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 Abstract (256 words)

Balance studies usually focus on quantities describing the global body motion. Assessing such 

quantities using classical marker-based approach can be tedious and modify the participant’s 

behaviour. The recent development of markerless motion capture methods could bypass the 

issues related to the use of markers. This work compared dynamic balance related quantities 

obtained with markers and videos. Sixteen young healthy participants performed four different 

motor tasks: walking at self-selected speed, balance loss, walking on a narrow beam and 

countermovement jumps. Their movements were recorded simultaneously by marker-based and 

markerless motion capture systems. Videos were processed using a commercial markerless 

pose estimation software, Theia3D. The centre of mass position (CoM) was computed, and the 

associated extrapolated centre of mass position (XCoM) and whole-body angular momentum 

(WBAM) were derived. Bland-Altman analysis was performed and root mean square difference 

(RMSD) and coefficient of correlation were computed to compare the results obtained with 

marker-based and markerless methods. Bias remained of the magnitude of a few mm for CoM 

and XCoM positions, and RMSD of CoM and XCoM was around 1 cm. RMSD of the WBAM 

was less than 10% of the total amplitude in any direction, and bias was less than 1%. Results 

suggest that outcomes of balance studies will be similar whether marker-based or markerless 

motion capture system are used. Nevertheless, one should be careful when assessing dynamic 

movements such as jumping, as they displayed the biggest differences (both bias and RMSD), 

although it is unclear whether these differences are due to errors in markerless or marker-based 

motion capture system.
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Introduction

Balance studies have been conducted to understand the mechanisms that allow humans to 

maintain their balance in daily life activities such as walking (Silverman and Neptune, 2011), 

stair climbing (Silverman et al., 2014) or rising from a chair (Fujimoto and Chou, 2012). These 

studies usually compute a range of biomechanical quantities which allow to describe the 

dynamic balance of an individual (Bruijn et al., 2013). Whole body linear and angular momenta 

are widely studied (Bennett et al., 2010; Bruijn et al., 2022; Herr and Popovic, 2008; Kaya et 

al., 1998) as they characterize the global movement of the body. While studying centre of mass 

(CoM) position is common in balance studies (Fujimoto and Chou, 2012), another interesting 

metric proposed by Hof et al. (2005) is the extrapolated centre of mass (XCoM): it is the CoM 

augmented by a proportion of its own velocity. Its position with respect to the border of the 

base of support (BoS) is an indicator of the dynamic balance of the participant (Hof et al., 2005). 

These quantities are of fundamental importance for research in the balance area, and are 

classically estimated via a segmental approach, using the estimate of the positions, velocities 

and inertial parameters of the individual body segments.

Classically, dynamic balance related quantities are computed using marker-based motion 

capture (Buurke et al., 2023; Gill et al., 2019; Silverman et al., 2014). In the absence of easily 

available ground truth, marker-based motion capture is commonly used, both in research and 

in clinics (Colyer et al., 2018). Although marker sets have been proposed to reduce the number 

of markers to be placed on the participant’s body (Tisserand et al., 2016), obtaining the 

segments and whole-body CoM position still requires time and specific marker placement 

skills. Moreover, the associated experimental constraints limit the validity of the movement 

studied, as the participants are not in their usual environment, which can cause changes in 

behaviour (Robles-García et al., 2015). 
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During the last few years, the field of markerless motion capture systems based on video 

cameras has drastically expanded (Desmarais et al., 2021). Several aspects of markerless 

motion analysis have yielded interest in the biomechanics community: ecological validity is 

enhanced as less strict experimental conditions are required, which allows for data acquisition 

in a real configuration. It also makes motion analysis more accessible, as it is possible to acquire 

and process data using low cost hardware such as regular smartphones or webcams and 

computers (Armitano-Lago et al., 2022). A large number of codes and software are now 

available, with different approaches and targeted applications (Desmarais et al., 2021; 

Seethapathi et al., 2019). One of them is Theia3D (Theia Markerless Inc., Kingston, Ontario, 

Canada), a commercial software designed to study whole-body kinematics with minimal input 

from the user. Studies have shown that both upper (Lahkar et al., 2022b) and lower (Kanko et 

al., 2021b; McGuirk et al., 2022) limbs kinematics have a good reliability (Kanko et al., 2021a) 

and are comparable to those computed using a marker-based system. The same conclusions 

hold for spatiotemporal gait parameters (McGuirk et al., 2022; Riazati et al., 2022; Kanko et 

al., 2021c), both in standardized and clinical environment. 

