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Abstract
We give a probabilistic analysis of the unit-demand Euclidean capacitated vehicle routing problem
in the random setting, where the input distribution consists of n unit-demand customers modeled
as independent, identically distributed uniform random points in the two-dimensional plane. The
objective is to visit every customer using a set of routes of minimum total length, such that each
route visits at most k customers, where k is the capacity of a vehicle. All of the following results are
in the random setting and hold asymptotically almost surely.

The best known polynomial-time approximation for this problem is the iterated tour partitioning
(ITP) algorithm, introduced in 1985 by Haimovich and Rinnooy Kan [15]. They showed that the
ITP algorithm is near-optimal when k is either o(

√
n) or ω(

√
n), and they asked whether the ITP

algorithm was “also effective in the intermediate range”. In this work, we show that when k =
√

n,
the ITP algorithm is at best a (1 + c0)-approximation for some positive constant c0.

On the other hand, the approximation ratio of the ITP algorithm was known to be at most
0.995 + α due to Bompadre, Dror, and Orlin [10], where α is the approximation ratio of an algorithm
for the traveling salesman problem. In this work, we improve the upper bound on the approximation
ratio of the ITP algorithm to 0.915 + α. Our analysis is based on a new lower bound on the optimal
cost for the metric capacitated vehicle routing problem, which may be of independent interest.
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1 Introduction

Unit-Demand Euclidean CVRP. In the capacitated vehicle routing problem (CVRP), we are
given a set of n customers and a depot. There is an unlimited number of identical vehicles,
each of an integer capacity k. The route of a vehicle starts at the depot and returns there after
visiting at most k customers. The objective is to visit every customer, using a set of routes
of minimum total length. Vehicle routing is a basic type of problems in operations research,
and several books (see [3, 11, 14, 25] among others) have been written on those problems.
We study the unit-demand Euclidean version of the problem, in which each customer has
unit demand, all locations (the customers and the depot) lie in the two-dimensional plane,
and distances are given by the Euclidean metric. The unit-demand Euclidean CVRP is a
generalization of the Euclidean traveling salesman problem and is known to be NP-hard
for all k ≥ 3 (see [5]). Unless explicitly mentioned, all CVRP instances in this paper are
assumed to be unit-demand Euclidean.
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ITP Algorithm. The best known polynomial-time approximation for the CVRP is a very
simple algorithm, called iterated tour partitioning (ITP). This algorithm first computes a
traveling salesman tour (ignoring the capacity constraint) using some other algorithm, then
partitions the tour into segments such that the number of customers in each segment is at
most k, and finally connects the endpoints of each segment to the depot so as to make a
tour. The ITP algorithm was introduced and refined by Haimovich and Rinnooy Kan [15]
and Altinkemer and Gavish [2] in the 1980s. Its performance is parameterized by the choice
of traveling salesman tour : the approximation ratio of the ITP algorithm is 1 + α, where
α is the approximation ratio of the algorithm used to compute the traveling salesman tour
in the first step. Since the Euclidean traveling salesman problem admits a polynomial-time
approximation scheme (PTAS) by Arora [4] and Mitchell [20], α can be set to any constant
strictly greater than 1.

Random Setting. Given the difficult challenges posed by the CVRP, researchers turned to
an analysis beyond worst case, by making some probabilistic assumptions on the distribution
of the input instance. In 1985, Haimovich and Rinnooy Kan [15] gave the first probabilistic
analysis on the ITP algorithm for the CVRP, where the customers are independent, identically
distributed (i.i.d.) random points. An event E occurs asymptotically almost surely (a.a.s.) if
limn→∞ P[E ] = 1. They showed that, the ITP algorithm is a.a.s. an (α + o(1))-approximation
for the CVRP when k is either o(

√
n) or ω(

√
n).1 The performance of the ITP algorithm in

the intermediate range of k = Θ(
√

n) was unknown. They asked in [15] whether the ITP
algorithm was “also effective in the intermediate range”.

In our work, we study this question raised by Haimovich and Rinnooy Kan [15]. We give
a probabilistic analysis of the ITP algorithm when the points are i.i.d. random, with a focus
on the range of k = Θ(

√
n). Our first main result is a lower bound: even in the random

setting, the ITP algorithm is at best a (1 + c0)-approximation a.a.s., for some constant c0 > 0
(Theorem 1), see Section 3.

▶ Theorem 1. Consider the iterated tour partitioning algorithm for the unit-demand Euclidean
capacitated vehicle routing problem. Let V be a set of n i.i.d. uniform random points in
[0, 1]2. Let k =

√
n. For some fixed depot O ∈ R2, there exists a constant c0 > 0, such that,

for any constant α > 1, there exists an α-approximate traveling salesman tour on V ∪ {O},
such that the approximation ratio of the algorithm is at least 1 + c0 asymptotically almost
surely.

▶ Remark. The α-approximate traveling salesman tour in Theorem 1 is constructed using
Karp’s partitioning algorithm [16].

On the other hand, the approximation ratio of the ITP algorithm is at most 1 + α due
to Altinkemer and Gavish [2]. In 2007, this ratio was improved by Bompadre, Dror, and
Orlin [10] to 0.995 + α, a.a.s., when the points are i.i.d. uniform random in the unit square.2
Here, using a different approach (Theorem 4), we further improve the upper bound on the
approximation ratio in this random setting to 0.915 + α, a.a.s. (Theorem 2), see Section 4.
We generalize our results to multiple depots in the full version of the paper.

