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On the False Alarm Probability of the Normalized
Matched Filter for off-grid targets: A geometrical

approach and its validity conditions
Pierre Develter1,2, Jonathan Bosse1, Olivier Rabaste1, Philippe Forster3, Jean-Philippe Ovarlez 1,2

Abstract—Off-grid targets are known to induce a mismatch
that dramatically impacts the detection probability of the popular
Normalized Matched Filter. To overcome this problem, the un-
known target parameter is usually estimated through a Maximum
Likelihood strategy, resulting in a GLRT (Generalized Likelihood
Ratio Test) detection scheme. While the test statistic for the
null hypothesis is well known in the on-grid case, the off-grid
scenario is more involved, and to the best of our knowledge, no
such theoretical result is available. This paper fills this gap by
proposing such an expression under circular compound Gaussian
noise with a known covariance matrix thanks to a geometrical
approach. It is exact, provided that the probability of false
alarm is low enough: we derive the conditions guaranteeing the
exactness of the relationship, and we show numerically that the
formula still yields a good approximation of the probability of
false alarm when this condition is not met.

Index Terms—Radar detection, Off-Grid, GLRT, PFA-
threshold relationship, Theory of Tubes

I. INTRODUCTION

In domains as varied as telecommunications, psychology,
or radar, detection theory is crucial to separate ambient noise
from signals of interest. In detection theory, received signals
are submitted to a hypothesis test to discriminate useful signals
from noise. Detection of signals with unknown deterministic
parameters is classically addressed with a Generalized Likeli-
hood Ratio Test (GLRT) that replaces the unknown parameters
with their Maximum Likelihood Estimators (MLE) in the
Likelihood Ratio detection test [1]. When analytical MLE so-
lutions are not available for signal parameters of interest, most
detection strategies assume for ease of implementation that
those parameters lie over a discrete set, called the grid, usually
chosen so that all tests on the grid are statistically independent
when the tested signal consists of noise. However, parameters
have no reason to fall precisely on the grid since they are often
distributed over a continuous range. This induces an off-grid
mismatch between the tested and true target parameters that
deteriorates the detection performance of most state-of-the-
art tests made under the on-grid assumption. This paper will
consider this very general problem in the radar context where
unknown parameters can include Doppler shift, distance, or
direction without loss of generality. The Normalized Matched
Filter is the GLRT associated with the problem of detecting
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a known signal of unknown amplitude in Gaussian ambient
noise of unknown power. It is also widely used for adaptive
radar in non-Gaussian contexts [2] for example when the noise
is distributed according to a Complex Elliptically Symmetric
(CES) distribution [3]. The off-grid mismatch impact is partic-
ularly dramatic for the Normalized Matched Filter (NMF) test
[4]. In some cases, the detection probability may even vanish
to 0 when the Signal-to-Noise Ratio (SNR) tends to infinity
[4], especially for low Probabilities of False Alarm (PFA),
familiar in radar context. To overcome this problem, the most
apparent solution consists of testing over the whole continuous
support of the signal parameter, not just the grid: this is the
”true” GLRT, that we call ”off-grid GLRT” or ”off-grid NMF”
in this paper. However, to the best of our knowledge, the
analytical expression of the null hypothesis statistic and the
related PFA is unknown in the literature for this GLRT.

The robustness of detectors to mismatched signals is a well-
explored topic in the detection literature. Several types of
mismatches are addressed thanks to the derivation of suited
GLRTs, such as mismatch lying in a cone [5]–[8], extended
to include the possibility of a mismatched interference signal
in [9], quadratically constrained [10], among others [11].
Sometimes, another approach is privileged, and other signal
models are used to reduce interference from orthogonal signals
[12]. Those works deal with a general mismatch model, that
can be used to model several events, such as pointing errors,
imperfect array calibration, or multipath distortion. However,
those mismatch models and the associated detectors do not
suit the very specific non-linear off-grid mismatch well. For
example, to fit an entire cell in a cone, a lot of unwanted
signals must be included in the acceptance zone of the detector,
thus decreasing its selectivity. Furthermore, the low PFA used
in Radar context makes things even harder: the cone approach
is limited to high PFA to deal with off-grid targets, which is
not always realistic in practice [13].

While the off-grid issue has been studied extensively in in-
verse reconstruction problems [14], [15] (in those contexts, the
decrease in performance due to off-grid targets is particularly
dramatic) and in sparse estimation problems (especially in off-
grid Direction Of Arrival estimation in Radar contexts, see for
example [16], [17]), off-grid target detection has received less
interest as far as we are aware of.

In the Bayesian context, when all target parameters are
distributed according to a uniform probability distribution, it
can be shown that the best detector in the sense of the aver-
age probability of detection is the Average Likelihood Ratio
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Test (ALRT) derived in [18] assuming the signal amplitude
as known and in [19] assuming a random Gaussian signal
amplitude.

This paper focuses on the deterministic case where the
target amplitude and unknown parameters are deterministic.
In this context, the off-grid GLRT can be costly to implement
with satisfying precision and is hard to analyze. For this
reason, sometimes the problem is simplified: for example,
the steering vector can be made linear with respect to the
mismatch with a first-order Taylor approximation, making it
possible to derive analytical forms for the simplified GLRT.
This approach offers good detection performance, although the
PFA-threshold relationship is unknown [20], [21]. Another
approach to simplify the problem consists of modeling the
cell as a linear subspace with Discrete Spheroidal Sequences
subspace [4] or the Taylor expansion of the signal [22]: this
allows for the use of subspace detectors [23]. In this case,
theoretical analysis of the test is easy to perform, but detection
performance is considerably lower than the off-grid GLRT,
especially under non-white noise contexts [24].

This paper studies the ”true” off-grid GLRT without approx-
imation, as was done in [25] in the adaptive case. Our aim is
not the implementation but rather the analysis of the off-grid
GLRT, which is often delicate. In particular, the theoretical
PFA is difficult to investigate since the test quantity is the
maximum of non-independent random variables. Yet, it is
essential as it is needed to implement the detector.

The search for the probability of a stochastic process or
random field exceeding a threshold has been the subject of
numerous works in the applied statistics literature (see, for
example, [26]–[28]). However, those works mainly focus on
real processes and random fields, and to our knowledge, few
articles [29] link them with the detectors used by the signal
processing community.

Based on earlier results on the volume of tubes on sphere
[30], [31], we showed in [32] how to obtain an upper bound
for the PFA-threshold relationship. In this paper, we dive once
again into tube theory to show how it also enables an original
and simple derivation of the on-grid PFA-threshold relation-
ship. Moreover, starting from studies on overlap [33], [34] we
derive new conditions of equality of the proposed upper bound.
We show that above a certain limit threshold, equality is met.
Closed-form expressions for this limit threshold are derived
under white noise. As we will show, the proposed formula is
proved to be exact under PFAs that are not too high, which
is the standard regime of application of the NMF.

Section II presents the signal model, the off-grid problem,
and the true GLRT formulation. Section III introduces the
tube formalism and gives an original derivation of the PFA-
threshold relationship using a formula related to the surface
of tubes embedded on hyper-spheres. Section IV showcases
the domain of validity of the relationship. It features the
derivation of local overlap criteria for tubes around general
multi-dimensional manifolds embedded on hyper-spheres. In
Section V we check the validity of our derivations for our
application by comparing the theoretical thresholds to Monte-
Carlo simulations. The relationship between the correlation
of the noise and the size of the domain of validity is also

examined.
Notations: Matrices are in bold and capital, vectors in bold.

For any matrix A or vector, AT is the transpose of A and AH

is the Hermitian transpose of A. I is the N×N identity matrix
and CN (µ,Γ) is the circular complex Normal distribution of
mean µ and covariance matrix Γ. Sn−1 is the unit sphere
in Rn. The real and imaginary part operators of a complex
number are denoted by Re(.) and Im(.). The operator u is
the angle of a complex number u. ⊙ denotes the Hadamard
product. Γ(.) is the gamma function. ∥.∥ denotes the classical
l2 norm for vectors.