Considering the broad emerging literature in markerless motion analysis, few studies have 

focused on balance related quantities, and, when doing so, the authors mainly consider the CoM 

position and its derivatives (D’Andrea et al., 2021; Li et al., 2021; Needham et al., 2021a; 

Tanaka et al., 2019; van den Bogaart et al., 2022; Webering et al., 2021). To the best of our 

knowledge, Eveleigh et al., (2023) is the only balance study in which Theia3D was used. 

However, they focused on joint centre position for their analysis and did not compute any of 

the balance related quantities mentioned prior such as CoM position or whole-body angular 

momentum (WBAM).
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The goal of this study was thus to evaluate, for different motor tasks, the differences of CoM 

position, XCoM position and WBAM estimated with a markerless pose estimation system, 

Theia3D, and with a classical marker-based pose estimation system.

Materials and Methods

Experimental session 

Sixteen participants (9 men, 7 women) were recruited in this study, with mean age 

25.1±3.0 years old, mean body mass index 22.4±3.2 kg/m², mean height 1.7±0.1 m and mean 

weight 68.4±13.5 kg. Participants had no history of musculoskeletal or balance problems. Prior 

to the experiment they signed an informed consent form. The study was approved by our 

institutional review board. 

Marker-based optoelectronic and markerless video camera systems were set up for this 

experiment: 10 Qualisys Miqus M3 cameras recording at 300 Hz and 10 Qualisys Miqus Video 

recording at 60 Hz (1920 x 1088 pixels). The two systems were synchronized and spatially 

calibrated using Qualisys Track Manager (QTM – Qualisys AB, Sweden, v2021.1.2). Marker-

based and markerless cameras were paired together, and were spaced regularly around the area 

where the participants performed the movement to capture it fully. For video cameras, auto-

exposure mode was selected in QTM and a visual inspection was performed to assess any 

potential motion blur due to too fast movements and/or too slow shutter speed.

The participants wore minimal, tightly fitting clothing to allow for appropriate marker 

placement. They were equipped with a full-body marker set comprising 46 markers (Dumas et 

Wojtusch, 2018; Lahkar et al., 2022a). 

The participants performed a static trial (T pose) and four different motor tasks (Figure 1): 

walking at self-selected speed on a treadmill (Walk, between 7 and 20 cycles, corresponding 

to 10 to 20 seconds, Figure 1A), balance loss (Lean, lean forward until loss of balance requiring 
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one or more recovery steps, 3 repetitions, Figure 1B), walking on a 2 m long, 2.3 cm wide and 

5 cm high beam (Beam, 4 repetitions of walking the full length of the beam, Figure 1C) and 

countermovement jumps (CMJS, 3 repetitions, Figure 1D). Tasks were explained and shown 

to the participants, and they could train before the recording of each task. Walking speed was 

determined by increasing treadmill speed starting from 0.1m/s to a participant-selected 

comfortable speed by 0.05m/s increments. These tasks were chosen as they were representative 

of different speeds (slow, normal, fast) and occurred in different planes of movement (sagittal 

and frontal planes). Beginning and end of the tasks were defined manually during the post-

processing phase, with a margin of approximately 1s before and after the movement.

