified.
For respiration monitoring, periodic movements induced by
inhalation and exhalation can be observed. However, when

(a) Eye blink detection. (b) Respiration monitoring.

Figure 5: Comparison of signals in static conditionwith
signals under body and device motions.

repeating the experiment in a moving car, due to the body
and device motions caused by the bumping of the car, the
head-reflected signal exhibits a random phase fluctuation
on a larger scale shown in Figure 5a, thereby failing the eye
blink detection. As shown in Figure 5b, the same phenome-
non can be observed when monitoring the breathing of an
exercising person.

3.2 Body and Device Motion Elimination
In this section, we propose a two-stage strategy to eliminate
the effect of body and device motion on sensing. Specifically,
we first extract the reflected signals from the target area from
the superimposed received signal. This allows us to focus
on processing reflections from just the target area and avoid
potential interference from other areas with different motion
patterns. After obtaining the signal reflected just from the
target area, we further eliminate the information of body
and device motion to recover the target motion.
To extract the target area reflected signal from the raw

signal, we leverage one observation, which is in the view of
radar, the angles of different body areas are different. Note that
antenna array is widely available on commodity mmWave
radar, we thus propose to use digital beamforming with
signals received by multiple antennas to enhance the re-
flected signals from the target area. As shown in Figure 6,
the angles of the target area (e.g., eye) and another area (e.g.,
chest) are 𝜃𝑡𝑎𝑟 and 𝜃𝑚 , respectively. Then, based on Equa-
tion 3, the phase difference between adjacent antennas in-
duced by the reflection signals from these two areas are
Δ𝜑𝑡𝑎𝑟 = 𝐾𝑑 sin𝜃𝑡𝑎𝑟 and Δ𝜑𝑚 = 𝐾𝑑 sin𝜃𝑚 respectively. Fig-
ure 6 illustrates the vectors of𝐻𝑡𝑎𝑟 and𝐻𝑚 of different anten-
nas on I-Q plane. To enhance the reflected signal from target
area at angle 𝜃𝑡𝑎𝑟 , we multiply the signal of the 𝑖-th antenna
by the factor 𝑒− 𝑗 (𝑖−1)Δ𝜑𝑡𝑎𝑟 = 𝑒− 𝑗 (𝑖−1)𝐾𝑑 sin𝜃𝑡𝑎𝑟 . Then, 𝐻𝑡𝑎𝑟 on
all antennas have the same phase on I-Q plane now, while
𝐻𝑚 on different antennas still have a phase difference. We
add the signals of each antenna after multiplying the factors.
Consequently, after adding up 𝐻𝑡𝑎𝑟 of all antennas, a vector
with a larger magnitude is generated. On the contrary, be-
cause the phases of 𝐻𝑚 are not aligned, the magnitude of the
vector formed after adding up is much smaller than that of
𝐻𝑡𝑎𝑟 . In this way, the reflected signal from the target area at
an angle of 𝜃𝑡𝑎𝑟 is enhanced. The interfering reflected signals
from other body areas in different directions are weakened.
Thus, we obtain the target area reflected signal using digital
beamforming, which can be expressed as:

𝑦𝑡𝑎𝑟 (𝑡) = 𝐻𝑡𝑎𝑟𝑒 𝑗𝐾 (Δ𝑅𝑡𝑎𝑟 (𝑡 )+Δ𝑅𝑏𝑜𝑑𝑦,𝑡𝑎𝑟 (𝑡 )+Δ𝑅𝑑𝑒𝑣,𝑡𝑎𝑟 (𝑡 ) ) . (6)

Note that the more antennas used for beamforming, the
better the enhancement effect on reflected signals from target
area [54].



Figure 6: Illustration of beamforming the received signal at a specific direction.

For now, we still need to eliminate the interference of body
and device motions (Δ𝑅𝑏𝑜𝑑𝑦,𝑡𝑎𝑟 (𝑡) + Δ𝑅𝑑𝑒𝑣,𝑡𝑎𝑟 (𝑡)) in the tar-
get area reflected signal to recover target motion (Δ𝑅𝑡𝑎𝑟 (𝑡)).
Our core observation is that non-target area reflected signals
may contain just the information of body and device motion.
Intuitively, if we can first estimate the device motion and
body motion by extracting the reflected signal from another
area, these undesired motion interference can be further
eliminated from the target area reflected signal. It is worth
noting that we need to carefully select an area where body
and device motions are the same as the target area for estima-
tion. Fortunately, such areas are usually available, because
two adjacent body areas have the same body and device
motions. As the example shown in Figure 7, in a moving
car, eye-reflected signal and forehead-reflected signal con-
tain the same body and device motions. On the contrary,
the chest area has different body motion from the eye area,
because the head usually has more complex movement pat-
terns compared with the chest. Meanwhile, due to the large
difference in the angle of the chest and eyes relative to the
radar, the values of phase change due to device motion in
the signal reflected from chest area and from eye area are
also different [65]. Thus, the forehead-reflected signal can be
utilized for device and body motion estimation in eye blink
detection. Then, device and body motion interference can be
eliminated from the eye-reflected signal, enabling eye blink
detection in the moving car.

Figure 7: Body and devicemotion elimination. The area
adjacent to the target area may exhibit the same device
and body motion as target area, which can be used for
motion elimination.

To realize our idea, the key is to obtain the reflection signal
of an area, which has the same body and device motion as the
target area. To achieve this, we still utilize the beamforming
approach. By beamforming the signal to the area near the
target area, we can obtain a signal that only contains the
same body and device motions as the target area:

𝑦0 (𝑡) = 𝐻0𝑒
𝑗𝐾 (Δ𝑅𝑏𝑜𝑑𝑦,𝑡𝑎𝑟 (𝑡 )+Δ𝑅𝑑𝑒𝑣,𝑡𝑎𝑟 (𝑡 ) ) . (7)

Then, we propose to eliminate the effect of body and device
motions in target area through a division operation between
the target area reflection signal and the adjacent area reflec-
tion signal:

𝑦𝑛𝑒𝑤 (𝑡) =
𝑦𝑡𝑎𝑟 (𝑡)
𝑦0 (𝑡)

=
𝐻𝑡𝑎𝑟

𝐻0

𝑒 𝑗𝐾 (Δ𝑅𝑡𝑎𝑟 (𝑡 )+Δ𝑅𝑏𝑜𝑑𝑦,𝑡𝑎𝑟 (𝑡 )+Δ𝑅𝑑𝑒𝑣,𝑡𝑎𝑟 (𝑡 ) )

𝑒 𝑗𝐾 (Δ𝑅𝑏𝑜𝑑𝑦,𝑡𝑎𝑟 (𝑡 )+Δ𝑅𝑑𝑒𝑣,𝑡𝑎𝑟 (𝑡 ) )

= 𝐻𝑛𝑒𝑤𝑒
𝑗𝐾Δ𝑅𝑡𝑎𝑟 (𝑡 ) .