II. PROBLEM FORMULATION

A. Signal Model

A very common detection problem in radar as well as in
other domains consists of detecting a complex signal d ∈ CN

corrupted by an additive noise n (clutter, thermal noise,
etc.). This problem can be stated as the following binary
hypothesis test, where the goal consists of deciding between
two hypotheses H0 and H1 :{

H0 : r = n, (noise only)
H1 : r = αd(θ) + n, (signal plus noise)

where r is the complex vector of size N of the sampled
received signal, α is an unknown complex target amplitude and
d(θ) stands for a generally known steering vector character-
ized by unknown target parameters θ (time-delay, Doppler or
angle in radar). In the sequel, we will assume that n is a zero-
mean complex circular Gaussian noise vector with unknown
variance σ2 i.e. n ∼ CN (0, σ2 Γ) and known shape matrix
Γ (covariance matrix up to a scale factor). This context is
known as a partially homogeneous Gaussian environment. All
the results in this paper still apply to any other spherically
invariant distribution. In this work, we will assume θ to be
a deterministic unknown scalar. Although all general results
of this paper apply to any signal model d(θ) (including chirp
signals, in which case the unknown parameter θ models the
unknown range of the target), to derive closed-form solutions,
we choose the following common signal model:

d(θ) =
1√
N

[
1, e2iπθ, . . . , e2iπ(N−1)θ

]T
. (1)

This model of steering vector is very common in spectral
analysis and often encountered in radar Range-Doppler
detection schemes (in which case θ represents the Doppler
shift of the target) where the problem consists in estimating
a complex sinusoid embedded in noise after range Matched
Filter processing.

B. Normalized Matched Filter (NMF)

In classical detection theory, for unknown parameters
{λi}i∈[0,1] depending on each hypothesis {Hi}i∈[0,1] (either
parameters of interest, and/or nuisance parameters), the usual
procedure relies on the Generalized Likelihood Ratio (GLR)
statistic, namely the ratio Λ(r) between the Probability Den-
sity Function (PDF) fH1

(.) of the data under H1 and the PDF
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fH0
(.) under H0 where the unknown parameters are replaced

by their ML estimate:

Λ(r) =
max
λ1

fH1
(r)

max
λ0

fH0
(r)

H1

≷
H0

w2 ,

where w2 is the detection threshold set according to a desired
PFA, such that:

PFA =

∫
DA

fH0
(r)dr, (2)

where DA ⊂ RN is the domain of acceptance of the test,
defined as DA = {r ∈ RN : Λ(r) > w2}.

When λ1 = {α, σ} and λ0 = {σ} with θ known, the
corresponding GLRT is known as the NMF (Normalized
Matched Filter) [1]:∣∣d(θ)HΓ−1 r

∣∣2(
d(θ)HΓ−1 d(θ)

) (
rHΓ−1 r

) H1

≷
H0

w2. (3)

This test is also widely used for adaptive radar in non-
Gaussian contexts [2], [35] for example, when the noise is
distributed according to a Complex Elliptically Symmetric
(CES) distribution [3]. Its statistic under H0, in this case, is
the same as in the Gaussian case.

Equivalently, Eq. (3) can be rewritten with normalized
whitened vectors: ∣∣s(θ)H u

∣∣2 H1

≷
H0

w2 , (4)

where s(θ) =
Γ−1/2d(θ)∥∥∥Γ−1/2d(θ)

∥∥∥ and u =
Γ−1/2r∥∥∥Γ−1/2r

∥∥∥ .

The corresponding PFA-threshold relationship is well
known and is found using statistical tools in [1]:

PFA =
(
1− w2

)N−1
. (5)

Since this relationship does not depend on σ, the test is said
to be Constant False Alarm Rate (CFAR) relative to σ.

Note that the NMF expression (4) has a simple geometric
interpretation. It is indeed the squared cosine of the angle
between s (θ) and u. The threshold characterizes the squared
cosine of the angle cos−1 w. A target is detected when the
vector angle is below this limit angle.

C. Detecting on a grid and related issues

The test (4) was derived with the parameter θ supposed
to be known. In practice, this is not the case, and this is
why tests are made for several fixed parameter values. The
collection of parameters θ where detection tests are run is
called the grid. For our model, the usual grid is generally

G =

{
k

N
: k ∈ [0, 1, . . . , N − 1]

}
. Fourier resolution cells

for this grid are then the following

Dk =

[
k

N
− 0.5

N
,
k

N
+

0.5

N

]
, (6)

where k ∈ [0, 1, . . . , N − 1].

When the point θ where the NMF is tested is different from
the target’s true parameter θ0, the target is said to be off-grid.
This induces a mismatch δθ = θ − θ0 between the true target
steering vector s(θ0) and the steering vector s(θ) under test.
Unfortunately, it was shown in [36] that the NMF detector is
very sensitive to steering vector mismatch, potentially leading
to a dramatic deterioration of the detection performance: the
detection probability can even tend to 0 when the SNR tends to
infinity. This phenomenon occurs [4] for PFA as high as 10−3

in the chosen resolution cell of width 1/N . Figure 1 represents
the average probability of detection of the NMF as a function
of the SNR for δθ uniformly distributed in D0: the asymptotic
probability is well below 1 for a threshold corresponding to a
PFA of 10−6. Note that this simulation was done under white
noise. The NMF behavior can be even worse when Γ ̸= I. In
this case, the detection probability depends on the considered
cell Dk.
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Fig. 1: Mean PD of the standard on-grid NMF (4) (red),
its oracle counterpart that knows the positions of the targets
(yellow) and the off-grid GLRT (7) (blue) as a function of
the SNR in the presence of off-grid targets under white noise.
PFA = 10−6 and N = 10.

D. The off-grid GLRT

Instead of assuming that the target parameter lies on a grid,
it is more realistic to assume that it is unknown. This leads
to the general off-grid GLRT procedure, which gives in our
case:

GLRT (u,D) = max
θ∈D

∣∣s(θ)H u
∣∣2 H1

≷
H0

w2 , (7)

where D is the search domain relative to the unknown param-
eter θ. Usually, for the steering vector defined in Eq. (1), D
is defined as one of the Fourier resolution cells Dk.

This detector corrects the off-grid issue of test (4) as can be
seen in Figure 1: its probability of detection is close to that
of the oracle detector that knows the positions of the targets.

There are several ways to approximate the test quantity
(7). The most natural solution consists of refining the search
grid. However, the computational cost may become high for a
precise estimation of the test quantity, as the number of tests
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to be run to approximate (7) equals the oversampling factor.
A more clever approach uses joint detection and estimation
tools, which jointly merge the detection and estimation steps
in the signal processing chain. The unknown parameter is
estimated, not necessarily in the MLE sense, then introduced
in the test quantity (3). Examples of estimation techniques that
may be used to estimate the target parameter in this procedure
include monopulse-based techniques [24] or the interpolation
of the Fourier Transform lobe [37]. This empirical approach
enables a precise approximation of the target parameter at a
low computational cost, similar to oversampling by a factor of
two, even under colored noise [24]. Finally, maximizing for the
unknown parameter was shown to be a semi-definite positive
convex optimization problem in [25] so that interior point
methods can achieve the required precision in polynomial time
in N .

This paper is a theoretical analysis of the off-grid NMF,
where we assume that the test quantity (7) is computed
exactly. More specifically, we aim to derive its PFA-threshold
relationship. Indeed, the threshold w2 to be used in (7) is
different from the one in (3), because while the PDF fH0

of
the noise does not change in (2) whether we consider (7) or
(3), the domain of acceptance DA does. The difficulty consists
here of evaluating the statistic of the maximum of a continuum
of non-independent random variables.

