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KASHIWARA CONJUGATION AND THE ENHANCED

RIEMANN–HILBERT CORRESPONDENCE

ANDREAS HOHL

Abstract. We study some aspects of conjugation and descent in the con-
text of the irregular Riemann–Hilbert correspondence of D’Agnolo–Kashiwara.
First, we give a proof of the fact that Kashiwara’s conjugation functor for
holonomic D-modules is compatible with the enhanced De Rham functor. Af-
terwards, we work out some complements on Galois descent for enhanced ind-
sheaves, slighly generalizing results obtained in previous joint work with Barco,
Hien and Sevenheck. Finally, we show how local decompositions of an en-
hanced ind-sheaf into exponentials descend to lattices over smaller fields. This
shows in particular that a structure of the enhanced solutions of a meromor-
phic connection over a subfield of the complex numbers has implications on its
generalized monodromy data (in particular, the Stokes matrices), generalizing
and simplifying an argument given in our previous work.

1. Introduction

In general, a Riemann–Hilbert correspondence is an equivalence of categories be-
tween some category of differential systems (such as integrable connections, mero-
morphic connections, or D-modules) and some category of topological objects (such
as local systems, perverse sheaves, Stokes-filtered local systems, or enhanced ind-
sheaves). In the context of differential equations in one or several complex variables
(i.e. in the theory of conections or D-modules on a complex algebraic variety or
complex manifold), these topological objects are a priori defined over the field of
complex numbers (as their field of coefficients).

This being said, three questions immediately come to our mind:

(1) How does the Riemann–Hilbert functor behave with respect to the natural
complex conjugation on the target?

(2) How can we detect if the target object is already defined over a subfield of
C?

(3) What implications does such a structure over a smaller field have?

The first question was studied by M. Kashiwara in [Kas86] in the case of regular
holonomic D-modules. At the time, it was known that the De Rham functor in-
duces an equivalence between the derived category of regular holonomic D-modules
and the derived category of constructible sheaves (see [Kas84]), and in [Kas86] a
conjugation functor on the category of D-modules was defined that corresponds
to complex conjugation on constructible sheaves via this equivalence. Around 30
years later, in [DK16], A. D’Agnolo and M. Kashiwara generalized Kashiwara’s
equivalence from [Kas84] to (not necessarily regular) holonomic D-modules. It is
the aim of the first part (Section 3) of this article to show that the conjugation
functor of [Kas86] is – not surprisingly – still compatible with this new equivalence
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2 ANDREAS HOHL

of categories (Theorem 3.9). Indeed, many parts of the proof are due to impor-
tant previous studies of holonomic D-modules and the Hermitian duality functor,
notably by C. Sabbah, K. Kedlaya and T. Mochizuki.

In the second part (Section 4) of the paper, we give some complements on a
study of the second question that has been initiated in [BHHS22]. In loc. cit.,
together with D. Barco, C. Sevenheck and M. Hien, we studied the question of
when topological data associated to hypergeometric differential systems are defined
over a subfield of C. For this, we used a technique called Galois descent : Given
a finite Galois extension L/K and an object over L, the idea is that in order to
find a structure of our object over K, it is enough to find isomorphisms to all its
Galois conjugates. We developed some statements in this direction for sheaves and
enhanced ind-sheaves there. In particular, we showed that Galois descent is possible
for R-constructible enhanced ind-sheaves concentrated in one degree on compact
spaces. We will reformulate and slightly generalize this statement here, dropping
the compactness assumption (Theorem 4.9).

Finally, in the last part (Section 5), we give a consequence of the existence
of K-structures (for an arbitrary subfield K ⊂ C) in the irregular setting, thus
addressing Question (3): We show that a K-structure on an enhanced ind-sheaf
associated to a meromorphic connection on a Riemann surface via the irregular
Riemann–Hilbert correspondence implies that its Stokes matrices (and indeed all its
generalized monodromy data) can be defined over K. In the case of hypergeometric
systems, this was already done in [BHHS22, §5]. Our proof here is, however, valid in
general and simplifies significantly the quite involved and slightly artificial argument
given in our previous work. To this purpose, we study the topological counterpart
of meromorphic connections on complex curves (already introduced in [DK18]),
which we call enhanced ind-sheaves of meromorphic normal form, and prove that
this property descends to a K-lattice (Theorem 5.8).

Acknowledgements. I would like to thank Andrea D’Agnolo and Claude Sabbah
for several helpful discussions and hints, in particular concerning the part on Her-
mitian duality. I also thank Pierre Schapira for some useful conversations. I am
grateful to Philip Boalch for his explanations that brought new insights into the
Stokes phenomenon to me. I want to thank Davide Barco, Marco Hien and Chris-
tian Sevenheck who, in many discussions related to our common work [BHHS22],
inspired me to develop further results in this direction. I am also grateful to Takuro
Mochizuki for answering my questions during the preparation of [BHHS22], the an-
swers to which have inspired this work in various places. Finally, I thank the Simons
Center for Geometry and Physics, Stony Brook, for hosting me during the program
“The Stokes phenomenon and its Applications in Mathematics and Physics” in
May and June 2023, during which parts of the research for this work have been
performed.

2. Background and notation

In this work, we want to study objects related to Riemann–Hilbert correspon-
dences for holonomic D-modules, and we will mainly use the approach via (en-
hanced) ind-sheaves here, great parts of which have been developed in [KS01] and
[DK16]. We will therefore need some analytic and topological notions, which we
briefly recall in the following, referring to the existing literature for further details.

2.1. Topological spaces and manifolds. Even if not strictly necessary in all
places, we will assume all our topological spaces to be good, i.e. Hausdorff, locally
compact, second countable and of finite flabby dimension. This is especially im-
portant when it comes to the construction of proper direct images and exceptional
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inverse images, and since we are mainly interested in all these objects in the context
of the Riemann–Hilbert correspondence on complex manifolds, goodness is not a
restriction.

For a complex manifold X with structure sheaf OX , we can consider its com-
plex conjugate manifold X , having the same underlying topological space, but the
structure sheaf OX is the sheaf of antiholomorphic functions (with respect to the
original complex structure). Also, X has an underlying real analytic manifold,
which is the same as that of X. It is often denoted by XR to emphasize the real
structure, but we will mostly just denote it by X if it is clear from the context.
Note also that a morphism f : X → Y of complex manifolds induces a morphism of
complex manifolds f : X → Y (which is the same as a morphism of the underlying
topological spaces).

2.2. Holonomic D-modules. We briefly recall some notions and notation from
the theory of D-modules, and we refer to standard references such as [Bjö93],
[HTT08] and [Kas03] for details. We mostly use the notation from the last of
these three references.

Let X be a complex manifold with structure sheaf OX . We denote by DX the
sheaf of (non-commutative) rings of linear partial differential operators with coef-
ficients in OX on X . The category of (left) DX -modules is denoted by Mod(DX),
and its bounded derived category by Db(DX). We denote by Modhol(DX) the full
subcategory of holonomic DX -modules and by Modrh(DX) the full subcategory of
regular holonomic DX -modules. We moreover denote by Db

rh(DX) (resp. Db
hol(DX))

the full subcategory of Db(DX) of complexes with cohomologies in Modrh(DX)
(resp. Modhol(DX)).

We write DX for the duality functor for DX -modules, and if f : X → Y is a
morphism, we denote by Df∗ (resp. Df∗) the direct image image for DX -modules
(resp. the inverse image for DY -modules) along f .

If D ⊂ X is a normal crossing divisor, we denote by OX(∗D) the sheaf of
meromorphic function with poles on D at most. It is a left DX -module and for
M ∈ Db

hol(DX) we denote its localization at D by M(∗D) := M⊗OX OX(∗D). We
call M ∈ Modhol(DX) a meromorphic connection along D if sing supp(M) = D
and M(∗D) ≃ M, where sing supp(M) denotes the singular support of M.

An important basic example of a meromorphic connection which is not regular
holonomic is the following: Let X be a complex manifold, D ⊂ X a normal crossing
divisor and ϕ ∈ Γ(X ;OX(∗D)), then the exponential DX-module Eϕ is defined
by Eϕ := (DX/ann(ϕ))(∗D), where ann(ϕ) is the (left) ideal of DX of operators
annihilating ϕ.

The classification of holonomic D-modules – in particular in the case of irregu-
lar singularities in higher dimensions – has been a difficult problem. In the one-
dimensional case, it turned out that the Stokes phenomenon is the key ingredient to
achieve a complete description of connections with irregular singular points. Very
roughly, the Stokes phenomenon in this context is the observation that a meromor-
phic connection decomposes as a direct sum of certain “elementary” connections
(namely, exponential D-modules) in sufficiently small sectors with vertex at the
singular point, but this decomposition might not exist globally in an open neigh-
bourhood of the singularity. It was conjectured that a similar statement holds for
meromorphic connections in higher dimensions, i.e. that such local decompositions
still exist (as in Definition 2.1 below), at least after suitable blow-ups of the sin-
gular locus and de-ramification. A proof was given under certain assumptions in
the two-dimensional case in [Sab00], and finally for the general case by K. Kedlaya
[Ked10, Ked11] and T. Mochizuki [Moc09, Moc11a].
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This classification leads to a useful technique for proving statements about holo-
nomic D-modules, and we will briefly recall it here for later use. If X is a complex

manifold and D ⊂ X a normal crossing divisor, we denote by X̃ the real oriented
blow-up of X along the components of D, and we denote by Amod

X̃
the sheaf of func-

tions holomorphic on X̃ \ ∂X̃ having moderate growth along ∂X̃ (see e.g. [DK16,
Notation 7.2.1] for a more precise definition, where this sheaf is denoted by AX̃ , or
also [Moc14, §4.1.2]). For a DX -module M, we write

MA := Amod
X̃

⊗̟−1OX ̟
−1M.

Note that (M(∗D))A ≃ MA (cf. [DK16, Lemma 7.2.2]).

Definition 2.1 (cf. [DK16, Definition 7.3.3]). Let X be a complex manifold and
D ⊂ X a normal crossing divisor. A holonomic DX-module M ∈ Modhol(DX) is
said to have a normal form along D if

• M ≃ M(∗D),
• sing suppM = D,

• for any x ∈ ∂X̃, there exists an open neighbourhood V ⊂ X̃ of x such that

(MA)|V ≃
(⊕

i∈I

(
Eϕi

)A)∣∣∣
V

for some finite number of functions ϕi ∈ Γ(U ;OX(∗D)), i ∈ I, where
U ⊂ X is an open neighbourhood of ̟(x).

Using this notion of normal form, one can deduce from the above-mentioned
classification of holonomic D-modules the following fundamental lemma (first stated
in this form [DK16, Lemma 7.3.7]).

