
HAL Id: hal-04482948
https://hal.science/hal-04482948

Submitted on 28 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discrete entropy inequalities via an optimization process
Nina Aguillon, Emmanuel Audusse, Vivien Desveaux, Julien Salomon

To cite this version:
Nina Aguillon, Emmanuel Audusse, Vivien Desveaux, Julien Salomon. Discrete entropy inequalities
via an optimization process. ESAIM: Mathematical Modelling and Numerical Analysis, 2024, 58 (1),
pp.363-391. �10.1051/m2an/2023098�. �hal-04482948�

https://hal.science/hal-04482948
https://hal.archives-ouvertes.fr


ESAIM: M2AN 58 (2024) 363–391 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2023098 www.esaim-m2an.org

DISCRETE ENTROPY INEQUALITIES VIA AN OPTIMIZATION PROCESS

Nina Aguillon1,*, Emmanuel Audusse2, Vivien Desveaux3 and Julien Salomon4

Abstract. The solutions of hyperbolic systems may contain discontinuities. These weak solutions
verify not only the original PDEs, but also an entropy inequality that acts as a selection criterion
determining whether a discontinuity is physical or not. Obtaining a discrete version of these entropy
inequalities when approximating the solutions numerically is crucial to avoid convergence to unphysical
solutions or even unstability. However such a task is difficult in general, if not impossible for schemes
of order 2 or more. In this paper, we introduce an optimization framework that enables us to quantify
a posteriori the decrease or increase of entropy of a given scheme, locally in space and time. We use it
to obtain maps of numerical diffusion and to prove that some schemes do not have a discrete entropy
inequality. A special attention is devoted to the widely used second order MUSCL scheme for which
almost no theoretical results are known.
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1. Introduction

Many physical phenomena can be described by means of a hyperbolic system, also called a system of con-
servation laws. Some famous hyperbolic systems include the Lighthill–Whitham–Richards or Aw-Rascle models
for traffic flow, the shallow water equations of Barr de Saint-Venant, the Euler equation for fluid dynamics and
the inviscid magnetohydrodynamics equation.

This class of partial differential equations (PDEs) does not contain any regularization terms such as diffusion
or dispersion. Their solutions typically develop discontinuities in finite time. These discontinuities are observed
in traffic jams, during floods caused by dam breaks, at hydraulic jumps, or in aeronautics. The PDE should
be understood in the weak sense to allow such discontinuous solutions. Doing so makes it possible to construct
infinitely many discontinuous solutions for the same initial data. An additional criterion should consequently
be included to select only the physical weak solution. It generally takes the form of an entropy (or energy)
inequality and is related to the second law of thermodynamics.
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Discretizing the PDE to obtain a numerical approximation of the solution can be done in several ways. In this
paper we focus on finite volume schemes which are well adapted to the low regularity of the solution and built
around the idea of conservation laws. In the design of such schemes, it seems important that the entropy also
decreases at the numerical level. This condition ensures that the scheme will not converge towards a nonphysical
solution of the PDE. The loss of entropy in each cell during one time step is called the numerical diffusion.
Discrete entropy inequalities have mainly been obtained for first order schemes in space and time. Realistic
codes use high-order discretizations and splitting techniques and usually incorporate ideas and knowledge from
the well-understood first-order framework. For this reason, they probably verify a discrete entropy inequality in
most cases. However, no explicit formulas are known in practice.

This paper proposes to quantify the numerical diffusion with an a posteriori minimization technique where
the scheme is used as a black box. Our primary goal is to obtain maps of numerical diffusion which quantify
in space and time the loss of entropy coming from the choice of discretization. As a practical motivation and
a long term objective, let us mention numerical oceanic circulation models where the numerical diffusion is
related to artificial changes of salinity, density and temperature between two adjacent distinct water masses,
and is usually called spurious mixing. This phenomenon is identified as a major issue in numerical cores for
climate application [13]. We refer the reader to [5, 18] for the quantification of spurious mixing in simplified
configurations and [17] in a realistic setting.

This paper provides a mathematical insight on the quantification of numerical diffusion in realistic codes but
is still far away from oceanic applications. Maps of numerical diffusion are obtained by minimizing a functional
which takes into account the consistency of the numerical entropy fluxes and the fact that the entropy should
decrease at each time step. This minimization couples all the cells of the mesh, but we also propose a local
and cheap quantification that gives qualitatively good results. A different perspective allows us to construct the
worst initial data in terms of entropy by minimizing a different but related functional. We apply this procedure
to prove that no discrete entropy inequality exists for most of the versions of the widely used MUSCL approach
with a 2 steps Runge-Kutta time discretization. This was suspected in [2]. A notable exception is the limitation
in the entropy variables with a HLL first order scheme [1].

We now present the mathematical framework on hyperbolic PDEs and their discretization with finite volume
schemes, with an emphasis on discrete entropy inequality which is at the core of this work. Our main results
and the outline of the paper are described hereafter.

Fundamentals on discrete entropy inequalities

Consider a hyperbolic system in 1 dimension (1D) in space

𝜕𝑡𝑢 (𝑥, 𝑡) + 𝜕𝑥𝑓 (𝑢 (𝑥, 𝑡)) = 0, 𝑥 ∈ R, 𝑡 ∈ R+, (1)

where the vectorial unknown 𝑢 belongs to some convex domain Ω ⊂ R𝑑. The flux 𝑓 : Ω → R𝑑 is 𝒞1-regular and
its Jacobian matrix 𝐷𝑓 is diagonalizable with real eigenvalues. We are only interested in weak solutions of (1)
that additionally satisfy the entropy inequality (or energy inequality)

𝜕𝑡𝜂 (𝑢) + 𝜕𝑥𝐺 (𝑢) ≤ 0, (2)

where the entropy 𝜂 : Ω → R is strictly convex. The entropy flux 𝐺 is linked to the entropy 𝜂 through the
relation on their Jacobian matrices 𝐷𝜂𝐷𝑓 = 𝐷𝐺. Such hyperbolic systems arise in particular in the modeling
of nonviscous flows. In this paper, we consider the scalar (𝑑 = 1) Burgers equations related to the Lighthill–
Whitham–Richards model for traffic flows and the Euler equations of inviscid gas dynamics for which 𝑑 = 3.

We now turn to the numerical discretization of (1) with a finite volume technique. For the sake of simplicity
a space interval [𝑎, 𝑏] with periodic boundary conditions is considered throughout the paper. A finite number of

cells 𝑀 is fixed with size ∆𝑥 =
𝑏− 𝑎

𝑀
and we note 𝑥𝑗−1/2 = 𝑎 + (𝑗 − 1)∆𝑥 for 𝑗 ∈ J1, 𝑀K. The points 𝑎 = 𝑥1/2

and 𝑏 = 𝑥𝑀+1/2 are identified and all the space subscript are considered modulo 𝑀 . For the sake of simplicity,
every family (𝑋)𝑗∈J1,𝑀K of quantities indexed by the set of cells will be denoted by (𝑋𝑗)𝑗 .
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We also consider a discretization in time 0 = 𝑡0 < 𝑡1 < . . . 𝑡𝑛 < . . . A Courant–Friedrichs–Lewy (CFL)
condition is imposed at each time step. It reads, for some CFL 𝛼 ∈ (0, 1) depending on the scheme,(︀

𝑡𝑛+1 − 𝑡𝑛
)︀

max
1≤𝑗≤𝑀

𝜌
(︀
𝐷𝑓

(︀
𝑢𝑛

𝑗

)︀)︀
= 𝛼∆𝑥, (3)

where 𝜌
(︀
𝐷𝐹

(︀
𝑢𝑛

𝑗

)︀)︀
is the spectral radius of the Jacobian matrix 𝐷𝐹

(︀
𝑢𝑛

𝑗

)︀
. The time step varies with the time

iteration but for the sake of simplicity, we will denote it independently of 𝑛 as 𝑡𝑛+1 − 𝑡𝑛 = ∆𝑡.
A finite volume scheme writes

𝑢𝑛+1
𝑗 = 𝑢𝑛

𝑗 −
∆𝑡

∆𝑥

(︁
𝑓𝑛

𝑗+1/2 − 𝑓𝑛
𝑗−1/2

)︁
, (4)

where the vectors 𝑢𝑛
𝑗 and 𝑓𝑛

𝑗+1/2 correspond to the numerical approximations of the mean of the exact solution
𝑢 and flux 𝑓(𝑢)

𝑢𝑛
𝑗 ≈

1
∆𝑥

∫︁ 𝑥𝑗+1/2

𝑥𝑗−1/2

𝑢 (𝑥, 𝑡𝑛) 𝑑𝑥, 𝑓𝑛
𝑗+1/2 ≈

1
∆𝑡

∫︁ 𝑡𝑛+1

𝑡𝑛

𝑓
(︀
𝑢
(︀
𝑥𝑗+1/2, 𝑠

)︀)︀
𝑑𝑠.

Definition 1. A consistent finite volume scheme with a stencil of 𝑠𝐿 ∈ N cells to the left and 𝑠𝑅 ∈ N cells
to the right is a formula expressing the numerical flux 𝑓𝑛

𝑗+1/2 in terms of its 𝑠𝐿 + 𝑠𝑅 neighbor cells 𝑓𝑛
𝑗+1/2 =

ℱ
(︀
𝑢𝑛

𝑗−𝑠𝐿+1, . . . , 𝑢
𝑛
𝑗+𝑠𝑅

)︀
such that, for all 𝑢 ∈ Ω, ℱ (𝑢−𝑠𝐿+1, . . . , 𝑢𝑠𝑅

) tends to 𝑓 (𝑢) as (𝑢−𝑠𝐿+1, . . . , 𝑢𝑠𝑅
) tends

to (𝑢, . . . , 𝑢) .

Equations (1) and (2) are understood in a weak sense to allow discontinuous solutions. Inequality (2) does
not hold for every discontinuity but selects only entropy satisfying shocks. The fact that the scheme (4) is stable
and computes the entropy solution, with only entropy satisfying shocks, is strongly related to the existence of
a numerical counterpart of (2) at the discrete level, called a discrete entropy inequality

∀𝑗 ∈ J1, 𝑀K, 𝜂
(︀
𝑢𝑛+1

𝑗

)︀
≤ 𝜂

(︀
𝑢𝑛

𝑗

)︀
− ∆𝑡

∆𝑥

(︁
𝐺𝑛

𝑗+1/2 −𝐺𝑛
𝑗−1/2

)︁
. (5)

In the spirit of Definition 1, we introduce the notion of entropy satifying scheme.

Definition 2. Consider a consistent finite volume scheme of 𝑠𝐿 ∈ N cells to the left and 𝑠𝑅 ∈ N to the right.
It is a consistent entropy satisfying scheme if there exists a numerical entropy flux function 𝒢 such that the
following two conditions are satisfied.

– Inequality (5) holds for all data (𝑢𝑛
𝑘 )𝑘 with the choice 𝐺𝑛

𝑗+1/2 = 𝒢
(︀
𝑢𝑛

𝑗−𝑠𝐿+1, . . . , 𝑢
𝑛
𝑗+𝑠𝑅

)︀
. The remainder

𝐷𝑛
𝑗 = 𝜂

(︀
𝑢𝑛+1

𝑗

)︀
− 𝜂

(︀
𝑢𝑛

𝑗

)︀
+

∆𝑡

∆𝑥

(︁
𝐺𝑛

𝑗+1/2 −𝐺𝑛
𝑗−1/2

)︁
(6)

is called numerical diffusion and is nonpositive in all cells.
– The numerical entropy flux function 𝒢 is consistent: for all 𝑢 ∈ Ω, 𝒢 (𝑢−𝑠𝐿+1, . . . , 𝑢𝑠𝑅

) tends to 𝐺 (𝑢) as
(𝑢−𝑠𝐿+1, . . . , 𝑢𝑠𝑅

) tends to (𝑢, . . . , 𝑢) .

There exist several first order schemes (4) with a stencil 𝑠𝐿 = 𝑠𝑅 = 1 for which an explicit formula for 𝒢
yielding to nonpositive diffusion 𝐷𝑛

𝑗 is known:

– for scalar equations 𝑑 = 1, monotone schemes, see [14];
– for hyperbolic systems 𝑑 ≥ 2 the Godunov and HLL schemes are entropy satisfying; see [14]. In the specific

case of gas dynamics, the HLLC scheme and some relaxation or kinetic schemes are also entropy satisfying
see [3, 20] and references therein.

For schemes of order larger than 1 the specific form of (5) seems out of reach for hyperbolic systems and the
question is still largely open. Some works present results in that direction, mainly for second order schemes.
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– In [4,9] and [1], inequality (5) is slightly modified. The schemes are either difficult to implement or there is
no guarantee that they capture entropy solution.