III. AN ANALYTICAL PFA-THRESHOLD RELATIONSHIP
WITH A GEOMETRICAL INTERPRETATION

Through geometrical considerations, Hotelling [30] derived
a methodology to study statistical tests over the real sphere
thanks to the computation of the surfaces of tubes around
a curve. Indeed, for a spherically invariant noise on the
sphere, evaluating the PFA of a test reduces to computing
the surface of the acceptance zones, which are tubes. Section
III-A presents his formula for the surface of tubes. It enables
us to provide an alternative derivation of the well-known PFA-
threshold relationship (5) for the NMF in Section III-C thanks
to a simple rewriting of the NMF test quantity in Section
III-B. Unfortunately, as explained in Section III-D, Hotelling’s
formula cannot be directly applied to the case of the off-grid
NMF expressed in (7). Indeed, as we will show, finding the
PFA in the radar case with one unknown parameter requires
the computation of the volume of a tube around a manifold of
dimension M = 2: this is addressed in Section III-D thanks
to [31].

A. Hotelling’s original geometrical approach

This section presents Hotelling’s original theorem for com-
puting the surface of tubes on a sphere. Consider a curve γ(ξ)
on the sphere Sn−1, with ξ ∈ [0, b]. A tube T of geodesic
radius ϕ is defined as the set of points with a geodesic distance
to the curve inferior to ϕ. Formally:

T =
{
u ∈ Sn−1 : ∃ ξ ∈ [0, b],uTγ(ξ) > cos(ϕ)

}
.

T can be seen as the union of the spherical caps SCξ ={
u ∈ Sn−1,uTγ(ξ) > cos(ϕ)

}
. Figure 2 provides a graphical

example of a tube. In [30], Hotelling gives a formula for

𝜙 𝛾(𝜉)

𝒮𝒞𝜉

Fig. 2: Example of a tube T on S2 around a curve γ(ξ). Since
the curve is non-closed, semi-spherical caps (in green) appear
at the ends of T .

computing the surface of T for a closed curve (γ(0) = γ(b)).
Theorem 3.1: [30] The surface enclosed by a tube of

geodesic radius ϕ around a closed curve on the real unit sphere
Sn−1 is the product of the length of the axial curve by the
volume of the n− 2 ball of radius sinϕ:

π(n−2)/2

Γ
(n
2

) sinn−2(ϕ) . (8)

When dealing with a non-closed curve, one has to add
the surface of the two end semi-spherical caps to Hotelling’s
formula to characterize the surface of T .

Note that, in general, for Hotelling’s formula to hold, each
point in the tube must belong to a unique cross-section.
Following Hotelling, this restriction will be called the non-
overlap condition. Overlap phenomenons can happen when
a tube draws back into itself (non-local overlap) and its
curvature becomes too high (local overlap). Non-overlap is
locally guaranteed when ϕ is low enough. More specifically,
for a curve of constant radius of curvature ρ, Hotelling shows
in [30] that the condition for having no local overlap is the
following:

sinϕ ≤ ρ . (9)

In case of overlap, the surface given by Hotelling’s theorem
becomes an upper bound.

A study of overlap phenomenon is given in Section IV.

B. The complex manifold

This section aims to rewrite the NMF test quantity (4) using
real vectors to apply Hotelling’s formula (8). Indeed, for any
α ∈ [0, 2π], let us remark that Re

(
s (θ)

H
u exp (−iα)

)
≤∣∣∣s (θ)H u

∣∣∣, those two quantities being equal for α =

s (θ)
H
u. We then have, decomposing s (θ) and u into real

and imaginary parts:

Re
(
s (θ)

H
ue−iα

)
=
(
γ1(θ)

Tu
)
cosα+

(
γ2(θ)

Tu
)
sinα ,
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𝛾(𝜃, 𝛼)
cos−1𝓌

𝒮𝒞𝛼

Fig. 3: Ton-grid (in violet) embedded on the unit sphere S2 in
R3. SCα is drawn in blue. [38]

where γ1(θ) =

[
Re(s (θ))
Im(s (θ))

]
, γ2(θ) =

[
−Im(s (θ))
Re(s (θ))

]
and

u =

[
Re(u)
Im(u)

]
is a 2N -real valued noise vector drawn

uniformly on S2N−1 under H0. Denoting

γ(θ, α) = γ1 (θ) cosα+ γ2 (θ) sinα , (10)

we have, therefore:

max
α∈[0,2π]

γ(θ, α)Tu =
∣∣∣s (θ)H u

∣∣∣ . (11)

We see that the complex case leads to consider a 2D real
manifold γ(θ, α). The GLRT (7) reads:

max
θ,α

γ(θ, α)Tu
H1

≷
H0

w . (12)

C. An original alternative derivation of the on-grid PFA-
threshold relationship

In this section, we provide a simple alternative derivation
to [1] for the on-grid PFA of (4). Indeed, finding the PFA

reduces to a simple geometrical problem, which enables us to
apply Hotelling’s theorem. Readers interested in the derivation
of the PFA for the GLRT (7) can skip to Section III-D. In this
section, θ is considered fixed in D: we deal with the on-grid
case.

A false alarm occurs when u ∈ Ton-grid, where

Ton-grid =

{
u ∈ S2N−1 : max

α∈[0,2π]
γ(θ, α)Tu > w

}
.

The tube Ton-grid we deal with here is represented in Figure
3 in R3. Note that Ton-grid is drawn around a closed curve:
indeed γ(θ, 0) = γ(θ, 2π).

Since u has been whitened, u is uniformly distributed over
the unit 2N -sphere under the null hypothesis. The PFA is thus
the ratio of the surface of Ton-grid and the surface of the unit
sphere.

We can apply Theorem 3.1 to the tube Ton-grid previously de-
fined around the curve γ(θ, α) with fixed θ and parameterized
by α to find the PFA of the NMF (5). The length of the axial
curve is equal to 2π. In this case, the tube is closed, and one
does not need to add end spherical caps to Hotelling’s formula.
Furthermore, we prove that Ton-grid does not overlap in Section

A of the appendix so that the surface given by Hotelling’s
formula is thus exact in this case. Applying Theorem 3.1 with
n = 2N , ϕ = cos−1 w gives:

Surface(Ton-grid) = 2π
πN−1

Γ(N)
sin2(N−1)(ϕ) ,

=
2πN

Γ(N)

(
1− w2

)N−1
. (13)

Dividing (13) by the surface
2πN

Γ(N)
of S2N−1 leads to the

expected result (5). This geometrical approach provides an
alternative to the traditional one based on statistical tools [1].

D. Extending Hotelling’s approach to the GLRT

Unfortunately, Hotelling’s result is not immediately appli-
cable to the considered GLRT (12): since a maximization on
the parameter θ is introduced, the surface of interest is spread
around a 2D manifold as will be seen now.

The acceptance region in this case is a new tube Toff-grid
around the two-dimensional manifold γ(θ, α):

Toff-grid =

{
u ∈ S2N−1 : max

θ∈D,α
γ(θ, α)Tu > w

}
.

Note that in this case, Toff-grid follows a manifold that is often
not closed since, writing D = [θ1, θ2], γ(θ1, α) ̸= γ(θ2, α) in
general. Unlike previously, when computing the surface of the
tube, a term accounting for its boundaries will appear.

Hotelling’s result does not cover this multi-dimensional
manifold case as it gives the surface of a tube around a
curve. However, in [31, Theorem 4.1] and [39, Corollary 3],
this result is extended to a special case of two-dimensional
manifolds embedded on Sn−1 which is of interest to us:

Theorem 3.2: [31], [39] For i ∈ [1, 2], let γi : [θ1, θ2] →
Sn−1 be regular curves. Assume γ1(θ)

Tγ2(θ) = 0 for all

θ. Let Z(θ) =
[(
γ1(θ)

Tu
)2

+
(
γ2(θ)

Tu
)2]1/2

where u is
uniformly distributed on Sn−1. Then for 0 < w < 1, we have,
under no overlap regime, i.e. low PFA regimes (see Section
IV for a detailed study):

P
(

max
θ1≤θ≤θ2

Z (θ) > w

)
= (1− w2)(n−2)/2 +

Γ
(n
2

)
w (1− w2)(n−3)/2

2π3/2 Γ

(
n− 1

2

) ×

∫ θ2

θ1

∫ 2π

0

[
∥γ̇1(θ) cosΩ + γ̇2(θ) sinΩ∥

2 −

(
γ̇1(θ)