Lemma 2.2 ([DK16, Lemma 7.3.7]). Let PX(M) be a statement concerning a
complex manifold X and an object M ∈ Db

hol(DX). Then, PX(M) is true for any
complex manifold X and any M ∈ Db

hol(DX) if all of the following conditions are
satisfied:

(a) Locality: If X =
⋃
i∈I Ui is an open covering, then PX(M) is true if and

only if PUi(M|Ui) is true for every i ∈ I.
(b) Stability by translation: If n ∈ Z and PX(M) is true, then PX(M[n]) is

true.
(c) Stability in exact triangles: If M′ → M → M′′ +1

−→ is a distinguished
triangle in Db

hol(DX) and both PX(M′) and PX(M′′) are true, then PX(M)
is true.

(d) Stability by direct summands: If M,M′ ∈ Modhol(DX) and PX(M⊕M′)
is true, then PX(M) is true.

(e) Stability by projective pushforward: If f : X → Y is a projective morphism,
M ∈ Modhol(DX) and PX(M) is true, then PY (Df∗M) is true.

(f) If M ∈ Modhol(DX) has a normal form along a normal crossing divisor
D ⊂ X, then PX(M) is true.

2.3. Sheaves. Let k be a field and let X be a topological space. We denote by
Mod(kX) the category of sheaves of k-vector spaces on X and by Db(kX) its
bounded derived category. For a k-vector space V , denote by VX the constant
sheaf on X with stalk V , and an object F ∈ Mod(kX) is called a local system (of
k-vector spaces) if it is locally isomorphic to a constant sheaf.

If X is a real analytic (resp. complex) manifold, we have the full subcate-
gory ModR-c(kX) (resp. ModC-c(kX)) of Mod(kX) of R-constructible (resp. C-
constructible) sheaves and the full subcategoryDb

R-c(kX) (resp. Db
C-c(kX)) of Db(kX)

consisting of complexes with R-constructible (resp. C-constructible) cohomologies.
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The six Grothendieck operations for sheaves are denoted by RHom, ⊗, Rf∗,
f−1, Rf! and f ! for f : X → Y a morphism.

For details on the theory of sheaves of vector spaces and constructibility, we refer
to the standard literature, such as [KS90] or [Dim04].

2.4. Ind-sheaves and subanalytic sheaves. Let X be a good topological space.
In [KS01], M. Kashiwara and P. Schapira introduced and studied the category
I(kX) of ind-sheaves on X as a generalization of the category Mod(kX), and its
bounded derived category Db(IkX). There is a fully faithful and exact embedding
ιX : Mod(kX) →֒ I(kX). Since this embedding does not commute with inductive
limits in general but the functor ιX is sometimes suppressed in the notation, one
uses the notation “lim

−→
” (instead of just lim

−→
) for the inductive limit in the category

of ind-sheaves. The functor ι has an exact left adjoint αX : I(kX) → Mod(kX), and
this functor admits a fully faithful and exact left adjoint giving another embedding
βX : Mod(kX) →֒ I(kX).

It was also shown that if X is a real analytic manifold, the category of “subana-
lytic ind-sheaves” (called “ind-R-constructible ind-sheaves” in [KS01]) is equivalent
to the category of sheaves on the (relatively compact) subanalytic site Xc

sa (see
[KS01, Theorem 6.3.5] and cf. [Pre08] for a more detailed study of subanalytic
sheaves).

Let us briefly recall this version of the subanalytic site: Open sets of Xc
sa are

relatively compact open subanalytic subsets of X . A covering of an open subset U
in Xc

sa is a covering U =
⋃
i∈I Ui by open sets Ui in Xc

sa admitting a finite subcover.
For a more detailed study of subanalytic sets, we refer to [BM88] and the references
therein.

We denote the subcategory of I(kX) consisting of subanalytic ind-sheaves by
Isuban(kX).

In some regards, subanalytic sheaves behave differently from sheaves on a usual
topology. For example, if we are given a filtrant inductive system Fj ∈ Isuban(kX),
j ∈ J , and U ∈ Xc

sa, we have

Γ(U ; “lim
−→

”
j∈J

Fj) ≃ lim
−→
j∈J

Γ(U ;Fj).

The following lemma is also easily proved using the finiteness of the gluing pro-
cedure for subanalytic sheaves (see [KS01, Proposition 6.4.1]).

Lemma 2.3. Let F ∈ Isuban(kX) and let A be a k-algebra. Then for U ⊆ X a
relatively compact subanalytic open subset, we have Γ(U ;AX⊗kXF ) ≃ A⊗kΓ(U ;F ).

Some important examples of ind-sheaves are the following: On a real analytic
manifold X , one has the ind-sheaf C

∞,t
X of tempered complex-valued smooth func-

tions (i.e. smooth functions with moderate growth near the boundary of their do-
main) and the ind-sheaf DbtX of tempered complex-valued distributions (i.e. dis-
tributions extending to the whole space). If X is a complex manifold, it is in
particular a real analytic manifold, and these two ind-sheaves are modules over
βDX and βDX . Their Dolbeault complexes are isomorphic and one defines it to be
the complex of tempered holomorphic functions

(1) Ot
X := RIhomβDX

(βOX ,C
∞,t
X ) ≃ RIhomβDX

(βOX ,Db
t
X)

(see [KS01, §7.2]).

2.5. Enhanced ind-sheaves. In [DK16] and [DK19], A. D’Agnolo and M. Kashi-
wara extended the theory further, introducing and studying the category of en-
hanced ind-sheaves on a so-called bordered space. We recall very few basics here
and refer to loc. cit. for more details (see also [KS16] for an exposition).
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A bordered space X = (X, X̂) is a pair of good topological spaces such that

X ⊆ X̂ is an open subspace. In particular, every good topological space X can

be considered a bordered space (X,X). A morphism f : (X, X̂) → (Y, Ŷ ) is a

continuous mapX → Y such that the morphism Γf → M̂ induced by the projection

to the first factor is proper. Here, Γf denotes the closure in X̂ × Ŷ of the graph

Γf ⊂ X × Y . A morphism is called semi-proper if also the morphism Γf → N̂
induced by the second projection is proper.

We say that X is a real analytic bordered space if X̂ is a real analytic manifold and

X ⊆ X̂ is a subanalytic open subset. Morphisms of real analytic bordered spaces
are additionally required to be subanalytic in the sense that Γf is a subanalytic

subset of X̂ × Ŷ . (Everything we do for real analytic manifolds or bordered spaces
could also be done slightly more generally for subanalytic spaces or bordered spaces,
see e.g. [KS90, Exercise 9.2] and [DK19, §3.1] for these notions.)

For the rest of this subsection, let X = (X, X̂) be a real analytic bordered space.

The category Eb(IkX ) of enhanced ind-sheaves on X = (X, X̂) is a quotient
category of Db(IkX̂×R

), where R = R ⊔ {±∞}. The category Eb(IkX ) has six

Grothendieck operations denoted by RIhom+,
+
⊗, Ef∗, Ef−1, Ef!!, and Ef ! (for

morphisms f of bordered spaces). The duality functor for enhanced ind-sheaves is
denoted by DE

X . One also has a sheaf-valued hom functor

RHomE : Eb(IkX )× Eb(IkX ) → Db(kX)

and for any F ∈ Db(kX) a tensor product functor

Eb(IkX ) → Eb(IkX ), H 7→ π−1F ⊗H.

Here, π : X × R → X is the projection (and π−1F is to be seen as extended by

zero to X̂ × R).
The natural t-structure on the derived category Db(IkX̂×R

) induces a t-structure

on Eb(IkX ), whose heart is denoted by E0(IkX ) (these are therefore the objects
represented by complexes of ind-sheaves concentrated in degree 0). Moreover, a
notion of R-constructibility is defined for enhanced ind-sheaves, leading to the full
subcategory Eb

R-c(IkX ) ⊂ Eb(IkX ). We write E0
R-c(IkX ) := E0(IkX ) ∩ Eb

R-c(IkX ).
An important object in Eb(IkX ) is

k
E
X := “lim

−→
”

a→∞

k{t≥a} ∈ E0
R-c(IkX ),

where {t ≥ a} := {(x, t) ∈ X̂ × R | x ∈ X, t ∈ R, t ≥ a} ⊂ X̂ × R.
One has an embedding of the category of sheaves on X into the category of

enhanced ind-sheaves on X

ekX : Db(kX) →֒ Eb(IkX ), F 7→ π−1F ⊗ k
E
X .

A fundamental class of objects are the so-called exponential enhanced ind-sheaves:

If W ⊆ X is open such that W ⊆ X̂ is subanalytic, and if f : W → R is a continuous
subanalytic function, we set1

E
f
W |X ,k

:= “lim
−→

”
a→∞

k{t≥−f+a} ≃ k
E
X

+
⊗ k{t=−f} ∈ E0

R-c(IkX ),

where {t ≥ −f + a} := {(x, t) ∈ X̂ × R | x ∈ W, t ∈ R, t ≥ −f(x) + a} ⊂ X̂ × R,

and similarly one defines {t = −f} ⊂ X̂ × R. If k = C or if there is no confusion

1Note that our notation is slightly less general and simplified here, compared to works like
[DK18], for example: Our object E

f
W

would be denoted by E
Re f

W |X
in loc. cit.
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about the field of coefficients, we often omit the subscript k and just write E
f
W |X

for this object.

Remark 2.4. For simplicity, assume X̂ = X . The category Eb(IkX) can be viewed
(via the left adjoint of the quotient functor) as a full subcategory of Db(IkX×R

). In

particular, the image of E0
R-c(IkX) lies in Isuban(kX×R

). Hence, the object E
f
W |X,k

can be understood as a sheaf on the subanalytic site (X × R)csa.
If X is a real analytic manifold, W ⊂ X an open subanalytic subset and f : W →

R a continuous subanalytic function, then E
f
W |X = E

f
W |X,k is described as follows

(we do not write the index k here for better readability):
Let U ∈ Op((X × R)csa).
Then we have

• If U ⊆W × R,

E
f
W |X(U) ≃ lim

−→
a→∞

Γ(U ; k{t≥−Re f+a}) ≃ lim
−→
a→∞

k
π0(U∩{t≥−Re f+a}),

where π0(U ∩ {t ≥ −Re f + a}) is the set of connected components of
the intersection U ∩ {t ≥ −Re f + a} (note that the number of connected
components is finite since this intersection is subanalytic and relatively
compact).

• More generally, if U ⊆ X × R, then

E
f
W |X(U) ≃ lim

−→
a→∞

k
π<∞
0 (U∩{t≥−Re f+a}),

where π<∞
0 (U ∩ {t ≥ −Re f + a}) is the set of connected components Y of

the intersection U ∩ {t ≥ −Re f + a} such that Y ∩ U does not intersect
X × {+∞} and (X \W )× R.

In particular, we have E
f
W |X(W × R) = k and E

f
W |X(S × R) = 0 for S ⊆ X open,

as well as E
f
W |X(X × I) = 0 for I ⊆ R open if W 6= X . For V ⊆ U , the restriction

maps E
f
W |X(U) → E

f
W |X(V ) are given in the obvious way, by a combination of

identities, zero maps or diagonal maps k → kM (for M a set).