– The local discrete entropy inequality (5) is replaced by the weaker global condition
∑︀

𝑗 𝜂
(︀
𝑢𝑛+1

𝑗

)︀
≤
∑︀

𝑗 𝜂
(︀
𝑢𝑛

𝑗

)︀
in [10] for the multilayer shallow water equations, in [20] and [16] for gas dynamics and in [6] for a conservation
law with nonconvex flux.

– A different approach consists in using a second order scheme and to go back to first order if (5) does not hold.
The MOOD technique (see [7, 11]) was initially developed to ensure the positiveness of some quantities like
the density and the pressure, as well as some discrete maximum principle. This method was later extended
in [2] to ensure the discrete entropy inequalities (5) hold. However it is limited to the gas dynamics (23).

On the other hand many schemes of order 2 or more are employed in the applications for their realistic results.
They are typically designed to be of high order when the solution is smooth and include corrections to ensure
stability, such as limiters or explicit numerical diffusion. Positivness and lack of spurious oscillations are also
often taken into account. However, the existence of discrete entropy inequality often remains an open question,
as is the case for the Piecewise Parabolic Method (PPM) [8] or the (Weighted) Essentially Non Oscillatory
method (ENO/WENO) [15,21,26].

In this work, we are concerned with the a posteriori determination of the numerical entropy fluxes 𝐺𝑛
𝑗+1/2

and numerical diffusions 𝐷𝑛
𝑗 of Definition 2. We do not attempt to find an analytical choice of 𝒢. Instead, we

follow a different approach and construct an adequate functional 𝒥 that is minimized to obtain(︁
𝐺𝑜𝑝𝑡,𝑛

𝑗+1/2

)︁
𝑗

= arg min
𝛾=
(︁

𝛾𝑛
𝑗+1/2

)︁

𝑗
∈R𝑀

{︁
𝒥
(︁
𝛾;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︁}︁
(7)

and the corresponding a posteriori numerical diffusion

𝐷𝑜𝑝𝑡,𝑛
𝑗 = 𝜂

(︀
𝑢𝑛+1

𝑗

)︀
− 𝜂

(︀
𝑢𝑛

𝑗

)︀
+

∆𝑡

∆𝑥

(︁
𝐺𝑜𝑝𝑡,𝑛

𝑗+1/2 −𝐺𝑜𝑝𝑡,𝑛
𝑗−1/2

)︁
. (8)

The first objective is to be able to quantify the numerical diffusion in settings where finding an explicit formula
for 𝒢 is out of reach. The functional is built so that the two constraints of Definition 2, namely the nonpositivity
of the diffusion and the consistency of the fluxes, are satisfied “as much as possible” and can be applied to any
explicit finite volume scheme satisfying Definition 1.

This a posteriori approach offers a novel method to construct numerical entropy fluxes. There are strong links
between Definition 2 of entropy satisfying scheme and the fact that the minimum of the functional 𝒥 is 0. Our
main results are summarized in the diagram below.

Existence of an explicit 𝒢 such that

∀ (𝑢𝑛
𝑘 )𝑘 , ∀𝑗 ∈ J1, 𝑀K, 𝐷𝑛

𝑗 ≤ 0

(Defs. 2 and (6))

The minimization always
reaches its lowest bound 0

∀ (𝑢𝑛
𝑘 )𝑘 , 𝒥

(︂(︁
𝐺𝑜𝑝𝑡,𝑛

𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
= 0

For a specific (𝑢𝑛
𝑘 )𝑘

𝒥
(︂(︁

𝐺𝑜𝑝𝑡,𝑛
𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
= 0

For this specific (𝑢𝑛
𝑘 )𝑘, for all 𝑗 ∈ J1, 𝑀K,

𝜂
(︀
𝑢𝑛+1

𝑗

)︀
≤ 𝜂

(︀
𝑢𝑛

𝑗

)︀
− ∆𝑡

∆𝑥

(︁
𝐺𝑜𝑝𝑡,𝑛

𝑗+1/2 −𝐺𝑜𝑝𝑡,𝑛
𝑗−1/2

)︁
For a specific (𝑢𝑛

𝑘 )𝑘

𝒥
(︂(︁

𝐺𝑜𝑝𝑡,𝑛
𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
> 0

The scheme is not entropy satis-
fying: it is impossible to find an

explicit 𝒢 such that Definition 2 holds
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The paper is organized as follows. The construction of the functional 𝒥 and the minimization procedure
are introduced in Section 2. In Section 3, we prove several theoretical results about the minimizers of the
functional 𝒥 , including the two first implications of the previous diagram. The first one ensures that the
minimization procedure is efficient on the class of entropy satisfying schemes where an expression for the
numerical entropy fluxes 𝐺𝑗+1/2 in (5) can be found in the literature. The second one is more practical, since it is
applied on a specific initial data for a generic scheme and allows to visualize the distribution of numerical diffusion
by making the best choice for 𝐺𝑗+1/2. We also prove a Lax-Wendroff theorem adapted to our minimization
procedure in the sense that if a numerical scheme converges and we can find numerical entropy fluxes such that

𝒥
(︂(︁

𝐺𝑜𝑝𝑡,𝑛
𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
= 0, then the limit is an entropy solution.

The minimization procedure is illustrated on various testcases in Section 4 both for the Burgers equation
and for the Euler equations of gas dynamics. The third implication of the previous diagram is nothing but the
contraposition of the first one. We exploit it in Section 5 to build initial data that cannot satisfy any discrete
entropy inequality. As an illustration, we prove that most variants of the MUSCL scheme with a second-order
Runge-Kutta time discretization for the gas dynamics are not entropy satisfying.

2. Minimization procedure

The minimization is carried out at some fixed time iteration 𝑛 which is referred to as “the initial data”. In
other words

(︀
𝑢𝑛

𝑗

)︀
𝑗

is fixed by the user and 𝑢𝑛+1
𝑗 is then obtained with Scheme (4). The superscript 𝑛 plays no

particular role and one can fix, e.g., 𝑛 = 0.
In this section, the numerical entropy flux is computed by a minimization procedure (7). The function

𝒥 : R𝑀 → R is defined by the sum of two contributions 𝒥 = 𝒥𝐷 + 𝒥 𝐶 . The first part 𝒥𝐷 gathers the
contributions of positive numerical diffusion

𝒥𝐷
(︀
𝛾; (𝑢𝑛

𝑗 )𝑗

)︀
=

𝑀∑︁
𝑗=1

max
(︂

0, 𝜂
(︀
𝑢𝑛+1

𝑗

)︀
− 𝜂

(︀
𝑢𝑛

𝑗

)︀
+

∆𝑡

∆𝑥

(︁
𝛾𝑛

𝑗+1/2 − 𝛾𝑛
𝑗−1/2

)︁)︂2

.

Indeed the quantity 𝜂
(︀
𝑢𝑛+1

𝑗

)︀
− 𝜂

(︀
𝑢𝑛

𝑗

)︀
+

∆𝑡

∆𝑥

(︁
𝛾𝑛

𝑗+1/2 − 𝛾𝑛
𝑗−1/2

)︁
corresponds to the numerical diffusion (6) in

the 𝑗-th cell if the numerical entropy fluxes are given by 𝐺𝑗+1/2 = 𝛾𝑗+1/2. A negative value is consistent with
the Definition 2 of an entropy satisfying scheme; thus only positive contributions are kept in the function 𝒥𝐷.
Overall, we have 𝐽𝐷

(︀
𝛾; (𝑢𝑛

𝑗 )𝑗

)︀
= 0 if and only if Inequality (5) holds with the choice 𝐺 = 𝛾.

It remains to take into account the consistency property of the numerical entropy fluxes of Definition 2, which
is the role of the second part of the functional. We make use of a priori consistency bounds on the numerical
entropy fluxes 𝑚𝑛

𝑗+1/2 ≤ 𝐺𝑛
𝑗+1/2 ≤ 𝑀𝑛

𝑗+1/2 depending on 𝑠𝐿 cells on the left and 𝑠𝑅 on the right. These bounds
are defined in Lemma 1 and satisfy the following consistency property

𝑢𝑛
𝑗−𝑠𝐿+1 = · · · = 𝑢𝑛

𝑗+𝑠𝑅
= 𝑢 =⇒ 𝑚𝑛

𝑗+1/2 = 𝑀𝑛
𝑗+1/2 = 𝐺(𝑢).

This motivates the choice

𝒥 𝐶
(︁
𝛾;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︁
=
(︂

∆𝑡

∆𝑥

)︂2 𝑀∑︁
𝑗=0

(︂
max

(︁
0, 𝛾𝑛

𝑗+1/2 −𝑀𝑛
𝑗+1/2

)︁2

+ max
(︁

0, 𝑚𝑛
𝑗+1/2 − 𝛾𝑛

𝑗+1/2

)︁2
)︂

,

which vanishes if and only if ∀𝑗 ∈ {1/2, . . . ,𝑀 +1/2}, 𝑚𝑛
𝑗+1/2 ≤ 𝛾𝑛

𝑗+1/2 ≤ 𝑀𝑛
𝑗+1/2. In the particular case where

𝑢𝑛
𝑗−𝑠𝐿+1 = · · · = 𝑢𝑛

𝑗+𝑠𝑅
= 𝑢, the 𝑗-th term of the sum in 𝒥 𝐶

(︁
𝛾;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︁
vanishes if and only if 𝛾𝑛

𝑗+1/2 = 𝐺 (𝑢),

meaning that 𝛾 is consistent. The function 𝒥 is nonnegative, 𝒞1-regular and convex with respect to 𝛾, but the
set where it vanishes has no reason either to exist or to be reduced to a single point.
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Figure 1. Modification of the initial data away from the stencil. Consistency can be used to
compute the fluxes at interfaces 𝑗 + 3/2−𝑠𝐿−𝑠𝑅 and 𝑗−1/2 +𝑠𝐿 +𝑠𝑅 and the value of 𝑓𝑛

𝑗+1/2

remains unchanged.

We now define the bounds 𝑚𝑛
𝑗+1/2 and 𝑀𝑛

𝑗+1/2. To do so, we zoom on the interface 𝑗 + 1/2 and construct a

modified initial data
(︁
𝑢̃

𝑛,𝑗+1/2
𝑘

)︁
𝑘

as illustrated on Figure 1 in such a way that the consistency property can be

used as close as possible to the interface 𝑗 + 1/2 without changing the value of the numerical flux 𝑓𝑗+1/2. The
easiest way to proceed consists in extending the initial data by constant values outside of the stencil.

Then the finite volume scheme (4) applied to this new initial data gives numerical fluxes
(︁
𝑓

𝑛,𝑗+1/2
𝑘+1/2

)︁
𝑘
. They

are used to compute the update
(︁
𝑢̂

𝑛,𝑗+1/2
𝑘

)︁
𝑘
. The benefit brought by this modified data is that the evolution

of the total entropy on the left and the right of interface 𝑗 + 1/2 can be expressed only in terms of 𝐺𝑛
𝑗+1/2,(︁

𝑢̃
𝑛,𝑗+1/2
𝑘

)︁
𝑘

and
(︁
𝑢̂

𝑛,𝑗+1/2
𝑘

)︁
𝑘
. It yields bounds on the individual numerical entropy flux 𝐺𝑛

𝑗+1/2 that can be

constructed from the initial data (𝑢𝑛
𝑘 )𝑘 and depends on the chosen numerical scheme.

Lemma 1. Consider a consistent entropy satisfying scheme in the sense of Definition 2. Then, for all 𝑗 ∈
J1, 𝑀K, we have 𝑚𝑛

𝑗+1/2 ≤ 𝐺𝑛
𝑗+1/2 ≤ 𝑀𝑛

𝑗+1/2, with s

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑀𝑛

𝑗+1/2 = 𝐺
(︀
𝑢𝑛

𝑗−𝑠𝐿+1

)︀
+

∆𝑥

∆𝑡

𝑗∑︁
𝑘=𝑗−𝑠𝐿−𝑠𝑅+2

𝜂
(︁
𝑢̃

𝑛,𝑗+1/2
𝑘

)︁
− 𝜂

(︁
𝑢̂

𝑛,𝑗+1/2
𝑘

)︁
,

𝑚𝑛
𝑗+1/2 = 𝐺

(︀
𝑢𝑛

𝑗+𝑠𝑅

)︀
+

∆𝑥

∆𝑡

𝑗+𝑠𝐿+𝑠𝑅−1∑︁
𝑘=𝑗+1

𝜂
(︁
𝑢̂

𝑛,𝑗+1/2
𝑘

)︁
− 𝜂

(︁
𝑢̃

𝑛,𝑗+1/2
𝑘

)︁
,

(9)

where

𝑢̃
𝑛,𝑗+1/2
𝑘 = 𝑢𝑛

min(max(𝑘,𝑗−𝑠𝐿+1),𝑗+𝑠𝑅) (10)
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and for all 𝑘 ∈ J1, 𝑀K,

𝑢̂
𝑛,𝑗+1/2
𝑘 = 𝑢̃

𝑛,𝑗+1/2
𝑘 − ∆𝑡

∆𝑥

(︁
ℱ
(︁
𝑢̃

𝑛,𝑗+1/2
𝑘−𝑠𝐿+1, . . . , 𝑢̃

𝑛,𝑗+1/2
𝑘 , 𝑢̃

𝑛,𝑗+1/2
𝑘+1 , . . . , 𝑢̃

𝑛,𝑗+1/2
𝑘+𝑠𝑅

)︁
− ℱ

(︁
𝑢̃

𝑛,𝑗+1/2
𝑘−𝑠𝐿

, . . . , 𝑢̃
𝑛,𝑗+1/2
𝑘−1 , 𝑢̃

𝑛,𝑗+1/2
𝑘 , . . . , 𝑢̃

𝑛,𝑗+1/2
𝑘+𝑠𝑅−1

)︁)︁
.