1 As observed in [15], a solution of the ITP algorithm consists of two types of costs: the radial cost and
the local cost. When k is o(

√
n) or ω(

√
n), one of the two types dominates, the reason for which the

solution is an (α + o(1))-approximation (or even a (1 + o(1))-approximation for the case of k = o(
√

n)).
2 The analysis in [10] focused on the case of α = 1, though that analysis can be easily generalized to

any α ≥ 1. Bompadre, Dror, and Orlin [10] noted in their work that a ratio of 0.985 + α is achievable
without giving the proof.
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▶ Theorem 2. Consider the iterated tour partitioning algorithm for the unit-demand Euclidean
capacitated vehicle routing problem. Let V be a set of n i.i.d. uniform random points in
[0, 1]2. Let k be any integer in [1, n]. Let the depot O be any point in R2. For any constant
α ≥ 1 and any α-approximate traveling salesman tour on V ∪ {O}, the approximation ratio
of the algorithm is at most 0.915 + α asymptotically almost surely.

1.1 Other Related Work
PTAS and Quasi-PTAS Results for the CVRP. Despite the difficulty of the CVRP, there
has been progress on several special cases. A series of papers designed PTAS algorithms
for small k: work by Haimovich and Rinnooy Kan [15], when k is constant; by Asano et
al. [5] extending techniques in [15], for k = O(log n/ log log n); and by Adamaszek, Czumaj,
and Lingas [1], when k ≤ 2logf(ϵ)(n). For higher dimensional Euclidean metrics, Khachay and
Dubinin [17] gave a PTAS for fixed dimension ℓ and k = O(log

1
ℓ (n)). For unbounded k, Das

and Mathieu [13] designed a quasi-polynomial time approximation scheme.

Probabilistic Analyses. The instance distribution when the customers are i.i.d. random
points is perhaps the most natural probabilistic setting. In that setting, Rhee [23] and
Daganzo [12] analyzed the value of an optimal solution to the CVRP for the case when k

is fixed. Baltz et al [6] studied the multiple depot vehicle routing problem when both the
customers and the depots are i.i.d. random points and assuming unlimited tour capacity.

Analyses of the ITP Algorithm. Because of the popularity of the ITP algorithm, its
approximation ratio has already been much studied and bounds were utilized in a design of
best-to-date approximation algorithms for the CVRP, see, e.g., [9]. In the metric version of
the CVRP, the approximation ratio of the ITP algorithm is at most 1 + (1 − 1

k )α due to
Altinkemer and Gavish [2]. Bompadre, Dror, and Orlin [9] reduced this bound by a factor
of Ω( 1

k3 ). On the other hand, Li and Simchi-Levi [18] showed that the ITP algorithm is at
best a (2 − 1

k )-approximation algorithm on general metrics even if α = 1. Despite of a huge
amount of research, the ITP algorithm by Haimovich and Rinnooy Kan [15] and Altinkemer
and Gavish [2] remains the polynomial-time algorithm with the best approximation guarantee
for the Euclidean CVRP.

Other Applications of the ITP Algorithm. Very recently, Blauth, Traub, and Vygen [8]
exploited properties of tight instances in the analysis of the ITP algorithm, and used those
properties in their design of the best-to-date approximation algorithm for metric CVRP with
a ratio of 1 + α − ϵ, where ϵ is roughly 1

3000 .
Because of its simplicity, the ITP algorithm is versatile and has been adapted to other

vehicle routing problems. For example, Mosheiov [21] studied the vehicle routing with pick-up
and delivery services. They showed that the ITP algorithm is efficient through worst-case
analysis and numerical tests. Li, Simchi-Levi, and Desrochers [19] considered the vehicle
routing problem with constraints on the total distance traveled by each vehicle. They showed
that the ITP algorithm has a good worst-case performance when the number of vehicles is
relatively small.

1.2 Overview of Techniques
To show that the ITP algorithm is at best a (1 + c0)-approximation for the CVRP in the
random setting (Theorem 1), we construct a significantly better solution.

ISAAC 2021
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In the random setting, one may view an ITP solution as partitioning the unit square into
small regions and dedicating one tour to each small region. The cost of the solution is then
roughly the sum of two terms: the radial cost, incurred by traveling between the depot and
the small region; and the local cost, incurred by traveling from customer to customer within
the small region.

To improve that solution, the idea is that instead of traveling straight between the depot
and the small region, a smarter tour might as well make some small detours to visit some
additional nearby customers en route to the small region. We call that a mixed tour. This
modification of the solution has a positive effect because those nearby customers are covered
at little additional cost, thus saving the local cost of covering those customers; but it also
has a negative effect because visiting those nearby customers uses up some of the tour’s
capacity, and to account for that the definition of the small regions must be adjusted, and
their area shrunk. Controlling the two competing effects so that on balance the net result is
an improvement requires a delicate definition of regions. We start by decomposing the plane
into regions of three types. Then we construct a solution in which a single tour may visit
regions of different types, see Figure 1. The mixed structure of the tours enables us to show
that the constructed solution has significantly smaller cost. See Section 3 for more details.

Our proof of the improved upper bound on the approximation ratio of the ITP algorithm in
the random setting (Theorem 2) relies on a new lower bound on the optimal cost (Theorem 11).
To achieve the new lower bound, we consider the gap between the average distance to the
depot and the maximum distance to the depot among all points in a single tour of an optimal
solution. Intuitively, if this gap is large, then the gap itself contributes to the lower bound on
the optimal cost; and if this gap is small, then there are many points whose distances to the
depot is close to the maximum distance, and the total local cost of those points contributes
to the lower bound. Our analysis for the lower bound is completely different from [10] and
enables us to obtain a better approximation ratio of 0.915 + α.