(8)

By extracting the phase of 𝑦𝑛𝑒𝑤 (𝑡), the target motion infor-
mation Δ𝑅𝑡𝑎𝑟 (𝑡) can be obtained.

4 MSENSE DESIGN
In this section, we present the detailed design of our system.
As illustrated in Figure 8, our system consists of three key
modules: signal preprocessing, candidate signal extraction,
and motion elimination. Briefly, we first detect in which
range bins human body is located. Subsequently, for each of
these identified range bins, we leverage MVDR algorithm to
estimate the angles associated with the reflections from vari-
ous areas of the body. By beamforming the received signal to
these angles, we extract potential candidate signals. To can-
cel out the effect of body and device motion interference, we
pair up the candidate signals and perform division operation.
We then evaluate whether accurate target area reflection
signal and its adjacent area reflection signal have been cor-
rectly selected. This evaluation is based on the signal pattern
after body and device motion elimination. Consequently, we
output the final target waveform, effectively mitigating the
influence of body and device motion.



Figure 8: Overview of system design.

4.1 Signal Preprocessing
We collect signals received by the radar system. Initially,
we transform the raw IF signal into a range profile using
Range-FFT. As introduced in Section 2.2, due to that the
distance from each body area to the radar is different, the
body-reflected signals appear in multiple continuous range
bins. We employ the Constant False Alarm Rate (CFAR) [36]
detection approach on the range profile. The CFAR algo-
rithm serves to identify the presence of objects within a back-
ground of noise by adaptively comparing the magnitude of
adjacent range bins. Consequently, we can identify the range
bins corresponding to human body reflected signals. Note
that the interference from other reflections (e.g., other people
moving around in the vicinity) can be avoided. This capability
is offered by the fine-grained range resolution of mmWave
radar, which is determined by the signal bandwidth. In our
case, the signal frequency bandwidth is 4 GHz, and thus the
corresponding range resolution is 𝑐

2𝐵 =
3×108𝑚/𝑠
2×4𝐺𝐻𝑧 = 3.75 𝑐𝑚.

The signals reflected from two body areas of the same person
or from two different persons whose distance difference is
greater than the range resolution can be separated using
Range-FFT. Typically, the distance difference between the
target person and other interfering persons around her/him
is on the order of decimeters. Thus, the interference from
these reflections is negligible.

4.2 Candidate Signal Extraction
In this module, our objective is to extract a set of candi-
date signals reflected from distinct areas on the human body,
which will help mitigate the impact of body and device mo-
tion. As previously introduced in Section 3, our proposed
approach utilizes signals reflected from two specific areas
on the body to facilitate body and device motion elimination.
Hence, we need to extract the reflected signals both from the
target area containing the target motion, body motion and
device motion, as well as from an adjacent area exhibiting
the same body and device motion as the target area.
However, due to the unique physical characteristics (e.g.,

height and weight) of each individual and the relative po-
sition of the human body to the radar, the precise angles
corresponding to the desired body parts cannot be easily

obtained. For example, in eye blink detection, we cannot
assume to know in advance the angle of the eye area.
To this end, we adopt a search-based method to traverse

the possible angles and select candidate body parts. Specif-
ically, in the signal processing stage, we separate the raw
signal into multiple signals, each corresponding to one range
bin using the method of range FFT. We then employ the
Minimum Variance Distortionless Response (MVDR) [10]
algorithm to acquire the angle profile of each range bin sig-
nal. It is difficult to identify the angles of the desired areas
with only the magnitude information. Thus, based on the
angle profile, we select as many candidate angles as possible
to avoid missing important reflection signals. Note that not
just the peak angles are considered. As shown in Figure 9a
and 9b, we select those angles with a magnitude higher than
the threshold (i.e., the mean magnitude of all angles in a
particular range bin) as candidate angles (i.e., those angles
in the orange rectangles). Figure 9c shows four example can-
didate angles and the corresponding body areas including
forehead (𝜃1), eyebrow (𝜃2), eye (𝜃3) and chest (𝜃4). After that,
we perform beamforming to enhance the signal strength at
each candidate angle and obtain the corresponding candidate
reflection signals. The enhanced signals with beamforming
at these angles are shown in Figure 9d. It can be observed
that the reflection signals of different body areas exhibit dis-
tinct variation patterns. We consider all candidate signals to
determine the appropriate reference body part for motion
cancellation.

4.3 Body and Device Motion Elimination
In this module, we eliminate body and device motion in the
target area reflected signal based on candidate signals. The
key practical challenge in this module is, that among all
candidate signals, we need to identify the signal reflected
from the target area, as well as the signal reflected from
another area that exhibits the same body and device motion
as the target area. Since there is no prior knowledge of where
these two areas are, we perform pairwise division operation
according to Equation 8 for all candidate signals. Then, based
on the result of the division operation, i.e., whether the signal
after division matches the pattern of target motion, we can
determine whether two correct areas are selected.

We first analyze all possible types of results after the divi-
sion. Theoretically, the division operation could yield three
types of potential outputs. The first type of result exhibits
a clean variation pattern that matches the target motion,
implying successful selection of the target area and an appro-
priate area reflected signals. The second type indicates that
the signal after division remains dominated by random body
and device motions, failing to present any discernible target
motion pattern. This implies that the reflected signals from



(a) Angle profile of range bin #5. (b) Angle profile of range bin #6. (c) Examples of candidate angles. (d) Examples of candidate signals.