Proof. The flux at the interface 𝑗 + 1/2 is independent of the values in cells 𝑗 − 𝑠𝐿 and smaller, and in cells
𝑗 + 𝑠𝑅 + 1 and larger. Thus, we modify the initial data by extending it by 𝑢𝑛

𝑗−𝑠𝐿+1 on its left and by 𝑢𝑛
𝑗+𝑠𝑅

on
its right

𝑢̃
𝑛,𝑗+1/2
𝑘 =

⎧⎪⎨⎪⎩
𝑢𝑛

𝑗−𝑠𝐿+1 if 𝑘 ≤ 𝑗 − 𝑠𝐿,

𝑢𝑛
𝑘 if 𝑗 − 𝑠𝐿 + 1 ≤ 𝑘 ≤ 𝑗 + 𝑠𝑅,

𝑢𝑛
𝑗+𝑠𝑅

if 𝑗 + 𝑠𝑅 + 1 ≤ 𝑘,

which corresponds to (10). We update this modified initial data with the chosen finite volume scheme ℱ and
obtain 𝑢̂

𝑛,𝑗+1/2
𝑘 .

The interest of the modified initial data
(︁
𝑢̃

𝑛,𝑗+1/2
𝑘

)︁
𝑘

is that the fluxes at interfaces 𝑗 − 𝑠𝐿 − 𝑠𝑅 + 3/2 (and

before) and 𝑗 + 𝑠𝑅 + 𝑠𝐿 − 1/2 (and after) are given by consistency:

ℱ
(︁
𝑢̃

𝑛,𝑗+1/2
𝑗−2𝑠𝐿−𝑠𝑅+2, . . . , 𝑢̃

𝑛,𝑗+1/2
𝑗−𝑠𝐿−𝑠𝑅+1, 𝑢̃

𝑛,𝑗+1/2
𝑗−𝑠𝐿−𝑠𝑅+2, . . . , 𝑢̃

𝑛,𝑗+1/2
𝑗−𝑠𝐿+1

)︁
= 𝑓

(︀
𝑢𝑛

𝑗−𝑠𝐿+1

)︀
,

ℱ
(︁
𝑢̃

𝑛,𝑗+1/2
𝑗+𝑠𝑅

, . . . , 𝑢̃
𝑛,𝑗+1/2
𝑗+𝑠𝐿+𝑠𝑅−1, 𝑢̃

𝑛,𝑗+1/2
𝑗+𝑠𝐿+𝑠𝑅

, . . . , 𝑢̃
𝑛,𝑗+1/2
𝑗+𝑠𝐿+2𝑠𝑅−1

)︁
= 𝑓

(︀
𝑢𝑛

𝑗+𝑠𝑅

)︀
.

Now, as the scheme is entropy satisfying

∀𝑘, 𝜂
(︁
𝑢̂

𝑛,𝑗+1/2
𝑘

)︁
≤ 𝜂

(︁
𝑢̃

𝑛,𝑗+1/2
𝑘

)︁
− ∆𝑡

∆𝑥

(︁
𝐺̃

𝑛,𝑗+1/2
𝑘+1/2 − 𝐺̃

𝑛,𝑗+1/2
𝑘−1/2

)︁
,

where 𝐺̃
𝑛,𝑗+1/2
𝑘+1/2 = 𝒢

(︁
𝑢̃

𝑛,𝑗+1/2
𝑘−𝑠𝐿+1, . . . , 𝑢̃

𝑛,𝑗+1/2
𝑘 , 𝑢̃

𝑛,𝑗+1/2
𝑘+1 , . . . , 𝑢̃

𝑛,𝑗+1/2
𝑘+𝑠𝑅

)︁
for some function 𝒢, see Definition 2. These

inequalities are not of much use because we do not know an explicit formula for 𝒢. However, we deduced from
the construction of

(︁
𝑢̃

𝑛,𝑗+1/2
𝑘

)︁
𝑘

several consequences. The consistency yields at interfaces 𝑗− 𝑠𝐿− 𝑠𝑅 + 3/2 and

𝑗 + 𝑠𝐿 + 𝑠𝑅 − 1/2

𝐺̃
𝑛,𝑗+1/2
𝑗−𝑠𝐿−𝑠𝑅+3/2 = 𝐺

(︀
𝑢𝑛

𝑗−𝑠𝐿+1

)︀
and 𝐺̃

𝑛,𝑗+1/2
𝑗+𝑠𝐿+𝑠𝑅−1/2 = 𝐺

(︀
𝑢𝑛

𝑗+𝑠𝑅

)︀
.

On the other hand the flux at interface 𝑗 + 1/2 remains unchanged

𝐺̃
𝑛,𝑗+1/2
𝑗+1/2 = 𝒢

(︁
𝑢̃

𝑛,𝑗+1/2
𝑗−𝑠𝐿+1, . . . , 𝑢̃

𝑛,𝑗+1/2
𝑗+𝑠𝑅

)︁
= 𝒢

(︀
𝑢𝑛

𝑗−𝑠𝐿+1, . . . , 𝑢
𝑛
𝑗+𝑠𝑅

)︀
= 𝐺𝑛

𝑗+1/2.

We eliminate the other numerical entropy fluxes by summation:

𝑗+𝑠𝐿+𝑠𝑅−1∑︁
𝑘=𝑗+1

𝜂
(︁
𝑢̂

𝑛,𝑗+1/2
𝑘

)︁
≤

⎛⎝𝑗+𝑠𝐿+𝑠𝑅−1∑︁
𝑘=𝑗+1

𝜂
(︁
𝑢̃

𝑛,𝑗+1/2
𝑘

)︁⎞⎠− ∆𝑡

∆𝑥

(︁
𝐺
(︀
𝑢𝑛

𝑗+𝑠𝑅

)︀
−𝐺𝑛

𝑗+1/2

)︁
,

𝑗∑︁
𝑘=𝑗−𝑠𝐿−𝑠𝑅+2

𝜂
(︁
𝑢̂

𝑛,𝑗+1/2
𝑘

)︁
≤

𝑗∑︁
𝑘=𝑗−𝑠𝐿−𝑠𝑅+2

𝜂
(︁
𝑢̃

𝑛,𝑗+1/2
𝑘

)︁
− ∆𝑡

∆𝑥

(︁
𝐺𝑛

𝑗+1/2 −𝐺
(︀
𝑢𝑛

𝑗−𝑠𝐿+1

)︀)︁
.

We can now bound 𝐺𝑛
𝑗+1/2 from above and below and conclude. �

Remark 1. In the case of two points scheme 𝑠𝐿 = 𝑠𝑅 = 1, Lemma 1 correspond to the notion of “inter-
face entropy inequality” in Definition 2.7 of [3]. In this specific case it implies the desired discrete entropy
inequality (5) at the cost of a time step ∆𝑡 twice smaller Proposition 2.9 of [3].
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3. Main results

In this section, we state some properties of the minimizers of 𝒥 and revisit some standard concepts of finite
volume scheme theory from our a posteriori point of view.

3.1. Entropy dissipation and zero minimization

Proposition 1. Consider a finite volume scheme (4) that admits a discrete entropy inequality (5) for
some numerical entropy fluxes

(︁
𝐺𝑛

𝑗+1/2 = 𝒢
(︀
𝑢𝑛

𝑗−𝑠𝐿+1, . . . , 𝑢
𝑛
𝑗+𝑠𝑅

)︀)︁
𝑗
. Then for all initial data

(︀
𝑢𝑛

𝑗

)︀
𝑗

we have

𝒥
(︂(︁

𝐺𝑛
𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
= 0.

Proof. This property follows from the definition of the functional. If (5) holds, then

𝒥𝐷

(︂(︁
𝐺𝑛

𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
= 0.

It remains to prove that the second part also vanishes, which is the case if and only if 𝑚𝑛
𝑗+1/2 ≤ 𝐺𝑛

𝑗+1/2 ≤ 𝑀𝑛
𝑗+1/2.

This holds by construction on the bounds 𝑚𝑛
𝑗+1/2 and 𝑀𝑛

𝑗+1/2. The scheme is also entropy diminishing on the

modified initial data
(︁
𝑢̃

𝑛,𝑗+1/2
𝑘

)︁
𝑘
. The lower (resp. upper) bound follows from the diminution of total entropy

in the 𝑠𝐿 + 𝑠𝑅 − 1 cells on the left (resp. right cells) during the time step. Details are given in the proof of
Lemma 1 in the previous section. �

Remark 2. The contraposition of Proposition 1 states that if there exists an initial data (𝑢𝑛
𝑗 )𝑗 such that for

all (𝐺𝑛
𝑗+1/2)𝑗 , 𝒥

(︂(︁
𝐺𝑛

𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
> 0 then the scheme is not entropy satisfying. We further exploit this

fact in Section 5 to build another minimization procedure which constructs the worst initial data in terms of
entropy and use it to prove that some schemes are non entropy satisfying.

Proposition 2. Fix the initial data
(︀
𝑢𝑛

𝑗

)︀
𝑗
. Suppose that there exists

(︁
𝐺𝑜𝑝𝑡,𝑛

𝑗+1/2

)︁
𝑗
such that the functional vanishes

𝒥
(︂(︁

𝐺𝑜𝑝𝑡,𝑛
𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
= 0. Then the corresponding scheme verifies

∀𝑗 ∈ J1, 𝑀K, 𝜂
(︀
𝑢𝑛+1

𝑗

)︀
≤ 𝜂

(︀
𝑢𝑛

𝑗

)︀
− ∆𝑡

∆𝑥

(︁
𝐺𝑜𝑝𝑡,𝑛

𝑗+1/2 −𝐺𝑜𝑝𝑡,𝑛
𝑗−1/2

)︁
.

The scheme is also consistent in the sense that if 𝑢𝑛
𝑗−𝑠𝐿+1 = · · · = 𝑢𝑛

𝑗 = · · · = 𝑢𝑛
𝑗+𝑠𝑅

, then 𝐺𝑜𝑝𝑡,𝑛
𝑗+1/2 = 𝐺

(︀
𝑢𝑛

𝑗

)︀
.

Let us insist that this result only shows that there exist numerical entropy fluxes yielding to nonpositive
numerical diffusion for the particular choice of initial data

(︀
𝑢𝑛

𝑗

)︀
𝑗
, which does not mean that the scheme is

always entropy satisfying.

Proof. Suppose that 𝒥
(︂(︁

𝐺𝑜𝑝𝑡,𝑛
𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
= 0. The first contribution 𝒥𝐷 is zero thus

∀𝑗 ∈ J1, 𝑀K, 𝜂
(︀
𝑢𝑛+1

𝑗

)︀
− 𝜂

(︀
𝑢𝑛

𝑗

)︀
+

∆𝑡

∆𝑥

(︁
𝐺𝑜𝑝𝑡,𝑛

𝑗+1/2 −𝐺𝑜𝑝𝑡,𝑛
𝑗−1/2

)︁
≤ 0,

which is exactly (5). The term 𝒥 𝐶 is also zero, thus 𝑚𝑛
𝑗+1/2 ≤ 𝐺𝑜𝑝𝑡,𝑛

𝑗+1/2 ≤ 𝑀𝑛
𝑗+1/2. If

(︀
𝑢𝑛

𝑗−𝑠𝐿+1, . . . , 𝑢
𝑛
𝑗+𝑠𝑅

)︀
=(︀

𝑢𝑛
𝑗 , . . . , 𝑢𝑛

𝑗

)︀
, then

(︁
𝑢̃

𝑛,𝑗+1/2
𝑘

)︁
𝑘

is constant equal to 𝑢𝑛
𝑗 , as well as

(︁
𝑢̂

𝑛,𝑗+1/2
𝑘

)︁
𝑘
, so that 𝑚𝑛

𝑗+1/2 = 𝑀𝑛
𝑗+1/2 =

𝐺
(︀
𝑢𝑛

𝑗

)︀
and 𝐺𝑜𝑝𝑡,𝑛

𝑗+1/2 = 𝐺
(︀
𝑢𝑛

𝑗

)︀
. �
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3.2. Discrepancy between global minimizers

When the set where the functional 𝒥 vanishes is nonempty, it most likely contains several solutions. We first
quantify how close they are from each other.