Our new lower bound on the optimal cost also enables us to generalize our results to the
setting of multiple depots. This lower bound holds in the metric CVRP in general, and may
be of independent interest.
▶ Remark. The restriction to i.i.d. uniform random points in [0, 1]2 is made to simplify
the presentation. With extra work, our analysis can be extended to higher dimensional
Euclidean spaces, to general density functions, and to general bounded supports (though the
approximation guarantees in those settings may differ from that in Theorem 2).

2 Notations and Preliminaries

Let δ(·, ·) denote the Euclidean distance between two points or between a point and a set
of points. For any path P of points x1, x2, . . . , xm in R2 where m ∈ N, define cost(P ) =∑m−1

i=1 δ(xi, xi+1).

Capacitated Vehicle Routing Problem (CVRP). Given a set V of n points in R2, a depot
O in R2, and an integer capacity k ∈ [1, n], the goal is to find a collection of tours covering
V of minimum total cost, such that each tour visits O and at most k points in V . Let OPT
denote the value of an optimal solution to the CVRP.

For any point x ∈ V , let ℓ(x) = δ(O, x). Let rad denote the radial cost, defined by
rad = 2

k ·
∑

x∈V ℓ(x).

▶ Lemma 3 ([15]). Let T ∗ be an optimal traveling salesman tour on V ∪ {O}. Then
OPT ≥ max(rad, cost(T ∗)).
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Iterated Tour Partitioning (ITP). We review the iterated tour partitioning (ITP) algorithm
defined by Altinkemer and Gavish [2]. The ITP algorithm consists of a preprocessing phase
and a main phase. In the preprocessing phase, it runs an approximation algorithm for
the traveling salesman problem on V ∪ {O}. Let α denote the approximation ratio of this
algorithm. Let T = (O, x1, x2, . . . , xn, O) denote the resulting traveling salesman tour. In
the main phase, the ITP algorithm selects the best of the k solutions constructed as follows.
For each i ∈ [1, k], let ni = ⌈(n − i)/k⌉ + 1 and define a solution Si to the CVRP to be the
union of the ni tours (O, x1, . . . , xi, O), (O, xi+1, . . . , xi+k, O), (O, xi+k+1, . . . , xi+2k, O), . . . ,
(O, xi+(ni−2)k+1, . . . , xn, O). In other words, the solution Si partitions the traveling salesman
tour T into segments with k points each, except possibly the first and the last segments. The
output of the ITP algorithm is a solution among S1, . . . , Sk that achieves the minimum cost.
It is easy to see that the main phase of the ITP algorithm can be carried out in O(nk) time.3

Let ITP(T ) denote the cost of the output solution. The following classic bound on ITP(T )
was due to Altinkemer and Gavish [2] and, together with Lemma 3, immediately implies that
the ITP algorithm is a (1 + α)-approximation, where α is the approximation ratio of the
traveling salesman tour T .

▶ Lemma 4 ([2]). Let T be any traveling salesman tour on V ∪ {O}. Then

OPT ≤ ITP(T ) ≤ rad +
(

1 − 1
k

)
· cost(T ).

Probabilistic Analysis of the Traveling Salesman Problem. Beardwood, Halton, and
Hammersley [7] analyzed the value of an optimal solution to the traveling salesman problem
in the random setting.

▶ Lemma 5 ([7, 24]). Let V be a set of n i.i.d. uniform random points with bounded support
in R2. Let M denote the measure of the support. Let T ∗ denote an optimal traveling salesman
tour on V . Then there exists a universal constant β such that, for any ϵ > 0, we have

lim
n→∞

cost(T ∗)√
M · n

= β, with probability 1.

In addition, β0 < β < β1, where β0 = 0.62866 and β1 = 0.92117.

▶ Remark. Up to scaling, Lemma 5 holds for any support that is a rectangle with constant
aspect ratio.

3 Lower Bound on the Approximation Ratio

In this section, we prove Theorem 1 by providing a lower bound on the approximation ratio
ITP(T )/OPT of the ITP algorithm, where T is a traveling salesman tour. Let the depot
O =

( 1
2 , −1000

)
. Lemmas 6 and 7 are the key ingredients in the proof of Theorem 1.

▶ Lemma 6. Let β be defined as in Lemma 5. Then there exists a constant c1 ∈ (0, β) such
that for any ϵ1 > 0, OPT < (1 + ϵ1)(rad + β

√
n) − c1

√
n, a.a.s.

▶ Lemma 7. Let β be defined as in Lemma 5. Then for any α > 1, there exists an α-
approximate traveling salesman tour T on V ∪ {O}, such that for any ϵ1 > 0, ITP(T ) >

(1 − ϵ1)(rad + β
√

n), a.a.s.

3 The running time of the main phase can even be improved to O(n).

ISAAC 2021
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Lemma 6 contains main novelties in this section. The proof of Lemma 7 is in the full
version of the paper. First, we show how Lemmas 6 and 7 imply Theorem 1.

