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Abstract
We give a probabilistic analysis of the unit-demand Euclidean capacitated vehicle routing problem
in the random setting. The objective is to visit all customers using a set of routes of minimum total
length, such that each route visits at most k customers.

The best known polynomial-time approximation is the iterated tour partitioning (ITP) algorithm,
introduced in 1985 by Haimovich and Rinnooy Kan. They showed that the solution obtained by the
ITP algorithm is arbitrarily close to the optimum when k is either o(

√
n) or ω(

√
n), and they asked

whether the ITP algorithm was “also effective in the intermediate range”.
In this work, we show that the ITP algorithm is at best a (1 + c0)-approximation, for some

positive constant c0, and is at worst a 1.915-approximation.
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1 Introduction

Unit-Demand Euclidean CVRP. In the capacitated vehicle routing problem (CVRP), we
are given a set of n customers and a depot. The customers and the depot are located in
some metric space. There is an unlimited number of identical vehicles, each of an integer
capacity k. The route of a vehicle starts at the depot and returns there after visiting at most
k customers. The objective is to visit every customer, using a set of routes of minimum
total length. Vehicle routing is a basic type of problems in operations research, and several
books (see [3, 11, 14, 25] among others) have been written on those problems. We study the
unit-demand Euclidean version of the problem, in which each customer has unit demand, all
locations (the customers and the depot) lie in the two-dimensional plane, and distances are
given by the Euclidean metric. The unit-demand Euclidean CVRP is a generalization of the
Euclidean traveling salesman problem and is known to be NP-hard for all k ≥ 3 (see [5]).
Unless explicitly mentioned, all CVRP instances in this paper are assumed to be unit-demand
Euclidean.

ITP Algorithm. The best known polynomial-time approximation for the CVRP is a very
simple algorithm, called iterated tour partitioning (ITP). This algorithm first computes a
traveling salesman tour (ignoring the capacity constraint) using some other algorithm as a
black box, then partitions the tour into segments such that the number of customers in each
segment is at most k, and finally, for each segment, connects the endpoints of that segment to
the depot so as to make a tour. The ITP algorithm was introduced and refined by Haimovich
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and Rinnooy Kan [15] and Altinkemer and Gavish [2] in the 1980s. Its performance is
parameterized by the choice of traveling salesman tour : the approximation ratio of the ITP
algorithm is α + 1, where α is the approximation ratio of the algorithm used to compute the
traveling salesman tour in the first step. Since the Euclidean traveling salesman problem
admits a polynomial-time approximation scheme (PTAS) by Arora [4] and Mitchell [20],
α can be set to any constant strictly greater than 1.

Random Setting. Given the difficult challenges posed by the CVRP, researchers turned to
an analysis beyond worst case, by making some probabilistic assumptions on the distribution
of the input instance. In 1985, Haimovich and Rinnooy Kan [15] gave the first probabilistic
analysis on the ITP algorithm for the CVRP, where the customers are independent, identically
distributed (i.i.d.) uniform random points in [0, 1]2. An event E occurs asymptotically almost
surely (a.a.s.) if limn→∞ P[E ] = 1. They showed that, the ITP algorithm is a.a.s. an
(α + o(1))-approximation for the CVRP when k is either o(

√
n) or ω(

√
n). The performance

of the ITP algorithm in the intermediate range of k = Θ(
√

n) was unknown. They asked
in [15] whether the ITP algorithm was “also effective in the intermediate range”.

1.1 Our Results
In our work, we study the open question in the random setting raised by Haimovich and
Rinnooy Kan [15]. We give a probabilistic analysis of the ITP algorithm when the points
are i.i.d. random, with a focus on the range of k = Θ(

√
n). Our first main result is a lower

bound: even in the random setting, the ITP algorithm is at best a (1 + c0)-approximation
a.a.s., for some constant c0 > 0 (Theorem 1), see Section 3.

▶ Theorem 1. Consider the iterated tour partitioning (ITP) algorithm for the unit-demand
Euclidean capacitated vehicle routing problem. Let V be a set of n i.i.d. uniform random
points in [0, 1]2. Let k =

√
n. For some fixed depot1 O ∈ R2, there exists a constant

c0 > 0, such that, for any constant α > 1, there exists an α-approximate traveling salesman
tour on V ∪ {O}, such that the approximation ratio of the ITP algorithm is at least 1 + c0
asymptotically almost surely.

▶ Remark. The α-approximate traveling salesman tour in Theorem 1 is constructed using
Karp’s partitioning algorithm [16].

On the other hand, the approximation ratio of the ITP algorithm in the deterministic
setting is at most α + 1 due to Altinkemer and Gavish [2]. When the points are i.i.d. uniform
random in the unit square, Bompadre, Dror, and Orlin [10] showed that the approximation
ratio of the ITP algorithm is at most α + 0.995, a.a.s.2 Here, using a different approach from
[10], we further improve the upper bound on the approximation ratio in this random setting
to α + 0.915, a.a.s. (Theorem 2), see Section 4.

▶ Theorem 2. Consider the iterated tour partitioning (ITP) algorithm for the unit-demand
Euclidean capacitated vehicle routing problem. Let V be a set of n i.i.d. uniform random
points in [0, 1]2. Let k be any integer in [1, n]. Let the depot O be any point in R2. For any
constant α ≥ 1 and any α-approximate traveling salesman tour on V ∪{O}, the approximation
ratio of the ITP algorithm is at most α + 0.915 asymptotically almost surely.

1 More precisely, O =
(

1
2 , −1000

)
.

2 The analysis in [10] focused on the case of α = 1, though that analysis can be easily generalized to
any α ≥ 1. Bompadre, Dror, and Orlin [10] noted in their work that a ratio of α + 0.985 is achievable
without giving the proof.
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1.2 Other Related Work
PTAS and Quasi-PTAS Results for the CVRP. Despite the difficulty of the CVRP, there
has been progress on several special cases in the deterministic setting. A series of papers
designed PTAS algorithms for small k: Haimovich and Rinnooy Kan [15] gave a PTAS
when k is constant; Asano et al. [5] extended techniques in [15] to achieve a PTAS for
k = O(log n/ log log n); and Adamaszek, Czumaj, and Lingas [1] designed a PTAS for
k ≤ 2logf(ϵ)(n). For higher dimensional Euclidean metrics, Khachay and Dubinin [17] gave a
PTAS for fixed dimension ℓ and k = O(log

1
ℓ (n)). For unbounded k and the two-dimensional

plane, Das and Mathieu [13] designed a quasi-polynomial time approximation scheme.