[INSERT FIGURE 1]

Data processing

Markerless data

Markerless data was processed with Theia3D, a deep learning-based commercial software, with 

both versions v2021.2 and v2023.1.0.3160. Results presented in this paper were obtained using 

v2023.1.0.3160. Results for v2021.2 can be found in Supplementary Materials S2. It uses deep 

learning techniques and inverse kinematics (IK) to estimate 3D pose of a subject of interest 

based on multi-camera video data and the associated calibration file (Kanko et al., 2021b). The 

outputs of Theia3D were composed of a 17-segment kinematic model defined independently in 

Theia3D for each trial with 56 degrees of freedom (DoFs) (segments: head, thorax, upper arms, 

forearms, hands, pelvis, thighs, shanks, feet and toes; joints: free joints (6 DoFs) for the head, 

pelvis and thorax, shoulders (5 DoFs), elbows (2 DoFs), wrists (2 DoFs), hips (3 DoFs), knees 

(3 DoFs), ankles (3 DoFs), metatarsophalangeal joint (1 DoF)) and the non-filtered pose 

matrices associated with each segment. These outputs were exported in Visual3D (C-motion, 

Germantown, USA, v2021.11.3) and body segment inertial parameters (BSIPs – segment mass, 
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position of segment CoM and moment of inertia) were added to the kinematic model according 

to Dumas et Wojtusch (2018). The markerless model was described in more details in Lahkar 

et al., (2022a).

Marker-based data

Marker-based data was first processed in QTM, including labelling and either linear or 

relational gap filling of marker trajectories. No frame was excluded because of missing marker 

after QTM processing. Then, labelled and cleaned marker positions were imported in Visual3D 

where custom models were created for each participant using the static trial. IK was finally 

performed using a multibody kinematics optimization (Lu and O’Connor, 1999). The marker-

based kinematic model was built based on Dumas et Wojtusch (2018). The model was 

composed of 17 segments and 54 DoFs (segments: head, thorax, clavicles, upper arms, 

forearms, hands, pelvis, thighs, shanks, feet; joints: free joints (6 DoFs) for the head, pelvis and 

thorax, shoulders (5 DoFs), elbows (2 DoFs), wrists (2 DoFs), hips (3 DoFs), knees (3 DoFs), 
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ankles (3 DoFs)). More information about the marker-based model can be found in Lahkar et 

al., (2022a).

Computing balance related quantities

For both marker-based and markerless data, the following quantities were exported frame-by-

frame from Visual3D following the IK step:

• the position of the CoM for each segment and the whole body;

• the linear velocity of the CoM of each segment;

• the angular velocity of each segment;

• the rotation matrix associated with each segment.

Using MATLAB (MathWorks, USA), the positions and velocities of segments’ CoM and their 

angular velocities were filtered using a 4th order Butterworth filter with a 7 Hz cut-off frequency 

(Winter, 2009). The velocity of the global CoM was obtained by differentiating the CoM and 

filtering the resulting signal with the same parameters. XCoM position was computed based on 

Hof et al., (2005) as: 

𝑋𝐶𝑂𝑀 = 𝐶𝑂𝑀 +
𝑣𝑐𝑜𝑚

𝜔0
                (1)

where 𝐶𝑂𝑀 is the vector representing the position of the whole-body’s CoM with respect to 

the laboratory reference frame origin, 𝑣𝑐𝑜𝑚 its velocity and 𝜔0 = 𝑔
𝑙 is a constant with 

𝑔 = 9.81𝑚/𝑠² and 𝑙 the height of the CoM of the participant, approximated as half of their 

declared height. 

WBAM about the CoM was computed as:  

𝑊𝐵𝐴𝑀 =  
𝑛

𝑖=1
𝐶𝑂𝑀𝑖 ― 𝐶𝑂𝑀 × 𝑚𝑖(𝑣𝑐𝑜𝑚𝑖 ― 𝑣𝑐𝑜𝑚) +  𝐼𝑖 ∗ 𝜔𝑖              (2)
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𝐶𝑂𝑀 and 𝑣𝑐𝑜𝑚 are respectively the position and velocity of the global CoM, 𝐶𝑂𝑀𝑖 and 𝑣𝑐𝑜𝑚𝑖 

are respectively the position and velocity of the ith segment’s CoM, 𝑚𝑖 is its mass, 𝐼𝑖 its inertial 

matrix expressed in the laboratory reference frame (computed using the inertias about the 

segment axes and the rotation matrix) and 𝜔𝑖 the angular velocity of the ith segment with respect 

to the laboratory.