Tγ2(θ)
)2]1/2

dΩ dθ , (14)

where γ̇i(θ) is the derivative of γi(θ) with respect to θ.
When there is overlap, i.e., high PFA regimes, the right-hand
side of (14) becomes an upper bound.
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It turns out that we can reformulate our problem to fulfill
the assumptions of the above theorem with n = 2N . Indeed,
using (10) and (11), we can check that:∣∣∣s (θ)H u

∣∣∣2 =
∣∣γ1(θ)

Tu
∣∣2 + ∣∣γ2(θ)

Tu
∣∣2 ,

so that Theorem 3.2 gives us the desired PFA (when equality
holds in (14)). Follows our result:

Corollary 3.2.1: In the absence of overlap (low PFA

regimes), the PFA for the GLRT (7) for a search interval D =
[θ1, θ2] with the steering vector d (θ) defined in (1) is given
by:

PFA = (1− w2)N−1 + (15)
Γ(N)w (1− w2)N− 3

2

π1/2Γ
(
N − 1

2

) ∫ θ2

θ1

∥∥∥γ̇1(θ)
TP⊥

γ2(θ)

∥∥∥ dθ.
where P⊥

γ2(θ)
= I− γ2(θ)γ2(θ)

T is the orthogonal projector
on γ2(θ). Under white noise (Γ = σ2 I), this result simplifies
to:

PFA = (1− w2)N−1 + (16)√
π

3

Γ(N)w (1− w2)N− 3
2

Γ
(
N − 1

2

) (
N2 − 1

) 1
2 (θ2 − θ1) .

When D = [0, 1], the first term has to be removed from the
equations.
The integral in (15) can be easily evaluated numerically.

Proof: First, notice that the derivatives γ̇1(θ) and γ̇2(θ)
are orthogonal, and that ∥γ̇1(θ)∥ = ∥γ̇2(θ)∥. Thus, for all
Ω ∈ [0, 2π], we have that

∥γ̇1(θ) cosΩ + γ̇2(θ) sinΩ∥
2
= ∥γ̇1(θ)∥

2
,

which does not depend on Ω. The double integral simplifies:∫ θ2

θ1

∫ 2π

0

[
∥γ̇1(θ) cosΩ + γ̇2(θ) sinΩ∥

2 −

(
γ̇1(θ)

Tγ2(θ)
)2]1/2

dΩ dθ ,

= 2π

∫ θ1

θ2

[
∥γ̇1(θ)∥

2 −
(
γ̇1(θ)

Tγ2(θ)
)2]1/2

dθ,

= 2π

∫ θ2

θ1

∥∥∥γ̇1(θ)
TP⊥

γ2(θ)

∥∥∥ dθ, (17)

In the case of white noise, this integral can be computed
analytically. Let x be the following vector:

x = 2π [0, 1, . . . , N − 1]
T
,

so that

γ̇1(θ) =

[
x
x

]
⊙ γ2(θ) , (18)

γ̇2(θ) = −
[
x
x

]
⊙ γ1(θ) . (19)

Then:

∥γ̇1(θ)∥ = ∥γ̇2(θ)∥ = 2π

√
(N − 1)(2N − 1)

6
. (20)

and

γ̇1(θ)
T γ2(θ) =

([
x
x

]
⊙ γ2(θ)

)T

γ2(θ) ,

=
2π

N

N−1∑
k=0

k = π (N − 1) . (21)

Then, injecting (20) and (21) into (17):

2π

∫ θ2

θ1

∥∥∥γ̇1(θ)
TP⊥

γ2(θ)

∥∥∥ dθ = 2(θ2 − θ1)π
2

√
(N2 − 1)

3
.

(22)
Replacing the double integral in (14) with (22) gives the
expected result.

Interestingly, note that the first term in (16) represents the
surface of the two semi-spherical caps at the extremities of the
tube. As such, it equals the PFA of the NMF expressed in (5).
The second term shows the influence of the manifold induced
by the off-grid nature of the problem. It is analogous to the
one-dimensional case of Theorem 3.1, divided by the surface
of S2N−1. Here, θ2−θ1 plays the role of the manifold length,
and the rest of the rightmost term is the surface of the cross-
section divided by the area of S2N−1. When D = [0, 1], the
ends of the tube meet, and the end semi-spherical caps vanish
into the main component: this can be visualized as if going
from Figure 2 to Figure 3. This explains why the first term
should be removed when D = [0, 1]: it is already included in
the second term.

One point of interest that can be seen looking at formula
(15) is that the off-grid NMF (7) is not CFAR with respect
neither to Γ or D. This is explained by the fact that the length
of the whitened manifold s(θ) varies with both Γ and D. As a
result, the surface of the tube around this manifold also varies,
and thus so does the PFA. To the best of our knowledge, this
result is not discussed in the current literature.

The relationships in Corollary 3.2.1 are upper bounds in the
presence of overlap. In this case, they still hold interest in the
radar context where controlling the PFA is fundamental. The
following section investigates the conditions under which no
overlap happens.

IV. ON THE APPEARANCE OF OVERLAP

The goal of this section is to determine for which thresholds
formula (14) (formula (16) in the case of white noise) holds
equality. This requires us to investigate the conditions under
which overlap occurs. We will start by exhibiting general
results from [33], [34] and some original results on shift-
invariant manifolds before delving into our specific problem.

Let us consider an M -dimensional manifold M =
{γ(ξ), ξ = (ξ1, . . . , ξM ) ∈ D} defined on the search domain
D over Sn−1 and let us consider the tube T over Sn−1 around
M consisting of the points u satisfying uTγ(ξ) > w for some
ξ in D. M can be seen, loosely speaking, as the axis of T .
The cross-section CSξ defined in [33] at a point ξ belonging
to M is the set of points of T orthogonal to the derivatives
of γ in ξ. Formally:

CSξ =

{
u ∈ T ,uT ∂γ

∂ξT
= 0,uTγ(ξ) > w

}
. (23)
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Fig. 4: Illustration of all the phenomena leading to an overes-
timation of the PFA when using (16).

Excluding the edge effects defined later in this section, the tube
defined as the union of cross-sections overlaps if and only if
a point u of T belongs to more than one cross-section: in
this case, Hotelling’s geometrical approach and its extensions
lead to an overestimation of the Probability of False Alarm.
Otherwise, the equality holds in (14). Two types of overlap
are defined in [30]: local overlap, which derives from local
differential properties of the manifold generating the tube, and
non-local overlap, which depends on the overall shape of the
tube. Global overlap encompasses both types of overlap. It is
linked to a limit overlap threshold wlim and there is no overlap
if:

w ≥ wlim . (24)

The limit threshold can be equivalently seen as an angle ϕlim
such that

cosϕlim = wlim ,

and there is no overlap if

ϕ = cos−1 w ≤ ϕlim .

In the sequel, the conditions are expressed in terms of ϕlim.
In addition to those phenomena, edge effects also have

to be considered. They can appear when dealing with non-
closed manifold and cause the same problems as overlap i.e.
an overestimation of the PFA. In the 1D case illustrated in
Figure 2, edge effects would occur when the green semi-
spherical caps at the end overlap. A manifold is said to
be closed along dimension k if its k-th variable ξk belongs
to an interval [ξk1

, ξk2
] such that γ(ξ1, . . . , ξk1

, . . . , ξM ) =
γ(ξ1, . . . , ξk2

, . . . , ξM ) for all ξi, i ̸= k. A manifold is said to
be closed if it is closed along all its dimensions.

Figure 4 summarizes all the phenomena that can arise.

A. The general case

In this section, we give the conditions under which no over-
lap happens under general conditions for any M -dimensional
manifold γ(ξ1, . . . , ξM ) embedded in Sn−1.

In [33], a criterion for characterizing the overlap of a tube
embedded on a sphere around a curve is introduced that is
a direct consequence of the fact that the union of the cross-
section needs to be disjoint. It turns out that the arguments

used by the authors can be generalized to find overlap criteria
for tubes around any M -dimensional manifolds, as suggested
in [34].