Proposition 3. Suppose that 𝒥
(︂(︁

𝐺𝑛
𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
= 0 and 𝒥

(︂(︁
𝐺̄𝑛

𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
= 0, and that the

numerical flux ℱ used in (4) is consistent and Lipschitz regular. Then for all 𝑗,

|𝐺𝑛
𝑗+1/2 − 𝐺̄𝑛

𝑗+1/2| =
∑︁

𝑘∈{𝑗−𝑠𝐿+1,...,𝑗+𝑠𝑅}

𝑂
(︀
|𝑢𝑛

𝑘 − 𝑢𝑛
𝑗 |2
)︀
.

When the scheme is known to satisfy a given discrete entropy inequality and when the solution is smooth,
this result shows that the difference between the numerical entropy flux found in the literature and the one
returned by the minimization procedure is of order ∆𝑥2. Note that the consistency property alone gives an
order ∆𝑥.

Proof. Suppose that the minimization procedure has two different global minimizers 𝒥
(︂(︁

𝐺𝑛
𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
= 0

and 𝒥
(︂(︁

𝐺̄𝑛
𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
= 0. Then 𝑚𝑛

𝑗+1/2 ≤ 𝐺𝑛
𝑗+1/2 ≤ 𝑀𝑛

𝑗+1/2 and 𝑚𝑛
𝑗+1/2 ≤ 𝐺̄𝑛

𝑗+1/2 ≤ 𝑀𝑛
𝑗+1/2, thus

|𝐺̄𝑛
𝑗+1/2 −𝐺𝑛

𝑗+1/2| ≤ 𝑀𝑛
𝑗+1/2 −𝑚𝑛

𝑗+1/2, where

𝑀𝑛
𝑗+1/2 −𝑚𝑛

𝑗+1/2 = 𝐺
(︀
𝑢𝑛

𝑗−𝑠𝐿+1

)︀
−𝐺

(︀
𝑢𝑛

𝑗+𝑠𝑅

)︀
+

∆𝑥

∆𝑡

𝑗+𝑠𝐿+𝑠𝑅−1∑︁
𝑘=𝑗−𝑠𝐿−𝑠𝑅+2

𝜂
(︁
𝑢̃

𝑛,𝑗+1/2
𝑘

)︁
− 𝜂

(︁
𝑢̂

𝑛,𝑗+1/2
𝑘

)︁
.

(11)

By convexity of the entropy 𝜂,

𝜂
(︁
𝑢̂

𝑛,𝑗+1/2
𝑘

)︁
= 𝜂

(︂
𝑢̃

𝑛,𝑗+1/2
𝑘 − Δ𝑡

Δ𝑥

(︁
𝑓

𝑛,𝑗+1/2

𝑘+1/2 − 𝑓
𝑛,𝑗+1/2

𝑘−1/2

)︁)︂
,

≥ 𝜂
(︁
𝑢̃

𝑛,𝑗+1/2
𝑘

)︁
− Δ𝑡

Δ𝑥
𝐷𝜂
(︁
𝑢̃

𝑛,𝑗+1/2
𝑘

)︁(︁
𝑓

𝑛,𝑗+1/2

𝑘+1/2 − 𝑓
𝑛,𝑗+1/2

𝑘−1/2

)︁
.

Combining this inequality with (11), we get

𝑀𝑛
𝑗+1/2 −𝑚𝑛

𝑗+1/2 ≤ 𝐺
(︀
𝑢𝑛

𝑗−𝑠𝐿+1

)︀
−𝐺

(︀
𝑢𝑛

𝑗+𝑠𝑅

)︀
+

𝑗+𝑠𝐿+𝑠𝑅−1∑︁
𝑘=𝑗−𝑠𝐿−𝑠𝑅+2

𝐷𝜂
(︁
𝑢̃

𝑛,𝑗+1/2
𝑘

)︁(︁
𝑓

𝑛,𝑗+1/2
𝑘+1/2 − 𝑓

𝑛,𝑗+1/2
𝑘−1/2

)︁
,

which rewrites as

𝑀𝑛
𝑗+1/2 −𝑚𝑛

𝑗+1/2 ≤ 𝐺
(︀
𝑢𝑛

𝑗−𝑠𝐿+1

)︀
−𝐺

(︀
𝑢𝑛

𝑗+𝑠𝑅

)︀
+ 𝐷𝜂

(︀
𝑢𝑛

𝑗

)︀ (︀
𝑓
(︀
𝑢𝑛

𝑗+𝑠𝑅

)︀
− 𝑓

(︀
𝑢𝑛

𝑗−𝑠𝐿+1

)︀)︀
+

𝑗+𝑠𝐿+𝑠𝑅−1∑︁
𝑘=𝑗−𝑠𝐿−𝑠𝑅+2

(︁
𝐷𝜂
(︁
𝑢̃

𝑛,𝑗+1/2
𝑘

)︁
−𝐷𝜂

(︀
𝑢𝑛

𝑗

)︀)︁(︁
𝑓

𝑛,𝑗+1/2
𝑘+1/2 − 𝑓

𝑛,𝑗+1/2
𝑘−1/2

)︁
.

If the numerical flux is Lipschitz regular, the last sum is
𝑗+𝑠𝑅∑︁

𝑘=𝑗−𝑠𝐿+1

𝑂
(︀
|𝑢𝑛

𝑘 − 𝑢𝑛
𝑗 |2
)︀
. A first order expansion at

point 𝑢𝑛
𝑗 of the other contributions is(︀

𝐷𝐺
(︀
𝑢𝑛

𝑗

)︀
− 𝐷𝜂

(︀
𝑢𝑛

𝑗

)︀
𝐷𝑓

(︀
𝑢𝑛

𝑗

)︀)︀ (︀
𝑢𝑛

𝑗−𝑠𝐿+1 − 𝑢𝑛
𝑗+𝑠𝑅

)︀
+ 𝑂

(︀
|𝑢𝑛

𝑗−𝑠𝐿+1 − 𝑢𝑛
𝑗 |2
)︀

+ 𝑂
(︀
|𝑢𝑛

𝑗+𝑠𝑅
− 𝑢𝑛

𝑗 |2
)︀
.

The result then follows from 𝐷𝜂𝐷𝑓 = 𝐷𝐺. �
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3.3. Lax-Wendroff theorem

One of the main theoretical results about numerical schemes for systems of conservation laws is the Lax-
Wendroff theorem, which states that if a numerical scheme converges in a certain sense, then the limit is a weak
solution. In addition, if the scheme satisfies relevant discrete entropy inequalities, then the limit is an entropy
solution.

The latter statement usually requires the numerical entropy flux to be a continuous and consistent function 𝒢
of the neighboring approximations. This is not the case in this work, since the numerical entropy fluxes 𝐺𝑛

𝑗+1/2

are obtained through a minimization procedure and we do not use a entropy flux function 𝒢. However, it is
possible to adapt the Lax-Wendroff theorem to our framework. This extension somehow means it is possible to
replace the classical Definition 2 of entropy satisfying scheme by the requirement “for all initial data

(︀
𝑢𝑛

𝑗

)︀
𝑗
, there

exists 𝐺𝑜𝑝𝑡,𝑛 such that𝒥
(︁
𝐺𝑜𝑝𝑡,𝑛,

(︀
𝑢𝑛

𝑗

)︀
𝑗

)︁
= 0”. The latter condition differs on the treatment of the consistency

property but leads to an identical Lax–Wendroff theorem. Note that proving such a result has no reason to be
easier than finding an explicit function 𝒢 and is possibly more difficult as 𝒢 has 𝑠𝐿 + 𝑠𝑅 + 1 variables while 𝒥
is defined on R𝑀 .

Since the time discretization will be important in this section, the objects related to the optimization problem
(7) at time 𝑡𝑛, i.e., with initial data

(︀
𝑢𝑛

𝑗

)︀
𝑗
, will be noted with a superscript 𝑛. The following Theorem is given

on a bounded space domain [𝑎, 𝑏] with periodic boundary conditions since it is the framework of this paper. It
can easily be generalized on the unbounded space domain R.

For a discretization ∆ = (∆𝑥, ∆𝑡), we introduce the piecewise constant function 𝑢Δ defined almost everywhere
(a.e). in [𝑎, 𝑏]× [0, +∞) by

𝑢Δ (𝑥, 𝑡) = 𝑢𝑛
𝑗 , 𝑥𝑗−1/2 < 𝑥 < 𝑥𝑗+1/2, 𝑡𝑛 ≤ 𝑡 < 𝑡𝑛+1.

Theorem 1. Assume the scheme (4) is consistent in the sense of Definition 1, with ℱ continuous. Consider a
sequence ∆𝑘 = (∆𝑥𝑘, ∆𝑡𝑘) which converges to (0, 0) with the ratio 𝜆 = Δ𝑡𝑘

Δ𝑥𝑘
being constant. Assume that

– there exists a compact 𝐾 ⊂ Ω such that 𝑢Δ𝑘
(𝑥, 𝑡) ∈ 𝐾 for a.e. (𝑥, 𝑡) ∈ [𝑎, 𝑏]× [0, +∞) and for all 𝑘 ∈ N;

– the sequence 𝑢Δ𝑘
converges in 𝐿1

𝑙𝑜𝑐 ([𝑎, 𝑏]× (0, +∞)) to a function 𝑢.

Then 𝑢 is a weak solution of (1).
Furthermore, if for a given entropy pair (𝜂, 𝐺), for all discretization ∆𝑘 = (∆𝑥𝑘, ∆𝑡𝑘) and for all 𝑛 ∈ N,

there exists a family
(︁
𝐺𝑜𝑝𝑡,𝑛

𝑗+1/2

)︁
𝑗

such that 𝒥
(︂(︁

𝐺𝑜𝑝𝑡,𝑛
𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
= 0, then the solution 𝑢 satisfies the entropy

inequality (2) in the sense of distributions on [𝑎, 𝑏]× (0, +∞).

Proof. For the sake of simplicity, the subscript 𝑘 in ∆𝑘 will be omitted all along the proof. The proof of the
convergence of 𝑢Δ toward a weak solution of (1) is exactly the same as in the original Lax-Wendroff theorem.
The reader is referred for instance to [14,19] for a complete proof.

Concerning the entropy inequality, for a fixed discretization ∆, let us consider a compactly supported test
function 𝜙 ∈ 𝐶1

0 ([𝑎, 𝑏]× (0, +∞)), with 𝜙 ≥ 0. Let us notice that the function 𝜙 is assumed to vanish when
𝑡 = 0. This choice is made for the sake of simplicity of the proof. However, the extension to the case where 𝜙
does not vanish at 𝑡 = 0 is immediate.

Since 𝒥𝐷

(︂(︁
𝐺𝑜𝑝𝑡,𝑛

𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
= 0, we have for all 𝑗 and 𝑛

𝜂
(︀
𝑢𝑛+1

𝑗

)︀
− 𝜂

(︀
𝑢𝑛

𝑗

)︀
+ 𝜆

(︁
𝐺𝑜𝑝𝑡,𝑛

𝑗+1/2 −𝐺𝑜𝑝𝑡,𝑛
𝑗−1/2

)︁
≤ 0.