Probabilistic Analyses. The instance distribution when the customers are i.i.d. random
points is perhaps the most natural probabilistic setting. In that setting, Rhee [23] and
Daganzo [12] analyzed the value of an optimal solution to the CVRP for the case when k

is fixed. Baltz et al [6] gave an optimal algorithm for the multiple depot vehicle routing
problem when both the customers and the depots are i.i.d. random points and assuming
unlimited tour capacity.

Analyses of the ITP Algorithm. Because of the popularity of the ITP algorithm, its
approximation ratio has already been much studied and bounds were utilized in a design of
best-to-date approximation algorithms for the CVRP, see, e.g., [9]. In the metric version of
the CVRP, the approximation ratio of the ITP algorithm is at most (1 − 1

k )α + 1 due to
Altinkemer and Gavish [2]. Bompadre, Dror, and Orlin [9] reduced this bound by a factor
of Ω( 1

k3 ). On the other hand, Li and Simchi-Levi [18] showed that the ITP algorithm is at
best a (2 − 1

k )-approximation algorithm on general metrics even if α = 1. Despite of a huge
amount of research, the ITP algorithm by Haimovich and Rinnooy Kan [15] and Altinkemer
and Gavish [2] remains the polynomial-time algorithm with the best approximation guarantee
for the Euclidean CVRP.

Other Applications of the ITP Algorithm. Very recently, Blauth, Traub, and Vygen [8]
exploited properties of tight instances in the analysis of the ITP algorithm, and used those
properties in their design of the best-to-date approximation algorithm for metric CVRP with
a ratio of α + 1 − ϵ, where ϵ is roughly 1

3000 .
Because of its simplicity, the ITP algorithm is versatile and has been adapted to other

vehicle routing problems. For example, Mosheiov [21] studied the vehicle routing with pick-up
and delivery services, and showed that the ITP algorithm is efficient through worst-case
analysis and numerical tests. Li, Simchi-Levi, and Desrochers [19] considered the vehicle
routing problem with constraints on the total distance traveled by each vehicle. They showed
that the ITP algorithm has a good worst-case performance when the number of vehicles is
relatively small.

2 Notations and Preliminaries

In this section, we introduce some notations and we formally define the problem and the
algorithm. We also recall some preliminary results on the traveling salesman problem.

Let δ(·, ·) denote the Euclidean distance between two points or between a point and a
finite set of points in R2. For any path P of points x1, x2, . . . , xm in R2 where m ∈ N, define
cost(P ) =

∑m−1
i=1 δ(xi, xi+1).
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Capacitated Vehicle Routing Problem (CVRP). Given a set V of n points in R2, a depot
O in R2, and an integer capacity k ∈ [1, n], the goal is to find a collection of tours covering
V of minimum total cost, such that each tour visits O and at most k points in V . Let OPT
denote the value of an optimal solution to the CVRP.

For any point x ∈ V , let ℓ(x) = δ(O, x). Let rad denote the radial cost, defined by
rad = 2

k ·
∑

x∈V ℓ(x).

▶ Lemma 3 ([15]). Let T ∗ be an optimal traveling salesman tour on V ∪ {O}. Then
OPT ≥ max(rad, cost(T ∗)).

Iterated Tour Partitioning (ITP). We review the iterated tour partitioning (ITP) algorithm
defined by Altinkemer and Gavish [2]. The ITP algorithm consists of two phases. In the first
phase, it runs an approximation algorithm for the traveling salesman problem on V ∪ {O}.
Let α denote the approximation ratio of this algorithm. Let T = (O, x1, x2, . . . , xn, O) denote
the resulting traveling salesman tour. In the second phase, the ITP algorithm selects the
best of the k solutions constructed as follows. For each i ∈ [1, k], let ni = ⌈(n − i)/k⌉ + 1
and define a solution Si to the CVRP to be the union of the ni tours (O, x1, . . . , xi, O),
(O, xi+1, . . . , xi+k, O), (O, xi+k+1, . . . , xi+2k, O), . . . , (O, xi+(ni−2)k+1, . . . , xn, O). In other
words, the solution Si partitions the traveling salesman tour T into segments with k points
each, except possibly the first and the last segments containing less than k points.3 The
output of the ITP algorithm is a solution among S1, . . . , Sk that achieves the minimum cost.
The running time of the second phase of the ITP algorithm is O(n), see [2].

Let ITP(T ) denote the cost of the output solution. The following classic bound on ITP(T )
was due to Altinkemer and Gavish [2] and, together with Lemma 3, immediately implies that
the ITP algorithm is a (α + 1)-approximation, where α is the approximation ratio of the
traveling salesman tour T .

▶ Lemma 4 ([2]). Let T be any traveling salesman tour on V ∪ {O}. Then

ITP(T ) ≤ rad +
(

1 − 1
k

)
· cost(T ).

Probabilistic Analysis of the Traveling Salesman Problem. Beardwood, Halton, and
Hammersley [7] analyzed the value of an optimal solution to the traveling salesman problem
in the uniform random setting, as follows.

▶ Lemma 5 ([7, 24]). Let V be a set of n i.i.d. uniform random points with bounded support
in R2. Let M denote the measure of the support. Let T ∗

n denote an optimal traveling salesman
tour on V . Then there exists a universal constant4 β such that

lim
n→∞

cost(T ∗
n)√

M · n
= β, with probability 1.

In addition, β0 < β < β1, where β0 = 0.62866 and β1 = 0.92117.

3 The number of points on the first segment is i, and the number of points on the last segment is
n − i + k − ⌈(n − i)/k⌉ · k.

4 The constant β does not depend on the support.
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3 Lower Bound on the Approximation Ratio

In this section, we prove Theorem 1 by providing a lower bound on the approximation ratio
ITP(T )/OPT of the ITP algorithm, where T is a well-chosen traveling salesman tour.

In the random setting, one may view an ITP solution as partitioning the unit square into
small regions and dedicating one tour to each small region. The cost of the solution is then
roughly the sum of two terms: the radial cost, incurred by traveling between the depot and
the small region; and the local cost, incurred by traveling from customer to customer within
the small region.