The sheaves E
f
W |X are therefore very similar to sheaves of the form kZ on the

usual topology, i.e. constant sheaves on a closed subset Z ⊆ X , extended by zero

outside Z. For E
f
W |X , the set Z is to be thought of as a half-space lying over the

graph of some real-valued function and considered to be shifted towards “infinitely
high real values”.

A typical example is the case where where X is a disc around a point p in the
complex plane, W = X \ {p} or W = S an open sector with vertex p, and f = Reϕ
the real part of a holomorphic function ϕ : W → C with a pole at p.

We recall the following definition (note that the conventions are different between
[Moc22] and [DK18], and we use the latter one).

Definition 2.5 (cf. e.g. [DK18, Notation 3.2.1]). Let X be a bordered space. Let
W ⊆ X be an open subset and let f, g : W → R be continuous functions. Then we
write

f ∼W g :⇔ f − g is bounded on any V ⊆W , V ⊂⊂ X̂

f �W g :⇔ f − g is bounded from above on any V ⊆W , V ⊂⊂ X̂

f ≺W g :⇔ f � g but not f ∼ g,

i.e. f − g bounded above on each V but unbounded below on some V

Here, V ⊂⊂ X̂ means “V is relatively compact in X̂”.
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If X is a complex manifold and ϕ, ψ : W → C are holomorphic, we will write
ϕ �W ψ instead of Reϕ �W Reψ in the above sense (and similarly for ∼W and
≺W ).

Note that if f ∼W g, then E
f
W |X ≃ E

g
W |X .

To end this subsection, let us also recall the following fundamental property (cf.
e.g. [DK16, Lemma 9.8.1] or [DK18, Lemma 3.2.2]). It can directly be proved using
[DK16, Proposition 4.7.9].

Lemma 2.6. Let X be a bordered space, W ⊆ X open and relatively compact in

X̂, and consider continuous subanalytic functions f1, . . . , fn, g1, . . . , gm : W → R.
Then

HomEb(IkX )

( n⊕

k=1

E
fk
W |X ,

m⊕

j=1

E
gj
W |X

)

≃
{
A = (ajk) ∈ k

m×n
∣∣∣ajk = 0 if fk ≺W ′ gj for some open W ′ ⊆W

}

Morphisms between direct sums of exponentials can therefore – after numbering
the direct summands – be represented by matrices (and composition corresponds to
matrix multiplication). In particular, if f1 ≺W f2 ≺W . . . ≺W fn, endomorphisms

of
⊕n

i=1 E
fi
W |X are represented by upper-triangular square matrices.

2.6. Riemann–Hilbert correspondences for analytic D-modules. It is a
classical idea to ask if the functor associating to a differential system its solu-
tion space is an equivalence. (The question for surjectivity of such a functor for
Fuchsian differential equations goes back at least to Hilbert’s 21st problem.)

Let X be a complex manifold of (complex) dimension dX . Classically, in the
theory of D-modules, one studies the following objects: Let M ∈ Db

hol(DX). Denote
by ΩX the sheaf of top-degree holomorphic differential forms on X . Then one
defines the holomorphic De Rham complex of M by

DRX(M) := ΩX
L
⊗DX M

and the holomorphic solution complex of M by

SolX(M) := RHomDX (M,OX).

In [Kas84], M. Kashiwara proved that the De Rham functor gives an equivalence

DRX : Db
rh(DX)

∼
−→ Db

C-c(CX).

It was then natural to search for a generalization of this result to holonomic D-
modules (relaxing the regularity assumption). It was clear that the functor DRX
is no longer fully faithful on the category Db

hol(DX), and hence the framework (the
functor and the target category) would need to be modified.

Finally, A. D’Agnolo and M. Kashiwara (see [DK16]) were able to establish a
fully faithful functor, the enhanced De Rham functor

DRE
X : Db

hol(DX) −֒→ Eb
R-c(ICX).

Let us briefly give some details on its construction:
Starting from the ind-sheaf of tempered holomorphic functions Ot

X ∈ Db(ICX)
that had been introduced in [KS01], the authors of [DK16] define the enhanced
ind-sheaf of enhanced tempered holomorphic functions OE

X ∈ Eb(ICX). This is
done by first defining enhanced tempered distributions DbEX and setting OE

X :=
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ΩX ⊗DX
DbEX , in analogy to (1). (Recall that X denotes the complex conjugate

manifold.) They then set ΩE
X := ΩX

L
⊗OX OE

X and define the functors

DRE
X(M) := ΩE

X

L
⊗DX M

and

SolEX(M) := RHomDX (M,OE
X).

These two functors are related by duality:

DE
XDRE

X(M) ≃ DRE
X(DXM) ≃ SolEX(M)[dX ].

For exponential D-modules, the enhanced solution functor is explicitly described
as follows: Consider a normal crossing divisor D ⊂ X and ϕ ∈ OX(∗D), then

SolEX(Eϕ) ≃ E
Reϕ
X\D|X , DRE

X(Eϕ) ≃ RIhom(π−1
CX\D,E

−Reϕ
X\D|X)[dX ]

(see [DK16, Corollary 9.4.12 and Lemma 9.3.1]).

Remark 2.7. The framework and notation are obviously set up to be similar to the
regular case, and we refer to [DK16] and [KS16] for more details. Let us, however,
remark that the notation is not self-explanatory here, and quite some simplification
in notation has happened between [KS01] and works like [DK16] and [KS16]. In
particular, whenever a sheaf (as opposed to an enhanced ind-sheaf) appears in the
above formulae, it should be read as βπ−1 of this sheaf to make sense of these
expressions. For example, in the notation of [KS01], the definition of the enhanced
solutions functor reads as

SolEX(M) = RIhomβπ−1DX (βπ
−1M,OE

X).

2.7. Galois conjugation. Let L/K be a field extension and let g ∈ Aut(L/K),
i.e. g is a field automorphism of L with g|K = idK . Then, for an L-vector space

V we can define its g-conjugate L-vector space V
g
, which has the same underlying

abelian group, but the action of L is given by ℓ · v := g(ℓ)v for ℓ ∈ L, v ∈ V .
This defines a functor from the category of vector spaces to itself (which sends a
morphism to the same set-theoretic map).

This conjugation naturally induces a g-conjugation on sheaves of L-vector spaces,
as well as on ind-sheaves over L and enhanced ind-sheaves over L, i.e. we have
functors

(•)
g
: Db(LX) → Db(LX), (•)

g
: Eb(ILX ) → Eb(ILX )

for a topological space X (resp. a bordered space X ), and these functors also pre-
serve R- and C-constructibility.

In the case L = C, K = R, there is only one nontrivial element γ ∈ Aut(C/R),

which is complex conjugation, and we therefore simply write (•) instead of (•)
γ
.

If X is a complex manifold and X its complex conjugate, their underlying topo-
logical spaces are the same and hence the categories Db(kX) and Db(kX) (for a field

k) are naturally identified, and similarly for Eb(IkX) and the associated subcate-
gories of R- and C-constructible objects. We can identify OX = OX and DX = DX ,

and for a DX -module M, the conjugate M is naturally a DX -module. In this sit-
uation, it is not difficult to see that

DRX(M) = DRX(M), DRE
X
(M) = DRE

X(M).
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3. Conjugation of D-modules and the enhanced De Rham functor

In this section, our aim is to prove an analogue of a result of [Kas86] in the context
of the enhanced De Rham functor. Let us briefly recall the idea and argument of
the main statement in [Kas86].

The Riemann–Hilbert correspondence for regular holonomic D-modules states
that the De Rham functor induces an equivalence of categories

DRX : Db
rh(DX)

∼
−→ Db

C-c(CX).

On the right-hand side, complex conjugation defines an auto-equivalence. It is
therefore natural to ask what the corresponding operation on the left-hand side is.
In other words, the question is the following: Given an object M ∈ Db

rh(DX), how

is the object N ∈ Db
rh(DX) satisfying DRX(N ) ≃ DRX(M) related to M?

Indeed, M. Kashiwara is able to define a functor c : Db(DX) → Db(DX) such
that the desired description is N = c(M), i.e.

(2) DRX(c(M)) ≃ DRX(M)

for M ∈ Db
rh(DX) (in fact, M ∈ Db

coh(DX) is enough here).
The key to this result is an intermediate step, namely the definition and study

of a functor

CX : Db(DX) → Db(DX),

M 7→ RHomDX (M,DbX),

later baptized the Hermitian duality functor, where DbX denotes the sheaf of dis-
tributions.

One of the key observations in the proof of formula (2) is the fact that one
has an isomorphism of functors2 (note that Db

C-c(CX) and Db
C-c(CX) are naturally

identified)

(3) DRX ◦ CX [−dX ] ≃ SolX

on the category Db
rh(DX) (indeed on Db

coh(DX)), and this follows directly from the
fact that the Dolbeault complex with distribution coefficients is a resolution of the
sheaf of holomorphic functions, i.e. DRX(DbX) ≃ OX [dX ].

In [Kas86], it was in particular shown that CX (and hence c) preserves regu-
lar holonomicity and induces an equivalence of categories if we restrict to regular
holonomic D-modules. Moreover, it was a conjecture of M. Kashiwara (see [Kas86,
Remark 3.5]) that this is also true if we erase the word “regular” and just re-
strict to holonomic D-modules. This conjecture has been proved by C. Sabbah and
T. Mochizuki ([Sab00, Theorem 3.1.2], [Moc11b, Corollary 4.19], see also [Sab13,
§12.6]).

The idea in this section is now to establish a statement similar to (2) for the
enhanced De Rham functor. More precisely, the idea is that the exact same relation
holds if we replace DRX by DRE

X and consider M ∈ Db
hol(DX). The functor c will

remain unchanged. Due to the results in the holonomic context mentioned above,
such a compatibility might not be surprising. On the other hand, the argument
for a statement like (3) for the enhanced De Rham and solution functor seems not

as direct as in the classical case: The expression that appears is DRE
X
(DbX), while

the definition of enhanced tempered holomorphic functions is rather “DRX(DbEX) ≃
OE
X [dX ]”.

2Comparing this directly with what is written in [Kas86], our formula here differs by a shift.
This is because we use a different convention for the De Rham functor (which actually seems to be
more common nowadays and is consistent with later works like [DK16] and [KS16], for example).
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We therefore apply a different method of proof here, using the classification of
general holonomic D-modules due to C. Sabbah, K. Kedlaya and T. Mochizuki, to
establish the generalization of (3). This is mainly achieved by combining results
about Hermitian duality that have already been proved earlier and that we will
briefly review in the next subsection.

3.1. The Hermitian dual. Let X be a complex manifold. In [Kas86], M. Kashi-
wara introduced the functor CX : Db(DX) → Db(DX) given by

CX(M) := RHomDX (M,DbX).

Here, DbX is the sheaf of Schwartz distributions on the underlying real manifold of
X . It is a module over DX and DX .

This functor has been further studied by other authors, in particular by C.
Sabbah and T. Mochizuki, and we recall two important properties that we will use
below.