Figure 9: Illustration of candidate signal extraction.

the target area or an appropriate area are not accurately se-
lected. The third type of result is that the signal after division
does not change with time, indicating that the two selected
areas have identical motion.
To identify the signal of interest (i.e., first type) from all

signals after the division operation, we initiate the process
by computing the variance of each result and subsequently
ranking them. Since the body and device motion typically
exhibit larger displacement and randomness compared to the
target motion, the third type, the first type, and the second
type sequentially appear in the ranking based on variance.
For the identification of the third type of signal, we compute
the displacement of the signal after division. Taking respira-
tion monitoring as an example, if the displacement change
of the signal after division is less than 1 mm, we classify
the signal as belonging to the third category and remove
it, since respiration-induced motion exhibits displacement
larger than 1 mm. Similarly, we remove certain signals of the
second type based on whether their displacements exceed
specific thresholds. As an example, the displacement induced
by respiration typically falls within the range of 2 cm. If the
signal’s displacement is greater than 2 cm after division, it
implies that effective cancellation of body and device mo-
tion has not been achieved. For the remaining signals, we
examine whether each signal contains the target motion
component in the order of variance from small to large. We
apply dynamic time warping (DTW) to identify whether the
signal waveform after division matches the pattern of tar-
get motion, thereby determining whether the correct areas
are selected and if the motion interference is eliminated. It
is worth noting that the signal pattern of each activity is
unique in terms of displacement and duration. For example,
nodding causes a displacement which is one order of mag-
nitude larger than that caused by an eye blink. The pattern
is also different from random noise or interference caused
by other motions such as lip movements (speaking). Since
we collected the signal pattern of each target movement in
advance, the interference motion will not be recognized as

a target motion. Meanwhile, if the reference body part has
large irrelevant motions, our method would automatically
select another body part as a more appropriate reference.
Figure 10 shows an example of different results after the
division operation. After selecting the reflected signal at 𝜃2
and 𝜃3 in Figure 9 for division, the signal fluctuation caused
by eye-blinking twice can be observed (Type 1). The result of
division based on the reflected signals from 𝜃2 and 𝜃4 exhibit
fluctuations with non-blink pattern (Type 2), because the
areas selected for division are wrong. The waveform of the
third result (Type 3) hardly fluctuates with time, because the
reflected signals from 𝜃1 and 𝜃2 are used for division. These
two areas contain the same body and device motion, but
none of them contains target motion.

We also propose a strategy to accelerate this process. It can
be observed that some candidate areas exhibit the same body
and device motion (e.g., the areas at 𝜃1 and 𝜃2 in Figure 9).
The division of such signals yields results that do not change
with time after division. Based on this observation, once we
identify this type of result, one of the candidate signals is
removed, thereby reducing subsequent operation overhead.
Additionally, in some applications, the position of the person
does not change significantly (e.g., sitting in a car). In this
case, once two candidate signals are identified, the signals
reflected from these two areas can be used for subsequent
elimination, further reducing the computational load.

Figure 10: Illustration of three types of potential results
after division.



It is worth noting that as our system relies on extracting
the reflection signals from two body areas that have the same
body and device motion but different target motions, the two
areas are typically close to each other. Therefore, the factor
that most significantly affects system performance in our de-
sign is the ability to identify and extract the reflected signals
from these two areas accurately. Thus, the error in the AoA
estimation and beamforming becomes the major error source
of our system. If the number of antennas is not sufficient, it
is difficult to separate signals from two body areas that are
close to each other due to limited angle resolution.

5 IMPLEMENTATION
We implement MSense on a commercial mmWave radar,
which is TI IWR1843BOOST [3]. We set the radar to operate
at a starting frequency of 77 GHz with a bandwidth of 4 GHz.
Two transmitting antennas and four receiving antennas are
used in MIMO mode to construct equivalent eight receiving
channels for angle estimation [17]. Considering that different
areas of the human body are mainly distributed in the verti-
cal direction, we place the radar vertically as shown in Fig-
ure 11. The raw intermediate frequency signals are collected
by a data acquisition board, which is TI DCA1000EVM [2]
and sent to a laptop through a cable. At the laptop, we set
the radar parameters and control the data collection using
MMWAVE-STUDIO [4]. We use a Macbook Pro with an Intel
Core i7 processor and 32GB memory to process the data. The
signal processing is implemented using Matlab.

Figure 11: Hardware and device placement.

6 EVALUATION
In this section, we evaluate the performance of MSense using
three real-world applications to demonstrate the effective-
ness and generalization of our system: i) in-vehicle eye blink,
yawn and nod detection with both body and device motion
interference; ii) respiration monitoring during exercise with
body motion interference; and iii) hand gesture recognition
when the device is placed on a moving robot with device
motion interference.

6.1 Case Study 1: In-vehicle Activity
Detection Under Car Motions

In-vehicle driver sensing has wide-ranging applications, such
as detection of fatigue, drunk, and distracted driving. For
instance, when a driver is in the fatigue state, we can observe
high-frequency nodding, yawning, and eye blinking [22, 24].
A recent work proposed to sense the driver’s activities using
mmWave radar [72]. However, this becomes challenging
when the car is in motion. we apply MSense to realize in-
vehicle driver activity detection. We ask three drivers to
drive the car for a total of one hour. During the driving
process, the car naturally bumps due to acceleration, braking,
and turning. The drivers naturally nod, yawn, and blink
during the process. Note that this experiment was conducted
under the condition of ensuring the safety of drivers and
pedestrians. We use the camera recording as the ground
truth. Figure 13a shows the experiment scenario in the car.
Figure 12 shows the precision and false positive rate of the
system for detecting the three activities. The precision of
detection is calculated as the ratio between the number of
correctly detected activities and the total number of activities.
The false positive rate indicates the proportion of wrong
detection. For blinking, yawning, and nodding detection, by
applying the proposed system, the precision is increased by
2.52×, 1.55×, and 1.21×, respectively. The false positive rate
is decreased by 74.65%, 77.76%, and 86.29%, respectively.
Figure 13b-13d show the example of signals without and

with MSense for body and device interference elimination.
For fine-grained blink and yawn detection, we can see a lot
of random fluctuations in the raw signal without removing
body and device interference. Some of these random fluctua-
tions have the same pattern and displacement scale as eye
blink and yawn, and thus could be misidentified as targeted
activities. On the other hand, when the activity does happen,
there may be no fluctuation pattern corresponding to the
activity. By applying MSense, we extract the reflected signals
from eye-area, mouth-area, and forehead-area for body and
device motion elimination. As shown in Figure 13b and 13c,

(a) Precision. (b) False positive rate.

Figure 12: Overall performance of eye blinking, yawn-
ing, and nodding detection.



(a) Experiment scenario. (b) Eye blinking. (c) Yawning. (d) Nodding.

Figure 13: Experiment scenario of in-vehicle eye blinking, yawning, and nodding detection. Examples of signal
variations before and after eliminating body and device motions.

the clear signal variation patterns induced by eye blinking
and yawning can be observed after interference elimination.
Nodding-induced target motion exhibits a larger scale than
blinking and yawning, making it more robust against car
bumps. However, we still find that when the car brakes or
the person adjusts the sitting posture, the body moves, caus-
ing a motion pattern similar to nodding. For example, in
Figure 13d, the fluctuation of the original signal shows four
nods. Actually, the last two “nods” are caused by body mo-
tions due to car braking. MSense can reduce the false positive
rate of nod detection by extracting the reflected signals from
the head-area and chest-area for body motion elimination.