𝑊𝐵𝐴𝑀 was made unitless as in (Begue et al., 2021) by dividing it by 𝑚 𝑔/ℎ, with h being the 

height of the participant and m it’s mass.

Both marker-based and markerless-based data were computed across all the available frames, 

and marker-based CoM position, XCoM position and WBAM were finally down-sampled at 

60Hz to match markerless-based data frequency.

Statistical analysis

The level of similarity between marker-based and markerless results was assessed by 

computing Bland Alman (Bland and Altman, 1986) bias and limits of agreement (LOA). 

Differences between markerless and marker-based results (markerless - marker-based) were 

plotted against their mean. Root mean square difference (RMSD) and Pearson coefficient of 

correlation (R²) were also computed. Bias, LOA and R² were computed using an available 

MATLAB toolbox (Klein, 2023). The quantities of interest were CoM position, XCoM position 

and WBAM, the latter being expressed both as a unitless value and as a percentage of the 

amplitude (computed as ±3 standard deviations across all motor tasks and averaged over 

markerless and marker-based data). All the statistical parameters were computed across all tasks 

and for each task separately, for all subjects. 

Results
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All trials but three (one Beam and two CMJS) could be fully processed. Table 1 displays the 

statistical parameters bias, LOA, RMSD and R² for the WBAM (expressed both as unitless and 

as a percentage of the total amplitude), CoM and XCoM positions, computed across all tasks 

and for each task separately. Three directions were considered here: anterior-posterior (AP), 

medial-lateral (ML) and superior-inferior (SI). Spreadsheets containing the statistical 

parameters for both v2023.1.0.3160 and v2021.2 were placed in Supplementary Materials S2. 

Minimal differences were observed between the results of the two versions, and thus only the 

results of v2023 were presented here. Bland Altman plots for unitless WBAM, CoM and XCoM 

position can be found in Supplementary Materials (Figure S1).

CoM

The bias of CoM position (markerless - marker-based) ranged from few tenth of mm in AP and 

ML directions (respectively 0.025 cm and 0.061 cm across all tasks) to around 1 cm in SI 

direction (-1.17 cm across all tasks). In SI direction, bias was negative for all tasks. The LOA 

remained smaller than 2 cm for all tasks, being under 1 cm for all tasks in ML direction and 

above 1 cm for all tasks in AP and SI directions. RMSD remained under 1 cm except in SI 

direction for all movements, being smaller in ML direction for all tasks (Figure 2 A). The 

coefficients of correlation were substantial (0.98 to 0.99).

XCoM

The bias of XCoM position displayed results similar to the bias of CoM position: it was negative 

and around 1 cm in the SI direction (-1.14 cm across all tasks), and equal to a few mm in AP 

and ML directions (respectively 0.026 cm and 0.061 cm across all tasks). The LOA remained 

smaller than 2 cm except for CMJS in the SI direction (2.83 cm). For both LOA and RMSD, 

the values were always smaller in the ML direction regardless of the task. RMSD ranged from 

few mm to 2 cm. RMSD was systematically higher than 1 cm for all tasks in the SI direction, 
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and it was higher than 2 cm for the CMJS movement (2.09 cm). The coefficients of 

determination were substantial (0.97 to 0.99).

WBAM

The order of magnitude of the RMSD of the unitless WBAM across all tasks was the same in 

all three directions (Figure 2, C), although it did not represent the same percentage of the 

amplitude (Figure 2, D): the RMSD in the SI direction represented 7.58% of the amplitude of 

the WBAM, while it was less than 4% in the AP (3.16%) and ML (3.87%) directions. This trend 

was similar for each task and can also be noticed for the LOA. The RMSD expressed in 

percentage of the amplitude was bigger in the SI direction: the unitless RMSD was of the same 

order of magnitude as for AP and ML directions but was divided by a smaller amplitude 

(0.0279, 0.0239 and 0.0090 in AP, ML and SI directions respectively). It thus led to bigger 

percentages (Figure 2, C & D). Regarding R², it ranged from moderate (0.63) to substantial 

(0.99), with the CMJS being the task with the smallest R² in SI (0.63) and AP (0.65) directions.