Lemma 3.1 (see [Moc15, §12.5.2]). Let f : X → Y be a morphism of complex
manifolds and let M be a holonomic DX -module such that f is proper on suppM.
Then there is a natural isomorphism

(4) Df∗CX(M) ≃ CY (Df∗M).

Lemma 3.2. Let M be a holonomic DX-module and D ⊂ X a hypersurface. Then
there is an isomorphism

CX(M(∗D)) ≃ CX(M)(!D).

Proof. Set N = CX(M) and denote by C : M×N → DbX the canonical pairing.
Then (M,N , C) is a non-degenerate D-triple (in the sense of [Moc15], for exam-
ple). Then by [Moc15, §12.2.2], the D-triple (M(∗D),N (!D), C(!D)) is still non-

degenerate. In particular, CX(M(∗D)) ≃ N (!D) ≃ CX(M)(!D), as desired. �

Recall the notation on the real oriented blow-up from Section 2.2. If X is a
complex manifold and D ⊂ X is a normal crossing divisor, we also have the normal
crossing divisor D ⊂ X (if D is locally given by {z1 · . . . · zk = 0}, then D is locally

given by {z1 · . . . · zk = 0}) and one has the real blow-up space ̟ : X̃ → X. (It has

the same underlying topological space as X̃ and Amod
˜X

= Amod
X̃

. We will often just

write ̟ instead of ̟.) If M is a DX -module, we write

MA := Amod
˜X

⊗̟−1OX
̟−1M

to emphasize that we are taking the tensor product with Amod
˜X

, the sheaf of anti-

holomorphic functions with moderate growth at ∂X̃.

Lemma 3.3. There is an isomorphism

(CX(Eϕ))A ≃ (E−ϕ)A.

Proof. We use the notation in [Sab00] without explaining all the details, in partic-
ular the functor CmodD

X = RHomDX (−,Db
modD
X ). There are isomorphisms

(CX(Eϕ))A ≃
(
CX(Eϕ)(∗D)

)A
≃

(
CX(Eϕ(!D))

)A
≃ (CmodD

X (Eϕ))A

where the second isomorphism follows from Lemma 3.2 and the last isomorphism
follows from [Sab00, Proposition 3.2.2]. On the other hand, we know from [Sab00,
p. 69] that

(CmodD
X (Eϕ))A ≃ CmodD

X̃
((Eϕ)A) ≃ (E−ϕ)A.

�
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The following result about the local model of CX(M) is shown in [Sab00, p. 69]
(see also Proposition 3.2.5 of loc. cit. and its proof). It describes that the Hermitian
dual of a meromorphic connection with a normal form still has a normal form, and
how its exponential factors change under Hermitian duality.

Proposition 3.4 ([Sab00]). If D ⊂ X is a normal crossing divisor and M is a

holonomic DX-module with a normal form along D, such that locally on X̃, we
have

MA|V ≃
(⊕

ϕ∈Φ

(
Eϕ

)A)∣∣∣
V
,

then CX(M) has a normal form along D, with local isomorphisms

CX(M)A|V ′ ≃
(⊕

ϕ∈Φ

(
E−ϕ

)A)∣∣∣
V ′
.

3.2. Hermitian duality and the enhanced De Rham complex. As mentioned
above, the main step is a generalization of (3). Before we can prove an isomorphism,
let us first show the existence of a canonical morphism.

Lemma 3.5. Let X be a complex manifold and M ∈ Db
coh(DX). There is a canon-

ical morphism, functorial in M,

(5) DRE
X
(CX(M))[−dX ] −→ SolEX(M).

Proof. We have

DRE
X
(CX(M)) ≃ ΩE

X

L
⊗DX

RHomDX (M,DbX)

≃ RHomDX (M,ΩE
X

L
⊗DX

DbX)

and

SolEX(M) ≃ RHomDX (M,OE
X).

Therefore, it suffices to find a canonical morphism ΩE
X

L
⊗DX

DbX [−dX ] → OE
X . Note

further that

ΩE
X

L
⊗βDX DbX ≃ (ΩX

L
⊗OX

OE
X
)

L
⊗DX

DbX

≃ ΩX
L
⊗DX

(OE
X

L
⊗OX

DbX)

and

OE
X ≃ ΩX

L
⊗DX

DbEX [−dX ],

which means that it suffices to find a morphism

OE
X

L
⊗OX

DbX → DbEX .

Consider the morphisms

X × R∞ X × P X × P
j k

One has

OE
X

L
⊗OX

DbX ≃ j!RHomDP
(Et, k!Ot

X×P

L
⊗OX DbX)[2]

and
DbEX ≃ j!RHomDP

(Et,DbtX×P
)[1],

so it is enough to construct a morphism (for any complex manifold X)

k!Ot
X×P

L
⊗OX DbX [1] −→ DbtX×P.
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Now note that we have a morphism

k!Ot
X×P ≃ k!RHomD(X×P)c

(O(X×P)c ,C
∞,t
X×P

)

−→ k!RHomD(X×P)c
(DXc

D
⊠OPc ,C

∞,t
X×P

)

≃ k!RHomDPc
(OPc ,C

∞,t
X×P

)

and that

DbtX×P
≃ k!RHomDPc

(OPc ,Db
t
X×P)[1]

by Lemma 3.6 below. Hence, all we finally need to construct is a morphism

C
∞,t
X×P

L
⊗OX DbX → DbtX×P.

Using a slightly more precise notation (explicitly writing the functor β and the
pullback via the projection p : X × P → X , cf. Remark 2.7), this morphism follows
from the natural morphism

(6) C
∞,t
X×P

L
⊗βp−1OX βp

−1DbX → C
∞,t
X×P

L
⊗βp−1OX DbtX×P → DbtX×P.

Here, the first arrow is induced by the natural morphisms βp−1DbX → p−1DbtX →
DbtX×P

(the second of these arrows being given by taking the product of a distri-
bution on X with the constant distribution 1 on P, see e.g. [Hör98, Chap. 5]).
The second arrow in (6) is given by multiplication of tempered smooth functions
with tempered distributions (see [Kas84, Lemma 3.3] and also [DK16, Proposi-

tion 5.1.3]). More precisely, we use the natural morphism C
∞,t
X×P

L
⊗βp−1OX DbtX×P

→

C
∞,t
X×P

⊗βp−1OX DbtX×P
composed with this multiplication.

�

Lemma 3.6. Let k : X×P → X×P be the inclusion. Then there is an isomorphism

DbtX×P
≃ k!RHomDP

(OP,Db
t
X×P)[1].

Proof. First, note that for a right DP-module N we have an isomorphism

k!(βN
L
⊗βDP

DbtX×P) ≃ βDk∗N
L
⊗βDP

DbtX×P
,

which follows from [DK16, Lemma 5.3.2] (which is itself derived from results of
[KS96]).

Using this (in the second isomorphism below), one obtains

k!RHomDP
(OP,Db

t
X×P)[1] ≃ k!

(
βΩP

L
⊗βDP

DbtX×P

)

≃ βDk−1ΩP

L
⊗βDP

DbtX×P

≃ DbtX×P
.

Here, the last isomorphism follows from [Kas95, Lemma 2.3.2]. �

The classification of holonomic D-modules now enables us to prove that the
morphism from Lemma 3.5 is an isomorphism for any holonomic D-module M.

Proposition 3.7. The morphism (5)

DRE
X
(CX(M)) −→ SolEX(M)

is an isomorphism for any complex manifold X and any M ∈ Db
hol(DX).
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Proof. Consider the statement for any complex manifoldX and any M ∈ Db
hol(DX):

PX(M) : The morphism (5) is an isomorphism.

To show that it holds for any X and M, we will employ [DK16, Lemma 7.3.7]
(see Lemma 2.2), and we have to check conditions (a)–(f).

Condition (a) is clear by the compatibility of DRE
X and SolEX with inverse images.

(Note that the a-priori existence and canonicity of the morphism (5) is essential
here.) Condition (b) is also obvious. Condition (c) holds by the axioms of a
triangulated category, and condition (d) is true since the morphism (5) is functorial
with respect to direct sums.

The condition (e) is proved as follows: Assume PX(M) holds, and let f : X → Y
be a projective morphism. It also induces a morphism f : X → Y (which we will
not distinguish in the notation). Then we have

SolEY (Df∗M) ≃ Ef∗Sol
E
X(M)[dX − dY ]

≃ Ef∗DRE
X
(CX(M))[−dY ]

≃ DRE
Y
(Df ∗CX(M))[−dY ]

≃ DRE
Y
(CY (Df∗M))[−dY ],

using in particular Lemma 3.1.
It remains to check condition (f): Let M ∈ Modhol(DX) have normal form along

a normal crossing divisor D ⊂ X (in particular, M is meromorphic at D).
Due to Lemma 3.8 below, there is a natural morphism similar to (5) on the real

blow-up

DRE
˜X

(
CX(M)A

)
[−dX ] → SolE

X̃
(MA).(7)

We want to show that this is an isomorphism. Locally on X̃ = X̃c (they are
identified as real analytic manifolds with corners), MA decomposes as a direct sum
of exponential D-modules Eϕ, and CX(M) decomposes accordingly into exponential
D-modules E−ϕ (cf. Proposition 3.4), so it suffices to prove this result for M = Eϕ

for ϕ ∈ OX(∗D). (Recall that we have (CX(Eϕ))A
c

≃ (E−ϕ)A
c

by Lemma 3.3.)
Then we get

DRE
˜X

(
CX(Eϕ)A

)
≃ DRE

˜X

(
(E−ϕ)A

)

≃ E̟!DRE
X
(E−ϕ)

≃ C
E
˜X

+
⊗ RIhom(π−1

CX\D,C{t=−Reϕ(x)})[dX ]

by [DK16, Corollary 9.2.3 and Lemma 9.3.1]. On the other hand, we similarly have

SolE
X̃

(
(Eϕ)A

)
≃ E̟!RIhom(π−1

CX\D,Sol
E
X(Eϕ))

≃ C
E
X̃

+
⊗ RIhom(π−1

CX\D,C{t=−Reϕ(x)}).

Since conjugation does not affect the real part of a holomorphic function, we see
that both sides of (7) are isomorphic in this case.

Applying now π−1CX\D ⊗ E̟∗ to (7), we obtain (see [DK16, Corollary 9.2.3]
and [IT20, §3])

DRE
X

(
CX(M)(!D)

)
[−dX ]

∼
−→ SolEX(M(∗D)),

and noting that M (having normal form) is meromorphic at D, while CX(M) =
CX(M)(!D) by Lemma 3.2, we obtain the desired isomorphism. �
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Lemma 3.8. Let X be a complex manifold and D ⊂ X a normal crossing divisor

and X̃, X̃ the associated real blow-up spaces along D. Let M ∈ Db
coh(DX). Then

there is a canonical morphism

DRE
˜X

(
CX(M)A

)
[−dX ] → SolE

X̃
(MA).