6.2 Case Study 2: Respiration Monitoring
During Exercise Under Body Motion

6.2.1 Experiment Setup. We evaluate the performance of
respiration monitoring under body motions induced by ex-
ercise in two scenarios, i.e., home and gym. As shown in
Figure 14, in the home scenario, we involve four types of
warm-up exercises (E1-E4). In the gym scenario, we involve
four exercises with fitness equipment, which are exercise
bike 1 (E5), exercise bike 2 (E6), elliptical trainer (E7), and
treadmill (E8). For walking and running on the treadmill, we
evaluate the system performance with five different speeds
ranging from 2 km/h to 10 km/h. During experiments, the
mmWave radar is fixed in front of the human body. We col-
lect the ground truth respiration waveform using a wearable
device NUL-236 [1], which monitors respiration by measur-
ing the air pressure in the belt. We calculate the respiration
rate using the auto-correlation function (ACF). The mean
absolute error of respiration rate is used as the metric to
verify the effectiveness of our system. We compare our sys-
tem with a baseline approach Vital-Radio [7], a raw phase
information-based solution without dealing with body mo-
tion. In this experiment, the system identifies the chest area
and the area between the chest and neck to eliminate body
motion.

Figure 14: Different types of exercises in home and
gym scenarios. The radar device is fixed in front of the
human body for respiration monitoring.

6.2.2 Overall Performance. Figure 15a shows the respira-
tion rate estimation error for different types of exercises. For
all types of exercises, the respiration rate estimation errors
are below 0.73 beat-per-minute (bpm). Figure 15b and 15c
show an example of signal variation for exercise E3. It can
be seen that the displacement estimated using the baseline
method is dominated by body motion, which exhibits ran-
dom variation and larger displacement than respiration. The
proposed method can effectively eliminate motion interfer-
ence and obtain a waveform similar to ground truth. We
also test whether the system can measure changes in respira-
tion rate on a treadmill, to demonstrate that the system can
monitor breathing that is not perfectly periodic. We collect
data for 100 s and change the running speed twice during
this period. It can be seen that our method can estimate the
change in respiration rate in a short period of time. This
is because our method does not utilize periodic features to
separate and recover the respiration waveform.



(a) Overall performance for 8 types of ex-
ercises.

(b) An example of signal vari-
ation before and after motion
elimination.

(c) Comparison of recovered
waveform with ground truth.

(d) Monitoring the change of
respiration rate.

Figure 15: Respiration monitoring during exercise.

(a) Impact of target diversity. (b) Impact of sensing distance. (c) Impact of number of anten-
nas.

(d) Impact of interference from
other people.

Figure 16: The impact of different factors.

6.2.3 Impact of Target Diversity. We now evaluate the im-
pact of target diversity. We recruit six subjects to test the
generalization of our system across different people. As the
result shown in Figure 16a, the respiration rate estimation
error of our system is below 0.72 bpm for all persons, while
the error of baseline methods is around 15 bpm.

6.2.4 Impact of Sensing Distance. We now evaluate the dis-
tance between the radar and the human target. The exercises
in the home scenario (i.e., E1 - E4) are considered in this
experiment. As shown in Figure 16b, within 3 m, our sys-
tem can achieve a respiration rate error lower than 0.6 bpm.
However, when the distance of human body to radar is larger
than 3 m, the reflected signals from target area and the adja-
cent area cannot be distinguished due to the limited angle
resolution, failing the proposed motion elimination scheme.

6.2.5 Impact of Number of Antennas. Our design extracts
the reflection signals from two body areas that have the same
body and device motions but different target motions. As
discussed in Section 4.3, the capability to accurately identify
and extract reflected signals from these two areas matters.
This capability is dependent on the angle resolution, which
is determined by the number of antennas. In our case, 8
antennas are used for AoA estimation and beamforming. In
this experiment, we reduce the number of antennas from 8 to

2. Figure 16c shows an increased respiration rate estimation
error as the number of antennas decreases. This is because
for monitoring the respiration of an exercising person, the
target area (i.e., the chest area) and the reference area (i.e.,
the area between the chest and the neck) are close to each
other. When eight antennas are used for AoA estimation,
the angle resolution is fine enough and two signals reflected
from these two areas can be separated and good interference
motion cancellation performance can be achieved. When the
number of antennas is decreased (especially to 4 and 2), the
signals reflected from the two areas can not be separated,
leading to degraded system performance.

6.2.6 Impact of Interference from Other Persons. In this ex-
periment, we evaluate the performance of target respiration
monitoring during exercise when other people are moving
around in the vicinity. We let another person walk near the
target as an interfering person. The distance between the
interfering person and the target is increased from 0.5 m
to 2.5 m at a step size of 0.5 m. As shown in Figure 16d,
the mean respiration rate estimation error is lower than
0.42 bpm. This is due to the fine-grained range resolution
offered by mmWave radar (i.e., 3.75 cm), and we can thus sep-
arate and capture signal reflected from a small area, largely
avoiding interference from other persons. This is the key



(a) Push. (b) Pull. (c) Push and pull. (d) Triangle. (e) Push and pull 3 times.

Figure 17: Examples of hand gesture waveform after motion elimination.

difference between large-bandwidth mmWave signals and
narrow-bandwidth signals such as Wi-Fi.

6.3 Case Study 3: Hand Gesture
Recognition with a Moving Device

Hand gesture recognition is an important application of wire-
less sensing. By detecting the phase change pattern caused by
hand movement, the type of hand gesture can be identified.
In this section, we take device motion into consideration for
hand gesture recognition. As shown in Figure 18a, we place
the radar on a sliding track to simulate the movement of the
robot. We involve five hand gestures to evaluate the system
including push, pull, push and pull, triangle, and push and
pull 3 times. We let three persons perform each hand gesture
ten times and the device is moving during the process. The
distance between the human target and the radar is 1.5-3 m
in this experiment.
We apply MSense to deal with the device motions. We

adopt a classic tracking algorithm [51] to track the target.
The system extracts the reflected signals from the hand-area
and the abdomen-area through beamforming and then per-
forms division to eliminate the effect of device motion. It
is worth noting that the reference body area (i.e., abdomen
area) also exhibits respiration-induced motion, which is dif-
ferent from the hand area. Fortunately, the scale of distance
change induced by hand gestures is decimeter level while
the scale of abdomen displacement caused by breathing is

(a) Experiment scenario. (b) Confusion matrix of gesture
recognition.