Proof of Theorem 1 using Lemmas 6 and 7. Let ϵ1 > 0 be a constant to be set later. From
Lemma 6, there exists an absolute constant c1 ∈ (0, β), such that OPT < (1 + ϵ1)(rad +
β

√
n) − c1

√
n, a.a.s. From Lemma 7, for any α > 1, there exists an α-approximate traveling

salesman tour T on V ∪ {O}, such that ITP(T ) > (1 − ϵ1)(rad + β
√

n), a.a.s. Hence

ITP(T )
OPT >

(1 − ϵ1)(rad + β
√

n)
(1 + ϵ1)(rad + β

√
n) − c1

√
n

, a.a.s.

To analyze rad, let L be the expectation of ℓ(x) for x ∈ [0, 1]2 with uniform distribution.
Since the depot O is at a constant distance from [0, 1]2, L is a constant. By the law of large
numbers,∣∣∣∣ 1n ∑

x∈V

ℓ(x) − L

∣∣∣∣ < ϵ1, a.a.s.

Recall that rad = 2√
n

∑
x∈V ℓ(x). Hence (L−ϵ1)·2

√
n < rad < (L+ϵ1)·2

√
n, a.a.s. Denoting

the function f as

f(ϵ1) = (1 − ϵ1)(2L − 2ϵ1 + β)
(1 + ϵ1)(2L + 2ϵ1 + β) − c1

,

we have

ITP(T )
OPT > f(ϵ1), a.a.s.

Since L, β and c1 are positive constants and c1 < β (Lemma 6), we have

lim
ϵ1→0

f(ϵ1) = 1 + c1

2L + β − c1
.

Let c0 = 1
2 · c1

2L+β−c1
, which is a positive constant. Choosing ϵ1 small enough such that

f(ϵ1) > 1 + c0, we have

ITP(T )
OPT > f(ϵ1) > 1 + c0, a.a.s.

The claim follows. ◀

The rest of the section is dedicated to prove Lemma 6.
Without loss of generality, we assume that ϵ1 ≤ 1, since otherwise it suffices to prove the

claim for the case of ϵ1 = 1. We construct a solution to the CVRP whose cost is less than
(1 + ϵ1)(rad + β

√
n) − c1

√
n, a.a.s., where the constant c1 > 0 will be chosen at the end of

the proof.

3.1 Decomposition of the Plane
In order to construct a solution to the CVRP, we describe a decomposition of [0, 1]2 into
rectangles of three types. Let ϵ2 = ϵ1

10 . We partition4 [0, 1]2 into a lower part [0, 1] × [0, 3+ϵ2
4 ]

which is a rectangle of type III, and a collection of boxes of the form [(i − 1)D, iD] × [ 3+ϵ2
4 , 1],

with D = n−1/4 and 1 ≤ i ≤ 1/D. For simplicity, assume that 1/D is an integer. See
Figure 1a.

4 The decomposition is a partition except for the boundaries, that have measure 0.
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Next, we decompose each box, see Figure 1b. Let m = 5
40−β · n1/4. For simplicity, assume

that m is an integer. The upper half of a box is partitioned into m type I rectangles of the
form [(i − 1)D, iD] × [1 − (j − 1)H, 1 − jH], where H = 1−ϵ2

8·m and 1 ≤ j ≤ m. The lower
left part of a box is partitioned into 2m slices such that each slice is a type II rectangles
of the form [(i − 1)D + (j − 1)W, (i − 1)D + jW ] × [ 3+ϵ2

4 , 7+ϵ2
8 ], with W = β

10 · n−1/2 and
1 ≤ j ≤ 2m. The rest of the box is a single type III rectangle.

For any rectangle R in the resulting decomposition, let nR denote the number of points
of V that are in the rectangle R, and let MR denote the measure of the rectangle R. The
following fact relates nR with MR.

▶ Fact 8. A.a.s. the following event E occurs: (1 − ϵ2) · MR · n < nR < (1 + ϵ2) · MR · n for
all rectangles R in the resulting decomposition.

Proof. Let R be any rectangle in the resulting decomposition. Observe that MR = Ω(1/
√

n).
The expectation of nR is MR · n = Ω(

√
n). By Chernoff bound,

P
[
nR ≤ (1 − ϵ2)MR · n

]
≤ e−Ω(

√
n) and P

[
nR ≥ (1 + ϵ2)MR · n

]
≤ e−Ω(

√
n).

Since there are Θ(
√

n) rectangles in the decomposition, the event E occurs with probability
at least 1 − Θ(

√
n) · e−Ω(

√
n) = 1 − o(1). ◀

From now on, we condition on the occurrence of E in Fact 8.

3.2 Construction of a Solution

To construct a relative cheap solution, the main observation is that it is profitable for a tour
to visit points in rectangles of both types I and II. In each box, there are m rectangles of
type I and 2m rectangles of type II. We form m groups with those, such that each group
contains one rectangle of type I and two rectangles of type II. For each group, we cover the
points in the group by a particular tour on these points in addition to the depot O, in a way
to be described shortly. For all points in the rectangles of type III, we construct an optimal
solution to the CVRP on those points with depot O and with capacity

√
n.

A mixed tour is a tour covering points in rectangles of types I and II. Consider a box B
and a group in B consisting of a rectangle A of type I and two rectangles B1 and B2 of type
II. We construct a specific mixed tour Tmix defined as follows.