Proof. Again, we use the notation in [Sab00], in particular the sheaf DbmodD
X̃

≃

̟−1OX(∗D)⊗̟−1OX DbX̃ .
First, note that there is a canonical morphism

CX(M)A → RHom̟−1DX (̟
−1M,Amod

˜X
⊗̟−1OX

̟−1DbX)

≃ RHomDA

X̃

(MA,DbmodD
X̃

)

for M ∈ Db
coh(DX), induced by the natural morphism ̟−1DbX → DbmodD

X̃
and

the fact that DbmodD
X̃

is a module over Amod
˜X

.

It therefore suffices to find a morphism

DRE
X̃c

(
RHomDA

X̃

(MA,DbmodD
X̃R

)
)
[−dX ] → SolE

X̃
(MA).

Similarly to the proof of Lemma 3.5, it is enough to give a morphism

̟−1ΩX
L
⊗̟−1DX

(OE
˜X

L
⊗OX

DbmodD
X̃R

) −→ OE
X̃
.

By a reduction similar to Lemma 3.5, such a morphism is eventually induced by a
morphism

C
∞,t
X×P

L
⊗βOX DbtX −→ DbtX×P,

which is given by multiplication of tempered smooth functions with tempered dis-
tributions. We leave details to the reader. �

With this in hand, we can now proceed completely analogously to [Kas86] to
define the conjugation functor c, the functor corresponding to complex conjugation
on constructible sheaves via the Riemann–Hilbert correspondence.

We define

c : Db(DX) → Db(DX)

M 7→ c(M) := CX(DX(M)),

(recall the definition of M from Section 2.7).

Theorem 3.9. Let X be a complex manifold and M ∈ Db
hol(DX). Then there is

an isomorphism in Eb(ICX)

DRE
X(c(M)) ≃ DRE

X(M).

Similarly, there is an isomorphism SolEX(c(M)) ≃ SolEX(M).

Proof. It is easy to check that

DRE
X(CX(DX(M))) ≃ SolE

X
(DX(M))

≃ DRE
X
(M) ≃ DRE

X(M),

which follows from Proposition 3.7.
The second claim follows by applying the duality functor (and a shift by −dX)

since complex conjugation commutes with duality (cf. [BHHS22, Lemma 2.3]). �

To end this section, let us come back to the proof of Kashiwara’s conjecture
[Kas86, Remark 3.5]. The following theorem is the first and main part of this
conjecture.
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Theorem 3.10 (see [Sab00, Theorem 3.1.2], [Moc11b, Corollary 4.19]). Let X
be a complex manifold and M ∈ Modhol(DX) a holonomic DX -module. Then
CX(M) ≃ HomDX (M,DbX) is concentrated in degree 0 and holonomic.

The other parts of the original conjecture of M. Kashiwara follow from this
theorem (see [Sab00, §3.1]). They are stated in the (first part of the) following
corollary, and with the help of our results from this section, we give a different way
to deduce it from Theorem 3.10.

Corollary 3.11. The functor CX : Db
hol(DX) → Db

hol(DXc) is an equivalence with
inverse CXc . The functor c : Db

hol(DX) → Db
hol(DX) is an equivalence of categories

and is its own inverse.

Proof. Let M ∈ Db
hol(DX). The fact that CX(M) ∈ Db

hol(DX) and hence c(M) ∈
Db

hol(DX) follows easily from Theorem 3.10 by induction on the amplitude of a
holonomic complex. Then we have

DRE
X(CXc(CX(M))) ≃ SolEXc(CX(M)) ≃ DXcDRE

Xc(CX(M))

≃ DXSolEX(M) ≃ DRE
X(M)

by Proposition 3.7 and

DRE
X

(
c(c(M))

)
≃ DRE

X(c(M)) ≃ DRE
X(M)

by Theorem 3.9, and by the Riemann–Hilbert correspondence of [DK16], we get
the isomorphisms CXc(CX(M)) ≃ M and c(c(M)) ≃ M. �

4. Galois descent for enhanced ind-sheaves

In this section, we give some complements on the study of Galois descent for
enhanced ind-sheaves done in [BHHS22]. We mostly reformulate what has been
established there, slightly generalizing the descent statement by removing the com-
pactness assumption that was present in [BHHS22, Proposition 2.15]. We mainly
study R-constructible enhanced ind-sheaves here.

The starting point is the functor of extension of scalars: Let X be a bordered
space and let L/K be a field extension, then we have the functor

Eb(IKX ) → Eb(ILX ), H 7→ π−1LX ⊗π−1KX H.

Its compatibilities with direct and inverse images have been described in [BHHS22].
We restate them here, removing some restrictions that are not necessary.

Lemma 4.1. Let X and Y be bordered spaces and let f : X → Y be a morphism.
Let F, F1, F2 ∈ Eb(IKX ) and G ∈ Eb(IKY). Then we have isomorphisms

π−1LY ⊗π−1KY
Ef!!F ≃ Ef!!(π

−1LX ⊗π−1KX
F )

π−1LX ⊗π−1KX
Ef−1G ≃ Ef−1(π−1LY ⊗π−1KY

G).

If X and Y are real analytic bordered spaces, f is a morphism of real analytic
bordered spaces and F ∈ Eb

R-c(IKX ), G ∈ Eb
R-c(ILY), we also have isomorphisms

π−1LX ⊗π−1KX
DE

XF ≃ DE
X (π−1LX ⊗π−1KX

F ),

π−1LX ⊗π−1KX
Ef !G ≃ Ef !(π−1LY ⊗π−1KY

G).

If moreover f is semi-proper, we have an isomorphism

π−1LY ⊗π−1KY
Ef∗F ≃ Ef∗(π

−1LX ⊗π−1KX
F ).
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Remark 4.2. The condition for the isomorphism for the direct image Ef∗ is in

particular satisfied if X ⊆ X̂ and Y ⊆ Ŷ are relatively compact. This means that
the bordered spaces X and Y are of a particular type, namely they are b-analytic
manifolds and F and G are b-constructible, notions that have been investigated in
[Sch23].

Such functorialities are, of course, not restricted to the tensor product with a
field extension, but this is the case we are interested in here. One could also try to
perform a study of functorialities for more general sheaves LX , similar to [HS23].

In order to understand homomorphisms between scalar extensions of enhanced
ind-sheaves, we prove the following two statements.

Proposition 4.3. Let L/K be a field extension. Let X be a real analytic bordered
space and let F,G ∈ Eb

R-c(IKX ). Then there is an isomorphism in Db(LX)

RHomE
LX

(π−1LX ⊗π−1KX
F, π−1LX ⊗π−1KX G) ≃ LX ⊗KX RHomE

KX
(F,G).

Proof. There exists a canonical morphism (from left to right), and it suffices to
prove that it is an isomorphism locally on an open cover of X by relatively compact
subanalytic subsets. In other words, it suffices to prove the isomorphism under the

assumption that F ≃ KE
X

+
⊗F , G ≃ KE

X

+
⊗G for some F ,G ∈ Db

R-c(KX×R∞
). Let us,

without loss of generality, choose them such that K{t≥0}

+
⊗ F ≃ F (and similarly

for G). Then

RHomE
LX

(π−1LX ⊗π−1KX
F, π−1LX ⊗π−1KX

G)

≃ RHomE
LX

(
π−1LX ⊗π−1KX

F , LE
X

+
⊗ (π−1LX ⊗π−1KX

G)
)

≃ αXRπX ∗RIhomLX

(
π−1LX ⊗π−1KX

F , π−1LX ⊗π−1KX
(KE

X

+
⊗ G)

)

≃ LX ⊗KX
αXRπX ∗RIhomKX

(F ,KE
X

+
⊗ G)

≃ LX ⊗KX
RHomE

KX
(F,G).

Here, the second isomorphism uses the definition of RHomE. The third isomor-
phism follows from [BHHS22, Lemma 2.7] and [DK16, Lemmas 3.3.12 and 3.3.7]

(note that the extended map π : X̂ × R → X̂ is proper). �

Remark 4.4. In the above proof, we have used [BHHS22, Lemma 2.7], i.e. the
compatibility of RIhom with extension of scalars. The proof of this lemma in
loc. cit. relied on a technical lemma whose details were not given expanded there.
Let us note that an alternative proof of this lemma can be performed by using the
results of [HS23].

Corollary 4.5. Let L/K be a field extension. Let X be a real analytic bordered

space and let F,G ∈ Eb
R-c(IKX ). If L/K is finite or X ⊂ X̂ is relatively compact,

then the natural morphism

L⊗K HomEb
R-c(IKX )(F,G) → HomEb

R-c(ILX )(π
−1LX ⊗π−1KX

F, π−1LX ⊗π−1KX
G)

is an isomorphism.

Proof. It follows from [DK19, (2.6.3)] (cf. also [DK16, Proposition 3.2.9 and Corol-
lary 3.2.10]) that

HomEb
R-c(IKX )(F,G) ≃ HomEb

R-c(IKX̂)(EjX !!F,EjX !!G)

≃ H0RΓ
(
X̂; RHomE

K
X̂
(EjX !!F,EjX !!G)

)
,
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where jX : X → X̂ is the natural morphism of bordered spaces, and analogously
over L. By Lemma 4.1 and Proposition 4.3, we know that extension of scalars
commutes with EjX !! and RHomE. It therefore remains to show that it commutes
with taking global sections. In the case of a finite field extension, taking global
sections commutes with extension of scalars (since finite direct sums are finite direct

products and direct images are right adjoints). In the case whereX ⊂ X̂ is relatively
compact, the sheaf we take sections of has compact support, so global sections are
a proper direct image and hence commute with extension of scalars. �

Lemma 4.6. Let X be a real analytic bordered space and L/K a field extension.
Let H ∈ Eb

R-c(IKX ) such that π−1LX ⊗π−1KX
H ≃ 0. Then H ≃ 0. In particular,

extension of scalars is a conservative functor on Eb
R-c(IKX ).

Proof. In the situation of Corollary 4.5, if X ⊂ X̂ is relatively compact, then for
a morphism f : F → G, we have that 1 ⊗ f is an isomorphism if and only if f
is so: Let 1 ⊗ g0 +

∑n
i=1 ℓi ⊗ gi be an inverse, where 1, ℓ1, . . . , ℓn are elements of

L, linearly independent over K, and gi : G → F are morphisms. Then 1 ⊗ idF =
(1⊗ g0 +

∑n
i=1 ℓi ⊗ gi)(1⊗ f) = 1⊗ g0 +

∑n
i=1 ℓi ⊗ (gi ◦ f) and hence g0 ◦ f = idF ,

and analogously f ◦ g0 = idG.
Now let f : F → 0 be the unique morphism. Then we can cover X by subsets U

that are relatively compact in X̂ and on each U∞ = (U,U) we get that F |U∞
≃ 0.

By [DK21a, Proposition 3.8], this suffices to conclude F ≃ 0 globally. �

Let us also state the following lemma, whose proof is completely analogous to
[Ho23, Proposition 4.9].