[INSERT FIGURE 2]

[INSERT TABLE 1]

Discussion

This study aimed at assessing commonly used quantities in balance studies, CoM position, 

XCoM position and WBAM, estimated with a markerless pose estimation software, Theia3D, 

and comparing the results to the estimation obtained with a marker-based method. Overall, the 

values of RMSD between the two measurement systems were around 1 cm for the CoM and 

XCoM positions and less than 10% of the amplitude for the WBAM.
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The RMSD obtained when comparing CoM position computed with the markerless and marker-

based systems had a magnitude of around 1 cm, and the associated LOA remained under 2 cm 

across all tasks, suggesting a minimal dispersion of the results. Few studies have compared 

CoM position computed using these two approaches. Needham et al., (2021a) focused on 

computing CoM position during sprinting, using an open source markerless software and a full 

body marker set. Mean difference of CoM position between the two measurement methods was 

between 1 mm and 9 mm, depending on the applied filter during post processing. They also 

provided standard deviations which ranged from 16 mm to 32 mm. The RMSD and LOA values 

obtained in our study for CoM position across all tasks (from 3.3 mm to 12.9 mm for the RMSD 

and from 5.5 mm to 15.4 mm for the LOA) were consistent with those obtained by 

Needham et al., (2021a).

The RMSD and LOA obtained for XCoM position had the same order of magnitude as the ones 

obtained for CoM position, which was consistent as the XCoM was computed based on CoM. 

In the literature, the simplified marker set proposed by Tisserand et al., (2016) has been used to 

compute XCoM position during gait and fall recovery, and the resulting XCoM position was 

compared to the XCoM position obtained using the marker set of Dumas et al., (2007). Mean 

difference between XCoM position computed using simplified and reference models ranged 

from 7.8±3.4 mm to 8.5±2.8 mm. This reported magnitude of difference of XCoM position 

computed using the reference and simplified models was similar to that obtained in our study 

(from 4.7 mm to 14.7 mm). As the simplified marker set was adopted in other studies, this 

magnitude of difference seems acceptable. To the best of our knowledge, no study has been 

conducted to compare XCoM position computed with markerless and marker-based 

approaches. It is however questionable whether such differences are acceptable when 

comparing groups with different conditions, especially in the clinical context. In their 

repeatability study, de Jong et al (2020) have computed distances between XCoM position, 
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measured with markers, and the centre of pressure (CoP), measured reliably with an 

instrumented treadmill, during gait. During one of their measurement sessions, they found 

differences of approximately 300 mm in the AP direction and 25 mm in the ML direction 

between the control and patient groups. These differences were higher than the differences of 

XCoM positions observed between markerless and marker-based systems. However, when 

comparing the stroke patients and spinal cord injury patient groups (de Jong et al., 2020), the 

differences dropped to approximately 70 mm and 4 mm in the AP and ML directions 

respectively. It should thus be verified beforehand if the accuracy required for the clinical 

application is compatible with the differences (bias and LOA) that can be found between 

markerless and marker-based systems.      

It was more difficult to compare the results we obtained for the WBAM to the literature because 

of the different existing normalizations techniques. Begue et al. (2021) have studied WBAM, 

expressed with the same normalization, for young and old adults during stepping at preferred 

and fast speeds. The smallest significant difference they found was of 0.6·10-3 (unitless). It was 

the same order of magnitude as the RMSD found in our study for the WBAM across all tasks 

(0.51·10-3 to 0.60·10-3, unitless). The other differences found in their study were bigger (from 

1.6·10-3 to 5.9·10-3 unitless) and were outside of the LOA we found (between 0.68·10-3 and 

0.93·10-3 unitless). It seemed therefore also possible to use a markerless system to compute 

WBAM and compare groups and conditions in balance studies, but one should be aware of the 

order of magnitude of the differences found between the conditions, as the differences could be 

partly due to using the markerless instead of marker-based motion capture system.  