Theorem 4.1: [33], [34] Let γ(ξ) be a C2 M -dimensional
manifold parameterized by ξ = (ξ1, . . . , ξM ) ∈ D. Let ϕlim
be the limit angle for which no overlap occurs, related to wlim
(24) by cos(ϕlim) = wlim. Let Pξ′ be the projection onto the

subspace spanned by γ(ξ′) and its derivatives
∂γ

∂ξ′
. ϕlim is

given by:

cot2 ϕlim = sup
ξ,ξ′∈D2

1− γ(ξ)TPξ′γ(ξ)(
1− γ(ξ)Tγ(ξ′)

)2 ,

≜ sup
ξ,ξ′∈D2

h(ξ, ξ′) . (25)

The criterion (25) encompasses both local and non-local
overlap:

ϕlim = min{ϕlocal, ϕnon-local} , (26)

where ϕlocal and ϕnon-local are the limit angles such that local
and non-local overlaps occur. Local overlap occurs when ξ′

tends to ξ, and non-local overlap arises when the sup of h in
(25) is attained for ξ ̸= ξ′. Note that (25) does not consider
edge effects.

It can be simplified in the case of a shift-invariant manifold:

Definition 4.1: A real manifold γ(ξ) is said to be shift-
invariant when, for any ξ, ξ′, the scalar product γ(ξ)Tγ(ξ′)
depends only on ξ − ξ′:

γ(ξ)Tγ(ξ′) = f(ξ − ξ′) ,

where f is an even function.
Then, similarly to the case of a single parameter, we have the
following property:

Proposition 4.1: For a shift-invariant manifold γ(ξ), h as
defined in (25) is a function of ξ − ξ′: h(ξ, ξ′) = g(ξ − ξ′).
Consequently,

cot2 ϕlim = sup
x∈E

g(x) , (27)

where E is the image of D×D by the function (ξ, ξ′) → ξ−ξ′.
Proof: The proof is given in Appendix B.

The implications of this result are detailed in the following
sections.

1) On local overlap: In this section, we discuss the occur-
rence of local overlap around a M -dimensional manifold. The
results of this section are particularized to our complex signal
model (1) in Section IV-B1.

Local overlap is linked to the curvature of the manifold.
To illustrate this, consider the case of a tube around a curve
in Euclidean space drawn in Figure 5: there is local overlap
whenever the tube radius is greater than the radius of curvature
of the curve.

A local overlap criterion is developed in [34, Annex A.2].
Recall that it corresponds to the case where ξ′ tends to ξ.

We define the local overlap angle ϕlocal in ξ similarly in the
multi-dimensional case as:
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Fig. 5: Illustration of local overlap in 1D in the Euclidean
case. Here, the radius of the tube (in red) is greater than the
radius of curvature. This causes overlap: see, for example, that
the point u belongs to both cross-sections CSξ and CSξ′ .

Corollary 4.1.1: [34, Annex A.2] In the case of a tube
around an M -dimensional manifold γ, using the same nota-
tions as before with β representing the directions of conver-
gence from ξ′ to ξ, the limit local overlap angle is given by:

cot2 ϕlocal = sup
ξ∈D

sup
β∈SM−1

lim
ϵ→0

h(ξ, ξ + ϵβ) ,

= sup
ξ∈D

sup
β∈SM−1

∥∥∥∥∥∥
∑
i,j

βiβj (I−Pξ)
∂2γ

∂ξi ∂ξj

∥∥∥∥∥∥
2

∑
i,j

βiβj
∂γT

∂ξi

∂γ

∂ξj

2 .(28)

Readers can refer to [34, Annex A.2] for an interpretation in
terms of principal curvatures.

Proof: The proof is given in [34, Annex A.2].
The formula (28) can be simplified in the case of a

shift-invariant manifold: (27) shows that the maximization on
ξ can be dropped in (28). Indeed, h(ξ, ξ′) only depends on
the difference ξ − ξ′. The following developments allow us
to go further:

Corollary 4.1.2: Let γ(ξ) be a M -dimensional shift-
invariant manifold, and let G be its first fundamental form:

G =
∂γ

∂ξ

T ∂γ

∂ξ
. (29)

Then G does not depend on ξ. Besides, let

G = GT/2 G1/2 , (30)

and µ be a reparametrization of γ defined by

µ = G1/2 ξ , (31)

Then
∂γT

∂µi

∂γ

∂µj
= δij , (32)

and (28) reduces to:

cotϕ2
local = sup

β∈SM−1

∥∥∥∥∥∥
∑
i,j

βiβj

(
∂2γ

∂µi∂µj

)∥∥∥∥∥∥
2

− 1 . (33)

Proof: The proof is given in the appendix C.

2) On non-local overlap: Non-local overlap arises when
the tube draws back into itself, as shown in blue in Figure 4
for a tube spanned by a curve. In [33], it is shown in the case
M = 1 that the limit angle around a closed manifold γ(ξ)
linked to this type of overlap can be characterized entirely
by looking at the pairs of points (ξ, ξ′) that minimize locally
the distance

∥∥γ(ξ)− γ(ξ′)
∥∥, with ξ ̸= ξ′. In such case, (25)

reduces to an intuitive geodesic distance criteria when ξ ̸= ξ′.
In the general case, M is arbitrary, and the following holds:

Proposition 4.2: Consider a tube around the M -dimensional
manifold γ lying on the sphere. The set of pairs

(
ξ, ξ′

)
that

characterizes non-local overlap is:

Ξ =

{(
ξ, ξ′

)
: ξ ̸= ξ′,

(
γ(ξ)− γ(ξ′)

)T ∂γ

∂ξk
= 0

and
(
γ(ξ)− γ(ξ′)

)T ∂γ

∂ξ′k
= 0, ∀k ∈ [1,M ]

}
. (34)

Then, if the manifold is closed:

ϕnon-local = min
(ξ,ξ′)∈Ξ

1

2
cos−1

(
γ(ξ)Tγ(ξ′)

)
. (35)

For a non-closed manifold, a term accounting for the bound-
aries must be taken into account:

ϕnon-local = min

{
min

(ξ,ξ′)∈Ξ

1

2
cos−1

(
γ(ξ)Tγ(ξ′)

)
, E

}
, (36)

where
E = inf

(ξ,ξ′)∈B×D
cot−1

√
h (ξ, ξ′) . (37)

Proof: It is possible to adapt the proof of Proposition
4.2 of [33] for an M-dimensional manifold using the principal
curvature interpretation of (28) and by considering frontiers
around the local minima. The extension to the case of a non-
closed manifold is then straightforward.
In the non-closed case, the limit angle ϕnon-local also encom-
passes instances of local overlap when ξ′ tends to ξ ∈ B.
Plugging it in (26) still yields the right exact limit angle ϕlim.

As noted in [33], this formulation is not necessarily more
straightforward to use than (25) since it can be more involved
to find the set of pairs Ξ than to compute (25). However, in
Section IV-B2, we show that, in our specific case, it enables
us to reduce the computational complexity of the search
dramatically.

3) On edge effects: The formula (25) does not consider
edge effects that can arise when dealing with non-closed
manifolds. Indeed, noting B the boundaries of D, (25) is
defined for ξ ∈ D, ξ′ ∈ D \ B. Edge effects appear when
a point u is such that there exist two distinct points ξ1, ξ2 in
B such that uTγ(ξ1) > w and uTγ(ξ2) > w. It is illustrated
in Figure 4 in the case M = 1. One has to check that the limit
angle ϕlim is big enough so that edge effects do not appear.

B. Application to the complex signal model (1)

We apply here the general results of the previous section
to our case of interest where γ is given by (10), defined on
D × [0, 2π]. This first result gives the limit global overlap
threshold for our application:
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Corollary 4.1.3: With γ defined as in (10), the limit angle
for no global overlap is:

cot2 ϕlim = sup
θ, α ∈ D × [0, 2π]
θ′, α′ ∈ D × [0, 2π]

1− γ(θ, α)TPθ′,α′γ(θ, α)

(1− γ(θ, α)Tγ(θ′, α′))
2 ,

(38)
where Pθ′,α′ = I−P⊥

θ′,α′ with P⊥
θ′,α′ defined later in (41).