Lemma 4.7. Let L/K be a finite Galois extension with Galois group G. Let X be
a real analytic bordered space and let F,G ∈ Eb

R-c(IKX ). Then the subspace of

HomEb
R-c(ILX )(π

−1LX ⊗π−1KX
F, π−1LX ⊗π−1KX

G) ≃ L⊗K HomEb
R-c(IKX )(F,G)

consisting of morphisms that fit into a commutative diagram

π−1LX ⊗π−1KX
F π−1LX ⊗π−1KX

G

π−1L
g

X ⊗π−1KX
F π−1L

g

X ⊗π−1KX
G

f

g⊗idF g⊗idG

f
g

for any g ∈ G is exactly the subset 1⊗HomEb
R-c(IKX )(F,G).

We can now give a slightly more general version (without the compactness as-
sumption) of [BHHS22, Proposition 2.15]. Recall that if L/K is a finite Galois
extension with Galois group G and H ∈ Eb(ILX ), then for any g ∈ G one has

the g-conjugate H
g
∈ Eb(ILX ). A G-structure on H is a collection (ϕg)g∈G of

isomorphisms ϕg : H
∼
→ H

g
such that for any g, h ∈ G one has ϕg

h ◦ϕh = ϕgh (see
[BHHS22, Definition 2.12] for this notion).

Proposition 4.8. Let L/K be a finite Galois extension with Galois group G.
Let X be a real analytic bordered space and let H ∈ E0

R-c(IKX ) be equipped with
a G-structure. Then there exists HK ∈ E0

R-c(IKX ) and an isomorphism H ≃
π−1LX ⊗π−1KX

HK through which the given G-structure on H coincides with the
natural one on π−1LX ⊗π−1KX

HK .

Proof. In [BHHS22, Proposition 2.15], we have proved the result in the case that

X = (X, X̂) is such that X is relatively compact in X̂ . (The part of the statement
about the G-structures has not explicitly been mentioned in loc. cit. but is clear
from the construction.)
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Now, if X ⊆ X̂ is not relatively compact, we can cover X by open subsets

Ui, i ∈ I, all of which are relatively compact in X̂ . On each (Ui)∞ = (Ui, Ui),

we can perform the above construction (closures are taken in X̂ here) and obtain
HK,i ∈ E0

R-c(IK(Ui)∞) with H |(Ui)∞ ≃ π−1L(Ui)∞ ⊗π−1K(Ui)∞
HK,i. On any overlap

(Uij)∞ := (Ui ∩ Uj, Ui ∩ Uj) we have an isomorphism

π−1L(Uij)∞ ⊗π−1K(Uij )∞
HK,i|(Uij)∞ ≃ π−1L(Uij)∞ ⊗π−1K(Uij )∞

HK,j |(Uij)∞

induced by the identity on H (which is certainly compatible with the given G-
structure). Since the natural G-structures on both sides correspond to the given
one on H , we see that this morphism is compatible with the natural G-structures
on both sides. Hence, by Lemma 4.7, it descends to an isomorphism HK,i|(Uij)∞ ≃

HK,j |(Uij)∞ . Since U 7→ E0
R-c(IKU∞

) is a stack, this yields an object HK ∈

E0
R-c(IKX ) as desired. �

With these results in hand, we can now state Galois descent for R-constructible
enhanced ind-sheaves concentrated in one degree as an equivalence of categories.

We denote by E0
R-c(ILX )G the category of pairs (H, (ϕg)g∈G) of objects H ∈

E0
R-c(ILX ) together with a G-structure. A morphism (H, (ϕg)g∈G) → (H ′, (ϕ′

g)g∈G)
is a morphism f : H → H ′ such that for any g ∈ G the following diagram commutes:

H H ′

H
g

H ′g

f

ϕg ϕ′
g

f
g

Theorem 4.9. Let L/K be a finite Galois extension. Let X be a real analytic
bordered space. Then extension of scalars induces an equivalence of categories

E0
R-c(IKX )

∼
−→ E0

R-c(ILX )G.

Proof. Full faithfulness follows from Lemma 4.7 and essential surjectivity follows
from Proposition 4.8. �

5. K-structures and monodromy data

In this section, we are going to study the impact of a K-structure on the gener-
alized monodromy data (in particular Stokes matrices) associated to an enhanced
ind-sheaf or a meromorphic connection on a complex curve. The main descent result
is Theorem 5.8, and we draw some explicit consequences in the following subsec-
tions. Many other parts, in particular the description of generalized monodromy
data and meromorphic connections, are mostly a reproduction of well-known facts
in order to clarify our setting and language.

Definition 5.1. Let X be a bordered space. If K ⊂ L is a subfield and H ∈
Eb(ILX ), then a K-lattice of H is an enhanced ind-sheaf HK ∈ Eb(IKX ) such that
H ≃ π−1LX ⊗KX HK . If such an HK exists, we say that H has a K-structure.

Example 5.2. It is obvious that objects of the form E
f
W |X have a K-structure for

any subfield K ⊂ C (recall these exponential objects from Section 2.5). Similarly,
consider the following situation: Let X and S be smooth algebraic varieties and
consider morphisms

X S

A1

ϕ

g
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Consider the (algebraic) DX -module Eϕ on X and its direct image g+Ef on S. We
can consider these modules (still denoting them by the same symbols) as analytic

D-modules on a smooth completion X̂ of X and Ŝ of S, respectively, by taking
the analytification of a meromorphic extension, and we can also extend g as a map

ĝ : X̂ → Ŝ between these completions. Then, the enhanced ind-sheaf SolE
Ŝ
(g+Ef ) ≃

Eĝ!!SolEX̂(Ef ) has a K-structure over any field K ⊂ C.

Using Galois descent, we have also deduced certain K-structures of the enhanced
solutions of hypergeometric systems in [BHHS22].

In the rest of this section, X will be a Riemann surface (a connected one-
dimensional complex manifold) and D ⊂ X a discrete set of points. We write
X∗ := X \ D. Given charts around every point p ∈ D and ε = (εp)p∈D, where
0 ≤ εp << 1 (we just write 0 ≤ ε << 1, and similarly 0 < ε << 1), we set

X∗
ε
:= X \

⋃
p∈D Bεp(p), where Bεp(p) is the closed ball around p of radius εp in

the given chart around p.
Let k be a field. Recall the notation for enhanced ind-sheaves from Section 2.5,

and in particular the natural embedding ekX from sheaves to ind-sheaves as well as

the notation for enhanced exponentials. We will simply write E
Reϕ
W,k or even E

Reϕ
W

(if the field k is clear from the context) instead of EReϕ
W |X,k to simplify notation.

By a sector with vertex at p ∈ X , we will mean a subset of X of the followign
form: Given a local coordinate z in a neighbourhood U of p with z(p) = 0, an angle
θ ∈ R/2Z and r, δ ∈ R>0, we set

Sθ(r, δ) := {z ∈ U | 0 < |z| < r, θ − δ < arg z < θ + δ}.

5.1. Descent of meromorphic normal form. Let X be a Riemann surface. We
first investigate objects motivated by the topological counterpart of meromorphic
connections on X via the Riemann–Hilbert correspondence of [DK16]. This type
of objects is described in the following definition, which is strongly motivated by
[Moc22] and [DK18, §6.2]. The goal of this subsection is to show that any lattice
inherits this property.

Definition 5.3. Let H ∈ E0(IkX). We say that H is of meromorphic normal form
with respect to D if the following conditions are satisfied:

(a) π−1kX∗ ⊗H ≃ H.
(b) There exists a local system L on X∗ (consider it extended by zero to X, i.e.

L ∈ Mod(kX)) such that for any 0 < ε << 1, we have

π−1
kX∗

ε

⊗H ≃ ekX(LX∗
ε

).

(c) For any p ∈ D, any local coordinate z in a neighbourhood U of p and any
direction θ ∈ R/2πZ, there exist r, δ ∈ R>0, n ∈ Z>0, a determination of
z1/n on the sector Sθ := Sθ(r, δ), a finite set Φθ ⊂ z−1/nC[z−1/n] and an
integer rϕ ∈ Z>0 for any ϕ ∈ Φθ such that the ϕ ∈ Φθ define holomorphic
functions on Sθ and one has an isomorphism

π−1
kSθ ⊗H ≃

⊕

ϕ∈Φθ

(EReϕ
Sθ

)rϕ .

In simple terms, an object of meromorphic normal form is one that is concen-
trated in degree 0, localized at D, looks like a local system away from the singular-
ities and satisfies a “Stokes phenomenon” close to the singularity, i.e. it decomposes
on small sectors as a direct sum of exponentials.

Remark 5.4. Let us make some remarks that will be useful later. First of all, this
definition is really just a global reformulation of [DK18, §6.2]. It can also be seen as
the category of those enhanced perverse ind-sheaves (see [DK21b, Definition 3.4])
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satisfying π−1kX∗ ⊗H ≃ H , and shifted by −1. If k = C, objects of meromorphic
normal form are the essential image of meromorphic connections on X with poles
at D under the enhanced solution functor SolEX .

To make it more similar to those definitions, our condition (b) of Definition 5.3
can be reformulated as follows:

(b’) There is an isomorphism H |X∗ ≃ kEX∗ ⊗ π−1L for a local system L on X∗.

This is equivalent to (b) since E0(IkX∗) is a stack and hence the isomorphisms on all
the X∗

ε
imply the isomorphism on the whole of X∗. (We opted for the formulation

(b) in our definition in order to express (b) and (c) in a more similar manner.)
Since the circle of directions R/2πZ is compact, part (c) of Definition 5.3 can

equivalently be formulated as follows:

(c’) For any p ∈ D and a local coordinate z in a neighbourhood U of p, there
exists a finite number of sectors Sp1 , . . . , S

p
kp

(for some kp ∈ Z>0) covering

a punctured neighbourhood of p such that for any j ∈ {1, . . . , kp} one has:

a determination of z1/n on the sector Spj , a finite set Φpj ⊂ z−1/nC[z−1/n]

and an integer rϕ ∈ Z>0 for any ϕ ∈ Φpj such that the ϕ ∈ Φpj define

holomorphic functions on Spj and one has an isomorphism

(8) π−1
kSpj

⊗H ≃
⊕

ϕ∈Φpj

(EReϕ
Spj

)rϕ .

We will assume that the sectors Sp1 , . . . , S
p
kp

are ordered in a counter-clockwise

sense around p (with respect to their central directions). Then, for any j ∈
{1, . . . , kp} we can consider the overlap Spj,j+1 := Spj ∩ Spj+1 (where, of course,

we count modulo kp, so that kp+1 := 1). On this overlap we have the two isomor-
phisms induced by the ones from (8)

⊕

ϕ∈Φpj

(EReϕ
Spj,j+1

)rϕ ≃ π−1
kSpj,j+1

⊗H ≃
⊕

ψ∈Φpj+1

(EReψ
Spj,j+1

)rψ .

We can therefore identify the index sets Φpj and Φpj+1 (see [Moc22, Lemma 3.25],

cf. also [DK18, Corollary 5.2.3]), and also rϕ = rψ via this identification. More
precisely, this identification is given by holomorphic continuation of functions in
counter-clockwise direction from Spj to Spj+1. We will hence consider all the direct

sums in the isomorphisms (8) to be indexed by the same set Φp = Φp1. In particular,
this also means that Φp is closed under analytic continuation around the circle, i.e.

if ϕ(z−1/n) ∈ Φp, then ϕ(e
2πi
n z−1/n) ∈ Φp.