Multiplying this inequality by ∆𝑥𝜙 (𝑥𝑗 , 𝑡
𝑛), summing over 𝑗 and 𝑛 and performing a summation by parts, we

obtain
∆𝑥
∑︁
𝑗,𝑛

𝜂
(︀
𝑢𝑛+1

𝑗

)︀ (︀
𝜙
(︀
𝑥𝑗 , 𝑡

𝑛+1
)︀
− 𝜙 (𝑥𝑗 , 𝑡

𝑛)
)︀

+ ∆𝑡
∑︁
𝑗,𝑛

𝐺𝑜𝑝𝑡,𝑛
𝑗+1/2 (𝜙 (𝑥𝑗+1, 𝑡

𝑛)− 𝜙 (𝑥𝑗 , 𝑡
𝑛)) ≥ 0.
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Introducing the piecewise constant functions

𝜙Δ (𝑥, 𝑡) = 𝜙 (𝑥𝑗 , 𝑡
𝑛) , 𝑥𝑗−1/2 < 𝑥 < 𝑥𝑗+1/2, 𝑡𝑛 ≤ 𝑡 < 𝑡𝑛+1,

𝐺𝑜𝑝𝑡
Δ (𝑥, 𝑡) = 𝐺𝑜𝑝𝑡,𝑛

𝑗+1/2, 𝑥𝑗 < 𝑥 < 𝑥𝑗+1, 𝑡𝑛 ≤ 𝑡 < 𝑡𝑛+1,

where 𝑥𝑗 = 𝑥𝑗−1/2+𝑥𝑗+1/2

2 , the last inequality writes

∫︁
[𝑎,𝑏]×[Δ𝑡,+∞)

𝜂 (𝑢Δ (𝑥, 𝑡))
𝜙Δ (𝑥, 𝑡)− 𝜙Δ (𝑥, 𝑡−∆𝑡)

∆𝑡
d𝑥d𝑡

+
∫︁

[𝑎,𝑏]×R+
𝐺𝑜𝑝𝑡

Δ (𝑥, 𝑡)
𝜙Δ (𝑥 + ∆𝑥/2)− 𝜙Δ (𝑥−∆𝑥/2)

∆𝑥
d𝑥d𝑡 ≥ 0. (12)

As in the classical Lax-Wendroff theorem, the first integral converges as ∆ → (0, 0) to∫︁
[𝑎,𝑏]×R+

𝜂 (𝑢 (𝑥, 𝑡)) 𝜕𝑡𝜙 (𝑥, 𝑡) d𝑥d𝑡.

The difference with the classical Lax-Wendroff theorem lies in the second integral of (12). First, let us
introduce the following piecewise constant functions:

𝑀Δ (𝑥, 𝑡) = 𝑀𝑛
𝑗+1/2, 𝑥𝑗 < 𝑥 < 𝑥𝑗+1, 𝑡𝑛 ≤ 𝑡 < 𝑡𝑛+1,

𝑚Δ (𝑥, 𝑡) = 𝑚𝑛
𝑗+1/2, 𝑥𝑗 < 𝑥 < 𝑥𝑗 , 𝑡𝑛 ≤ 𝑡 < 𝑡𝑛+1,

𝑢̃
𝑗+1/2
Δ (𝑥, 𝑡) = 𝑢̃

𝑗+1/2
𝑘 , 𝑥𝑘−1/2 < 𝑥 < 𝑥𝑘+1/2, 𝑡𝑛 ≤ 𝑡 < 𝑡𝑛+1,

𝑓
𝑗+1/2
Δ (𝑥, 𝑡) = 𝑓

𝑗+1/2
𝑘+1/2 , 𝑥𝑘 < 𝑥 < 𝑥𝑘+1, 𝑡𝑛 ≤ 𝑡 < 𝑡𝑛+1, (13)

𝑢̂
𝑗+1/2
Δ (𝑥, 𝑡) = 𝑢̂

𝑗+1/2
𝑘 , 𝑥𝑘−1/2 < 𝑥 < 𝑥𝑘+1/2, 𝑡𝑛 ≤ 𝑡 < 𝑡𝑛+1. (14)

Since 𝜙 is smooth, the term 𝜙Δ(𝑥+Δ𝑥/2)−𝜙Δ(𝑥−Δ𝑥/2)
Δ𝑥 uniformly converges to 𝜕𝑥𝜙 (𝑥, 𝑡). Moreover, according

to (9) and 𝑢̃
𝑛,𝑗+1/2
𝑘 and since the ratio 𝜆 is constant, 𝑀𝑛

𝑗+1/2 and 𝑚𝑛
𝑗+1/2 are continuous functions of a finite

number of 𝑢𝑛
𝑘 , that all lie in the compact 𝐾. Therefore the functions 𝑀Δ and 𝑚Δ are uniformly bounded. Since

𝒥 𝐶

(︂(︁
𝐺𝑜𝑝𝑡,𝑛

𝑗+1/2

)︁
𝑗

;
(︀
𝑢𝑛

𝑗

)︀
𝑗

)︂
= 0, it follows that the inequalities

𝑚𝑛
Δ (𝑥, 𝑡) ≤ 𝐺𝑜𝑝𝑡

Δ (𝑥, 𝑡) ≤ 𝑀𝑛
Δ (𝑥, 𝑡) (15)

hold for a.e. (𝑥, 𝑡) ∈ [𝑎, 𝑏]×[0, +∞). As a consequence, the function 𝐺𝑜𝑝𝑡
Δ is also uniformly bounded and therefore

∫︁
[𝑎,𝑏]×R+

𝐺𝑜𝑝𝑡
Δ (𝑥, 𝑡)

(︃
𝜙Δ

(︀
𝑥 + Δ𝑥

2

)︀
− 𝜙Δ

(︀
𝑥− Δ𝑥

2

)︀
∆𝑥

− 𝜕𝑥𝜙 (𝑥, 𝑡)

)︃
d𝑥d𝑡 → 0. (16)

Next we have

𝑢̃
𝑗+1/2
Δ (𝑥, 𝑡) = 𝑢Δ (𝑥 + min (max (𝑘, 𝑗 − 𝑠𝐿 + 1) , 𝑗 + 𝑠𝑅) ∆𝑥− 𝑘∆𝑥, 𝑡) ,

𝑓
𝑗+1/2
Δ (𝑥, 𝑡) = ℱ

(︁
𝑢̃

𝑗+1/2
Δ (𝑥− (𝑠𝐿 − 1/2) ∆𝑥, 𝑡) , · · · , 𝑢̃

𝑗+1/2
Δ (𝑥 + (𝑠𝑅 − 1/2) ∆𝑥, 𝑡)

)︁
,

𝑢̂
𝑗+1/2
Δ (𝑥, 𝑡) = 𝑢̃

𝑗+1/2
Δ (𝑥, 𝑡)− 𝜆

(︁
𝑓

𝑗+1/2
Δ (𝑥 + ∆𝑥/2, 𝑡)− 𝑓

𝑗+1/2
Δ (𝑥−∆𝑥/2, 𝑡)

)︁
. (17)
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It follows from (9) that

𝑀Δ (𝑥, 𝑡) = 𝐺 (𝑢Δ (𝑥− (𝑠𝐿 − 1/2) ∆𝑥, 𝑡))

+ 𝜆

𝑗∑︁
𝑘=𝑗−𝑠𝐿−𝑠𝑅+2

(︁
𝜂
(︁
𝑢̃

𝑗+1/2
Δ (𝑥− (𝑗 + 1/2− 𝑘) ∆𝑥, 𝑡)

)︁
−𝜂
(︁
𝑢̂

𝑗+1/2
Δ (𝑥− (𝑗 + 1/2− 𝑘) ∆𝑥, 𝑡)

)︁)︁
.

(18)

Since 𝑢Δ converges in 𝐿1
𝑙𝑜𝑐 ([𝑎, 𝑏]× (0, +∞)) to 𝑢, then up to a subsequence, 𝑢̃

𝑗+1/2
Δ converges to 𝑢 a.e. Thanks

to the continuity and the consistency of ℱ , we get from (13) that 𝑓
𝑗+1/2
Δ converges a.e. to 𝑓 (𝑢). Then according

to (14) and (17), we deduce that 𝑢̂
𝑗+1/2
Δ also converges a.e. to 𝑢. Finally, it follows from (18) that 𝑀Δ converges

a.e. to 𝐺 (𝑢). A similar process shows that up to a subsequence, 𝑚Δ converges a.e. to 𝐺 (𝑢). We deduce from (15)
that up to a subsequence, 𝐺𝑜𝑝𝑡

Δ converges a.e. to 𝐺 (𝑢). The dominated convergence theorem then ensures that∫︁
[𝑎,𝑏]×R+

𝐺𝑜𝑝𝑡
Δ (𝑥, 𝑡) 𝜕𝑥𝜙 (𝑥, 𝑡) d𝑥d𝑡 →

∫︁
[𝑎,𝑏]×R+

𝐺 (𝑢) 𝜕𝑥𝜙 (𝑥, 𝑡) d𝑥d𝑡. (19)

Summing (16) and (19), we obtain∫︁
[𝑎,𝑏]×R+

𝐺𝑜𝑝𝑡
Δ (𝑥, 𝑡)

𝜙Δ (𝑥 + ∆𝑥/2)− 𝜙Δ (𝑥−∆𝑥/2)
∆𝑥

d𝑥d𝑡 →
∫︁

[𝑎,𝑏]×R+
𝐺 (𝑢) 𝜕𝑥𝜙 (𝑥, 𝑡) d𝑥d𝑡.

Hence the limit of (12) writes∫︁
[𝑎,𝑏]×R+

𝜂 (𝑢 (𝑥, 𝑡)) 𝜕𝑡𝜙 (𝑥, 𝑡) 𝑑𝑥𝑑𝑥 +
∫︁

[𝑎,𝑏]×R+
𝐺 (𝑢) 𝜕𝑥𝜙 (𝑥, 𝑡) d𝑥d𝑡 ≥ 0,

which concludes the proof. �

4. A posteriori quantification of the numerical diffusion: numerical results

We now apply the minimization of the functional 𝒥 to obtain maps of numerical diffusion in different settings1.
The numerical entropy fluxes 𝐺𝑜𝑝𝑡,𝑛

𝑗±1/2 are the results of the minimization (7) and we define the corresponding a
posteriori numerical diffusion according to (6) by

𝐷𝑜𝑝𝑡,𝑛
𝑗 = 𝜂

(︀
𝑢𝑛+1

𝑗

)︀
− 𝜂

(︀
𝑢𝑛

𝑗

)︀
+

∆𝑡

∆𝑥

(︁
𝐺𝑜𝑝𝑡,𝑛

𝑗+1/2 −𝐺𝑜𝑝𝑡,𝑛
𝑗−1/2

)︁
. (20)

In practice the minimization is performed using the blackbox fminunc of MATLAB [23], with the initial guess

𝛾𝑗+1/2 =
1
2

(︁
𝑚𝑛

𝑗+1/2 + 𝑀𝑛
𝑗+1/2

)︁
. The values for 𝐷𝑜𝑝𝑡,𝑛

𝑗 are often small, in particular on fine meshes or when the

solution is smooth. However, these values remain far away from the machine precision estimated at 10−16.

4.1. Continuous solution of the Burgers equation

In this first test case, we consider the scalar (𝑑 = 1) Burgers equation

𝜕𝑡𝑢 + 𝜕𝑥

(︂
𝑢2

2

)︂
= 0 and 𝜕𝑡

(︀
𝑢2
)︀

+ 𝜕𝑥

(︂
2𝑢3

3

)︂
≤ 0. (21)

1In all the following numerical tests, we use a personal laptop, equipped with a 2.6 GHz Intel Core i7 6-core processor of 16 GB
and 2667 MHz DDR4 memory.
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Figure 2. Quantification of the numerical diffusion on Testcase (22) for the entropy satisfying
Rusanov scheme and the entropy violating Roe scheme.

The choice of 𝜂(𝑢) = 𝑢2 is arbitrary; for the scalar Burgers equation any convex entropy 𝜂 could be considered.
The initial data is

𝑢0 (𝑥) =

{︃
−2− 𝑥 if − 2 < 𝑥 ≤ 0,

3− 3
2𝑥 if 0 < 𝑥 ≤ 2,

(22)

and we use periodic boundary conditions. The exact solution is piecewise linear, and for 𝑡 < 2
3 is given by

𝑢 (𝑥, 𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− (𝑥 + 2)

1− 𝑡
if − 2 ≤ 𝑥 ≤ −2𝑡,

𝑥

𝑡
if − 2𝑡 ≤ 𝑥 ≤ 3𝑡,

−3 (𝑥− 2)
2− 3𝑡

if 3𝑡 ≤ 𝑥 ≤ 2.

The space interval [−2, 2] is discretized with 50 or 100 cells, and the functional 𝒥 is minimized at the last
iteration at 𝑇 = 0.4. The parameter 𝛼 in the Courant–Friedrichs–Levy condition (3) is set to 𝛼 = 0.5.

We compared the entropy satisfying Rusanov scheme and the entropy violating Roe scheme with a forward
Euler march in time, see the appendix for the definitions of the corresponding fluxes ℱ . The stencil is 𝑠𝐿 = 𝑠𝑅 =
1. The minimization procedure detects the two previous behaviors: 𝐷𝑜𝑝𝑡,𝑛

𝑗 remains nonpositive everywhere for
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Figure 3. Influence of the time discretization on the numerical diffusion for the MUSCL scheme
Testcase (22).

the Rusanov scheme, while it has large strictly positive values localized around the stationary entropy creating
shock at the sonic point for the Roe schemes.