Let P1 denote the bottom left corner of the rectangle A. Let T0 denote an optimal
traveling salesman tour on the points in A ∪ {P1}. For each i ∈ {1, 2}, we define an O-to-P1
path Ti visiting the points in Bi as follows. Let Si and Qi denote the top left and bottom
left corners of the rectangle Bi. Let Ti denote the concatenation of the segment OQi, a
Qi-to-Si path visiting the points in Bi in non-decreasing order on the y-coordinate (breaking
ties arbitrarily), and the segment SiP1. Finally, the tour Tmix is defined as the concatenation
of T0, T1, and T2. See Figure 1c. This completes our construction.

Since the measure of A is D · H and the measure of Bi (for each i ∈ {1, 2}) is 1−ϵ2
8 · W ,

Event E implies that the total number of points in A ∪ B1 ∪ B2 is at most

(1 + ϵ2)
(

D · H + 2 · 1 − ϵ2

8 · W

)
· n = (1 + ϵ2)(1 − ϵ2)n−1/2 · n <

√
n,

so the constructed solution is feasible.

ISAAC 2021
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O

III
1

1

1000

(a) [0, 1]2 decomposition.

Θ(n−1/4)

Θ(1)

D = n−1/4

I

II III

H =

width W = Θ(n−1/2)

(b) Box decomposition.

A

Bi

P1

P2

P3

O

Si

Qi

(c) A mixed tour.

Figure 1 Decomposition and tour construction. Figure 1a illustrates the decomposition of [0, 1]2.
The highlighted area in Figure 1a represents a box. Figure 1b illustrates the decomposition of a box
into rectangles of types I, II, and III. Figure 1c describes a tour covering points in one rectangle A

of type I and in two rectangles Bi, for i ∈ {1, 2}, of type II.

3.3 Cost of a Mixed Tour
Consider any mixed tour Tmix. We follow the same notations as in Section 3.2. From the
construction,

cost(Tmix) = cost(T0) + cost(T1) + cost(T2). (1)

Let T ∗
A denote an optimal traveling salesman tour on the points in A. The cost of T0 is

at most cost(T ∗
A) plus the cost of the detour to include the point P1. The cost of the detour

is less than 2(D + H), so

cost(T0) < cost(T ∗
A) + 2(D + H). (2)

Let n1 and n2 denote the number of points of V that are in B1 and B2, respectively. The
costs of T1 and T2 are bounded by the following fact, whose proof is in the full version of the
paper.

▶ Fact 9. For i ∈ {1, 2}, we have

cost(Ti) < δ(O, P1) + 1
4000 + niW + (W + 2D). (3)
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From Equations (1)–(3), and using the definition of W , we have

cost(Tmix) < cost(T ∗
A) + 2δ(O, P1) + 1

2000 + β

10 · n1 + n2√
n

+ (2W + 6D + 2H). (4)

It remains to bound δ(O, P1). Observe that by the definition of ℓ(·) and the triangle inequality,
and since the height of a box B is less than 1

4 ,

δ(O, P1) <

{
ℓ(x) + D + H for any x ∈ A,

ℓ(x) + 1
4 + D + H for any x ∈ B1 ∪ B2.

Let Vmix denote the set of the points of V in A ∪ B1 ∪ B2. By averaging we have

δ(O, P1) <
1

|Vmix|

( ∑
x∈Vmix

ℓ(x)
)

+ 1
|Vmix|

n1 + n2

4 + (D + H).

Since the measure of A∪B1 ∪B2 is (1−ϵ2)n−1/2, Event E implies that |Vmix| > (1−ϵ2)2 ·
√

n,
which is at least

√
n

1+ϵ1
since ϵ2 = ϵ1

10 . Hence

δ(O, P1) <
1 + ϵ1√

n

[( ∑
x∈Vmix

ℓ(x)
)

+ n1 + n2

4

]
+ (D + H). (5)

Since n1 + n2 = Θ(
√

n), we have (2W + 6D + 2H) + 2(D + H) < ϵ1√
n

· β
10 · (n1 + n2) when n

is large enough. From Equations (4) and (5), we conclude that

cost(Tmix) < cost(T ∗
A) + 1 + ϵ1√

n

[
2
( ∑

x∈Vmix

ℓ(x)
)

+
(

β

10 + 1
2

)
(n1 + n2)

]
+ 1

2000 . (6)

3.4 Cost of the Solution
3.4.1 Solution in the Rectangles of Types I and II
Let VI and VII denote the subsets of the points of V that are in the rectangles of type I and type
II, respectively. Let K denote the number of mixed tours. We have K = n1/4 ·m = 5

40−β ·
√

n.
Applying Equation (6) on each mixed tour and summing, we have

cost(Smix) ≤ Y + 1 + ϵ1√
n

[
2
( ∑

x∈VI∪VII

ℓ(x)
)

+
(

β

10 + 1
2

)
|VII|

]
+

√
n

400 · (40 − β) , (7)

where Y denotes the overall cost of T ∗
A over all rectangles A of type I.

To analyze Y , we consider any rectangle A of type I. The measure of A is MA = D · H =
(1 − ϵ2)

(
1 − β

40

)
1√
n

. The event E implies that

(1 − ϵ2)2 ·
(

1 − β

40

)
·
√

n < nA <

(
1 − β

40

)
·
√

n. (8)

We investigate the expectation of cost(T ∗
A). By a construction given in [7], there exists a

constant C such that the cost of an optimal traveling salesman tour through any nA points
in A is at most C

√
MA · nA. Together with Lemma 5, it follows that

E[cost(T ∗
A)] < (1 + ϵ2) · β

√
MA · nA < (1 + ϵ2) · β

(
1 − β

40

)
,
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for n large enough (and thus nA large enough). Since there are K = Θ(
√

n) rectangles A of
type I, by the law of large numbers,

Y =
∑

A

cost(T ∗
A) < (1 + ϵ2) · K · (1 + ϵ2) · β

(
1 − β

40

)
, a.a.s.