Denoting by r the rank of the local system L from (b), it is also clear that
r =

∑
ϕ∈Φp rϕ for any p.

Our goal is to show that the property of being of meromorphic normal form
descends to a lattice. To do this, let us prepare some lemmas. Essentially, the
two lemmas below are concerned with the descent of direct sums of exponentials
(Lemma 5.6) and descent of enhanced local systems (Lemma 5.7) separately, and
we will combine them to obtain our desired result (Theorem 5.8).

Remark 5.5. To prepare for the argument that follows, let us make the following
easy observation:

If X is an open disc around a point p ∈ C, S ⊂ X is an open sector with vertex p
and ϕ, ψ : S → C are holomorphic functions given as ϕ, ψ ∈ z−1/nC[z−1/n] for some
choice z−1/n of an n-th root of a local coordinate z at p. Assume that ψ ≺S ϕ, i.e.
Re(ϕ−ψ) is bounded from below near p, but unbounded from above near p. Then:

• For any relatively compact subanalytic open subset U ⊆ X × R such that

E
Reψ
S (U) 6= 0, we have E

Reϕ
S (U) 6= 0.
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To see this, note that E
Reψ
S (U) 6= 0 means in particular that U intersects any

{t ≥ −Reψ + a} nontrivially. Now consider an arbitrary b ∈ R, then there exists
a ∈ R such that Re(ϕ− ψ) > b − a, so {t ≥ −Reϕ+ b} ⊇ {t ≥ −Reψ + a}. This

means that also E
Reϕ
S (U) 6= 0.

• There exists a relatively compact subanalytic open subset U ⊆ X ×R such

that E
Reϕ
S (U) = k but E

Reψ
S (U) = 0.

Such a set can be given explicitly: Let V ⊆ X an open relatively compact set such
that Re(ϕ − ψ) is unbounded from above on V . Set U := {(x, t) ∈ X × R | x ∈
V, t ∈ R, t < −Reψ}. Certainly, U does not intersect {t ≥ −Reψ + a} for any

a > 0, so E
Reψ
S (U) = 0. On the other hand, for any a ∈ R there exists x ∈ V such

that Reϕ(x) − Reψ(x) > a, and hence U intersects any {t ≥ −Reϕ + a}. Note
that V can be chosen such that this intersection has only one “relevant” connected
component (i.e. one connected component with p in its boundary, which “survives”

for a→ ∞), and so E
Reϕ
S (U) = k.

Lemma 5.6. Let L/K be a field extension and X a Riemann surface. Let S ⊂ X be
an open sector with vertex at some p ∈ X and let Φ ⊂ z−1/nC[z−1/n] be a finite set
of holomorphic functions on S for some n-th root z−1/n of a local coordinate z at p.

Then, up to an automorphism of
⊕

ϕ∈Φ(E
Reϕ
S,L )rϕ , a K-lattice FK ⊂

⊕
ϕ∈Φ(E

Reϕ
S,L )rϕ

with FK ∈ Eb
R-c(IKX) is of the form FK =

⊕
ϕ∈Φ(E

Reϕ
S,K )rϕ .

Proof. It is clear from Lemma 4.6 that FK is concentrated in degree 0. Let us

assume for simplicity that rϕ = 1 for any ϕ ∈ Φ, and let us think of the E
Reϕ
S,L and

FK as subanalytic sheaves onX×R (cf. Remark 2.4). Then for any open U ⊆ X×R,

the sections of FK on U must be a K-lattice of the sections of
⊕

ϕ∈Φ E
Reϕ
S,L on U

(see Lemma 2.3).
Fix a numbering on the elements of Φ = {ϕ1, . . . , ϕn}. For any relatively compact

subanalytic open V ⊆ S, the space of sections of
⊕

ϕ∈Φ E
Reϕ
S,L on V × R is Ln. A

K-lattice for this space of sections is given by a vector space

n∑

j=1

K · vj

for some vj ∈ Ln (linearly independent over L). Since S is connected and restriction

maps of
⊕

ϕ∈Φ E
Reϕ
S,L (recall that they mainly consist of projections and inclusions)

need to be compatible with those of FK , it is not difficult to see that one can choose
the same vectors vj for each such V , and this lattice will also determine the sections

of FK on all other open subsets of X × R.
Assume that there exists an open subset S′ ⊆ S such that ϕℓ ≺S′ ϕk for some

k, ℓ ∈ {1, . . . , n}. By possibly shrinking S′, we can assume that we have a total
ordering ϕj1 ≺S′ . . . ≺S′ ϕjn , where {j1, . . . , jn} = {1, . . . , n}. Now we see (as in

Remark 5.5) that there are relatively compact subanalytic open sets Vj ⊂ X × R

with Vj ⊂ Vj′ whenever ϕj′ ≺S′ ϕj such that E
Reϕj′

S,L (Vj) = 0 if ϕj′ �S′ ϕj and

E
Reϕj′

S,L (Vj) = L if ϕj ≺S′ ϕj′ , and restriction maps between these Vj are given

by projections. Therefore, this means that for any i ∈ {1, . . . , n}, the vectors
pr≥ji(v1), . . . , pr≥ji(vn) span a K-vector space of dimension i. (Here, pr≥ji is the
projection to the components ji, . . . , jn ∈ {1, . . . , n}.) Therefore, we can assume
(forming suitable K-linear combinations of the vj) that the ji-th component of
vj1 , . . . , vji−1 vanishes. In particular, the kth component of vℓ vanishes (but indeed
the whole matrix (vj1 , . . . , vjn) can be chosen to be upper-triangular with invertible
entries on the diagonal).
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We can then perform a similar argument for any other such S′ and ϕℓ ≺S′ ϕk,
whose details we leave to the reader (in particular, one needs to check that the
vanishing entries already constructed are preserved under this procedure, which is
due to the triangular structure of the matrix with respect to all the orderings al-
ready considered). Recalling Lemma 2.6, we finally see that the matrix (v1, . . . , vn)

defines an automorphism of
⊕

ϕ∈Φ E
Reϕ
S,L , and applying its inverse transforms the

K-structure FK into
⊕

ϕ∈Φ E
Reϕ
W,K , as desired.

The proof for the general case is analogous: If rϕ ≥ 1, one thinks in terms of
graded vector spaces and block matrices instead. �

Lemma 5.7. Let X be a real analytic manifold, H ∈ Eb(ILX) and let U ⊆ X be
an open subset such that there is an isomorphism π−1LU ⊗H ≃ eLX(L) for some
local system L on U (extended by zero to X). Assume that H has a K-lattice
HK ∈ Eb

R-c(IKX). Then, there exists a local system LK on U with L ≃ LU ⊗KU LK
and π−1KU ⊗HK ≃ eKX(LK).

Proof. Since L is a local system, there exists, for each x ∈ U , a subanalytic open
neighbourhood V such that

(9) π−1LV ⊗H ≃ eLX(LrV ) = (E0
V,L)

r

for some r ∈ Z>0. By an argument similar to (but much simpler than) that of
Lemma 5.6, we see that the lattice of (E0

V,L)
r given by the image of π−1KV ⊗HK

under the isomorphism (9) is – up to an automorphism – isomorphic to (E0
V,K)r.

Hence, by composing with a suitable automorphism of (E0
V,L)

r, the isomorphism

(9) comes from an isomorphism

π−1KV ⊗HK ≃ (E0
V,K)r

by applying π−1LX ⊗π−1KX (−). This implies that π−1KU ⊗ HK ≃ eKX(FK) for
some FK ∈ Mod(KU ) by [DK21a, Proposition 3.8].

By the full faithfulness of eLX (see [DK16, Proposition 4.7.15]), we indeed have
LX ⊗KX FK ≃ L, and in particular FK is also a local system (cf. e.g. [Ho23,
Lemma 4.12]). �

Theorem 5.8. Let L/K be a field extension and let H ∈ Eb
R-c(ILX). Assume

that there exists HK ∈ Eb
R-c(IKX) which is a K-lattice for H, i.e. there is an

isomorphism H ≃ π−1LX ⊗π−1KX HK . If H is of meromorphic normal form, then
HK is of meromorphic normal form.

Proof. Let us check that HK is of meromorphic normal form:
The condition (a) from Definition 5.3 is easily checked: Consider the natu-

ral morphism π−1KX∗ ⊗ HK −→ HK . By assumption, applying the functor
π−1LX ⊗π−1KX (−) to it makes it an isomorphism and hence it is itself an iso-
morphism by Lemma 4.6.

Property (b) is exactly what we proved in Lemma 5.7 (note that the datum of a
local system on any X∗

ε
for 0 < ε << 1 determines one on X∗).

Property (c) follows directly from Lemma 5.6: Given an isomorphism

ξ : π−1LSθ ⊗H ≃
⊕

ϕ∈Φθ

(EReϕ
Sθ,L

)rϕ

as in Definition 5.3(c) for H , we see that, due to the L-linearity of ξ, the object

ξ(π−1KSθ ⊗ HK) ⊂
⊕

ϕ∈Φθ
(EReϕ
Sθ,L

)rϕ is a K-lattice. We therefore see that, by
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Lemma 5.6, the isomorphism above comes, after composing it with an automor-
phism of the right-hand side, from an isomorphism

π−1KSθ ⊗HK ≃
⊕

ϕ∈Φθ

(EReϕ
Sθ,K

)rϕ .

This completes the proof. �

5.2. Generalized monodromy data as gluing data for enhanced ind-sheaves.

Given an enhanced ind-sheaf H ∈ Eb
R-c(IkX) of meromorphic normal form with re-

spect to D ⊂ X , we can describe it purely in terms of linear algebra data. Let us
recall the description of these so-called generalized monodromy data here (in the
case k = C, they are what is often called Stokes data).

SinceH is of meromorphic normal form, any p ∈ D admits data as in Remark 5.4,
in particular we can fix

a finite collection of open sectors Sp1 , . . . , S
p
kp

and isomorphisms(10)

ξpj : π
−1

kSpj
⊗H ≃

⊕

ϕ∈Φp

(EReϕ
Spj

)rϕ for j ∈ {1, . . . , kp}.

Definition 5.9. Let H be of meromorphic normal form. We denote by Dreg :=
{p ∈ D | Φp = {0}} ⊆ D the set of regular singularities of H. We also set
Dirr := D \Dreg and call its elements irregular singularities of H.

For any p ∈ Dirr, we choose a local coordinate at p and εp ∈ R>0 such that

Bεp(p) ⊂
⋃kp
j=1 S

p
j . For p ∈ Dreg, we choose εp = 0. This determines X∗

ε
⊂ X .