The two plots of Figure 3 show the results for the MUSCL second order flux in space based on a Rusanov
flux and a minmod limiter. We illustrate here the well-known fact that increasing the order in space without
increasing the order in time is detrimental in terms of entropy, whereas increasing both orders is efficient.
The reader will find more specific details related to the MUSCL scheme in the following section. Together
with a forward Euler march in time, (5) is grossly false in the sense that the total entropy increases with time:∑︀

𝑗 𝜂
(︀
𝑢𝑛+1

𝑗

)︀
>
∑︀

𝑗 𝜂
(︀
𝑢𝑛

𝑗

)︀
. Combined with a second order Runge-Kutta time stepping, the a posteriori procedure

finds a discrete entropy inequality (5).
To conclude this section, let us illustrate Proposition 3. The Rusanov scheme with an Euler method is entropy

satisfying. With the choice of 𝒢 given in the appendix (A.2) the discrete entropy inequality (5) holds. We denote
by 𝐷𝑛

𝑗 the associated nonpositive numerical diffusion (6). We compare the total discrepancy ∆𝑥
∑︀⃒⃒

𝐷𝑜𝑝𝑡,𝑛
𝑗 −𝐷𝑛

𝑗

⃒⃒
between this quantity and the one obtained through minimization (20) and obtained as expected that is decreases
one order faster than the total diffusion ∆𝑥

∑︀
𝑗

⃒⃒
𝐷𝑛

𝑗

⃒⃒
= ∆𝑥

∑︀
𝑗

⃒⃒
𝜂
(︀
𝑢𝑛+1

𝑗

)︀
− 𝜂

(︀
𝑢𝑛

𝑗

)︀⃒⃒
as the mesh becomes finer

and finer. Note that this quantity does not depend on the numerical entropy fluxes 𝐺𝑛
𝑗+1/2.
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4.2. Gas dynamics

We now turn to the Euler equations. The unknown is 𝑢 = (𝜌, 𝜌𝑣,𝐸), where 𝜌 is the density of the fluid, 𝑣 is
its velocity and 𝐸 its total energy. This system reads⎧⎪⎨⎪⎩

𝜕𝑡𝜌 + 𝜕𝑥 (𝜌𝑣) = 0
𝜕𝑡 (𝜌𝑣) + 𝜕𝑥

(︀
𝜌𝑣2 + 𝑝

)︀
= 0

𝜕𝑡𝐸 + 𝜕𝑥 (𝑣 (𝐸 + 𝑝)) = 0.

(23)

The pressure force 𝑝 is related to 𝜌 and 𝐸 through an ideal gas equation of state

𝑝 = (𝛾 − 1)
(︂

𝐸 − 𝜌𝑣2

2

)︂
where 𝛾 ∈ (1, 3] .

Both the density and the pressure should remain nonnegative, thus

Ω =
{︂

(𝜌, 𝜌𝑣,𝐸) ∈ R3 : 𝜌 ≥ 0 and 𝐸 ≥ 𝜌𝑣2

2

}︂
.

There exists an infinite number of entropy inequalities for these equations, see [1]. We consider the classical
inequality on the specific entropy 𝑠 =

𝑝

𝜌𝛾

𝜕𝑡 (−𝜌 ln (𝑠)) + 𝜕𝑡 (−𝑣𝜌 ln (𝑠)) ≤ 0. (24)

The minimization method for quantifying the numerical diffusion does not depend on the number of unknowns 𝑑,
since the quantification of the numerical diffusion only concerns the scalar equation on the entropy evolution (24).
We focus on a widely chosen scheme of order two in space and time, namely the Van Leer version of the MUSCL
scheme [25].

In this scheme the piecewise constant in space approximation
(︀
𝑢𝑛

𝑗

)︀
𝑗

is replaced by a reconstructed piecewise
affine data. For scalar equations 𝑑 = 1, the reconstruction procedure heavily relies on the fact that the exact
solutions of (1) verify a maximum principle property and are total variation diminishing (TVD). A family of
functions called limiters is considered to determine the slopes in each cell [14] and allows to keep these features
at the discrete level. Both properties are lost for hyperbolic systems 𝑑 ≥ 2. Limiters are also used but several
choices are possible. We investigate the effects of some of them in this section.

It remains to decide how the evolution in time of the reconstructed initial data is performed. A first possibility
is to compute the exact flux of (1) by solving generalized Riemann problems. This is only feasible for some
particular hyperbolic systems and very costly from a computational point of view. This path is followed in [4]
for scalar equations and in [9] for systems. A more convenient approach is to combine the reconstruction in
space with a second order method in time (typically a second order Runge-Kutta method (RK2)) to obtain a
precise enough approximation of the fluxes. Each individual substep is based on a first order solver.

In any case the discrete entropy inequalities found in the literature for the MUSCL approach differ from (5).
The quantity 𝜂

(︀
𝑢𝑛

𝑗

)︀
is replaced with a linear approximation in equation (1.9) of [4] for scalar equations or

with a nonlinear entropy diminishing projection operator in Theorem 2.9 of [9] for systems. In [1], 𝜂
(︀
𝑢𝑛

𝑗

)︀
is

replaced by a convex combination of three terms that not only depends on 𝑢𝑛
𝑗 but also on 𝑢𝑛

𝑗−1 and 𝑢𝑛
𝑗+1,

see equations (2.7) and (2.10) of [1]. None of these modified entropy inequality is sufficient to prove a Lax–
Wendroff theorem. Several numerical simulations [2] even indicate that the MUSCL+RK2 scheme may converge
to incorrect solutions.

We first reproduce the Sod tube testcase of Toro [24]⎧⎪⎨⎪⎩
𝜌0 (𝑥) = 1𝑥<0 + 0.125× 1𝑥≥0,

𝑢0 (𝑥) = 0.75× 1𝑥<0,

𝑝0 (𝑥) = 1𝑥<0 + 0.1× 1𝑥≥0,

(25)
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Figure 4. Total numerical diffusion and total discrepancy between two numerical diffusions
on the Testcase (22).

on the time interval [0, 0.2] and the space interval [−1, 1]. The CFL number is 𝛼 = 1/6 and the number of cells
is 𝑀 = 400. The discontinuity at 𝑥 = 0 creates a 1-rarefaction wave, a 2-contact discontinuity and a 3-shock.
We stick to periodic boundary conditions, so there is another discontinuity at 𝑥 = −1. It creates a 1-shock, a
2-contact discontinuity and a 3-rarefaction wave.

On Figure 5 we compare the first order HLLC scheme Section 10.4.2 of [24] and the Roe scheme without
entropy fix Section 11.2 of [24] with a forward Euler time stepping. Then we consider the second order MUSCL
scheme with a RK2 time stepping. The slopes are limited on the primitive variable (𝜌, 𝑢, 𝑝) and the underlying
first order scheme is the HLLC scheme. We compare the results obtained with a minmod limiter and a superbee
limiter.

The a posteriori quantification of the numerical diffusion gives once again positive values near the stationary
nonphysical shock created by the Roe scheme. It also detects the overcompressive behavior of the superbee
limiter, with a spike of positive numerical diffusion located on the oscillations in density around the central
contact discontinuity. The superbee limiter is often too strong and may prevent the scheme from converging,
see [2]. For second order schemes, the numerical diffusion is located around one or two spikes around each
discontinuity. This depends on the initialization of the optimization algorithm, see Figure 8 below.

Then we consider a testcase where the solution does not contain a shock, but only a contact discontinuity.
The velocity and the pressure are initially constant, equal to 0.1 and 1. The initial density is

𝜌0 (𝑥) = 1 + 0.2𝑥 + 0.05 sin (6𝜋𝑥) + 0.4× 1𝑥<0. (26)

The final time is 2 seconds, the CFL number is 𝛼 = 0.75. On Figure (6), we compare the HLL scheme and
the HLLC scheme and find unsurprisingly that the latter is much less diffusive. As usual, we observe this fact
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Figure 5. Densities (lines 1 and 3) and a posteriori numerical diffusion (lines 2 and 4) for
several numerical schemes on Testcase (25).
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Figure 6. Densities (first line) and numerical diffusion (second line) for Testcase (26). The
discontinuity is a slowly moving contact.

through the higher level of detail captured by the HLLC scheme at the final time. The quantification of numerical
diffusion confirms it quantitatively, with lower and more localized 𝐷𝑜𝑝𝑡,𝑛 values. The same holds for their second
order extensions with a MUSCL procedure, using either the HLL or the HLLC flux as the underlying first order
scheme. The slope limitation is on the conservative variables (𝜌, 𝜌𝑢,𝐸) and we use a minmod limiter.

4.3. A naive a priori quantification of the numerical diffusion

In this section we turn to the practical consideration of the computational cost of the minimization presented
above. The functional 𝒥𝐷 couples all the cells of the mesh because each numerical entropy flux 𝛾𝑗+1/2 appears
in two consecutive terms of the sum. The cost grows quadratically with the meshsize, and becomes larger than
the minute for meshes with more than 4000 cells, see Figure 7, left.

This observation disqualifies the use of this procedure in realistic codes were the quantification of 𝐷𝑛
𝑗 would

be useful. In ocean global circulation models (OGCMs) for example, the meshes contain billion of cells and
the numerical diffusion under scrutiny here is strongly linked with the question of spurious mixing identified
as a key issue in such codes [13]. This explains why several works deal with its quantification. Some of them
([5, 18] and others) are directly related to the mathematical theory of discrete entropy inequality in the sense
that specific choices of numerical entropy fluxes are imposed in (6) to defined the numerical diffusion 𝐷𝑛

𝑗 . Here
we propose a complementary approach: while these works focus on 𝐺𝑛

𝑗+1/2 at the risk of making a suboptimal
choice and quantifying 𝐷𝑛

𝑗 incorrectly, we present a more robust choice of 𝐷𝑛
𝑗 at the cost of forgetting the

numerical entropy fluxes 𝐺𝑗+1/2. As a consequence the theoretical results of the previous section are almost
completely lost; however the quantitative results are very satisfactory and the computational cost is drastically
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Figure 7. Computational cost of the minimization procedure (left) and of the a priori
guess (28) at the first iteration of Testcase (26).

diminished, see Figure 7, right. We believe this fastest quantification could be used for some applications in the
future, including the quantification of spurious mixing in OGCM or as a metric for mesh refinement.

In the derivation of the consistency part of the functional 𝒥 𝐶 , we proposed bounds on the numerical entropy
flux 𝐺𝑛

𝑗+1/2 ∈ [𝑚𝑛
𝑗+1/2, 𝑀

𝑛
𝑗+1/2]. Under the hypothesis that the bounds are correctly ordered, it follows that

𝐷𝑛
𝑗 ≤ 𝐷𝑜𝑝𝑡,𝑛

𝑗 ≤ 𝐷
𝑛

𝑗 , with

𝐷𝑛
𝑗 = 𝜂

(︀
𝑢𝑛+1

𝑗

)︀
− 𝜂

(︀
𝑢𝑛

𝑗

)︀
+ 𝜆

(︁
𝑚𝑛

𝑗+1/2 −𝑀𝑛
𝑗−1/2

)︁
(27)

and

𝐷
𝑛

𝑗 = 𝜂
(︀
𝑢𝑛+1

𝑗

)︀
− 𝜂

(︀
𝑢𝑛

𝑗

)︀
+ 𝜆

(︁
𝑀𝑛

𝑗+1/2 −𝑚𝑛
𝑗−1/2

)︁
.

An important point is that 𝐷𝑛
𝑗 and 𝐷

𝑛

𝑗 are computationally affordable, see right of Figure 7. Indeed, 𝑚𝑛
𝑗+1/2

and 𝑀𝑛
𝑗+1/2 are computed with the scheme (4) on a small initial data centered around the interface 𝑗 + 1/2

with 𝑠𝐿 + 𝑠𝑅 cells on its left and on its right, see Lemma 1.
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Figure 8. Comparison of 𝐷𝑜𝑝𝑡,𝑛
𝑗 and 𝐷𝑎 𝑝𝑟𝑖𝑜𝑟𝑖,𝑛

𝑗 on Testcase (25). For the computation of 𝐷𝑜𝑝𝑡,𝑛
𝑗

the optimization is initialized with (a) 𝛾𝑛
𝑗+1/2 = 𝑚𝑛

𝑗+1/2 or (b) 𝛾𝑛
𝑗+1/2 =

1
2

(︁
𝑚𝑛

𝑗+1/2 + 𝑀𝑛
𝑗+1/2

)︁
or (c) 𝛾𝑛

𝑗+1/2 = 𝑀𝑛
𝑗+1/2.

We observe that the lower bound (27) is particularly interesting for two reasons. First, if the left hand side
is positive it indicates that (5) cannot hold on this particular cell. We detail and capitalize on that idea in
Section 5. Second, even though it is much lower than 𝐷𝑜𝑝𝑡,𝑛

𝑗 , the variations of 𝐷𝑛
𝑗 are similar.