Proof: We simply inject (10) in (25).

Under white noise, for one cell Dk, one can check numerically
that the corresponding limit PFA is equal to:

PFAlim ≈ 10−2.52 , (39)

Fortunately, this PFA is well above the common PFA encoun-
tered in radar applications.

In the following sections, we discuss how to find the limit
angles ϕlocal and ϕnon-local. Indeed, the search domain in (38)
is 4-dimensional, so the criterion can be heavy to evaluate.
We can accelerate the search of the global limit angle by first
finding the local and non-local overlap angle ϕlocal and ϕnon-local
through (28) and (35) then combining them using (26).

1) On local overlap: The following corollary gives ϕlocal
in our case:

Corollary 4.1.4: For our manifold γ defined in (10), we
have:

cot2 ϕlocal = sup
θ,α∈D×[0,2π]

sup
φ∈[0,2π]

J(θ, α, φ) , (40)

where

J(θ, α, φ) =

∥∥∥P⊥
θ,α

(
cos2 φ∂2γ

∂θ2 + sin 2φ ∂2γ
∂θ∂α + sin2 φ∂2γ

∂α2

)∥∥∥
cos2 φ

∥∥∥∂γ
∂θ

∥∥∥2+ sin 2φ∂γT

∂θ
∂γ
∂α + sin2 φ

∥∥∥∂γ
∂α

∥∥∥2 ,

and
P⊥

θ,α = I−Mθ,α

(
MT

θ,αMθ,α

)−1
MT

θ,α , (41)

with Mθ,α =

[
γ(θ, α),

∂γ(θ, α)

∂θ
,
∂γ(θ, α)

∂α

]
. This expression

can be easily evaluated setting β = [cos(φ), sin(φ)] and then
maximizing on φ.

Proof: We simply inject (10) in (28), with M = 2.
The derivatives of γ are found from a straightforward deriva-
tion using (18) and (19):

∂γ

∂θ
=
(
I− γ(θ, α)γ(θ, α)H

)
× (cosαγ2(θ)− sinαγ1(θ))⊙

[
x
x

]
,

∂γ

∂α
= − sinαγ1(θ) + cosαγ2(θ) .

It is possible to find the analytical limit threshold for local
overlap under white noise.

Corollary 4.1.5: Under white noise with the signal model
as in (1), the limit local angle (40) is:

ϕlocal = tan−1

(√
5− C

2

)
,

and the limit local threshold is

w2
local = cos2

(
tan−1

(√
5− C

2

))
, (42)

where

C =
3

5

3N2 − 7

(N − 1)2
. (43)

Proof: The proof is given in Appendix D.

Note that lim
N→∞

C =
9

5
: for N large enough,

w2
local ≈ cos2

(
tan−1

(
2√
5

))
. (44)

For N = 10, according to (16) this corresponds to the limit:

PFAlocal ≈ 10−2.52 = PFAlim .

thus local overlap is the limiting factor for the white noise
setting.

2) On non-local overlap: First, consider the case where
the target is searched over the whole spectral domain i.e.
D = [0, 1]. This corresponds to the operational context where
a single target is searched in the scene. In this case, the
manifold γ in (10) is closed. In order to compute the non-
local limit angle ϕnon-local, one should evaluate criterion (35).
The following corollary simplifies the criteria.

Corollary 4.1.6: Consider a tube lying on the sphere around
the manifold γ defined in (10). Define Ξ′ as:

Ξ′ =

{
(θ, θ′) : θ ̸= θ′,

∂
∣∣s(θ)Hs(θ′)

∣∣
∂θ

= 0

}
. (45)

Then when D = [0, 1], ϕnon-local in (35) reduces to:

ϕnon-local = min
(θ,θ′)∈Ξ′

1

2
cos−1

∣∣s(θ)Hs(θ′)
∣∣ . (46)

and otherwise, when D = [θ1, θ2] ⊊ [0, 1], ϕnon-local in (36)
reduces to

ϕnon-local = min

{
min

(θ,θ′)∈Ξ′

1

2
cos−1

∣∣s(θ)Hs(θ′)
∣∣ , E} . (47)

where E has been defined in (37), with B = {θ1, θ2}× [0, 2π]
and ξ = (θ, α), ξ′ = (θ′, α′).

Proof: The proof is provided in Appendix E.
This simplification allows us to investigate the critical points
with (θ ̸= θ′) of ambiguity maps

∣∣s(θ)Hs(θ′)
∣∣ such as the

examples drawn on Figure 6. In the case of a closed manifold,
i.e., D = [0, 1], the search procedure (46) becomes two-
dimensional. When D = [θ1, θ2] ⊊ [0, 1], one has to evaluate
(37) in order to compute (47). The search procedure (47)
is thus three-dimensional. Under white noise, γ is shift-
invariant. The search space can be further simplified and is
of dimension 1: indeed, in this case, the product

∣∣s(θ)Hs(θ′)
∣∣

depends only on the difference δ = θ′ − θ. Finding the local
maxima of

∣∣s(θ)Hs(θ′)
∣∣ simply reduces in finding the local

maxima of
∣∣s(θ)Hs(θ + δ)

∣∣ for any fixed θ.
∣∣s(θ)Hs(θ + δ)

∣∣
represents the autocorrelation of s, and it is well known that:∣∣s(θ)Hs(θ + δ)

∣∣ = 1

N

∣∣∣∣ sin(πδN)

sin(πδ)

∣∣∣∣ . (48)
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(a) ρ = 0.9.
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(b) ρ = 0.95.
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(c) ρ = 0.99.

Fig. 6: Examples of ambiguity maps
∣∣s(θ1)Hs(θ2)

∣∣ drawn for θ1, θ2 ∈ D0 for highly correlated noise (see Eq. (52) for the
definition of ρ), with N = 10. Crosses represent local maxima for θ1 ̸= θ2.

The autocorrelation of s is represented in Figure 7. In this
case, in a single cell Dk the set Ξ′ is empty since the
derivative of

∣∣s(θ)Hs(θ + δ)
∣∣ only vanishes for δ = 0. If

D = [0, 1], ϕnon-local can be readily obtained from the first
secondary lobe.

-0.5 0 0.5

0
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0.4

0.6
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1

Fig. 7: Autocorrelation of s under white noise (48) for N =
10. Values θ1, θ2 represent the limits of a cell Dk = [θ1, θ2]

C. On edge effects

If D = [θ1, θ2] ⊊ [0, 1], then B = {θ1, θ2}× [0, 2π] and one
has to take into account edge effects. The result in appendix A
shows that the tubes around the sub-manifolds {γ(θ1, α), α ∈
[0, 2π]} and {γ(θ2, α), α ∈ [0, 2π]} do not self-overlap. We
simply check that those tubes do not overlap with each other:

Proposition 4.3: Consider the tube around the manifold γ
defined in (10) on a cell D = [θ1, θ2] ⊊ [0, 1]. Barring the
unlikely case where the length of the manifold for fixed α is
smaller than ϕ, no edge effects appear if

ϕ < ϕedge ≜
1

2
cos−1

(∣∣s(θ1)Hs(θ2)
∣∣) . (49)

In particular, under white noise, if [θ1, θ2] is a cell Dk as
defined in (6), s(θ1)Hs(θ2) = 0, so that ϕedge = π/4.

Proof: No edge effect occurs if:

ϕ < min
α1,α2

1

2
cos−1

(
γ(θ1, α1)

Tγ(θ2, α2)
)
. (50)

With (59), the minimum (50) is reached for α1 −
α2 = s(θ1)s(θ2). In this case, γ(θ1, α1)

Tγ(θ2, α2) =∣∣s(θ1)Hs(θ2)
∣∣, and the rightmost term of (50) reduces to ϕedge

in (49).

V. NUMERICAL RESULTS

Let us check the validity of Eq. (16). Figure 8-(a) presents
the PFA-threshold relationship given by Eq. (16) and empir-
ically computed thresholds using 108 complex circular white
Gaussian noise samples for a steering vector size of N = 10.
The continuous research over the domain D is replaced by a
discrete search using 30 tests in the cell, where D = D0.

