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Variance of cone-beam pair-wise consistency
conditions in helical CT

Mélanie Mouchet, Simon Rit, Jérome Lesaint and Jean Michel Létang

Abstract—Data consistency conditions (DCC) are mathemati-
cal equations characterizing the redundancy in X-ray projections.
They have been successfully used to calibrate the scanner
geometry or correct projections (e.g. for beam hardening or
scatter). Evaluating the DCC implies the computation of moments
of the projections. Since the projections are subject to random
noise, DCC will be as well. Accounting for this uncertainty would
likely improve DCC-based algorithms which estimate some model
parameters by maximizing the consistency between projections.
In this work, we calculate the variance of DCC assuming known
and uncorrelated noise in the projection pixels, following the
approach used to compute noise in computed tomography (CT)
images reconstructed with a filtered-backprojection algorithm.
The DCC are computed between pairs of cone-beam projections
acquired on a helical trajectory. The variance formula was
validated with batch simulations. Large noise differences were
observed in this set of DCC, up to two orders of magnitude,
which demonstrates that it is crucial to account for this noise in
DCC-based algorithms.

Index Terms—statistical noise, data consistency conditions,
helical CT

I. INTRODUCTION

Data consistency conditions (DCC) are mathematical equa-
tions that must be verified by the measured data. DCC are
mainly used to geometrically calibrate the scanner or reduce
image artifacts in computed tomography (CT). These DCC-
based algorithms rely on the minimization of a cost function
defined from the DCC. To our knowledge, while there have
been many papers on DCC and their applications, none has
considered the statistical nature of the input data. However,
as previously shown for iterative reconstruction algorithms
minimizing weighted least squares from low-dose X-ray pro-
jections [1], accounting for the variance of the DCC in the
cost function could increase the robustness of DCC-based
algorithms.

The main goal of this work is to derive the noise of cone-
beam pair-wise DCC in helical CT assuming known and
uncorrelated noise in projection pixels. The derivation follows
the approach used to calculate the noise in CT images recon-
structed with filtered backprojection algorithms, e.g. in [2].
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II. METHODS

A. Cone-beam pair-wise DCC in helical CT

Let sλ and sλ′ be two source positions on a helical
trajectory and gλ and gλ′ the corresponding two-dimensional
(2D) cone-beam projections as illustrated in Figure 1. The
detector is cylindrical of radius D. A detector pixel is defined
by its cylindrical coordinates (γ, v) in the detector frame with
γ ∈ [−γmax, γmax] and v ∈ [−vmax, vmax]. Let Πτ be a
plane containing the two source positions sλ and sλ′ , where
τ = (λ, λ′, β) characterizes this plane and β ∈ (−π/2, π/2)
is the angle with a chosen reference plane noted Πλ,λ′ [3]. We
only consider source pairs (sλ, sλ′) which define a so-called
baseline which is not parallel to the axis of the source helix
and we note bλ,λ′ = (b1, b2, b3) = sign(λ′ − λ)

sλ′ − sλ
∥sλ′ − sλ∥

the baseline direction. The plane Πτ intersects the projection
gλ along a curve with a parametric equation vτ (γ). We define
the moment of the projection gλ

Mτ =

∫ γmax

−γmax

sign (γs)πDh(γs − γ)√
b21 + b22

√
D2 + vτ (γ)2

gλ(γ, vτ (γ))

sinc(γs − γ)
dγ

(1)
where γs is the detector angle at which the baseline and the
detector cylinder at gλ intersect, and h is the Hilbert kernel
defined by h(γ) = 1/(πγ). Equation 1 was obtained by a
suitable change of variable in the zero-th order moment used
for fan-beam DCC with sources on a line [4] after observing
that the intersection of Πτ with gλ and gλ′ results in two
fan-beam projections with the corresponding sources on the
baseline. If these two fan-beam projections are untruncated,

gλ(γ, vτ (γ))

γ
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Fig. 1: Illustration of the cone-beam pair-wise geometry.

the DCC state that Mτ = Mτ ′ with τ ′ = (λ′, λ, β) (Mτ ′ is
therefore a moment of the projection gλ′ ). We sample B planes
with the same baseline (B depends on the overlap between the
two FOVs), define the mean moment over the B planes

Mλ,λ′ =
1

B

B∑
b=1

Mτb
(2)
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and build our cone-beam pair-wise consistency metric
|Mλ,λ′ −Mλ′,λ|.

B. Discretization
The detector is made of Ncols×Nrows such that γ and v are

discretized as γi = −γmax + (i− 1)∆γ , i ∈ {1, ..., Ncols} and
vj = −vmax+(j−1)∆v, j ∈ {1, ..., Nrows}. The discretization
of Equation 1 yields

Mτ ≃
Ncols∑
i=1

aτ (γi)gλ(γi, vτ (γi)), (3)

aτ (γi) =
sign (γs)πDhν(γs − γi)√
b21 + b22

√
D2 + vτ (γi)2

1

sinc(γs − γi)
∆γ (4)

where

hν(γ) =
1− cos(ν πγ

∆γ
)

2πγ
+

γ(1 + cos(ν πγ
∆γ ))

2π(γ2 − ∆2
γ

ν2 )
(5)

are the coefficients after discretization of a band-limited ver-
sion of h(γs−γ) using a Hann window and ν ∈ (0, 1] charac-
terizes a fraction of Nyquist’s frequency for the discretization
in the ν direction and controls the bandwidth of the kernel.
vτ (γi) ∈ [vj , vj+1) is the detector axial coordinate of the
intersection between Πτ and the projection column γ = γi.
The value of gλ(γi, vτ (γi)) is obtained by linear interpolation

gλ(γi, vτ (γi)) ≃ (1−wi,j)gλ(γi, vj) +wi,jgλ(γi, vj+1) (6)

where
wi,j =

vτ (γi)− vj
∆v

(7)

is the linear interpolation weight.