As a final stage, we perform a naive renormalization by a constant coefficient 𝛼 and define 𝐷𝑎 𝑝𝑟𝑖𝑜𝑟𝑖,𝑛
𝑗 = 𝛼𝐷𝑛

𝑗

in such a way that the total amount of numerical diffusion is correct:∑︁
𝑗

𝐷𝑎 𝑝𝑟𝑖𝑜𝑟𝑖,𝑛
𝑗 = 𝛼

∑︁
𝑗

𝐷𝑛
𝑗 =

∑︁
𝑗

𝜂
(︀
𝑢𝑛+1

𝑗

)︀
− 𝜂

(︀
𝑢𝑛

𝑗

)︀
.

It yields to the a priori quantification of the numerical diffusion

𝐷𝑎 𝑝𝑟𝑖𝑜𝑟𝑖,𝑛
𝑗 =

∑︁
𝑘

𝜂
(︀
𝑢𝑛+1

𝑘

)︀
− 𝜂 (𝑢𝑛

𝑘 )∑︁
𝑘

𝐷𝑛
𝑘

𝐷𝑛
𝑗 . (28)

On Figure 8 we compare 𝐷𝑎 𝑝𝑟𝑖𝑜𝑟𝑖,𝑛
𝑗 and 𝐷𝑜𝑝𝑡,𝑛

𝑗 . The a posteriori quantification 𝐷𝑜𝑝𝑡,𝑛
𝑗 depends on the ini-

tialization of the minimization procedure and produces narrow spikes of numerical diffusion. The a priori
quantification 𝐷𝑎 𝑝𝑟𝑖𝑜𝑟𝑖,𝑛

𝑗 gives smoother results, with a diffusion spread out the whole length of the discrete
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discontinuity. The computation of this quantity only requires the bounds 𝑚𝑛
𝑗+1/2 and 𝑀𝑛

𝑗+1/2 and does not

require any optimization. We insist on the fact 𝐷𝑎 𝑝𝑟𝑖𝑜𝑟𝑖,𝑛
𝑗 is pertinent if one is only interested in the numerical

diffusion and not in the numerical entropy fluxes, which are not provided by this approach.

Remark 3. One could think that the upper bound 𝐷̄𝑛
𝑗 is also interesting. In particular if this quantity was

nonpositive in all cells it would be a strong indication that the scheme is entropy satisfying. However, we
observed that 𝐷̄𝑛

𝑗 is in most cases strictly positive, even for first order entropy satisfying scheme. It makes this
quantity far less interesting both qualitatively and theoretically.

5. An entropy stress test for numerical schemes

In this section we go back to the classical question of the existence of discrete entropy inequality (5). We
explore further the implication of the a priori consistency bounds 𝑚𝑛

𝑗+1/2 ≤ 𝐺𝑛
𝑗+1/2 ≤ 𝑀𝑛

𝑗+1/2. It leads to a
novel criterion and an algorithm which allows us to detect that entropy inequality (5) is not verified.

5.1. Worst initial data in terms of entropy

Proposition 4. Consider a numerical flux ℱ with a stencil of 𝑠𝐿 points on the left and 𝑠𝑅 on the right. If
there exists an initial data (︀

. . . , 𝑢0
−𝑠𝐿

, 𝑢0
−𝑠𝐿

, 𝑢0
−𝑠𝐿+1, . . . , 𝑢

0
0, . . . , 𝑢

0
𝑠𝑅−1, 𝑢

0
𝑠𝑅

, 𝑢0
𝑠𝑅

, . . .
)︀

(29)

such that

min
(︂

𝜂
(︀
𝑢0

0

)︀
− ∆𝑡

∆𝑥

(︁
𝑚0

1/2 −𝑀0
−1/2

)︁
− 𝜂

(︀
𝑢1

0

)︀
, 𝑀0

1/2 −𝑚0
1/2

)︂
< 0, (30)

where 𝑀0
1/2, 𝑚0

1/2 and 𝑀0
−1/2 are given by (9) with 𝑛 = 0, then the finite volume scheme does not have a

discrete entropy inequality.

Proof. By contraposition, let us assume that the scheme has a discrete entropy inequality. Therefore, for all
initial data

(︀
𝑢𝑛

𝑗

)︀
𝑗
, there exists consistent entropy numerical fluxes

(︀
𝐺𝑗+1/2

)︀
𝑗

such that

𝜂(𝑢1
𝑗 ) ≤ 𝜂(𝑢0

𝑗 )− ∆𝑡

∆𝑥

(︀
𝐺𝑗+1/2 −𝐺𝑗−1/2

)︀
.

According to Lemma 1, we have 𝑚0
𝑗+1/2 ≤ 𝐺𝑗+1/2 ≤ 𝑀0

𝑗+1/2. It follows especially 𝑚0
1/2 ≤ 𝑀0

−1/2 and

𝜂(𝑢1
0) ≤ 𝜂(𝑢0

0)− ∆𝑡

∆𝑥

(︁
𝑚0

1/2 −𝑀0
−1/2

)︁
.

Therefore the opposite of (30) is satisfied. This is true in particular for the initial data of the form (29). �

As a consequence, to determine if a scheme is entropy satisfying or not, we introduce the new functional

ℰ(𝑢0
−𝑠𝐿

, . . . , 𝑢0
𝑠𝑅

) = min
(︂

𝜂
(︀
𝑢0

0

)︀
− ∆𝑡

∆𝑥

(︁
𝑚0

1/2 −𝑀0
−1/2

)︁
− 𝜂

(︀
𝑢1

0

)︀
, 𝑚0

1/2 −𝑀0
1/2

)︂
.

For a hyperbolic system of 𝑑 equations, it has 𝑑(𝑠𝐿 + 𝑠𝑅 + 1) unknowns in Ω. Following Proposition 4, if the
minimization of ℰ returns a strictly negative result then the scheme is not entropy satisfying. In other words
this new optimization constructs the worst initial data in terms of entropy.

Remark 4. The first part of (30) is similar to the definition (27) of 𝐷0
0. We already knew that if this quantity

is positive the scheme is not entropy satisfying. This result goes further in that direction by restricting the size
of the data to 𝑠𝐿 + 𝑠𝑅 + 1 values and by shifting the optimization procedure on the initial data.
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Table 1. Summary of the obtained results for different variants of MUSCL scheme.

1st order scheme reconstructed variables entropy satisfying most negative value of ℰ

(a) HLL conservative (𝜌, 𝜌𝑢, 𝐸) no −2.228

(b) HLL primitive (𝜌, 𝑢, 𝑝) no −4.352× 10−5

(c) HLL entropy (𝜌, 𝑢, 𝑠) yes? ≥0

(d) HLLC conservative (𝜌, 𝜌𝑢, 𝐸) no −5.257× 10−1

(e) HLLC primitive (𝜌, 𝑢, 𝑝) no −3.518× 10−4

(f) HLLC entropy (𝜌, 𝑢, 𝑠) no −2.73× 10−4

5.2. Exploration of the RK2+MUSCL scheme

We apply this procedure to the gas dynamic (23) approximated by the common MUSCL scheme in space
and a two step Runge-Kutta march in time. Some details are given in Section 4.2 and in the appendix. The
six versions have been tested; counterexamples are constructed for five of them. The results are summarized in
Table 1.

More precisely, we consider the limitations in primitive variables (𝜌, 𝑣, 𝑝), entropy variables (𝜌, 𝑣, 𝑠) and
conservative variables (𝜌, 𝑞, 𝐸) described in [1] where the positiveness of the pressure and density are guaranteed.
The underlying first order scheme is either the Rusanov scheme, the HLL or the HLLC scheme. We implemented
two versions of the latter: one based on a pressure estimate and the other one on the estimation of extremal
wave speeds. The CFL number is fixed to 𝛼 = 0.1. Details and references are given in the appendix. For the
overall scheme we have 𝑠𝐿 = 𝑠𝑅 = 4 and the minimization of Proposition 4 has a total of 18 parameters with
the positiveness of density and pressure as constraints.

We focus on counterexamples with small total variation. The unknowns are constrained to

∀𝑗 ∈ {−4, · · · , 4}
(︀
𝜌0

𝑗 , 𝑢
0
𝑗 , 𝑝

0
𝑗

)︀
∈ (𝜌0, 𝑢0, 𝑝0) + [−0.1, 0.1]3, (31)

where (𝜌0, 𝑢0, 𝑝0) is selected randomly in a larger domain. The main reason for considering almost constant
initial data is that if

𝑢0
−𝑠𝐿

= 𝑢0
−𝑠𝐿+1 = . . . 𝑢0

0 = · · · = 𝑢0
𝑠𝑅−1 = 𝑢0

𝑠𝑅
,

then 𝑀0
±1/2 = 𝑚0

±1/2, 𝜂
(︀
𝑢1

0

)︀
= 𝜂

(︀
𝑢0

0

)︀
and the three components of Proposition 4 vanish. Thus counterexamples

may be found in the vicinity of constant states if the scheme is not entropy satisfying. This region somehow
corresponds to regular solutions.

We chose randomly 30 000 initializations in the region

(𝜌0, 𝑢0, 𝑝0) ∈ [0.11, 5]× [−0.2, 10]× [0.11, 10] (32)

and another 30 000 initializations in the smaller region

(𝜌0, 𝑢0, 𝑝0) ∈ [0.8, 1.2]× [−0.2, 1]× [0.8, 1.2]. (33)

On local extremum the MUSCL scheme is identical to the chosen first order scheme. Thus it seems more likely
to find counterexamples on monotonic data. Half of the initialization are modified so that each variable is
increasing or decreasing. The rearrangement is made either in the primitive, entropy or conservative variables,
in equal proportion.

The minimization procedure constructs numerous initial data that violate (5) in the first time step. They are
gathered on Figure 9 when (𝜌0, 𝑢0, 𝑝0) belongs to the large region (32) and on Figure 10 when it belongs to the
smaller region (33). Each point on these Figures represents the mean value(︃

1
9

4∑︁
𝑘=−4

𝜌0
𝑗 ,

1
9

4∑︁
𝑘=−4

𝑣0
𝑗 ,

1
9

4∑︁
𝑘=−4

𝑝0
𝑗

)︃
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Figure 9. Counterexamples on the region [0.11, 5]×[−0.2, 10]×[0.11, 10]. The limited variables
are (𝜌, 𝑞, 𝐸) in the first line, (𝜌, 𝑢, 𝑝) in the second line, (𝜌, 𝑢, 𝑠) in the third line. The first order
underlying scheme is HLL on the left and HLLC on the right.
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Figure 10. Zoom on a the region [0.8, 1.2] × [−0.2, 1] × [0.8, 1.2]. The limited variables are
(𝜌, 𝑞, 𝐸) in the first line, (𝜌, 𝑢, 𝑝) in the second line, (𝜌, 𝑢, 𝑠) in the third line. The first order
underlying scheme is HLL on the left and HLLC on the right.
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Figure 11. Histogram of the values of ℰ(𝑢0
−4, . . . , 𝑢

0
4) for the counterexamples found in the

large region (32) (left) and in the small region (33) (right). A small number of counterexamples
for scheme (b) and (f) (left) or (a) and (b) (right) are found in the region ℰ ≈ −10−4. The
histogram are stopped artificially at −10−4.

of a counterexample. The results for the two versions of the HLLC schemes are very similar and we include only
the version based on the wave-speed estimates. Similarly the Rusanov and HLL schemes behave similarly and
we only include the HLL scheme. We used the fmincon of MATLAB [23] to minimize the functional ℰ under
the constraints (31). The histograms of the values corresponding to (30) for those counterexamples are given
on Figure 11. We only kept counterexamples where this value is greater than −10−10 which is several order of
magnitude larger than the machine precision estimated at 2.2× 10−16.

The influence of the choice of the set variables which are limited is striking on Figure 9, with more counterex-
amples for the conservative variables (𝜌, 𝑞, 𝐸) than for the primitive variables (𝜌, 𝑣, 𝑝). There are even fewer
counterexamples for the entropy variables (𝜌, 𝑣, 𝑠). This hierarchy is less clear on the zoom of Figure 10. The
distribution on counterexamples around |𝑣| = 0 depends on the numerical choices.

The counterexample isolated on Figure 12 has a very small total variation and a null velocity. We checked
that it remains a counterexample for smaller and smaller timestep (or equivalently for smaller and smaller CFL
number). This may indicate that the limit ∆𝑡 → 0 in (5) does not hold for the MUSCL+RK2 scheme based on
a HLL Riemann solver with a limitation on the conservative variables.