To show that an ITP solution is at best a (1 + c0)-approximation for the CVRP in the
random setting, we show the existence of another solution that is significantly better than
the ITP solution. To construct the new solution, the idea is that instead of traveling straight
between the depot and the small region, a smarter tour might as well make some small
detours to visit some additional nearby customers en route to the small region. We call that
a mixed tour. This modification of the solution has a positive effect because those nearby
customers are covered at little additional cost, thus saving the local cost of covering those
customers; but it also has a negative effect because visiting those nearby customers uses
up some of the tour’s capacity, and to account for that the definition of the small regions
must be adjusted, and their area shrunk. Controlling the two competing effects so that on
balance the net result is an improvement requires a delicate definition of regions. We start
by decomposing the plane into regions of three types. Then we construct a solution in which
a single tour may visit regions of different types, see Figure 1. The mixed structure of the
tours enables us to show that the constructed solution has significantly smaller cost.

Let the depot O ∈ R2 be
( 1

2 , −1000
)
.

Lemmas 6 and 7 are central to the proof of Theorem 1 and contain main novelties in this
section.

▶ Lemma 6. Let V be a set of n i.i.d. uniform random points in [0, 1]2. Let β be defined
as in Lemma 5. Then there exists an absolute constant c1 ∈ (0, β) such that for any fixed
ϵ1 > 0, OPT < (1 + ϵ1)(rad + β

√
n) − c1

√
n, a.a.s.

▶ Lemma 7. Let V be a set of n i.i.d. uniform random points in [0, 1]2. Let β be defined as
in Lemma 5. Then for any α > 1, there exists an α-approximate traveling salesman tour T

on V ∪ {O}, such that for any fixed ϵ1 > 0, ITP(T ) > (1 − ϵ1)(rad + β
√

n), a.a.s.

Proof of Theorem 1 using Lemmas 6 and 7. Let ϵ1 > 0 be a constant to be set later. From
Lemma 6, there exists an absolute constant c1 ∈ (0, β), such that OPT < (1 + ϵ1)(rad +
β

√
n) − c1

√
n, a.a.s. From Lemma 7, for any α > 1, there exists an α-approximate traveling

salesman tour T on V ∪ {O}, such that ITP(T ) > (1 − ϵ1)(rad + β
√

n), a.a.s. Hence

ITP(T )
OPT >

(1 − ϵ1)(rad + β
√

n)
(1 + ϵ1)(rad + β

√
n) − c1

√
n

, a.a.s.

To analyze rad, let L be the expectation of ℓ(x) for x ∈ [0, 1]2 with uniform distribution.
Since the depot O is at a constant distance from [0, 1]2, L is a constant. By the weak law of
large numbers,∣∣∣∣ 1n ∑

x∈V

ℓ(x) − L

∣∣∣∣ < ϵ1, a.a.s.
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Recall that rad = 2√
n

∑
x∈V ℓ(x). Hence (L−ϵ1)·2

√
n < rad < (L+ϵ1)·2

√
n, a.a.s. Denoting

the function f as

f(ϵ1) = (1 − ϵ1)(2L − 2ϵ1 + β)
(1 + ϵ1)(2L + 2ϵ1 + β) − c1

,

we have

ITP(T )
OPT > f(ϵ1), a.a.s.

Since L, β and c1 are positive constants and c1 < β (Lemma 6), we have

lim
ϵ1→0

f(ϵ1) = 1 + c1

2L + β − c1
.

Let c0 = 1
2 · c1

2L+β−c1
, which is a positive constant. Choosing ϵ1 small enough such that

f(ϵ1) > 1 + c0, we have

ITP(T )
OPT > f(ϵ1) > 1 + c0, a.a.s.

◀

In the rest of the section, we prove Lemmas 6 and 7 in Sections 3.1 and 3.2, respectively.

3.1 Proof of Lemma 6
Without loss of generality, we assume that ϵ1 ≤ 1, since otherwise it suffices to prove the
claim for the case of ϵ1 = 1. We construct a solution to the CVRP whose cost is less than
(1 + ϵ1)(rad + β

√
n) − c1

√
n, a.a.s., where the constant c1 > 0 will be chosen later.

3.1.1 Decomposition of the Plane
In order to construct a solution to the CVRP, we describe a decomposition of [0, 1]2 into
rectangles of three types. Let ϵ2 = ϵ1

10 . We partition5 [0, 1]2 into a lower part [0, 1] × [0, 3+ϵ2
4 ]

which is a rectangle of type III, and a collection of boxes of the form [(i − 1)D, iD] × [ 3+ϵ2
4 , 1],

with D = n−1/4 and 1 ≤ i ≤ 1/D. For simplicity, assume that 1/D is an integer. See
Figure 1a.

Next, we decompose each box, see Figure 1b. Let m = 5
40−β · n1/4. For simplicity, assume

that m is an integer. The upper half of a box is partitioned into m type I rectangles of the
form [(i − 1)D, iD] × [1 − (j − 1)H, 1 − jH], where H = 1−ϵ2

8·m and 1 ≤ j ≤ m. The lower
left part of a box is partitioned into 2m slices such that each slice is a type II rectangle
of the form [(i − 1)D + (j − 1)W, (i − 1)D + jW ] × [ 3+ϵ2

4 , 7+ϵ2
8 ], with W = β

10 · n−1/2 and
1 ≤ j ≤ 2m. The rest of the box is a single type III rectangle.

For any rectangle R in the resulting decomposition, let nR denote the number of points
of V that are in the rectangle R, and let MR denote the measure of the rectangle R. The
following result relates nR with MR.

▶ Lemma 8. A.a.s. the following event E occurs: (1 − ϵ2) · MR · n < nR < (1 + ϵ2) · MR · n

for all rectangles R in the resulting decomposition.

5 The decomposition is a partition except for the boundaries, that have measure 0.
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O

III
1

1

1000

(a) [0, 1]2 decomposition.

Θ(n−1/4)

Θ(1)

D = n−1/4

I

II III

H =

width W = Θ(n−1/2)

(b) Box decomposition.

A

Bi

P1

P2

P3

O

Si

Qi

(c) A mixed tour.

Figure 1 Decomposition and tour construction. Figure 1a illustrates the decomposition of [0, 1]2.
The highlighted area in Figure 1a represents a box. Figure 1b illustrates the decomposition of a box
into rectangles of types I, II, and III. Figure 1c describes a tour covering points in one rectangle A

of type I and in two rectangles Bi, for i ∈ {1, 2}, of type II.

Proof. Let R be any rectangle in the resulting decomposition. Observe that MR = Ω(1/
√

n).
The expectation of nR is MR · n = Ω(

√
n). By Chernoff bound,

P
[
|nR − MR · n| > ϵ2MR · n

]
≤ e−Ω(

√
n).