Figure 18: Hand gesture recognition with a moving
device.

sub-centimeter level. Therefore, abdomen motion does not
interfere with gesture recognition. Figure 17 shows the hand-
reflected signals after device motion cancellation. Figure 18b
shows the confusion matrix for gesture recognition. For var-
ious hand gestures in our experiment, the recognition accu-
racy is above 93%.

7 RELATEDWORK
Wireless Sensing: In recent years, researchers have ex-
plored the use of various wireless signals for sensing includ-
ing Wi-Fi [28, 43, 45], RFID [40, 67, 70], LoRa [11, 12, 52],
LTE [19, 33, 38], UWB [42, 56, 63], mmWave [14, 29, 68],
and acoustic signals [25, 31, 44]. Among them, mmWave
radar, UWB, and acoustic signals can support fine-grained
passive localization due to their large bandwidth and fine
distance resolution. Meanwhile, many commercial mmWave
radars have been configured with antenna array to support
angle estimation and beamforming. Recently, mmWave radar
has been widely used in sensing applications [9, 30, 32, 69].
However, these works assume that the human target and
the radar are stationary during the sensing process. In this
paper, we bring the capability of resisting body and device
motions to mmWave radar sensing, enabling a variety of
sensing applications in practical real-world settings.

Body and Device Motion Elimination: A recent work,
Mobi2Sense [65], proposes to eliminate the effect of device
motion for UWB sensing. The principle behind it is that
the device motion can be estimated by extracting the sig-
nal reflected from a static object in the environment. Then,
the device motion component can be canceled out from the
target-reflected signal. Following the same principle, RF-
search [60] places mmWave radar on a drone to search for
survivors by detecting respiration signals in the environ-
ment when the drone is moving. However, these approaches
cannot deal with body motion because the static object re-
flected signal does not contain body motion information.
Pi-ViMo [59] proposes a template matching method to sepa-
rate vital signs from random body movements leveraging the
periodic features of respiration and heartbeat activities. On
the other hand, several approaches [15, 20, 55, 71] propose to
utilize deep learning methods to decompose and recover vital



sign signals from signals interfered by body motions. The
underlying idea behind these methods is that the periodicity
or correlation of fluctuations in the temporal domain of vital
sign signals differs significantly from those caused by body
movements. According to the basic principle, existing meth-
ods are limited to separating and restoring periodic target
motions. However, in many applications such as activity and
gesture recognition, target signals can be aperiodic. Hence,
previous research can not be generalized to sense aperiodic
motions. In this paper, we take body and device motion elim-
ination simultaneously into consideration for the first time.
Furthermore, the proposed scheme is based on pure signal
processing without a need of training or learning. Our ap-
proach can be applied to sense both periodic and aperiodic
target motions.

8 DISCUSSION
Further Improve the System Performance: The key of
MSense is to extract the reflected signal from the target area
and another area that has the same body and device motion
as the target area. The areas that are closer to the target area
have a higher chance of satisfying this condition. However,
a small number of antennas lead to limited angle resolu-
tion. When the target is further away from the radar, the
angle difference between two specific body areas becomes
smaller. Thus, the further a person is away from the radar,
the more difficult it is to extract the reflected signals from
two adjacent areas. If more antennas are available on radar,
the working range and the sensing accuracy can both be
increased. Fortunately, with the rapid progress of antenna
design and manufacturing, mmWave radars are equipped
with more antennas. We expect MSense to achieve better
motion elimination performance in the future with more
antennas.

Apply MSense to Other Wireless Sensing Systems: In
addition to mmWave radar, MSense can be applied to other
wireless sensing systems with fine range and angle resolu-
tions. For narrow-band signals (e.g., Wi-Fi), since the range
resolution is limited, the reflected signals from different body
parts and other objects in the environment are mixed and
hard to separate. However, we notice that the upcoming new
Wi-Fi standard (i.e., Wi-Fi 7) brings larger signal bandwidth
and more antennas, presenting the potential of applying
MSense to Wi-Fi sensing.

9 CONCLUSION
In this paper, we study the effect of body and device motion
interference, which is an important practical challenge in
wireless sensing. We model the signal reflection from the hu-
man body considering both body and device motions. Based
on the model, we eliminate the effect of body and device

motions by carefully selecting the reference body area con-
taining the same body and device motions as the target area.
The proposed scheme is based on pure signal processing
and can be applied to sense both periodic and aperiodic mo-
tions. We showcase three real-world sensing applications to
demonstrate the effectiveness and generalization of MSense.

ACKNOWLEDGMENTS
This work is partially supported by the European Union
through the Horizon EIC pathfinder challenge project SUS-
TAIN (No. 101071179), the Innovative Medicines Initiative 2
Joint Undertaking project IDEA-FAST (No. 853981), the Na-
tional Natural Science Foundation of China (No.62172394),
the Beijing Natural Science Foundation (L223034), and the
Beijing Nova Program and the Youth Innovation Promotion
Association, Chinese Academy of Sciences (No. 2020109).

REFERENCES
[1] 2017. Respiration Monitor Belt logger sensor NUL-236. https://neulog.

com/respiration-monitor-belt/.
[2] 2023. DCA1000EVM. https://www.ti.com/tool/DCA1000EVM.
[3] 2023. IWR1843BOOST. https://www.ti.com/product/IWR1843BOOST/

part-details/IWR1843BOOST.
[4] 2023. MMWAVE-STUDIO. https://www.ti.com/tool/MMWAVE-

STUDIO.
[5] Fadel Adib, Chen-Yu Hsu, Hongzi Mao, Dina Katabi, and Frédo Durand.

2015. Capturing the human figure through a wall. ACM Transactions
on Graphics (TOG) 34, 6 (2015), 1–13.

[6] Fadel Adib, Zach Kabelac, Dina Katabi, and Robert C Miller. 2014. 3D
tracking via body radio reflections. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14). 317–329.

[7] Fadel Adib, Hongzi Mao, Zachary Kabelac, Dina Katabi, and Robert C
Miller. 2015. Smart homes that monitor breathing and heart rate. In
Proceedings of the 33rd annual ACM conference on human factors in
computing systems. 837–846.

[8] Sayed Saad Afzal, Atsutse Kludze, Subhajit Karmakar, Ranveer Chan-
dra, and Yasaman Ghasempour. 2023. AgriTera: Accurate Non-Invasive
Fruit Ripeness Sensing via Sub-Terahertz Wireless Signals. In Proceed-
ings of the 29th Annual International Conference on Mobile Computing
and Networking. 1–15.