On the other hand, summing Equation (8) over all A, we have

|VI| =
∑

A

nA > K · (1 − ϵ2)2 ·
(

1 − β

40

)
·
√

n.

Therefore,

Y < (1 + ϵ2)2 · 1
(1 − ϵ2)2 · β · |VI|√

n
< (1 + ϵ1) · β · |VI|√

n
, a.a.s.,

where the last inequality follows since ϵ2 = ϵ1
10 . From Equation (7), we conclude that, a.a.s.,

cost(Smix) ≤ 1 + ϵ1√
n

[
2
( ∑

x∈VI∪VII

ℓ(x)
)

+ β · |VI| +
(

β

10 + 1
2

)
|VII|

]
+

√
n

400 · (40 − β) . (9)

3.4.2 Solution in the Rectangles of Type III
Let V̂ denote the subset of the points of V that are in the rectangles of types III. Let T̂

denote an optimal traveling salesman tour on V̂ ∪ {O}. Let Ŝ denote an optimal solution to
the CVRP on V̂ with depot O and with capacity k =

√
n. By Lemma 4,

cost(Ŝ) ≤ 2√
n

(∑
x∈V̂

ℓ(x)
)

+ cost(T̂ ).

The cost of T̂ is at most the cost CTSP of an optimal traveling salesman tour on V̂ plus the
detour to visit O. Since the distance between the depot and any point in [0, 1]2 is O(1), the
cost of the detour is O(1), so cost(T̂ ) ≤ CTSP + O(1).

Next, we analyze CTSP. Let L denote the width of a type III rectangle inside a box. Then
L = D − W · m = Θ(n−1/4). We observe that the length of a side of any type III rectangle is
either L or ω(L). So we partition every type III rectangle into squares of side length L. For
each square, consider an optimal traveling salesman tour on the points inside that square.
Let Z denote the overall cost of the optimal traveling salesman tours inside all squares from
all rectangles of type III. Then CTSP is at most Z plus the total lengths of the boundaries of
all squares. Using the same argument from Section 3.4.1, we have

Z <
(

1 + ϵ1

3

)
· β · |V̂ |√

n
, a.a.s.

Since the boundary length of each square is negligible compared with the TSP cost inside
that square, we have

CTSP = (1 + o(1)) · Z <
(

1 + ϵ1

2

)
· β · |V̂ |√

n
, a.a.s.

Noting that |V̂ | = Θ(n), we have

cost(T̂ ) ≤ CTSP + O(1) < (1 + ϵ1) · β · |V̂ |√
n

, a.a.s.
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Therefore,

cost(Ŝ) ≤ 2√
n

∑
x∈V̂

ℓ(x)

+ 1 + ϵ1√
n

· β · |V̂ |, a.a.s. (10)

3.4.3 The Global Solution
Let S = Smix ∪ Ŝ denote the global solution. From Equations (9) and (10), and using

2√
n

·
∑

x∈V ℓ(x) = rad and VI ∪ VII ∪ V̂ = V , we have

cost(S) ≤ (1 + ϵ1)
[
rad + β · |V |√

n
−
(

β − β

10 − 1
2

)
|VII|√

n

]
+

√
n

400 · (40 − β) , a.a.s. (11)

Observe that the rectangles of type II have an overall measure of (1 − ϵ2) · β
8·(40−β) . Event

E implies that |VII| > (1 − ϵ2)2 · β·n
8·(40−β) > 1

1+ϵ1
· β·n

8·(40−β) since ϵ2 = ϵ1
10 . By Lemma 5,

β > β0 = 0.62866. Thus 9β
10 − 1

2 > 0. From Equation (11), we have, a.a.s,

(1 + ϵ1)(rad + β
√

n) − cost(S) ≥ (1 + ϵ1) ·
(

9β

10 − 1
2

)
· |VII|√

n
−

√
n

400 · (40 − β)

>

(
9β

10 − 1
2

)
· β

√
n

8 · (40 − β) −
√

n

400 · (40 − β)

=
√

n

8 · (40 − β) ·
((

9β

10 − 1
2

)
· β − 1

50

)
>

√
n

8 · (40 − β0) ·
((

9β0

10 − 1
2

)
· β0 − 1

50

)
.

Let c1 denote the leading constant in the above bound, i.e.,

c1 = 1
8 · (40 − β0) ·

((
9β0

10 − 1
2

)
· β0 − 1

50

)
.

The value of c1 is roughly 0.000068. We conclude that

cost(S) < (1 + ϵ1)(rad + β
√

n) − c1
√

n, a.a.s.

We complete the proof of Lemma 6.

4 Upper Bound on the Approximation Ratio

In this section, we prove Theorem 2 by providing an upper bound on the approximation
ratio ITP(T )/OPT of the ITP algorithm, where T is a traveling salesman tour.

Let λ and ϵ be positive constants such that λ + ϵ < 1. We analyze the performance of
the ITP algorithm with respect to λ and ϵ. The values of λ and ϵ will be set in the end of
the proof.