Absolute value of the bias is systematically higher in SI direction for CoM position across all 

tasks, being above 1 cm for all tasks except CMJS (0.78 cm). Bias in this direction is also 

negative, indicating that CoM position computed with markerless data is systematically below 

CoM position computed with marker-based data. This could be due to model differences, as the 
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markerless and marker-based models were built using different approaches (Lahkar et al., 

2022a). Indeed, limited information was available regarding the markerless model and it was 

not possible to modify segment definition. For the markerless model, the inverse kinematics 

process was run directly in Theia3D and it was not possible to modify the model at this level, 

thus only the BSIPs could be added to match an anthropometric table (Dumas et Wojtusch, 

2018) in Visual3D. The marker-based model was also built based on (Dumas et Wojtusch, 

2018), but no adaptation were made to specifically match the markerless model segment 

definition. In Lahkar et al., (2022a), CoM position for each segment and for the whole-body in 

the static position between markerless and marker-based models were compared in the global 

coordinate system. For whole-body CoM position, mean differences between - 0.1±2.5 mm and 

- 2.8±7.0 mm were found. Differences could be bigger for each individual segment, with 

differences as high as 27.3±8.8 mm for the thigh in AP direction and - 8.5±4.9 mm for the right 

forearm in SI direction for example. These observed differences highlight the differences 

between markerless and marker-based model construction in a static position.

It appears that the task performed and the associated dynamic aspect have an influence on the 

differences obtained between the two measurement systems, which is consistent with the 

findings of  previous studies (Nakano et al., 2020; Needham et al., 2021b). For CoM and XCoM 

positions in SI direction, bias and RMSD had similar values with only a few millimetres of 

difference for all tasks except CMJS. It suggests that when the dynamic aspect of the task was 

limited (i.e., for Walk, Lean and Beam), most of the RMSD in the SI direction could be 

explained by the bias, which was likely due to model differences. However, when the task was 

more dynamic, such as CMJS, part of the RMSD could be explained by the larger marker 

movement, especially with soft tissue artefacts. Moreover, the difference of RMSD between 

the main direction of movement (SI) and the two other directions was higher for XCoM position 

than for CoM position for CMJS, as the XCoM included the velocity of the CoM in its 
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expression (Figure 2 A & B). Moreover, for all the tasks, the smallest RMSD of the CoM and 

XCoM positions is systematically in the ML direction: as these tasks take place in the sagittal 

plane, there is little displacement and small velocity in the ML direction, thus the difference of 

measurement is reduced. There is no similar phenomenon for WBAM, as no direction displayed 

a systematically higher bias or RMSD. Despite the observations noted above regarding the 

dynamic aspect of the tasks, it should still be noted that the differences remained of the 

magnitude of the centimetre.

There are some limitations to this study. First, participants were healthy young adults, and it is 

a possibility that the dataset used to train the neural network of the markerless system contained 

mainly similar subjects. It is thus relevant to wonder if the same results would be obtained with 

participants with different ages and/or anthropometric characteristics, or patients with body 

deformities. Moreover, this study was conducted in a controlled laboratory environment: 

participants were wearing minimally fitting clothes, the lightning conditions were controlled 

and there was a consequent number of cameras. All these parameters are currently under study 

in the literature to understand their effect on the accuracy of markerless motion capture (Keller 

et al., 2022; Pagnon et al., 2021; Viswakumar et al., 2019). Markers were also clearly visible in 

the videos. To the best of our knowledge, no study has evaluated the effect of the presence or 

absence of markers in video for deep learning identification of landmarks. However, some 

studies have evaluated the effect of the clothing conditions (Keller et al., 2022) and found no 

meaningful changes in the estimated parameters (segment lengths, spatiotemporal gait 

parameters, …). It is thus likely that the presence or absence of markers would also have limited 

impact on landmark estimation. Another limitation is that markerless data was compared to 

marker-based data, which itself can be prone to errors due to marker placement and soft tissue 

artefacts. However, in the absence of a ground truth measurement, it was not possible to 

associate the differences obtained in this study to one measurement system or another. 
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Conclusion

In this study, we assessed whether a markerless motion capture system, Theia3D, can be used 

to compute quantities that are widely used in balance-related studies. The results showed a 

moderate to substantial level of agreement between the markerless and marker-based systems. 