Since there are Θ(
√

n) rectangles in the decomposition, the event E occurs with probability
at least 1 − Θ(

√
n) · e−Ω(

√
n) = 1 − o(1). ◀

From now on, we condition on the occurrence of E in Lemma 8.

3.1.2 Construction of a Solution
To construct the solution, we enable a tour to visit points in rectangles of both types I and
II. In each box, there are m rectangles of type I and 2m rectangles of type II. We form m

groups with those rectangles, such that each group contains one rectangle of type I and two
rectangles of type II. For each group, we cover the points in the group by a particular tour
on these points in addition to the depot O, in a way to be described shortly. For all points
in the rectangles of type III, we construct an optimal solution to the CVRP on those points
with depot O and with capacity

√
n.
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A mixed tour is a tour covering points in a single type I rectangle and two type II
rectangles. Consider a box B and a group in B consisting of a rectangle A of type I and two
rectangles B1 and B2 of type II. We construct a specific mixed tour Tmix defined as follows.

Let P1 denote the bottom left corner of the rectangle A. Let T0 denote an optimal
traveling salesman tour on the points in A ∪ {P1}. For each i ∈ {1, 2}, we define an O-to-P1
path Ti visiting the points in Bi as follows. Let Si and Qi denote the top left and bottom
left corners of the rectangle Bi. Let Ti denote the concatenation of the segment OQi, a
Qi-to-Si path visiting the points in Bi in non-decreasing order on the y-coordinate (breaking
ties arbitrarily), and the segment SiP1. Finally, the tour Tmix is defined as the concatenation
of T0, T1, and T2. See Figure 1c. This completes our construction.

Since the measure of A is D · H and the measure of Bi (for each i ∈ {1, 2}) is 1−ϵ2
8 · W ,

Event E implies that the total number of points in A ∪ B1 ∪ B2 is at most

(1 + ϵ2)
(

D · H + 2 · 1 − ϵ2

8 · W

)
· n = (1 + ϵ2)(1 − ϵ2)n−1/2 · n <

√
n,

so the constructed solution is feasible.

3.1.3 Cost of a Mixed Tour
Consider any mixed tour Tmix. We follow the same notations as in Section 3.1.2. From the
construction,

cost(Tmix) = cost(T0) + cost(T1) + cost(T2). (1)

Let T ∗
A denote an optimal traveling salesman tour on the points in A. The cost of T0 is

at most cost(T ∗
A) plus the cost of the detour to include the point P1. The cost of the detour

is less than 2(D + H), so

cost(T0) < cost(T ∗
A) + 2(D + H). (2)

Let n1 and n2 denote the number of points of V that are in B1 and B2, respectively. The
costs of T1 and T2 are bounded by the following lemma.

▶ Lemma 9. For i ∈ {1, 2}, we have

cost(Ti) < δ(O, P1) + 1
4000 + niW + (W + 2D). (3)

Proof. Let T ′
i denote the subpath of Ti that is between Qi and Si. We have

cost(Ti) = δ(O, Qi) + cost(T ′
i ) + δ(Si, P1).

To analyze cost(T ′
i ), recall that the Euclidean length of a segment is at most its length in the

ℓ1 metric. Since T ′
i is monotone in the y-coordinate and stays within a rectangle of width

W , its cost is at most δ(Qi, Si) + (ni + 1)W . We have

cost(Ti) ≤ δ(O, Qi) + δ(Qi, Si) + (ni + 1)W + δ(Si, P1).

Let P2 denote the midpoint of the left boundary of the box B, and let P3 denote the
bottom left corner of the box B, see Figure 1c.

We have δ(Qi, Si) = δ(P3, P2) by the construction. Since the box B has width D, we
have δ(O, Qi) ≤ δ(O, P3) + D and δ(Si, P1) ≤ δ(P2, P1) + D by the triangle inequality. Using
δ(P3, P2) + δ(P2, P1) = δ(P3, P1), we have

cost(Ti) ≤ δ(O, P3) + δ(P3, P1) + (ni + 1)W + 2D. (4)
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To analyze δ(O, P3) + δ(P3, P1), let P ′
3 denote the point on the segment OP1 that has

the same y coordinate as P3. By the triangle inequality, δ(O, P3) ≤ δ(O, P ′
3) + δ(P3, P ′

3) and
δ(P3, P1) ≤ δ(P ′

3, P1) + δ(P3, P ′
3). Using δ(O, P ′

3) + δ(P ′
3, P1) = δ(O, P1), we have

δ(O, P3) + δ(P3, P1) ≤ δ(O, P1) + 2δ(P3, P ′
3). (5)

It remains to bound δ(P3, P ′
3). Let ∆x (resp. ∆y) denote the absolute difference of the

x-coordinate (resp. y-coordinate) between O and P3. We observe that

δ(P3, P ′
3) = ∆x · δ(P3, P1)

∆y + δ(P3, P1) .

By the definition of a box, δ(P3, P1) < 1
4 . Since O =

( 1
2 , −1000

)
and P3 ∈ [0, 1]2, we have

∆x ≤ 1
2 and ∆y ≥ 1000. Thus

δ(P3, P ′
3) <

1
8000 . (6)

From Equations (4)–(6), we have

cost(Ti) < δ(O, P1) + 1
4000 + niW + (W + 2D).

The claim follows. ◀

From Equations (1)–(3), and using the definition of W , we have

cost(Tmix) < cost(T ∗
A) + 2δ(O, P1) + 1

2000 + β

10 · n1 + n2√
n

+ (2W + 6D + 2H). (7)

It remains to bound δ(O, P1). Observe that by the definition of ℓ(·) and the triangle inequality,
and since the height of a box B is less than 1

4 ,

δ(O, P1) <

{
ℓ(x) + D + H for any x ∈ A,

ℓ(x) + 1
4 + D + H for any x ∈ B1 ∪ B2.

Let Vmix denote the set of the points of V in A ∪ B1 ∪ B2. By averaging we have

δ(O, P1) <
1

|Vmix|

( ∑
x∈Vmix

ℓ(x)
)

+ 1
|Vmix|

n1 + n2

4 + (D + H).