The formula seems to fit very well when the PFA is low
enough (or, equivalently, if the threshold w is high enough),
and is quite different from the on-grid relationship, also plotted
in Figure 8, due to the influence of the second term in (15).
It is not valid for PFA close to 1 because of overlap (it even
exceeds 1). However, such high PFA have no practical interest
for standard applications.

It is not trivial to verify the limit overlap value (44) simply
by looking at Figure 8-(a): overlap stops having a significant
impact on the relationship well before attaining wlim. Let us
check our value of wlim by exhibiting a well-chosen point u
of the tube belonging to more than one cross-section for a
threshold w very close to wlim, with w < wlim, under white
noise. Indeed, consider (for any θ, α ∈ D × [0, 2π] since γ is
shift invariant), the point of the tube

u = cos(ϕ)γ(θ, α) + sin(ϕ)n , (51)

with cosϕ = w and n is the unit norm vector such that:

n ∝ γ(θ, α) +
∑

i,j∈[1,2]

βiβj

(
∂2γ

∂µi∂µj

)
,

where µ is the parametrization defined in (31), and

(β1, β2) = argmax
(β1,β2)∈S1

∥∥∥∥∥∥
∑
i,j

βiβj

(
∂2γ

∂µi∂µj

)∥∥∥∥∥∥
2

,
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(a) Uncorrelated noise : ρ = 0. (b) Highly correlated noise : ρ = 0.9.

Fig. 8: Comparison between the theoretical PFA-threshold given in (16) for (a) and (14) for (b) and the empirical Monte Carlo
PFA-threshold relationships for N = 10 and for several values of ρ (52). The relationship is drawn for the search domain D0.
The on-grid relation (5) is also drawn for comparison purposes. The limit overlap threshold wlim proposed in (24) is in purple.

where the right quantity is maximized numerically with β1 =
sin(φ), β2 = cos(φ). Note that, using (54), n is orthogonal
to γ(θ, α) so that u is indeed a point of the tube since
uTγ(θ, α) = cosϕ = w and ∥u∥ = 1. Figure 9 shows
that u belongs to only one cross-section when ϕ < ϕlim and
to three cross-sections when ϕ > ϕlim. Indeed, defining the

complex vector u by u =

[
Re(u)
Im(u)

]
, see that the derivative of

the product
∣∣uHs(θ + δ)

∣∣2 vanishes to 0 above the threshold
once in the first case, and three times in the second. Using

(11), this means that uT ∂γ

∂θ
= uT ∂γ

∂α
= 0 for 3 values

ξi =
(
θ + δi,∠uHs(θ + δi)

)
so that u belongs to 3 cross-

sections CSξi according to the definition (23). Even though it
is hard to detect visually in Figure 8-(a), overlap occurs right
before the limit threshold value wlim found in (42): the limit
threshold is very conservative and formula (16) can be used
as a good approximate of the true PFA threshold relationship
for thresholds well below that.

Fig. 9: Illustration of the overlap phenomenon: squared pro-
jection of u defined in (51) on s(θ + δ) for θ + δ ∈ D0 for
two values of ϕ: ϕ = 0.95ϕlim and ϕ = 1.05ϕlim

.
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10
-4

Fig. 10: Evolution of the PFA with ρ (see (52)) for fixed
threshold w2 = 0.7, for search domains D0 and D5.

As mentioned before, test (7) is not CFAR with respect to Γ
or D. To showcase this, we will use the following well-known
model of covariance matrices:

Γ(ρ) = To
([
1 ρ . . . ρN−1

])
, (52)

where To(.) is the Toeplitz matrix operator, and ρ is a scalar
that defines the level of correlation of the noise. It can be
seen in Figure 10 that, for a fixed radius, the surface of the
tube around the manifold of whitened signals s(θ) for θ ∈ D
increases with ρ when D = D0, and decreases with ρ for
D = D5. We thus have also compared the formula (15) with
empirical thresholds for colored noise (Γ ̸= I). Results can be
observed in Figures 8-(b) for the edge cell D0 where detection
performance is lower on average. Again, it can be seen that
the derived PFA-threshold relationship seems to fit perfectly
with what is observed empirically for PFA values that are low
enough. Zooming on the leftmost part of the curves, it can be
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seen that the overlapping phenomenon for low PFA values
tends to increase slightly with ρ: the gap between the curves
widens slightly and lasts a bit longer as noise becomes more
correlated. This is not surprising, as correlated noise bends the
manifold, increasing the likeliness of both local and non-local
global overlap. The formula is still a good approximation of
the PFA-threshold relationship well before the limit threshold
for no overlap wlim.

To verify this behavior, we plot the relationship between
ρ and the minimum threshold for which there is no overlap
wlim computed thanks to (26) on Figure 11. The components
wlocal and wnon-local are obtained thanks to (40), (36). As we
suspected, wlim tends to increase with ρ. The arising of non-
local overlap can be explained by looking at the ambiguity
maps drawn on Figure 6: as ρ increases, a side-lobe gets larger
and closer and closer to the origin, increasing the likeliness of
non-local overlap.

0 0.2 0.4 0.6 0.8 1

0.55

0.6

0.65

0.7

0.75

Fig. 11: Comparison of the limit global overlap thresholds wlim
(purple), wlocal (red) and wnon-local (blue) versus ρ obtained with
(26), (40) and (36) with N = 10, in the cell D0.

VI. CONCLUSION

This article addresses the off-grid detection problem using
the NMF-GLRT by finding an analytical PFA-threshold re-
lationship. Several new closed-form expressions under white
noise have been expressed. We then analyzed its domain of
validity thanks to the application of results on the overlap phe-
nomena for tubes around multi-dimensional manifolds to the
off-grid signal model. This analysis shows that our relationship
is valid for most common radar applications for which the PFA

is low enough. Finally, simulations comparing our theoretical
relationship with empirical thresholds computed with Monte
Carlo trials validate our results.

At first glance, the tools used in this paper cannot be applied
to the analysis of the PD of the off-grid GLRT or the extension
of the PFA-threshold relationship to the adaptive case for Γ
unknown. This is because, in both cases, the distribution of the
whitened received vector is not uniform over the unit sphere,
and so the probabilities cannot be obtained directly as a ratio
of surfaces anymore.

APPENDIX

In the first section of the appendix, we prove that the tube
Ton-grid, defined in (13) for fixed θ, does not overlap. Then, we
provide proofs for the corollaries of Section IV.

A. On the absence of overlap of the tube Ton-grid (13) for fixed
θ

Since
∥∥∥∥∂γ(θ, α)∂α

∥∥∥∥ = 1, γ(θ, .) is parameterized by arc

length. The radius of first curvature is then defined as

ρ =

∥∥∥∥∂2γ(θ, α)

∂α2

∥∥∥∥−1

=1. Then, since sin(cos−1 w) < 1 for all

w, there is no local overlap according to (9).

Let us prove there is no non-local overlap either by search-
ing the pairs of points of interest (α, α′) in Ξ, that verify:

γ(θ, α′)T γ̇(θ, α) = γ(θ, α)T γ̇(θ, α′) = 0 .

Those conditions imply that:

(cosα′γ1(θ)+sinα′γ2(θ))
T
(cosαγ2(θ)− sinαγ1(θ)) = 0 ,

that leads to the condition:

− cosα′ sinα∥γ1(θ)∥+ sinα′ cosα∥γ2(θ)∥ = 0 ,

and equivalently: sin(α− α′) = 0.

Thus, the set Ξ is defined as:

Ξ = {(α, α′) : α ̸= α′, sin(α− α′) = 0} ,

= {(α, α+ π), α ∈ [0, π]} .

For any α ∈ [0, π], we have γ(α, θ)Tγ(α + π, θ) = −1, so

that ϕnon-local =
1

2
arccos(−1) =

π

2
according to (36): there

is no non-local overlap for Ton-grid. Thus, wlim = cosϕlim = 0
and the surface given by (13) is exact for any threshold w.