[9] Adeel Ahmad, June Chul Roh, Dan Wang, and Aish Dubey. 2018. Vital
signs monitoring of multiple people using a FMCW millimeter-wave
sensor. In 2018 IEEE Radar Conference (RadarConf18). IEEE, 1450–1455.

[10] Jack Capon. 1969. High-resolution frequency-wavenumber spectrum
analysis. Proc. IEEE 57, 8 (1969), 1408–1418.

[11] Zhaoxin Chang, Fusang Zhang, Jie Xiong, Junqi Ma, Beihong Jin, and
Daqing Zhang. 2022. Sensor-free soil moisture sensing using lora
signals. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 6, 2 (2022), 1–27.

[12] Lili Chen, Jie Xiong, Xiaojiang Chen, Sunghoon Ivan Lee, Kai Chen,
Dianhe Han, Dingyi Fang, Zhanyong Tang, and Zheng Wang. 2019.
WideSee: Towards wide-area contactless wireless sensing. In Proceed-
ings of the 17th Conference on Embedded Networked Sensor Systems.
258–270.

[13] Weiyan Chen, Kai Niu, Deng Zhao, Rong Zheng, Dan Wu, Wei Wang,
Leye Wang, and Daqing Zhang. 2020. Robust dynamic hand gesture
interaction using LTE terminals. In 2020 19th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN). IEEE,

https://neulog.com/respiration-monitor-belt/
https://neulog.com/respiration-monitor-belt/
https://www.ti.com/tool/DCA1000EVM
https://www.ti.com/product/IWR1843BOOST/part-details/IWR1843BOOST
https://www.ti.com/product/IWR1843BOOST/part-details/IWR1843BOOST
https://www.ti.com/tool/MMWAVE-STUDIO
https://www.ti.com/tool/MMWAVE-STUDIO


109–120.
[14] Weiyan Chen, Hongliu Yang, Xiaoyang Bi, Rong Zheng, Fusang

Zhang, Peng Bao, Zhaoxin Chang, Xujun Ma, and Daqing Zhang. 2023.
Environment-aware Multi-person Tracking in Indoor Environments
with MmWave Radars. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 7, 3 (2023), 1–29.

[15] Zhe Chen, Tianyue Zheng, Chao Cai, and Jun Luo. 2021. MoVi-Fi:
Motion-robust vital signs waveform recovery via deep interpreted RF
sensing. In Proceedings of the 27th annual international conference on
mobile computing and networking. 392–405.

[16] Zhe Chen, Tianyue Zheng, and Jun Luo. 2021. Octopus: a practical and
versatile wideband MIMO sensing platform. In Proceedings of the 27th
Annual International Conference on Mobile Computing and Networking.
601–614.

[17] Reinhard Feger, Christoph Wagner, Stefan Schuster, Stefan Scheibl-
hofer, Herbert Jager, and Andreas Stelzer. 2009. A 77-GHz FMCW
MIMO radar based on an SiGe single-chip transceiver. IEEE Transac-
tions on Microwave theory and Techniques 57, 5 (2009), 1020–1035.

[18] Yuda Feng, Yaxiong Xie, Deepak Ganesan, and Jie Xiong. 2021. Lte-
based pervasive sensing across indoor and outdoor. In Proceedings
of the 19th ACM Conference on Embedded Networked Sensor Systems.
138–151.

[19] Yuda Feng, Yaxiong Xie, Deepak Ganesan, and Jie Xiong. 2022. LTE-
Based Low-Cost and Low-Power Soil Moisture Sensing. In Proceedings
of the 20th ACM Conference on Embedded Networked Sensor Systems.
421–434.

[20] Jian Gong, Xinyu Zhang, Kaixin Lin, Ju Ren, Yaoxue Zhang, and
Wenxun Qiu. 2021. RF vital sign sensing under free body movement.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 5, 3 (2021), 1–22.

[21] Unsoo Ha, Salah Assana, and Fadel Adib. 2020. Contactless seismocar-
diography via deep learning radars. In Proceedings of the 26th annual
international conference on mobile computing and networking. 1–14.

[22] Jingyang Hu, Hongbo Jiang, Daibo Liu, Zhu Xiao, Schahram Dustdar,
Jiangchuan Liu, and Geyong Min. 2022. BlinkRadar: non-intrusive
driver eye-blink detection with UWB radar. In 2022 IEEE 42nd Inter-
national Conference on Distributed Computing Systems (ICDCS). IEEE,
1040–1050.

[23] Chengkun Jiang, Junchen Guo, Yuan He, Meng Jin, Shuai Li, and
Yunhao Liu. 2020. mmVib: micrometer-level vibration measurement
with mmwave radar. In Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking. 1–13.

[24] Sinan Kaplan, Mehmet Amac Guvensan, Ali Gokhan Yavuz, and Yasin
Karalurt. 2015. Driver behavior analysis for safe driving: A survey.
IEEE Transactions on Intelligent Transportation Systems 16, 6 (2015),
3017–3032.

[25] Dong Li, Jialin Liu, Sunghoon Ivan Lee, and Jie Xiong. 2022. Lasense:
Pushing the limits of fine-grained activity sensing using acoustic sig-
nals. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 6, 1 (2022), 1–27.

[26] Dong Li, Jialin Liu, Sunghoon Ivan Lee, and Jie Xiong. 2022. Room-
Scale Hand Gesture Recognition Using Smart Speakers. In Proceedings
of the 20th ACM Conference on Embedded Networked Sensor Systems.
462–475.

[27] Tianhong Li, Lijie Fan, Mingmin Zhao, Yingcheng Liu, and Dina Katabi.
2019. Making the invisible visible: Action recognition through walls
and occlusions. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 872–881.

[28] Yang Li, Dan Wu, Jie Zhang, Xuhai Xu, Yaxiong Xie, Tao Gu, and
Daqing Zhang. 2022. Diversense: Maximizing Wi-Fi sensing range
leveraging signal diversity. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 6, 2 (2022), 1–28.

[29] Kun Liang, Anfu Zhou, Zhan Zhang, Hao Zhou, Huadong Ma, and
Chenshu Wu. 2023. mmStress: Distilling Human Stress from Daily
Activities via Contact-less Millimeter-wave Sensing. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
7, 3 (2023), 1–36.

[30] Haipeng Liu, Yuheng Wang, Anfu Zhou, Hanyue He, Wei Wang, Kun-
peng Wang, Peilin Pan, Yixuan Lu, Liang Liu, and Huadong Ma. 2020.
Real-time arm gesture recognition in smart home scenarios via mil-
limeter wave sensing. Proceedings of the ACM on interactive, mobile,
wearable and ubiquitous technologies 4, 4 (2020), 1–28.