Since the measure of A∪B1 ∪B2 is (1−ϵ2)n−1/2, Event E implies that |Vmix| > (1−ϵ2)2 ·
√

n,
which is at least

√
n

1+ϵ1
since ϵ2 = ϵ1

10 . Hence

δ(O, P1) <
1 + ϵ1√

n

[( ∑
x∈Vmix

ℓ(x)
)

+ n1 + n2

4

]
+ (D + H). (8)

Since n1 + n2 = Θ(
√

n), we have (2W + 6D + 2H) + 2(D + H) < ϵ1√
n

· β
10 · (n1 + n2) when n

is large enough. From Equations (7) and (8), we have

cost(Tmix) < cost(T ∗
A) + 1 + ϵ1√

n

[
2
( ∑

x∈Vmix

ℓ(x)
)

+
(

β

10 + 1
2

)
(n1 + n2)

]
+ 1

2000 . (9)
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3.1.4 Cost of the Solution in Rectangles of Types I and II
Let VI and VII denote the subsets of the points of V that are in the rectangles of type I and type
II, respectively. Let K denote the number of mixed tours. We have K = n1/4 ·m = 5

40−β ·
√

n.
Let Smix denote the set of the mixed tours. Applying Equation (9) on each mixed tour and
summing, we have

cost(Smix) ≤ Y + 1 + ϵ1√
n

[
2
( ∑

x∈VI∪VII

ℓ(x)
)

+
(

β

10 + 1
2

)
|VII|

]
+

√
n

400 · (40 − β) , (10)

where Y denotes the overall cost of T ∗
A over all rectangles A of type I.

To analyze Y , we consider any rectangle A of type I. The measure of A is MA = D · H =
(1 − ϵ2)

(
1 − β

40

)
1√
n

. The event E implies that

(1 − ϵ2)2 ·
(

1 − β

40

)
·
√

n < nA <

(
1 − β

40

)
·
√

n. (11)

We investigate the expectation of cost(T ∗
A). By a construction given in [7], there exists an

absolute constant C such that the cost of an optimal traveling salesman tour through any
nA points in A chosen deterministically is at most C

√
MA · nA. Together with Lemma 5, it

follows that, for n large enough (and thus nA large enough),

E[cost(T ∗
A)] < (1 − o(1)) · (1 + ϵ2

2 ) · β
√

MA · nA + o(1) · C
√

MA · nA

< (1 + ϵ2) · β
√

MA · nA

< (1 + ϵ2) · β

(
1 − β

40

)
.

Since there are K = Θ(
√

n) rectangles A of type I, by the weak law of large numbers,

Y =
∑

A

cost(T ∗
A) < (1 + ϵ2)2 · K · β

(
1 − β

40

)
, a.a.s.

On the other hand, summing Equation (11) over all A, we have

|VI| =
∑

A

nA > K · (1 − ϵ2)2 ·
(

1 − β

40

)
·
√

n.

Therefore,

Y < (1 + ϵ2)2 · 1
(1 − ϵ2)2 · β · |VI|√

n
< (1 + ϵ1) · β · |VI|√

n
, a.a.s.,

where the last inequality follows since ϵ2 = ϵ1
10 . From Equation (10), we have, a.a.s.,

cost(Smix) ≤ 1 + ϵ1√
n

[
2
( ∑

x∈VI∪VII

ℓ(x)
)

+ β · |VI| +
(

β

10 + 1
2

)
|VII|

]
+

√
n

400 · (40 − β) . (12)

3.1.5 Cost of the Solution in Rectangles of Type III
Let VIII denote the subset of the points of V that are in the rectangles of types III. Let TIII
denote an optimal traveling salesman tour on VIII ∪ {O}. Let SIII denote an optimal solution
to the CVRP on VIII with depot O and with capacity k =

√
n. By Lemma 4,

cost(SIII) ≤ 2√
n

( ∑
x∈VIII

ℓ(x)
)

+ cost(TIII).
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The cost of TIII is at most the cost CTSP of an optimal traveling salesman tour on VIII plus
the detour to visit O. Since the distance between the depot and any point in [0, 1]2 is O(1),
the cost of the detour is O(1), so cost(TIII) ≤ CTSP + O(1).

Next, we analyze CTSP. Let L denote the width of a type III rectangle inside a box.
Then L = D − W · 2m = Θ(n−1/4). We observe that the length of a side of any type III
rectangle is either L or Ω(1). So we partition every type III rectangle into squares of side
length L. For each square, consider an optimal traveling salesman tour on the points inside
that square. Let Z denote the overall cost of the optimal traveling salesman tours inside all
squares from all rectangles of type III. Then CTSP is at most Z plus the total length of the
boundaries of all squares. Using the same argument from Section 3.1.4, we have

Z <
(

1 + ϵ1

3

)
· β · |VIII|√

n
, a.a.s.

The boundary length of each square is 4L = Θ(n−1/4) and the number of squares is Θ(
√

n),
so the total length of the boundaries of all squares is Θ(n1/4). We have

CTSP <
(

1 + ϵ1

3

)
· β · |VIII|√

n
+ Θ(n1/4), a.a.s.

Noting that |VIII| = Θ(n) conditional on the event E . So we have

cost(TIII) ≤ CTSP + O(1) < (1 + ϵ1) · β · |VIII|√
n

, a.a.s.

Therefore,

cost(SIII) ≤ 2√
n

( ∑
x∈VIII

ℓ(x)
)

+ 1 + ϵ1√
n

· β · |VIII|, a.a.s. (13)

3.1.6 Cost of the Global Solution
Let S = Smix ∪ SIII denote the global solution. From Equations (12) and (13), and using

2√
n

·
∑

x∈V ℓ(x) = rad and VI ∪ VII ∪ VIII = V , we have, a.a.s.,

cost(S) ≤ (1 + ϵ1)
[

2√
n

·
∑
x∈V

ℓ(x) + β · |V |√
n

−
(

β − β

10 − 1
2

)
|VII|√

n

]
+

√
n

400 · (40 − β)

≤ (1 + ϵ1)
[
rad + β ·

√
n −

(
9β

10 − 1
2

)
|VII|√

n

]
+

√
n

400 · (40 − β) .