B. Proof of Proposition 4.1

Proof: Let γ(ξ)Tγ(ξ′) = f(ξ−ξ′). The quantity h(ξ, ξ′)
depends on ξ and ξ′ through γ(ξ)Tγ(ξ′) = f(ξ − ξ′) in
the denominator, and, by the way of Pξ′ in the numerator,

γ(ξ)T
∂γ(ξ′)

∂ξ′k
and

∂γ(ξ)T

∂ξi

∂γ(ξ′)

∂ξ′j
for k ∈ [1,M ] and (i, j) ∈

[1,M ]2. By using the derivatives of f , it can be shown that
those two terms and h depend only on the difference ξ − ξ′.

C. Proof of Corollary 4.1.2

To prove Corollary 4.1.2, we need to introduce the following
lemma on the existence of the parametrization µ:

Lemma A.1: Let γ(ξ) be a M -dimensional shift-invariant
manifold. The parametrization µ chosen in (31) is well de-
fined, and its first fundamental form is equal to I:

∂γT

∂µi

∂γ

∂µj
= δi,j .



13

Proof: Consider G = (gij)1≤i,j≤N defined as in (29).
Note that by differentiating γTγ = 1 twice, we have:

γT ∂2γ

∂ξi∂ξj
= − ∂γ

∂ξi

T ∂γ

∂ξj
. (53)

Let f(ξ − ξ′) = γ(ξ)Tγ(ξ′). It can be rewritten equivalently
f(y) = γ(ξ)Tγ(ξ + y), which gives, using (53):

gij =
∂γT

∂ξi

∂γ

∂ξj
= − ∂2f

∂yi∂yj

∣∣
y=0

.

Thus, the coefficients gij do not depend on ξ, and so neither
does G. We can define G1/2 as in (30) since G is positive
definite. Then, the parametrization (31) in the corollary is well
defined, so that ξ = G−1/2µ. Then:

∂γT

∂µi

∂γ

∂µj
=
∑
m,k

∂ξk
∂µi

∂γT

∂ξk

∂γ

∂ξm

∂ξm
∂µj

,

=
∑
m,k

G
−1/2
k,i Gk,mG

−1/2
m,j ,

=
(
G−T/2GG−1/2

)
i,j

,

= δi,j .

The following proves Corollary 4.1.2:
Proof: Equation (32) has been proved in the above

lemma. Let us prove (33). First, note that differentiating
γTγ = 1 twice yields:

γT ∂2γ

∂µi∂µj
= − ∂γ

∂µi

∂γ

∂µj
= −δij . (54)

Next, let us introduce Christoffel symbols of the first kind:

Γijk =
∂2γT

∂µi∂µj

∂γ

∂µk
. (55)

It can be easily verified that those symbols can be expressed
as a function of the derivatives of the first fundamental form
G′ =

(
g′ij
)
1≤i,j≤N

:

Γijk =
1

2

(
∂g′ik
∂µj

+
∂g′jk
∂µi

−
∂g′ij
∂µk

)
,

which gives, since according to (32) g′ij = δi,j :

Γijk = 0 . (56)

Let us now consider Equation (28) with parametrization µ.
The denominator reduces to 1:

∑
i,j

βiβj
∂γT

∂µi

∂γ

∂µj
=
∑
i,j

βiβj δi,j =
∑
i

β2
i = 1 .

We thus have:

cot2 ϕlocal = sup
β∈SM−1

∥∥∥∥∥∥
∑
i,j

βiβj (I−Pµ)
∂2γ

∂µi∂µj

∥∥∥∥∥∥
2

,

= sup
β∈SM−1


∥∥∥∥∥∥
∑
i,j

βiβj
∂2γ

∂µi∂µj

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥Pµ

∑
i,j

βiβj
∂2γ

∂µi∂µj

∥∥∥∥∥∥
2
 , (57)

where the maximization on µ has been omitted since the

manifold γ is shift-invariant.
(
γ,

∂γ

∂µ1
, . . . ,

∂γ

∂µM

)
forms an

orthonormal family so that the second term of (57) is, with
Pythagoras’s theorem:∥∥∥∥∥∥Pµ

∑
i,j

βiβj
∂2γ

∂µi∂µj

∥∥∥∥∥∥
2

=

∣∣∣∣∣∣
∑
i,j

βiβjγ
T ∂2γ

∂µi∂µj

∣∣∣∣∣∣
2

+
∑
k

∣∣∣∣∣∣
∑
i,j

βiβj
∂γT

∂µk

∂2γ

∂µi∂µj

∣∣∣∣∣∣
2

,

=

∣∣∣∣∣∣
∑
i,j

βiβjδi,j

∣∣∣∣∣∣
2

+
∑
k

∣∣∣∣∣∣
∑
i,j

βiβjΓijk

∣∣∣∣∣∣
2

,

= 1 ,

using (54), (55) and (56).

D. Proof of Corollary 4.1.5

To prove Corollary 4.1.5, we must introduce the following
Lemma to use Corollary 4.1.2.

Lemma A.2: Under white noise (Γ = σ2I), the manifold γ
as defined in (10) is shift invariant.

Proof: The complex manifold s(θ) can be expressed as:

s(θ)Hs(θ′) =
1

N

N−1∑
k=0

e2iπk(θ
′−θ),

= f(θ − θ′) ,

= Re (f(θ − θ′)) + i Im (f(θ − θ′)) .

where f(θ−θ′) = eiπ(N−1)(θ′−θ) sin(πN(θ′ − θ))

N sin(π(θ′ − θ))
. Thus, one

finds:

γ(θ, α)Tγ(θ′, α′) = cos(α− α′)Re (f(θ − θ′))

+ sin(α− α′) Im (f(θ − θ′)) ,

which shows the manifold of interest γ is shift-invariant.
We are now able to prove Corollary 4.1.5:

Proof: In order to find a parametrization µ of γ satisfying
the condition (32), one can use the following vector d′(v)
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instead of d(θ) in the derivations, changing the origin of time
(d and d′ model the same problem):

(d′(v))n=
1√
N

exp

(
2iπ

(
n− N − 1

2

)
l−1v

)
,

for 0 ≤ n ≤ N − 1 and where

l = π

√
N2 − 1

3
, v = l θ .

The parametrization µ = (v, α) for γ written with d′

verifies condition (32). Let us compute (33):

∂2γT

∂2v

∂2γ

∂2v
= C ,

∂2γT

∂v ∂α

∂2γ

∂2v
=

∂2γT

∂v ∂α

∂2γ

∂2α
= 0 ,

∂2γT

∂2v

∂2γ

∂2α
=

∂2γT

∂v ∂α

∂2γ

∂v ∂α
=

∂2γT

∂2α

∂2γ

∂2α
= 1 ,

where C has been defined in (43). Injecting in (33), with β1 =
cosφ, β2 = sinφ and maximizing on φ, we get:

cot2 ϕlocal = max
φ

C cos4 φ+ 6 cos2 φ sin2 φ+ sin4 φ− 1 ,

= max
φ

(C − 5) cos4 φ+ 4 cos2 φ . (58)

The maximum is obtained for cos2 φ =
2

5− C
. Then, inject-

ing this value in (58) and simplifying, we obtain:

cot2 ϕlocal =
4

5− C
.

Since w2
local = cos2

(
tan−1 1√

cot2 ϕlocal

)
, result (42) holds.

E. Proof of Corollary 4.1.6

Proof: First, see that:

γ(θ, α)Tγ(θ′, α′) = cos(α− α′)Re
(
s(θ)Hs(θ′)

)
+ sin(α− α′) Im

(
s(θ)Hs(θ′)

)
,

= Re
(
e−i (α−α′) s(θ)Hs(θ′)

)
,

≤
∣∣s(θ)H s(θ′)

∣∣ , (59)

with the equality attained for α − α′ = s(θ)Hs(θ′). This
implies that the only points of Ξ worth investigating are the
pairs of points (θ, α), (θ′, α′) with (α, α′) chosen arbitrarily
so that α−α′ = s(θ)Hs(θ′) and (θ, θ′) being a critical point
of the quantity

∣∣s(θ)H s(θ′)
∣∣ which define the set Ξ′ in (45).
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