C. Variance formula of the consistency metric
The variance of difference of the mean moments is given

by

Var
(
Mλ,λ′ −Mλ′,λ

)
= Var

(
Mλ,λ′

)
+Var

(
Mλ′,λ

)
(8)

as the two mean moments Mλ,λ′ and Mλ′,λ are uncorrelated
because they apply to two different projections. To express
Var

(
Mλ,λ′

)
in terms of the noise of the projection pixels

Var (gλ(γ, v)) ≃ 1/(I0 exp(−gλ(γ, v))), I0 being the incident
number of photons, we assume that the projection pixels are
uncorrelated [2]. Yet, two moments Mτk

and Mτl
may use the

same pixels of the projection gλ and be correlated, which is
accounted for by computing the co-variance Cov (Mτk

,Mτl
).

The variance of the mean moment is

Var
(
Mλ,λ′

)
=

1

B2

B∑
b=1

Var (Mτb
)

+
2

B2

∑
1≤k<l≤B

Cov (Mτk
,Mτl

) (9)

where

Var (Mτb
) =

Ncols∑
i=1

aτb

2(γi)(1− wi,j)
2Var (gλ(γi, vj))

+

Ncols∑
i=1

aτb

2(γi)w
2
i,jVar (gλ(γi, vj+1)) (10)

and

Cov (Mτk
,Mτl

) =

Ncols∑
i=1

aτk
(γi)aτl

(γi)V
k,l
i,j Var (gλ(γi, vjk))

+

Ncols∑
i=1

aτk
(γi)aτl

(γi)W
k,l
i,j Var (gλ(γi, vjk+1)) (11)

with

V k,l
i,j =(1− wi,jk) [(1− wi,jl)δjk,jl + wi,jlδjk,jl+1] , (12)

W k,l
i,j =wi,jk [(1− wi,jl)δjk+1,jl + wi,jlδjk+1,jl+1] , (13)

and the Kronecker delta δi,j is 1 if i = j and 0 otherwise.
Equation 11 is obtained using the bilinearity of the covariance.

D. Experimental validation

Using the reconstruction toolkit (RTK), we simulated an
acquisition centered around the diaphragm of the Forbild
thorax phantom [5] with the geometry of the Siemens So-
matom go.Sim CT scanner, a pitch of 0.8, 4 rotations and
360 projections per rotation. The variance was verified with
a batch approach, using 10000 realizations of Poisson noise
simulated before taking the logarithm with I0 = 5 × 104

photons/pixel in air. For each realization, the mean moments
Mλ,λ′ and Mλ′,λ are computed for all pairs (λ, λ′) where λ is
a fixed reference projection. Their variance is calculated over
all the realizations. The bandwidth parameter of the kernel was
ν = 0.2.

III. RESULTS

The top plot of Figure 2 shows the variance of Mλ,λ′

and Mλ′,λ for all pairs obtained with the theoretical formula
(Equation 9) and the batch approach with 10000 realizations.
The two sets of curves match with a mean relative error of
0.012 for Var(Mλ,λ′) and 0.011 for Var(Mλ′,λ). The two
projections of a pair with an absolute source angle difference
close to 0° and 180° are roughly similar and noise impacts
their moments similarly. When the absolute difference is about
90° or 270°, the elliptic shape of the Forbild thorax phantom
implies significantly different projections, noise and moments
variance.

The consistency metric for the noiseless acquisition and the
mean of the consistency metric taken over 10 000 realizations
of noisy data, referred to as the mean absolute error (MAE),
is shown at the bottom plot of Figure 2. DCC are very
sensitive to noise when the baseline intersects the object (gray
areas). The largest inconsistencies visible in both noiseless and
noisy moment curves are attributed to systematic sampling and
interpolation errors. The MAE follows quite well the standard
deviation (STD) of the mean moments difference for pairs
with absolute gantry difference around 0° and 180° but not for
pairs with absolute gantry difference around 90° or 270° (see
vertical black lines in Figure 2 bottom plot). This difference
is caused by a noise-induced bias due to the non-linearity
of the logarithm which increases the error measured by the
inconsistency metric. This bias is larger for lateral projections
than antero-posterior ones because in these projections, the
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Fig. 2: Top plot: variance validation results. Bottom plot: illustration of the cone-beam pair-wise DCC.

photons are more attenuated. The logarithm decreases greatly
for a small number of photons leading to a higher bias than
for a high number of photons.

The MAE would be the mean absolute deviation of the
moments difference if the mean were zero. For a normal
distribution, the ratio of the mean absolute deviation to the
standard deviation is equal to

√
2/π. The ratio of the MAE

over STD deviates from this value due to the noise-induced
bias. In the bottom plot of Figure 2, we also computed the
mean absolute deviation (MAD) of the moments difference
with respect to the mean of the consistency metric over the 104

realizations. The ratio MAD/STD is approximately constant
for all pairs (λ, λ′) and equals

√
2/π which shows that the

noise not only impacts the variance of the consistency metric
but also its average.

IV. DISCUSSION AND CONCLUSIONS

We proposed a theoretical formula of the variance for
cone-beam pair-wise DCC in helical CT and validated it
with batch simulations. The resulting formula explains the
observed variability of the DCC depending on the angular

distance between source positions. The other differences were
explained by discretization errors or the noise-induced bias
for projections with a low number of photons. For example,
the variance is several orders of magnitude larger when the
baseline (defined by the two source positions) intersects the
object. Prediction of the DCC variance should therefore be
accounted for in DCC-based estimation algorithms.
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