Observe that the rectangles of type II have an overall measure of (1 − ϵ2) · β
8·(40−β) . Event

E implies that |VII| > (1 − ϵ2)2 · β·n
8·(40−β) > 1

1+ϵ1
· β·n

8·(40−β) since ϵ2 = ϵ1
10 . By Lemma 5,

β > β0 = 0.62866. Thus 9β
10 − 1

2 > 0. Therefore, we have, a.a.s,

(1 + ϵ1)(rad + β
√

n) − cost(S) ≥ (1 + ϵ1) ·
(

9β

10 − 1
2

)
· |VII|√

n
−

√
n

400 · (40 − β)

>

(
9β

10 − 1
2

)
· β

√
n

8 · (40 − β) −
√

n

400 · (40 − β)

=
√

n

8 · (40 − β) ·
((

9β

10 − 1
2

)
· β − 1

50

)
>

√
n

8 · (40 − β0) ·
((

9β0

10 − 1
2

)
· β0 − 1

50

)
.
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Let c1 denote the leading constant in the above bound, i.e.,

c1 = 1
8 · (40 − β0) ·

((
9β0

10 − 1
2

)
· β0 − 1

50

)
.

The value of c1 is roughly 0.000068. We conclude that

cost(S) < (1 + ϵ1)(rad + β
√

n) − c1
√

n, a.a.s.

We complete the proof of Lemma 6.

3.2 Proof of Lemma 7
Without loss of generality, we assume that α ≤ 2, since otherwise it suffices to prove the
claim for the case of α = 2. We also assume that ϵ1 ≤ 1 since otherwise the claim is evident.

To begin with, we construct an α-approximate traveling salesman tour T on V ∪ {O}.
Let ϵ0 = α − 1. Note that ϵ0 ∈ (0, 1]. Let ϵ2 = min

(
ϵ0
20 , ϵ1

4
)
. To avoid purely technical

complications, we assume that 1√
1+ϵ2

· n1/4 is an integer. We divide [0, 1]2 into squares of
side length D =

√
1 + ϵ2 · n−1/4, resulting in m = 1

D2 = 1
1+ϵ2

·
√

n squares. Let A1, . . . , Am

be an ordering of the resulting squares, such that for each i ∈ [1, m − 1], the squares Ai and
Ai+1 are adjacent in the plane. It is easy to see that such an ordering indeed exists. For
each square Ai, let Vi ⊆ V be the set of points of V that are in the square Ai. Let Ti be
an optimal traveling salesman tour on Vi. Let T be a traveling salesman tour on V ∪ {O}
obtained by including T1, . . . , Tm, adding a segment between the last point of Ti and the first
point of Ti+1 for each i ∈ [1, m − 1]; and finally, adding two other segments, one connecting
O to the first point of T1, and another one connecting O to the last point of Tm.

For any i ∈ [1, m], the expectation of |Vi| is D2n = (1 + ϵ2)
√

n. Let E denote the event
that

√
n < |Vi| < (1 + 2ϵ2)

√
n, for all i ∈ [1, m]. Similarly as in the proof of Lemma 6,

the Chernoff bound implies that Event E occurs a.a.s. From now on, we condition on the
occurrence of E .

Next, we show that T is an α-approximate traveling salesman tour, a.a.s. For each
i ∈ [1, m − 1], the distance between any point in Ti and any point in Ti+1 is at most

√
5 · D,

since Ai and Ai+1 are adjacent squares, both of side length D. The distance between the
depot and any point in [0, 1]2 is O(1). Therefore,

cost(T ) ≤

(
m∑

i=1
cost(Ti)

)
+ (m − 1)

√
5 · D + O(1).

Using the same argument from Section 3.1.4, we obtain
m∑

i=1
cost(Ti) <

(
1 + ϵ0

3

)
β

√
n, a.a.s.

Noting that (m − 1)
√

5 · D = o(
√

n), we have

cost(T ) <
(

1 + ϵ0

2

)
β

√
n, a.a.s.

On the other hand, by Lemma 5, the value of an optimal traveling salesman tour on V ∪ {O}
is at least

(
1 − ϵ0

4
)

β
√

n, a.a.s. Thus the approximation ratio of the solution T is at most
1+ ϵ0

2
1− ϵ0

4
< 1 + ϵ0, a.a.s. Since ϵ0 = α − 1, T is an α-approximate traveling salesman tour on

V ∪ {O}, a.a.s.
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It remains to lower bound ITP(T ). We say that a pair of points (u, v) is a splitting pair
if u and v are consecutive points in T and that u is the ending point of one tour and v is
the starting point of another tour according to the construction in the ITP algorithm. Let
w(u, v) denote the weight of a splitting pair (u, v) defined by w(u, v) = ℓ(u) + ℓ(v) − δ(u, v).
Note that w(u, v) ≥ 0 by the triangle inequality. From the definition of the ITP algorithm,
the cost of the output solution satisfies

ITP(T ) = cost(T ) + ŵ, (14)

where ŵ denotes the total weight of the splitting pairs.
By the construction of T , cost(T ) is at least the overall cost of Ti, . . . , Tm. Again, using

the same argument from Section 3.1.4, we obtain

cost(T ) ≥
m∑

i=1
cost(Ti) > (1 − ϵ1)β

√
n, a.a.s. (15)

Next, we analyze the total weight ŵ of the splitting pairs. For each i ∈ [1, m], Event
E implies that |Vi| >

√
n, so there is at least one splitting pair in Vi. Let (ui, vi) denote a

splitting pair in Vi, breaking ties arbitrarily. We have ŵ ≥
∑m

i=1 w(ui, vi).
Fix some i ∈ [1, m]. In order to bound w(ui, vi), we consider any point x ∈ Vi. Since

the three points ui, vi, and x belong to the same square Ai of side length D, their pairwise
distances are at most

√
2 · D. Thus both ℓ(ui) and ℓ(vi) are at least ℓ(x) −

√
2 · D by the

triangle inequality. Hence

w(ui, vi) = ℓ(ui) + ℓ(vi) − δ(ui, vi) ≥ 2ℓ(x) − 3
√

2 · D.

Averaging over all points x ∈ Vi and using |Vi| < (1 + 2ϵ2)
√

n (Event E), we have

w(ui, vi) >
2

(1 + 2ϵ2)
√

n

(∑
x∈Vi

ℓ(x)
)

− 3
√

2 · D. (16)

Summing Equation (16) over all i ∈ [1, m] and recalling that rad = 2√
n

∑
x∈V ℓ(x), we have

ŵ ≥
m∑

i=1
w(ui, vi) >

1
1 + 2ϵ2

· rad − 3
√

2 · D · m = 1 − o(1)
1 + 2ϵ2

· rad > (1 − ϵ1) · rad, (17)

where the equality follows from the facts that rad = Θ(
√

n) and D · m = o(
√

n), and the last
inequality follows from ϵ2 ≤ ϵ1

4 .
From Equations (14), (15), and (17),

ITP(T ) > (1 − ϵ1)β
√

n + ŵ > (1 − ϵ1)(β
√

n + rad).