On the other hand we see many counterexamples with large Mach number |𝑣|/
√︁

𝛾𝑝
𝜌 on Figure 9. The chosen

first order scheme is not to blame for the lack of discrete entropy inequality. Indeed in that case the exact flux
at interface 𝑗 + 1/2 is either 𝑓

(︀
𝑢0

𝑗

)︀
or 𝑓

(︀
𝑢0

𝑗+1

)︀
depending on the sign of the velocity. Most numerical schemes

reproduce that.
Eventually Functional (30) remains nonnegative for all the random initializations when the limitation is in

the entropy variable (𝜌, 𝑣, 𝑠) and the first order scheme is HLL or Rusanov. To explore further if this scheme
is entropy satisfying, we relaxed the constraint on the total variation and searched for counterexamples in the
much larger domain

∀𝑗 ∈ {−4, · · · , 4}
(︀
𝜌0

𝑗 , 𝑢
0
𝑗 , 𝑝

0
𝑗

)︀
∈ [0.001, 10]× [−50, 50]× [0.001, 20].

This search was unsuccessful with 57 000 random initializations. Interestingly it holds for the overlimited version
of the MUSCL scheme of [1] but also for the simpler original scheme. It supports the following conjecture.

Conjecture 1. The RK2+MUSCL scheme for the gas dynamic equations (23) with
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Figure 12. MUSCL+RK2 scheme with this initial data is non entropy satisfying, with a
HLL first order scheme, a minmod limiter and a reconstruction in (𝜌, 𝑢, 𝑝). In this case
ℰ(𝑢0

−4, . . . , 𝑢
0
4) ≈ −4.10−9.

(1) a MUSCL scheme in space based on a HLL first order scheme with a minmod limiter on the entropy variables
(𝜌, 𝑢, 𝑠)

(2) the RK2 march in time described in the Appendix

verifies a discrete entropy inequality for a CFL number 𝛼 = 0.1.

The same type of numerical experiment has been performed for the scalar Burgers equation (21). Three
entropy satisfying two points schemes (Rusanov, Osher and Godunov) and three non entropy satisfying schemes
(Roe, Lax-Wendroff and Mac Cormack) have been tested. We performed 30 000 optimization of the functional
ℰ and found no negative values for the entropy satisfying schemes, and counterexamples for the non entropy
satisfying schemes, which supports the following conjecture.

Conjecture 2. Consider the RK2+MUSCL scheme for the Burgers equation (21) with a minmod limiter on 𝑢
and the RK2 march in time described in the appendix. For a Courant number up to 1, this scheme is entropy
satisfying when the chosen underlying first order scheme is entropy satisfying, and non entropy satisfying when
it is not.

Appendix A. description of the numerical schemes

The Rusanov scheme (first order)

This scheme is one of the simplest approximate Riemann Solver, see [14]. The numerical flux is

ℱ (𝑢𝐿, 𝑢𝑅) =
𝑓 (𝑢𝐿) + 𝑓 (𝑢𝑅)

2
− 𝐴 (𝑢𝐿, 𝑢𝑅)

2
(𝑢𝑅 − 𝑢𝐿) (A.1)

and the numerical entropy flux is

𝒢 (𝑢𝐿, 𝑢𝑅) =
𝐺 (𝑢𝐿) + 𝐺 (𝑢𝑅)

2
− 𝐴 (𝑢𝐿, 𝑢𝑅)

2
(𝜂 (𝑢𝑅)− 𝜂 (𝑢𝐿)) . (A.2)
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The scalar quantity 𝐴 (𝑢𝐿, 𝑢𝑅) should be large enough. For scalar equation, we set 𝐴 (𝑢𝐿, 𝑢𝑅) =
max (|𝑓 ′ (𝑢𝐿) |, |𝑓 ′ (𝑢𝑅) |) and for the equations of gas dynamic (23) we take

𝐴 (𝑢𝐿, 𝑢𝑅) = max
(︂
|𝑣𝐿|+

√︂
𝛾𝑝𝐿

𝜌𝐿
, |𝑣𝑅|+

√︂
𝛾𝑝𝑅

𝜌𝑅

)︂
.

The HLL scheme (first order)

This scheme is also a simple two waves approximate Riemann solver. We present the scheme for gas dynamic.
Following Section 10.3 of [24] we introduce the sound speeds 𝑎𝐿 =

√︀
𝛾𝑝𝐿/𝜌𝐿 and 𝑎𝑅 =

√︀
𝛾𝑝𝑅/𝜌𝑅 and the Roe

averages 𝑎̄ =
√

𝜌𝐿𝑎𝐿 +
√

𝜌𝑅𝑎𝑅√
𝜌𝐿 +

√
𝜌𝑅

and 𝑣 =
√

𝜌𝐿𝑣𝐿 +
√

𝜌𝑅𝑣𝑅√
𝜌𝐿 +

√
𝜌𝑅

. The wave speed are estimates as 𝑆𝐿 = min(𝑣𝐿 −

𝑎𝐿, 𝑣𝑅 − 𝑎𝑅, 𝑣 − 𝑎̄) and 𝑆𝑅 = min(𝑣𝐿 + 𝑎𝐿, 𝑣𝑅 + 𝑎𝑅, 𝑣 + 𝑎̄) and the flux is given by equation (10.21) of [24].
With −𝑆𝐿 = 𝑆𝑅 = 𝐴(𝑢𝐿, 𝑢𝑅) the HLL scheme is the Rusanov scheme.

The HLLC scheme for gas dynamics (first order)

This scheme is a commonly used approximate Riemann solver for (23). This solver is exact on some important
particular solutions of (23), the stationary contact discontinuities. We implemented two versions of the schemes
and obtained similar results. The first one corresponds to Paragraph 10.4.2 of [24]. The extremal wave speed
are estimated with (10.49) of [24] and the pressure and velocities are constant in the “star region”. The second
one is based on a pressure estimate and corresponds to Paragraph 10.6, variant 1 of [24].

The Roe scheme (first order)

In the case of scalar conservation laws, the numerical scheme is

ℱ (𝑢𝐿, 𝑢𝑅) = 𝑓 (𝑢𝐿) 1𝜎≥0 + 𝑓 (𝑢𝑅) 1𝜎<0, 𝜎 =
𝑓 (𝑢𝑅)− 𝑓 (𝑢𝐿)

𝑢𝑅 − 𝑢𝐿
·

We refer the reader to [22] and Chapter 11 of [24] for the presentation of the Roe scheme for the Euler equa-
tions (23). This scheme does not have a discrete entropy inequality since it preserves entropy violating shock
(𝑓 (𝑢𝐿) = 𝑓 (𝑢𝑅), 𝐺 (𝑢𝑅) > 𝐺 (𝑢𝐿)). In can also produce negative pressure [12], in which case the simulation
fails entirely.

The MUSCL scheme (first order)

The MUSCL procedure is a commonly used procedure to obtain a second ordre scheme in space, and can be
easily combined with a second order time scheme such as a 2 step Runge-Kutta method. It is a 4-points flux
with 𝑠𝐿 = 𝑠𝑅 = 2.

For scalar conservation laws, the procedure is the following. At the beginning of each time step, the constant
value 𝑢𝑛

𝑗 in cell 𝒞𝑗 = [𝑥𝑗 − Δ𝑥
2 , 𝑥𝑗 − Δ𝑥

2 ] is replaced by the affine function

𝑥 ↦→ 𝑢𝑛
𝑗 + 𝜎𝑛

𝑗 (𝑥− 𝑥𝑗) ,

where 𝜎𝑗 ∈ R is a slope, determined in such a way that no new extrema are created and the scheme remains
total variation diminishing. A common choice is

𝜎𝑛
𝑗 = minmod

(︀
𝑢𝑛

𝑗 − 𝑢𝑛
𝑗−1, 𝑢

𝑛
𝑗+1 − 𝑢𝑛

𝑗

)︀
,

= max
(︀
0, min

(︀
𝑢𝑛

𝑗 − 𝑢𝑛
𝑗−1, 𝑢

𝑛
𝑗+1 − 𝑢𝑛

𝑗

)︀)︀
+ min

(︀
0, max

(︀
𝑢𝑛

𝑗 − 𝑢𝑛
𝑗−1, 𝑢

𝑛
𝑗+1 − 𝑢𝑛

𝑗

)︀)︀
.

Other limiters are possible, see Section 13.7.3 of [24]. The MUSCL flux is given by

𝐹𝑗+1/2 = ℱ
(︀
𝑢𝑛

𝑗,+, 𝑢𝑛
𝑗+1,−

)︀
, 𝑢𝑛

𝑗,± = 𝑢𝑛
𝑗 ±

∆𝑥

2
𝜎𝑛

𝑗 , (A.3)
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where ℱ is a first order two points scheme.
In the case of hyperbolic system with 𝑝 > 1, this strategy is mimicked componentwise. For the Euler equa-

tion (23) we followed the strategy of [1]. The reconstruction with a minmod limiter can be applied on the
three conservative variables (𝜌, 𝜌𝑣,𝐸). It is also common to reconstruct the primitive variables (𝜌, 𝑣, 𝑝) or in the

entropy variables
(︂

𝜌, 𝑣, 𝑠 =
𝑝

𝜌𝛾

)︂
and to deduce the values (𝜌𝑣)𝑛

𝑗,± = 𝜌𝑛
𝑗,±𝑣𝑛

𝑗,± with

𝐸𝑛
𝑗,± =

𝑝𝑛
𝑗,±

𝛾 − 1
+

𝜌𝑛
𝑗,±
(︀
𝑣𝑛

𝑗,±
)︀2

2
or 𝐸𝑛

𝑗,± =
(𝜌𝑛

𝑗,±)𝛾𝑠𝑛
𝑗,±

𝛾 − 1
+

𝜌𝑛
𝑗,±
(︀
𝑣𝑛

𝑗,±
)︀2

2
·

A variation of the discrete entropy inequality (5) is obtained in [1] but is not sufficient to obtain a Lax-Wendroff
theorem.

A second order Runge-Kutta method in time

To achieve second order in time one can use a two step Runge-Kutta method in time. Consider a numerical
flux ℱ with a stencil of 𝑠𝐿 points to the left and 𝑠𝑅 points to the right. Two substeps are computed

𝑢̄𝑛
𝑗 = 𝑢𝑛

𝑗 −
∆𝑡

∆𝑥

(︀
ℱ
(︀
𝑢𝑛

𝑗−𝑠𝐿+1, . . . , 𝑢
𝑛
𝑗+𝑠𝑅

)︀
−ℱ

(︀
𝑢𝑛

𝑗−𝑠𝐿
, . . . , 𝑢𝑛

𝑗+𝑠𝑅−1

)︀)︀
,

¯̄𝑢𝑛
𝑗 = 𝑢̄𝑛

𝑗 −
∆𝑡

∆𝑥

(︀
ℱ
(︀
𝑢̄𝑛

𝑗−𝑠𝐿+1, . . . , 𝑢̄
𝑛
𝑗+𝑠𝑅

)︀
−ℱ

(︀
𝑢̄𝑛

𝑗−𝑠𝐿
, . . . , 𝑢̄𝑛

𝑗+𝑠𝑅−1

)︀)︀
.

The final update is 𝑢𝑛+1
𝑗 =

𝑢𝑛
𝑗 + ¯̄𝑢𝑛

𝑗

2
.

The whole procedure rewrites in the compact form (4) with

ℱ̄
(︀
𝑢𝑛

𝑗−2𝑠𝐿+1, . . . , 𝑢
𝑛
𝑗+2𝑠𝑅

)︀
=
ℱ
(︀
𝑢𝑛

𝑗−𝑠𝐿+1, . . . , 𝑢
𝑛
𝑗+𝑠𝑅

)︀
+ ℱ

(︀
𝑢̄𝑛

𝑗−𝑠𝐿+1, . . . , 𝑢̄
𝑛
𝑗+𝑠𝑅

)︀
2

·

If the numerical flux ℱ is entropy satisfying with a numerical entropy flux 𝒢, the same holds for ℱ̄ with the
numerical entropy flux

𝒢
(︀
𝑢𝑛

𝑗−2𝑠𝐿+1, . . . , 𝑢
𝑛
𝑗+2𝑠𝑅

)︀
=
𝒢
(︀
𝑢𝑛

𝑗−𝑠𝐿+1, . . . , 𝑢
𝑛
𝑗+𝑠𝑅

)︀
+ 𝒢

(︀
𝑢̄𝑛

𝑗−𝑠𝐿+1, . . . , 𝑢̄
𝑛
𝑗+𝑠𝑅

)︀
2

·

For scalar conservation laws 𝑑 = 1, the maximum of the wave speeds decreases with time, thus the CFL
restriction for the computation of 𝑢̄𝑗 is more restrictive than the one for ¯̄𝑢. This is not true when 𝑝 ≥ 2, and
we adopt the time evolution of equation (2.12) of [1], with the slight modification that ∆𝑡2 cannot exceed ∆𝑡1.
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