4.1 Structural analysis
▶ Lemma 10. Let T = (O, y1, y2, . . . , ym, O) be any tour starting and ending at O. Let L =
1
m

(∑m
j=1 ℓ(yj)

)
. Let ∆ = max1≤j≤m{ℓ(yj)} − L. Then there exists a set W ⊆ {y1, . . . , ym}

which is of cardinality greater than (λ + ϵ) · m − 1 such that

cost(T ) ≥ 2
(

L − λ + ϵ

1 − λ − ϵ
· ∆
)

+
∑

x∈W

δ(x, W \ {x}).
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Proof. Let W denote the set of points x such that ℓ(x) ≥ L − λ+ϵ
1−λ−ϵ · ∆, other than the last

one in the order of traversal by T starting from O. Tour T must first travel through a path
to a first point of W , paying at least L − λ+ϵ

1−λ−ϵ · ∆, then proceed from each point x of W

through a path to another point of W , paying at least δ(x, W \ {x}), and finally, go to one
more point such that ℓ(x) ≥ L − λ+ϵ

1−λ−ϵ · ∆, and travel from there through a path back to the
depot, paying at least L − λ+ϵ

1−λ−ϵ · ∆. Hence the cost of T is at least as stated in Lemma 10.
Next, we bound the size of W . When ∆ = 0, we have ℓ(yj) = L for all j ∈ [1, m]. Hence

|W | = m − 1, which is greater than (λ + ϵ) · m − 1, since λ + ϵ < 1. The claim follows.
It remains to analyze the case when ∆ > 0. Every point of T is at distance at most L + ∆

from the depot. Letting m′ denote the number of points whose distance from the depot is at
least L − λ+ϵ

1−λ−ϵ · ∆, we have

mL =
m∑

j=1
ℓ(yj) < m′(L + ∆) + (m − m′)

(
L − λ + ϵ

1 − λ − ϵ
· ∆
)

.

Since 1−λ− ϵ > 0, this implies m′ − (λ+ ϵ) ·m > 0, hence |W | = m′ −1 > (λ+ ϵ) ·m−1. ◀

The following result is a strengthening of the lower bound OPT ≥ rad from Lemma 3,
and will lead to our improved analysis of the ITP algorithm.

▶ Theorem 11. Let λ and ϵ be positive constants such that λ + ϵ < 1. Let V be a set of n

points in any distance metric. Let k = ω(1). There exists a set U ⊆ V which is of cardinality
greater than

(
λ + ϵ

2
)

· n for n large enough, and such that

OPT ≥ rad + (1 − λ − ϵ)
(∑

x∈U

δ(x, U \ {x})
)

.

Proof. Let T1, . . . , Tq be the tours in an optimal solution to the CVRP. Let mi be the
number of points in V that are visited by the tour Ti. Up to combining tours that visit few
points, we may assume that mi > k

2 for all but at most one tour, so q ≤ 2n
k + 1 = o(n).

For each tour Ti, define the corresponding Li, ∆i, and Wi with respect to the tour Ti

using the notations of Lemma 10. By summation, letting U =
⋃

i Wi, Lemma 10 then implies
(using q = o(n), n large enough, and δ(x, Wi \ {x}) ≥ δ(x, U \ {x}))

|U | =
∑
i≤q

|Wi| >

(
(λ + ϵ)

∑
i

mi

)
− q = (λ + ϵ) · n − q >

(
λ + ϵ

2

)
· n

and∑
i

cost(Ti) ≥

(∑
i

2
(

Li − λ + ϵ

1 − λ − ϵ
· ∆i

))
+
(∑

x∈U

δ(x, U \ {x})
)

. (12)

On the other hand, we trivially have∑
i

cost(Ti) ≥
∑

i

2(Li + ∆i). (13)

A linear combination of Equation (12) with coefficient (1 − λ − ϵ) and of Equation (13)
with coefficient (λ + ϵ) leads to:

OPT =
∑

i

cost(Ti) ≥

(∑
i

2Li

)
+ (1 − λ − ϵ)

(∑
x∈U

δ(x, U \ {x})
)

.
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Observe that∑
i

2Li =
∑

i

∑
x∈Ti

2ℓ(x)
mi

≥
∑

i

∑
x∈Ti

2ℓ(x)
k

=
∑
x∈V

2ℓ(x)
k

= rad.

The Lemma follows. ◀

4.2 Probabilistic Analysis
The following result suggests that the closest point distance follows the law of large numbers.
It is a corollary of Theorem 2.4 in [22].5

▶ Lemma 12 ([22]). Let P be a homogeneous Poisson point process of intensity 1 on R2

and δP denote the distance from the origin of R2 to a closest point in P by the Euclidean
norm. Let V be a set of n i.i.d. uniform random points. Then, given any bounded function
ϕ : [0, ∞] → [0, ∞), as n → ∞ we have:

1
n

∑
x∈V

ϕ
(√

n · δ(x, V \ {x})
)

→ E
[
ϕ(δP)

]
.

Lemma 12 provides the rigorous setting enabling us to derive a new lower bound on the
sum of the closest point distances over a subset of a set of i.i.d. uniform random points,
which we now state.

▶ Lemma 13. Let V be a set of n i.i.d. uniform random points. Let U be any subset of V

such that |U | >
(
λ + ϵ

2
)

· n. Then, asymptotically almost surely,∑
x∈U

δ(x, V \ {x}) > (ξλ − ϵ) ·
√

n,

where ξλ is a constant defined by

ξλ := 1
2 erf

(√
ln 1

1 − λ

)
− (1 − λ) ·

√
1
π

· ln 1
1 − λ

in which erf(·) is the Gauss error function erf(z) = 2√
π

∫ z

0 e−t2
dt.