This completes the proof.

4 Upper Bound on the Approximation Ratio

In this section, we prove Theorem 2 by providing an upper bound on the approximation
ratio ITP(T )/OPT of the ITP algorithm, where T is an α-approximate traveling salesman
tour on V ∪ {O}.

Our proof relies on a new lower bound on the optimal cost (Theorem 11). To achieve
the new lower bound, we consider the gap between the average distance to the depot and
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the maximum distance to the depot among all points in a single tour of an optimal solution.
Intuitively, if this gap is large, then the gap itself contributes to the lower bound on the
optimal cost; and if this gap is small, then there are many points whose distances to the
depot is close to the maximum distance, and the total local cost of those points contributes
to the lower bound.

Let λ and ϵ be positive constants such that λ + ϵ < 1. We analyze the performance of
the ITP algorithm with respect to λ and ϵ. The values of λ and ϵ will be set in the end of
the proof.

4.1 Structural analysis
▶ Lemma 10. Let T = (O, y1, y2, . . . , ym, O) be a tour starting and ending at O, where
y1, y2, . . . , ym, O are arbitrary points in any metric. Let L = 1

m

∑m
j=1 ℓ(yj). Let ∆ =

max1≤j≤m{ℓ(yj)} − L. Then there exists a set W ⊆ {y1, . . . , ym} which is of cardinality
greater than (λ + ϵ) · m − 1 such that

cost(T ) ≥ 2
(

L − λ + ϵ

1 − λ − ϵ
· ∆
)

+
∑

x∈W

δ(x, W \ {x}).

Proof. Let W denote the set of points yi such that ℓ(yi) ≥ L − λ+ϵ
1−λ−ϵ · ∆ and yi ≠ y∗, where

y∗ denotes the point yi such that ℓ(yi) ≥ L − λ+ϵ
1−λ−ϵ · ∆ and i is maximized. Tour T must

first travel through a path to a first point of W , paying at least L − λ+ϵ
1−λ−ϵ · ∆, then proceed

from each point x of W through a path to another point of W , paying at least δ(x, W \ {x}),
and finally, go to one more point such that ℓ(x) ≥ L − λ+ϵ

1−λ−ϵ · ∆, and travel from there
through a path back to the depot, paying at least L − λ+ϵ

1−λ−ϵ · ∆. Hence the cost of T is at
least as stated in Lemma 10.

Next, we bound the size of W . When ∆ = 0, we have ℓ(yj) = L for all j ∈ [1, m]. Hence
|W | = m − 1, which is greater than (λ + ϵ) · m − 1, since λ + ϵ < 1. The claim follows.

It remains to analyze the case when ∆ > 0. Every point of T is at distance at most L + ∆
from the depot. Letting m′ denote the number of points whose distance from the depot is at
least L − λ+ϵ

1−λ−ϵ · ∆, we have

mL =
m∑

j=1
ℓ(yj) < m′(L + ∆) + (m − m′)

(
L − λ + ϵ

1 − λ − ϵ
· ∆
)

.

Since 1 − λ − ϵ > 0 and ∆ > 0, this implies m′ − (λ + ϵ) · m > 0, hence |W | = m′ − 1 >

(λ + ϵ) · m − 1. ◀

The following result is a strengthening of the lower bound OPT ≥ rad from Lemma 3,
and will lead to our improved analysis of the ITP algorithm.

▶ Theorem 11. Let λ and ϵ be positive constants such that λ + ϵ < 1. Let V be a set of n

points in any metric space. Assume that k = ω(1). For n large enough, there exists a set
U ⊆ V which is of cardinality greater than

(
λ + ϵ

2
)

· n and such that

OPT ≥ rad + (1 − λ − ϵ)
∑
x∈U

δ(x, U \ {x}).

Proof. Let T1, . . . , Tq be the tours in an optimal solution to the CVRP. Let mi be the
number of points in V that are visited by the tour Ti. If there exist two tours visiting at
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most k/2 points each, we may combine them into a single tour, thus we may assume that
mi > k

2 for all but at most one tour, so q ≤ 2n
k + 1 = o(n).

For each tour Ti, define the corresponding Li, ∆i, and Wi with respect to the tour Ti

using the notations of Lemma 10. By summation, letting U =
⋃

i Wi, Lemma 10 then implies
(using q = o(n), n large enough, and δ(x, Wi \ {x}) ≥ δ(x, U \ {x}))

|U | =
q∑

i=1
|Wi| >

(
(λ + ϵ)

q∑
i=1

mi

)
− q = (λ + ϵ) · n − q >

(
λ + ϵ

2

)
· n

and
q∑

i=1
cost(Ti) ≥

q∑
i=1

2
(

Li − λ + ϵ

1 − λ − ϵ
· ∆i

)
+
(∑

x∈U

δ(x, U \ {x})
)

. (18)

On the other hand, we trivially have
q∑

i=1
cost(Ti) ≥

q∑
i=1

2(Li + ∆i). (19)

Summing Equation (18) with coefficient (1 − λ − ϵ) and Equation (19) with coefficient
(λ + ϵ), we have:

OPT =
q∑

i=1
cost(Ti) ≥

(
q∑

i=1
2Li

)
+ (1 − λ − ϵ)

(∑
x∈U

δ(x, U \ {x})
)

.

Observe that
q∑

i=1
2Li =

q∑
i=1

∑
x∈Ti

2ℓ(x)
mi

≥
q∑

i=1

∑
x∈Ti

2ℓ(x)
k

=
∑
x∈V

2ℓ(x)
k

= rad.

The Lemma follows. ◀

4.2 Probabilistic Analysis
The following result suggests that the closest point distance follows the weak law of large
numbers. It is a corollary of Theorem 2.4 in [22].

▶ Lemma 12 ([22]). Let P be a homogeneous Poisson point process of intensity 1 on R2 and
δP denote the distance from the origin of R2 to a closest point in P by the Euclidean norm.
Let V be a set of n i.i.d. uniform random points in [0, 1]2. Then, given any bounded function
ϕ : [0, ∞] → [0, ∞), we have:

lim
n→∞

1
n

∑
x∈V

ϕ
(√

n · δ(x, V \ {x})
)

= E
[
ϕ(δP)

]
.