With such differences, a markerless approach thus seems a reasonable alternative to marker-

based systems for balance studies.
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Figure 1: Snapshots of the tasks performed during the experimental session by a participant. 
A: Walk, B: Lean, C: Beam, D: CMJS.

A

B

D

C



21

Figure 2: RMSD of the CoM in cm (A), XCoM in cm (B), unitless WBAM (C) and WBAM 
expressed as a percentage of the amplitude (D), for each task and across all tasks in the AP 

(blue), ML (orange) and SI (grey) directions. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)
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Table 1:  Results of the Bland-Altman analysis for each task and across all tasks, for all participants. For unitless WBAM, values have been 
multiplied by 10 000 (except R²) and displayed for easier reading. Bias is computed as markerless minus marker-based data. Across all tasks, 

more than 54 000 frames were considered.

Walk Lean Beam CMJS All tasks
AP ML SI AP ML SI AP ML SI AP ML SI AP ML SI

Bias 0.19 0.10 -1.29 0.68 0.061 -1.27 0.14 0.10 -1.20 0.57 -0.037 -0.78 0.025 0.061 -1.17
LOA 1.24 0.54 1.81 1.35 0.49 1.64 1.39 0.69 1.08 1.39 0.39 1.61 1.40 0.58 1.54

RMSD 0.66 0.28 1.31 0.98 0.25 1.35 0.65 0.40 1.29 0.99 0.21 1.18 0.74 0.33 1.29
CoM (cm)

R² 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Bias 0.21 0.095 -1.07 0.67 -0.041 -1.25 0.13 0.11 -1.19 0.57 -0.023 -0.74 0.026 0.061 -1.14
LOA 1.32 0.86 1.97 1.47 0.60 1.76 1.42 0.87 1.34 1.99 0.63 2.83 1.50 0.80 1.71

RMSD 0.76 0.46 1.36 1.07 0.40 1.51 0.73 0.52 1.35 1.37 0.38 2.09 0.88 0.47 1.47
XCoM 
(cm)

R² 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99

Bias 0.13 0.43 0.15 0.16 0.72 -0.12 0.046 -0.015 0.10 0.60 0.47 -0.023 0.15 0.28 0.034
LOA 8.88 10.16 8.96 3.31 6.37 2.79 10.34 8.68 7.28 9.83 14 0.539 8.81 9.27 6.80

RMSD 4.55 5.33 5.83 5.49 6.85 4.33 7.02 5.71 5.10 5.79 8.09 3.32 6.06 6.05 5.08

WBAM 
(unitless, 

x E-04 
except R²) R² 0.94 0.96 0.72 0.93 0.98 0.87 0.99 0.98 0.93 0.65 0.97 0.63 0.99 0.98 0.89

Bias 0.046 0.18 0.17 0.058 0.30 -0.14 0.016 -0.0066 0.11 0.21 0.20 -0.026 0.052 0.11 0.038
LOA 3.18 4.25 9.99 1.19 2.66 3.12 3.71 3.63 8.12 3.53 5.71 6.01 2.17 2.53 5.67

RMSD 1.63 2.23 6.51 1.97 2.86 4.83 2.52 2.38 5.69 2.07 3.38 3.70 3.16 3.87 7.58

WBAM (% 
of 

amplitude)
R² 0.94 0.96 0.72 0.93 0.98 0.87 0.99 0.98 0.93 0.65 0.97 0.63 0.99 0.98 0.89
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Supplementary materials

Figure S1: Bland Altman plots. Each line corresponds to one of the measured quantities (top to 
bottom: CoM, XCoM, WBAM) and each column corresponds to one direction (left to right: 
AP, ML, SI). Each point represents one frame, all participants are included. Each color 
represents one task: Walk is in purple, Lean is in orange, Beam is in blue and CMJS is in 
yellow. It should be noted that, for CoM and XCoM, the abscissa has little interest for our study: 
it represents the position of the participant in the laboratory reference frame. Solid horizontal 
line represents the bias, and dotted lines represent the limits of agreement. 
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