Proof. Recall the definition of δP from Lemma 12. By definition of the Poisson point process,
the probability g(r) of the event δP ≤ r equals 1 − e−πr2 .

Let Z ⊆ V be the set of points x ∈ V such that δ(x, V \{x}) ≤ r0√
n

, with r0 =
√

1
π · ln 1

1−λ .
We apply Lemma 12 with ϕ equals ϕ1, the indicator function of whether r ≤ r0, to obtain
that, as n → ∞,

|Z|
n

→ E
[
ϕ1(δP)

]
= g(r0) = λ.

Thus |Z| ≤
(
λ + ϵ

2
)

· n < |U |, a.a.s. Since Z consists of the points x ∈ V with the smallest
values of δ(x, V \ {x}), we have∑

x∈U

δ(x, V \ {x}) ≥
∑
x∈Z

δ(x, V \ {x}), a.a.s. (14)

5 To apply Theorem 2.4 in [22], we consider a directed graph G with vertex set V , such that from every
vertex x ∈ V , there is a unique outgoing edge, let it be (x, y), where y is the closest point to x among
the points in V \ {x}, breaking ties arbitrarily. Theorem 2.4 in [22] is interpreted with reference to
Remark (h) in [22].
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To analyze
∑
x∈Z

δ(x, V \ {x}), we define a bounded function ϕ2 as follows.

ϕ2(r) =
{

r, r ≤ r0

0, otherwise.

Applying Lemma 12 with ϕ = ϕ2, we have, as n → ∞,

1
n

∑
x∈Z

√
n · δ(x, V \ {x}) → E

[
ϕ2(δP)

]
,

thus∑
x∈Z

δ(x, V \ {x}) > (E
[
ϕ2(δP)

]
− ϵ) ·

√
n, a.a.s. (15)

Observe that E
[
ϕ2(δP)

]
=
∫ ∞

0
ϕ2(r) · g′(r)dr =

∫ r0

0
r · g′(r)dr, where g′(r) = 2πr · e−πr2 .

Integrating by parts, recalling the definition of the Gauss error function, and plugging in the
value of r0, we have

E
[
ϕ2(δP)

]
=
(∫ r0

0
e−πr2

dr

)
−
[
r · e−πr2

]r0

0
=
[

erf(
√

π · r)
2 − r · e−πr2

]r0

0
= ξλ.

The claim follows. ◀

4.3 Proof of Theorem 2
Let T denote an α-approximate traveling salesman tour on V ∪ {O}, where α ≥ 1 is a
constant. When k = O(1), for any ϵ > 0, ITP(T ) < (1 + ϵ)OPT a.a.s. according to [15],
which implies the claim. In the following, we assume that k = ω(1).

According to Lemma 4, we have

ITP(T ) < cost(T ) + rad.

First, we bound cost(T ). Letting T ∗ denote an optimal traveling salesman tour on
V ∪ {O}, we have cost(T ) ≤ α · cost(T ∗). By Lemma 5, the value of an optimal traveling
salesman tour on V is less than

(
β + ϵ

2
)

·
√

n, a.a.s. Since the distance between the depot
and any point in [0, 1]2 is O(1), we have cost(T ∗) <

(
β + ϵ

2
)

·
√

n + O(1), which is less than
(β + ϵ) ·

√
n when n is large enough. Thus cost(T ) < α(β + ϵ) ·

√
n, a.a.s.

Next, we analyze rad. By Theorem 11, for some U ⊆ V of size greater than
(
λ + ϵ

2
)

n we
have

rad ≤ OPT − (1 − λ − ϵ)
(∑

x∈U

δ(x, U \ {x})
)

.

By Lemma 13 and the fact that δ(x, U \ {x}) ≥ δ(x, V \ {x}), we have a.a.s.∑
x∈U

δ(x, U \ {x}) > (ξλ − ϵ) ·
√

n.

Noting that 1 − λ − ϵ > 0, we have

rad ≤ OPT − (1 − λ − ϵ) · (ξλ − ϵ) ·
√

n.
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Figure 2 Plot of the function h(λ) = (1 − λ) · ξλ for λ ∈ [0, 1). The maximum value of h(λ) is
greater than 0.078674, which is achieved when λ is roughly 0.62468.

Combining the above bounds gives a.a.s.

ITP(T ) < OPT +
(
α(β + ϵ) − (1 − λ − ϵ) · (ξλ − ϵ)

)
·
√

n. (16)

Note that the coefficient of
√

n in Equation (16) must be positive, because ITP(T ) ≥ OPT
(Lemma 4). Using Lemmas 3 and 5, and assuming ϵ < β, we have a.a.s.

√
n < cost(T ∗)

β−ϵ ≤ OPT
β−ϵ ,

and substituting into Equation (16) gives a.a.s.

ITP(T ) <

(
1 + α(β + ϵ) − (1 − λ − ϵ) · (ξλ − ϵ)

β − ϵ

)
· OPT.

Since β is a positive constant (Lemma 5), choosing λ to maximize (1 − λ) · ξλ and ϵ small
enough yields

ITP(T )
OPT < 1 + α −

maxλ

{
(1 − λ) · ξλ

}
β

+ 0.00001.

A numerical calculation (Figure 2) gives maxλ

{
(1 − λ) · ξλ

}
> 0.078674, and Lemma 5 tells

us that β < β1 = 0.92117. Substituting those values concludes the proof.
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