[31] Wenguang Mao, Mei Wang, Wei Sun, Lili Qiu, Swadhin Pradhan, and
Yi-Chao Chen. 2019. Rnn-based room scale hand motion tracking. In
The 25th Annual International Conference on Mobile Computing and
Networking. 1–16.

[32] Sameera Palipana, Dariush Salami, Luis A Leiva, and Stephan Sigg.
2021. Pantomime: Mid-air gesture recognition with sparse millimeter-
wave radar point clouds. Proceedings of the ACM on interactive, mobile,
wearable and ubiquitous technologies 5, 1 (2021), 1–27.

[33] Rui Peng, Yafei Tian, and Shengqian Han. 2023. ICI-Free Channel
Estimation andWireless Gesture Recognition Based onCellular Signals.
IEEE Wireless Communications Letters (2023).

[34] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel.
2013. Whole-home gesture recognition using wireless signals. In Pro-
ceedings of the 19th annual international conference onMobile computing
& networking. 27–38.

[35] Kun Qian, Chenshu Wu, Yi Zhang, Guidong Zhang, Zheng Yang, and
Yunhao Liu. 2018. Widar2. 0: Passive human tracking with a single
Wi-Fi link. In Proceedings of the 16th annual international conference
on mobile systems, applications, and services. 350–361.

[36] Frank C Robey, Daniel R Fuhrmann, Edward J Kelly, and Ramon
Nitzberg. 1992. A CFAR adaptive matched filter detector. IEEE Trans-
actions on aerospace and electronic systems 28, 1 (1992), 208–216.

[37] Xingzhe Song, Boyuan Yang, Ge Yang, Ruirong Chen, Erick Forno, Wei
Chen, andWei Gao. 2020. SpiroSonic: monitoring human lung function
via acoustic sensing on commodity smartphones. In Proceedings of
the 26th Annual International Conference on Mobile Computing and
Networking. 1–14.

[38] Guanlong Teng, Feng Hong, Yue Xu, Jianbo Qi, Ruobing Jiang, Chao
Liu, and Zhongwen Guo. 2020. MobiFit: Contactless Fitness Assistant
for Freehand Exercises Using Just One Cellular Signal Receiver. In
2020 16th International Conference on Mobility, Sensing and Networking
(MSN). IEEE, 299–306.

[39] Anran Wang, Jacob E Sunshine, and Shyamnath Gollakota. 2019. Con-
tactless infant monitoring using white noise. In The 25th Annual Inter-
national Conference on Mobile Computing and Networking. 1–16.

[40] ChuyuWang, Jian Liu, Yingying Chen, Hongbo Liu, Lei Xie, WeiWang,
Bingbing He, and Sanglu Lu. 2018. Multi-touch in the air: Device-free
finger tracking and gesture recognition via cots rfid. In IEEE INFOCOM
2018-IEEE conference on computer communications. IEEE, 1691–1699.

[41] Hao Wang, Daqing Zhang, Junyi Ma, Yasha Wang, Yuxiang Wang,
Dan Wu, Tao Gu, and Bing Xie. 2016. Human respiration detection
with commodity WiFi devices: Do user location and body orientation
matter?. In Proceedings of the 2016 ACM international joint conference
on pervasive and ubiquitous computing. 25–36.

[42] Pei Wang, Xujun Ma, Rong Zheng, Luan Chen, Xiaolin Zhang, Djamal
Zeghlache, and Daqing Zhang. 2023. SlpRoF: Improving the Temporal
Coverage and Robustness of RF-based Vital Sign Monitoring during
Sleep. IEEE Transactions on Mobile Computing (2023).

[43] Wei Wang, Alex X Liu, Muhammad Shahzad, Kang Ling, and Sanglu
Lu. 2015. Understanding and modeling of wifi signal based human
activity recognition. In Proceedings of the 21st annual international
conference on mobile computing and networking. 65–76.



[44] Wei Wang, Alex X Liu, and Ke Sun. 2016. Device-free gesture tracking
using acoustic signals. In Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking. 82–94.

[45] XuanzhiWang, Kai Niu, Anlan Yu, Jie Xiong, Zhiyun Yao, JunzheWang,
Wenwei Li, and Daqing Zhang. 2023. WiMeasure: Millimeter-level
Object Size Measurement with Commodity WiFi Devices. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
7, 2 (2023), 1–26.

[46] Yanwen Wang, Jiaxing Shen, and Yuanqing Zheng. 2020. Push the
limit of acoustic gesture recognition. IEEE Transactions on Mobile
Computing 21, 5 (2020), 1798–1811.

[47] Zhu Wang, Yifan Guo, Zhihui Ren, Wenchao Song, Zhuo Sun, Chao
Chen, Bin Guo, and Zhiwen Yu. 2024. LiqDetector: Enabling Container-
Independent Liquid Detection with mmWave Signals Based on a Dual-
Reflection Model. Proceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies 7, 4 (2024), 1–24.

[48] Zhi Wang, Beihong Jin, Siheng Li, Fusang Zhang, and Wenbo Zhang.
2023. ECG-grained Cardiac Monitoring Using UWB Signals. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 6, 4 (2023), 1–25.

[49] Teng Wei and Xinyu Zhang. 2015. mtrack: High-precision passive
tracking using millimeter wave radios. In Proceedings of the 21st Annual
International Conference on Mobile Computing and Networking. 117–
129.

[50] Chenhao Wu, Xuan Huang, Jun Huang, and Guoliang Xing. 2023.
Enabling Ubiquitous WiFi Sensing with Beamforming Reports. In
Proceedings of the ACM SIGCOMM 2023 Conference. 20–32.

[51] Chenshu Wu, Feng Zhang, Beibei Wang, and KJ Ray Liu. 2020. mm-
Track: Passive multi-person localization using commodity millimeter
wave radio. In IEEE INFOCOM 2020-IEEE Conference on Computer Com-
munications. IEEE, 2400–2409.

[52] Binbin Xie, Minhao Cui, Deepak Ganesan, Xiangru Chen, and Jie
Xiong. 2023. Boosting the Long Range Sensing Potential of LoRa.
In Proceedings of the 21st Annual International Conference on Mobile
Systems, Applications and Services. 177–190.

[53] Binbin Xie, Jie Xiong, Xiaojiang Chen, and Dingyi Fang. 2020. Explor-
ing commodity rfid for contactless sub-millimeter vibration sensing.
In Proceedings of the 18th Conference on Embedded Networked Sensor
Systems. 15–27.