▶ Remark 13. To derive Lemma 12 from Theorem 2.4 in [22], we consider a directed graph
G with vertex set V , such that from every vertex x ∈ V , there is a unique outgoing edge,
let it be (x, y), where y is the closest point to x among the points in V \ {x}, breaking ties
arbitrarily. Theorem 2.4 in [22] is interpreted with reference to Remark (h) in [22].

Lemma 12 provides the rigorous setting enabling us to derive a new lower bound on the
sum of the closest point distances over a subset of a set of i.i.d. uniform random points,
which we now state.
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▶ Lemma 14. Let V be a set of n i.i.d. uniform random points in [0, 1]2. Let U be any
subset of V such that |U | >

(
λ + ϵ

2
)

· n. Then, asymptotically almost surely,∑
x∈U

δ(x, V \ {x}) > (ξλ − ϵ) ·
√

n,

where ξλ is a constant defined by

ξλ := 1
2 erf

(√
ln 1

1 − λ

)
− (1 − λ) ·

√
1
π

· ln 1
1 − λ

in which erf(·) is the Gauss error function erf(z) = 2√
π

∫ z

0 e−t2
dt.

Proof. Recall the definition of δP from Lemma 12. By definition of the Poisson point process,
the probability g(r) of the event δP ≤ r equals 1 − e−πr2 .

Let Z ⊆ V be the set of points x ∈ V such that δ(x, V \{x}) ≤ r0√
n

, with r0 =
√

1
π · ln 1

1−λ .
We apply Lemma 12 with ϕ equals ϕ1, the indicator function of whether r ≤ r0. Observing
that

∑
x∈V ϕ1 (

√
n · δ(x, V \ {x})) = |Z|, we have

lim
n→∞

|Z|
n

= E
[
ϕ1(δP)

]
= g(r0) = λ.

Thus |Z| ≤
(
λ + ϵ

2
)

· n < |U |, a.a.s. Since Z consists of the points x ∈ V with the smallest
values of δ(x, V \ {x}), we have∑

x∈U

δ(x, V \ {x}) ≥
∑
x∈Z

δ(x, V \ {x}), a.a.s. (20)

To analyze
∑
x∈Z

δ(x, V \ {x}), we define a bounded function ϕ2 as follows.

ϕ2(r) =
{

r, r ≤ r0

0, otherwise.

We apply Lemma 12 with ϕ = ϕ2. Observing that
∑

x∈V ϕ2 (
√

n · δ(x, V \ {x})) =
∑

x∈Z

√
n·

δ(x, V \ {x}), we have

lim
n→∞

1
n

∑
x∈Z

√
n · δ(x, V \ {x}) = E

[
ϕ2(δP)

]
,

thus∑
x∈Z

δ(x, V \ {x}) > (E
[
ϕ2(δP)

]
− ϵ) ·

√
n, a.a.s. (21)

Observe that E
[
ϕ2(δP)

]
=
∫ ∞

0
ϕ2(r) · g′(r)dr =

∫ r0

0
r · g′(r)dr, where g′(r) = 2πr · e−πr2 .

Integrating by parts, recalling the definition of the Gauss error function, and plugging in the
value of r0, we have

E
[
ϕ2(δP)

]
=
(∫ r0

0
e−πr2

dr

)
−
[
r · e−πr2

]r0

0
=
[

erf(
√

π · r)
2 − r · e−πr2

]r0

0
= ξλ.

The claim follows. ◀
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4.3 Proof of Theorem 2
Let T denote an α-approximate traveling salesman tour on V ∪ {O}, where α ≥ 1 is a
constant. When k = o(

√
n), for any ϵ > 0, ITP(T ) < (1 + ϵ)OPT a.a.s. according to [15],

which implies the claim. In the following, we assume that k = Ω(
√

n).
According to Lemma 4, we have

ITP(T ) < cost(T ) + rad.

First, we bound cost(T ). Letting T ∗ denote an optimal traveling salesman tour on
V ∪ {O}, we have cost(T ) ≤ α · cost(T ∗). By Lemma 5, the value of an optimal traveling
salesman tour on V is less than

(
β + ϵ

2
)

·
√

n, a.a.s. Since the distance between the depot
and any point in [0, 1]2 is O(1), we have cost(T ∗) <

(
β + ϵ

2
)

·
√

n + O(1), which is less than
(β + ϵ) ·

√
n when n is large enough. Thus cost(T ) < α(β + ϵ) ·

√
n, a.a.s.

Next, we analyze rad. By Theorem 11, for some U ⊆ V of size greater than
(
λ + ϵ

2
)

n we
have

rad ≤ OPT − (1 − λ − ϵ)
(∑

x∈U

δ(x, U \ {x})
)

.

By Lemma 14 and the fact that δ(x, U \ {x}) ≥ δ(x, V \ {x}), we have a.a.s.∑
x∈U

δ(x, U \ {x}) > (ξλ − ϵ) ·
√

n.

Noting that 1 − λ − ϵ > 0, we have

rad ≤ OPT − (1 − λ − ϵ) · (ξλ − ϵ) ·
√

n.

Combining the above bounds gives a.a.s.

ITP(T ) < OPT +
(
α(β + ϵ) − (1 − λ − ϵ) · (ξλ − ϵ)

)
·
√

n. (22)

Note that the coefficient of
√

n in Equation (22) must be positive, because ITP(T ) ≥ OPT.
Using Lemmas 3 and 5, and assuming ϵ < β, we have a.a.s.

√
n < cost(T ∗)

β−ϵ ≤ OPT
β−ϵ , and

substituting into Equation (22) gives a.a.s.

ITP(T ) <

(
1 + α(β + ϵ) − (1 − λ − ϵ) · (ξλ − ϵ)

β − ϵ

)
· OPT.

Since β is a positive constant (Lemma 5), choosing λ to maximize (1 − λ) · ξλ and ϵ small
enough yields

ITP(T )
OPT < 1 + α −

maxλ

{
(1 − λ) · ξλ

}
β

+ 0.00001.

A numerical calculation (Figure 2) gives maxλ

{
(1 − λ) · ξλ

}
> 0.078674, and Lemma 5 tells

us that β < β1 = 0.92117. Therefore, a.a.s.,

ITP(T )
OPT < α + 0.915.

This completes the proof.
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Figure 2 Plot of the function h(λ) = (1 − λ) · ξλ for λ ∈ [0, 1). The maximum value of h(λ) is
greater than 0.078674, which is achieved when λ is roughly 0.62468.
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