Then, by Definition 5.3(b) and (c), it is clear that there is a local system L on X∗

such that we can choose an isomorphism

(11) γ : π−1
kX∗

ε

⊗H ≃ ekX(L)

for a local system L on X∗
ε
. (Note that indeed this does not depend on the concrete

choice of ε in view of Remark 5.4 (b’).)
In view of wanting to use Lemma 2.6, we also fix the following data:

(i) For any p, a numbering (total order) on Φp and also, for any ϕ ∈ Φp, a

numbering on the factors of the power (EReϕ
Spj

)rϕ , so that there is a total

order on the summands of
⊕

ϕ∈Φp(E
Reϕ
Spj

)rϕ =
⊕

ϕ∈Φp
⊕rϕ

m=1 E
Reϕ
Spj

for any

j.
(ii) A point x ∈ X∗

ε
, a basis of the stalk Lx, and for each p ∈ Dirr a point

yp ∈ Sp1 ∩ X∗
ε

and a path in X∗
ε

from x to yp. (Indeed, it suffices to fix
the homotopy class of such a path in X∗, and this does not depend on the
concrete choice of ε.) Together with the above γ, this gives in particular
an isomorphism π−1kSp1∩X

∗
ε

⊗H ≃
⊕r

m=1 E
0
Sp1∩X

∗
ε

for any p.

We can then associate the following generalized monodromy data to H : Let
p ∈ Dirr, then for any j ∈ {1, . . . , kp} we get two (in general different) isomorphisms
on the overlap Spj,j+1

ξpj , ξ
p
j+1 : π

−1
kSpj,j+1

⊗H
∼
−→

⊕

ϕ∈Φp

(EReϕ
Spj,j+1

)rϕ .

(These are induced by ζpj and ζpj+1 above and we denote them by the same symbols.)

From these we get an automorphism (a transition or gluing automorphism)

σpj := ξpj+1 ◦ (ξ
p
j )

−1 ∈ End
( ⊕

ϕ∈Φp

(EReϕ
Spj,j+1

)rϕ
)
,

which is represented by an invertible square matrix Σpj by Lemma 2.6.
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Similarly, on the overlap Up
ε
:= Sp1 ∩X∗

ε
, we get two isomorphisms

ξp1 , γ : π
−1

kUpε ⊗H
∼
−→ (E0

Upε
)r

(note that E
Reϕ
Upε

≃ E0
Upε

). Then the composition

cp := γ ◦ (ξp1 )
−1 ∈ Hom

(
(E0
Upε

)r, (E0
Upε

)r
)

is again represented by an invertible square matrix Cp.

Definition 5.10. The collection of data consisting of

• the set Φp together with a total order for every p ∈ D, the number rϕ ∈ Z>0

for any ϕ ∈ Φp,
• the sectors Spj and the matrices Σpj for any p ∈ Dirr and any j ∈ {1, . . . , kp},
• the matrix Cp for any p ∈ Dirr,
• the local system L on X∗, as well as the point x, the basis of Lx and the

homotopy types of the paths from (ii)

is called generalized monodromy data associated to H with respect to all the choices
(10), (11), (i) and (ii) fixed above.

Of course, the generalized monodromy data just defined highly depend on the
choices made (cf. also Remark 5.12).

The following statement is easily proved.

Lemma 5.11. The generalized monodromy data determine H up to isomorphism.
More precisely, assume we are given D ⊂ X, an object H ∈ Eb

R-c(IkX) of mero-
morphic normal form at D and generalized monodromy data for H with respect to
certain choices as above. Then if H ′ ∈ Eb

R-c(IkX) is of meromorphic normal form
at D and has generalized monodromy data (for certain choices as above) that co-
incide with that of H (meaning that the local systems associated to H and H ′ are
isomorphic via an isomorphism respecting the given bases at x, and all the other
data are the same for H and H ′), then H ≃ H ′.

Remark 5.12. The matrices Σpj are what is usually called “Stokes matrices” in the
context of solutions of differential equations. They describe the behaviour of the
solutions around the singularity. On the other hand, the matrices Cp are similar to
what is usually referred to as “connection matrices”. They give the relation between
solutions around a singularity with the generic solutions away from the singularities.

Let us also note that there are ways to make the choice and size of the sectors
Spj as well as the isomorphisms ξpj more canonical, which makes the definition of
generalized monodromy data less ambiguous and more natural, but we will not insist
on these choices here and only use the existence of these sectors and isomorphisms
(see e.g. [Boa01, Boa21] and references therein for a thorough study of intrinsic
generalized monodromy data for meromorphic connections). Let us just remark
that with appropriate choices of sectors and isomorphisms, for example in the case
of unramified exponents of one level, one gets Stokes matrices with a certain block-
triangular structure and the diagonal entries of all but one Stokes matrix around
each point p ∈ D consists of identities.

From what we proved above, we can now deduce the following statement.

Corollary 5.13. Let L/K be a field extension, and let H ∈ Eb(ILX) be of mero-
morphic normal form. Assume that H has a K-structure. Then there exist gener-
alized monodromy data for H with entries in K.

Proof. By Theorem 5.8, ifH = π−1LX⊗π−1KXHK , thenHK is also of meromorphic
normal form. Therefore, H admits generalized monodromy data that agree with
generalized monodromy data of HK and hence the matrices Σpj , Cp have entries in
K and also the local system is defined over K. �
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5.3. Meromorphic connections and Stokes data. Let now M be a meromor-
phic connection on X with poles at D, i.e. a holonomic DX -module such that
M(∗D) ≃ M and sing suppM = D.

We briefly recall why SolEX(M) is of meromorphic normal form:
First of all, M(∗D) ≃ M implies that π−1

CX∗ ⊗ SolEX(M) ≃ SolEX(M).
Since a meromorphic connection is generically an integrable connection, we also

have, for any 0 < ε << 1, an isomorphism

π−1X∗
ε
⊗ SolEX(M) ≃ eCX(L),

where L is the local system of solutions L := SolX∗
ε
(M|X∗

ε
), extended by 0 to X .

Let p ∈ D, then the Levelt–Turrittin theorem gives us a decomposition (up to
ramification) of the formalization of the stalk of M at p

(ρ∗M)̂|p ≃
(⊕

i∈I

Eϕi
D
⊗Ri

)̂
|p,

where ρ(t) = tn is a ramification map in a small neighbourhood of p, the ϕi(z
−1) ∈

z−1C[z−1] are (pairwise distinct) polar parts of Laurent series in a local coordinate
z at p and the Ri are regular holonomic DX -modules.

By the Hukuhara–Turrittin theorem, locally on sufficiently small sectors around
p, this decomposition lifts to an analytic decomposition of M, which is usually
formulated as a statement on the real blow-up space of X at the points of D. We
will not go into too much detail here, and rather refer to the existing literature on
asymptotic expansions in this context (see e.g. [Was65], [Mal91]).

What we need is the following consequence on the level of the enhanced ind-sheaf
associated to M: Let p ∈ D and let z be a local coordinate of X at p. Then for
any direction θ ∈ R/2πZ, there exists a sufficiently small sector S = Sθ(r, δ) and a
finite set Φ of holomorphic functions on S such that there is an isomorphism

π−1
CS ⊗ SolEX(M) ≃

⊕

ϕ∈Φ

(EReϕ
S )rϕ .

Remark 5.14. The right-hand side can be described more explicitly: Concretely,
Φ is the set of functions ϕi(ζ

j
nz

1/n) for all i ∈ I and j ∈ {1, . . . , n − 1}, where
ζn := e2πi/n is a primitive n-th root of unity and z1/n is the choice of an n-th root
on S of a local coordinate z around p. In particular, the functions ϕ have Puiseux
series expansions with a pole at p. The rϕ are the ranks of the corresponding Ri.

Indeed, there is the following equivalence (see [DK18, Proposition 6.2.4]).

Proposition 5.15. The category of meromorphic connections at D is equivalent
to the subcategory of Eb

R-c(ICX) consisting of objects of meromorphic normal form
via the functor SolEX .

Proof. The functor is certainly fully faithful by [DK16, Theorem 9.5.3]. It therefore
remains to show that it is essentially surjective. Let therefore H be of meromorphic
normal form. The statement is proved on disks in [Moc22, Lemma 4.8], so on
suitable small disks Bp around any p, we can find Mp such that SolEBp(Mp) ≃

H |Bp . Furthermore, on X∗
ε

we can certainly find (by the regular Riemann–Hilbert

correspondence) a DX∗
ε

-module Mε, locally free over OX∗
ε

, such that SolEX∗
ε

(Mε) ≃

H |X∗
ε

. All these D-modules glue to a single meromorphic connection on X with
poles at D (cf., e.g., the argument in [Ho20, Proposition 2.17]). �

We can now draw two direct consequences of our studies above. The first one
follows directly from Corollary 5.13.
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Corollary 5.16. Let M be a meromorphic connection with poles at D. If SolEX(M)
has a K-structure, then it admits generalized monodromy data defined over K, in
particular M admits Stokes and connection matrices with entries in K.

Remark 5.17. This gives in particular an alternative proof of [BHHS22, Theo-
rem 5.4], and in a certain sense it is more natural since it does not leave the setting
of enhanced ind-sheaves. (Another difference is that we do not pull back via the
ramification before studying the Stokes matrices here.) In loc. cit., we studied the
special case of a hypergeometric system M, and the K-structure on SolEX(M) was
used to derive properties of the Stokes filtration associated to M, from which we
could then conclude the desired statement about the Stokes matrices.

Going through the notion of Stokes filtration can indeed also be an approach in
general: In [DK21b], the authors give a functorial way of associating to an enhanced
perverse ind-sheaf a Stokes-filtered local system (cf. Definition 4.1 of loc. cit. for
a local version of such a functor). One could therefore derive a K-structure of
the Stokes-filtered local system (in the sense of [Moc14], for example) from a K-
structure of the enhanced ind-sheaf and then conclude that the monodromy data
extracted from the Stokes filtration can be defined over K. Knowing this rela-
tion between enhanced ind-sheaves and Stokes filtrations, one can argue that the
statement of Corollary 5.16 is not entirely new. Compared to the above ideas,
our approach to the proof is, however, more direct and intrinsic to the theory of
R-constructible enhanced ind-sheaves, which is the main interest of this section.

Lastly, let us remark that, more generally,K-structures for holonomic D-modules
in any dimension have been studied in [Moc14], and it seems reasonable to expect
that a holonomic D-module has a K-structure in the sense of loc. cit. if and only if
SolEX(M) has a K-structure in our language.

As a kind of upshot of all our considerations in this article, we get the following
consequence of Theorem 3.9, Theorem 4.9 and Corollary 5.16. Note, however, that
our results from Sections 4 and 5 are valid in greater generality and not restricted
to the case of the field extension C/R. The results of the present section do not
even require a finite Galois extensions, while the results of Sections 3 and 4 are
valid in any dimension.

Corollary 5.18. Let X be a Riemann surface and let M be a meromorphic connec-
tion with an isomorphism ϕ : M → c(M) such that c(ϕ)◦ϕ = idM, then SolEX(M)
has an R-structure and M admits generalized monodromy data with entries in R.
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