[54] Jie Xiong and Kyle Jamieson. 2013. ArrayTrack: A Fine-Grained indoor
location system. In 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13). 71–84.

[55] Xiangyu Xu, Jiadi Yu, Yingying Chen, Yanmin Zhu, Linghe Kong, and
Minglu Li. 2019. Breathlistener: Fine-grained breathing monitoring in
driving environments utilizing acoustic signals. In Proceedings of the
17th Annual International Conference on Mobile Systems, Applications,
and Services. 54–66.

[56] Yanni Yang, Jiannong Cao, Xiulong Liu, and Xuefeng Liu. 2019. Multi-
breath: Separate respiration monitoring for multiple persons with
UWB radar. In 2019 IEEE 43rd Annual Computer Software and Applica-
tions Conference (COMPSAC), Vol. 1. IEEE, 840–849.

[57] Yanni Yang, Huafeng Xu, Qianyi Chen, Jiannong Cao, and Yanwen
Wang. 2023. Multi-Vib: Precise Multi-point Vibration Monitoring
Using mmWave Radar. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 6, 4 (2023), 1–26.

[58] Shang Zeng, Haoran Wan, Shuyu Shi, and Wei Wang. 2023. mSi-
lent: Towards General Corpus Silent Speech Recognition Using COTS
mmWave Radar. Proceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies 7, 1 (2023), 1–28.

[59] Bo Zhang, Boyu Jiang, Rong Zheng, Xiaoping Zhang, Jun Li, and Qiang
Xu. 2023. Pi-ViMo: Physiology-inspired Robust Vital Sign Monitoring
using mmWave Radars. ACM Transactions on Internet of Things 4, 2
(2023), 1–27.

[60] Bin-Bin Zhang, Dongheng Zhang, Ruiyuan Song, BinquanWang, Yang
Hu, and Yan Chen. 2023. RF-Search: Searching Unconscious Victim
in Smoke Scenes with RF-enabled Drone. In Proceedings of the 29th
Annual International Conference on Mobile Computing and Networking.
1–15.

[61] Duo Zhang, Xusheng Zhang, Shengjie Li, Yaxiong Xie, Yang Li, Xu-
anzhi Wang, and Daqing Zhang. 2023. LT-Fall: The Design and Imple-
mentation of a Life-threatening Fall Detection and Alarming System.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 7, 1 (2023), 1–24.

[62] Fusang Zhang, Zhaoxin Chang, Kai Niu, Jie Xiong, Beihong Jin, Qin Lv,
and Daqing Zhang. 2020. Exploring lora for long-range through-wall
sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 4, 2 (2020), 1–27.

[63] Fusang Zhang, Zhaoxin Chang, Jie Xiong, Junqi Ma, Jiazhi Ni, Wenbo
Zhang, Beihong Jin, and Daqing Zhang. 2023. Embracing Consumer-
level UWB-equipped Devices for Fine-grained Wireless Sensing. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 6, 4 (2023), 1–27.

[64] Fusang Zhang, Zhaoxin Chang, Jie Xiong, Rong Zheng, Junqi Ma, Kai
Niu, Beihong Jin, and Daqing Zhang. 2021. Unlocking the beamform-
ing potential of LoRa for long-range multi-target respiration sensing.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 5, 2 (2021), 1–25.

[65] Fusang Zhang, Jie Xiong, Zhaoxin Chang, Junqi Ma, and Daqing Zhang.
2022. Mobi2Sense: empowering wireless sensing with mobility. In
Proceedings of the 28th Annual International Conference on Mobile Com-
puting And Networking. 268–281.

[66] Shigeng Zhang, Xuan Liu, Yangyang Liu, Bo Ding, Song Guo, and
Jianxin Wang. 2020. Accurate respiration monitoring for mobile users
with commercial RFID devices. IEEE Journal on Selected Areas in
Communications 39, 2 (2020), 513–525.

[67] Shigeng Zhang, Zijing Ma, Kaixuan Lu, Xuan Liu, Jia Liu, Song Guo,
Albert Y Zomaya, Jian Zhang, and Jianxin Wang. 2022. Hearme: Accu-
rate and real-time lip reading based on commercial rfid devices. IEEE
Transactions on Mobile Computing (2022).

[68] Xusheng Zhang, Duo Zhang, Yaxiong Xie, Dan Wu, Yang Li, and
Daqing Zhang. 2024. Waffle: A Waterproof mmWave-based Human
Sensing System inside Bathrooms with Running Water. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
7, 4 (2024), 1–29.

[69] Xi Zhang, Yu Zhang, Zhenguo Shi, and Tao Gu. 2023. mmFER:
Millimetre-wave Radar based Facial Expression Recognition for Multi-
media IoT Applications. In Proceedings of the 29th Annual International
Conference on Mobile Computing and Networking. 1–15.

[70] Cui Zhao, Zhenjiang Li, Han Ding, Ge Wang, Wei Xi, and Jizhong
Zhao. 2022. RF-Wise: Pushing the Limit of RFID-based Sensing. In
IEEE INFOCOM 2022-IEEE Conference on Computer Communications.
IEEE, 1779–1788.

[71] Tianyue Zheng, Zhe Chen, Shujie Zhang, Chao Cai, and Jun Luo. 2021.
More-fi: Motion-robust and fine-grained respiration monitoring via
deep-learning uwb radar. In Proceedings of the 19th ACM conference on
embedded networked sensor systems. 111–124.

[72] Juncen Zhu, Jiannong Cao, Yanni Yang, Wei Ren, and Huizi Han. 2023.
mmDrive: Fine-Grained Fatigue Driving Detection Using mmWave
Radar. ACM Transactions on Internet of Things (2023).


	Abstract
	1 Introduction
	2 Preliminary
	2.1 MmWave Radar Primer
	2.2 Sensing Under Static Conditions

	3 Principle of body and device motions elimination
	3.1 Modeling Body and Device Motion Interference
	3.2 Body and Device Motion Elimination

	4 MSense Design
	4.1 Signal Preprocessing
	4.2 Candidate Signal Extraction
	4.3 Body and Device Motion Elimination

	5 Implementation
	6 Evaluation
	6.1 Case Study 1: In-vehicle Activity Detection Under Car Motions
	6.2 Case Study 2: Respiration Monitoring During Exercise Under Body Motion
	6.3 Case Study 3: Hand Gesture Recognition with a Moving Device

	7 Related Work
	8 Discussion
	9 Conclusion
	References

