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AN ANALYSIS OF A FRICTION DAMPED SYSTEM USING TWO COMPONENT MODE METHODS

Herein, two component mode methods are employed to investigate the forced dynamics of a cantilevered beam with an attached exible friction damper. The rst, traditional modal analysis, uses the free vibration modes of the unconstrained beam, while the second, a component mode synthesis approach, uses an alternative set of modes which con nes the friction nonlinearity to a single component mode. The convergence and e ciency of the two methods are compared for a particular case, and the component mode synthesis approach is found to converge at least as fast as, and usually faster than, the traditional modal analysis approach. Further analysis of the beam system is conducted and discussed using the component mode synthesis formulation.

INTRODUCTION

This paper investigates the dynamic motion of a cantilevered beam subject to harmonic forcing at the tip, with a exible dry friction damper attached at some arbitrary location along the beam length. This system represents a simpli ed model of a turbine blade with an associated friction-based damper. Friction-based dampers are often utilized in turbo-machinery to suppress vibration, as they are mechanically easy to implement. Extensive studies have been done on friction and its e ects, and excellent summaries may be found in the survey papers byF erri 1995 [START_REF] Ibrahim | Friction-induced vibration, chatter, squeal, and chaos Part II: Dynamics and Modeling[END_REF]. Classically, this model would be analyzed by modal analysis, by expanding the beam de ection as a linear combination of the free vibration modes of the associated undamped beam with xed-free end conditions, as in Dowell and Schwartz, 1983a,b, Ferri and Dowell, 1988, and Whitman and Ferri, 1996. Often, in this approach, a single beam mode is considered, resulting in a single degree-of-freedom system|a case which has received extensive study. Further details may be found in [START_REF] Ferri | Damping and Vibration of Beams with Various Types of Frictional Support Conditions[END_REF][START_REF] Ferri | Frequency Domain Solutions to Multi-Degree-of Freedom, Dry Friction Damped Systems[END_REF][START_REF] Gri N | Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils[END_REF][START_REF] Shaw | On the Dynamic Response of a Sys-tem With Dry Friction[END_REF][START_REF] Sinha | Friction Damping of Flutter in Gas Turbine Engine Airfoils[END_REF][START_REF] Sinha | E ects of Static Friction on the Forced Response of Frictionally Damped Turbine Blades[END_REF][START_REF] Srinivasan | Dry Friction Damping Mechanisms in Engine Blades[END_REF][START_REF] Wei | E ects of Dry Friction Damping on the Occurrence of Localized Forced Vibrations in Nearly Cyclic Structures[END_REF] Alternatively, the problem may be approached using a di erent set of component modes to represent the beam deection, as suggested by Component Mode Synthesis CMS theory. Historically, CMS was developed by [START_REF] Craig | Coupling of Substructures for Dynamic Analysis[END_REF] as a method of determining the dynamics of a structure based on the dynamics of its components. This work was sparked by several methods developed in the early 1960's by [START_REF] Hurty | Dynamic Analysis of Structural Systems Using Component Modes[END_REF], among others. For the structure under consideration here, there are two components: the beam, and the exible dry friction damper. In this model, the friction damper is considered massless and, consequently, has no dynamics of its own. As a result, the CMS procedure may be abbreviated by considering the friction damper as a generalized autonomous force, and studying the dynamics of the beam using the component modes suggested by CMS theory.

The dynamics of the dry-friction damped beam system are investigated here using numerical integration of the equations of motion, formulated both using the normal modes of the unconstrained beam modal analysis, and those suggested by CMS. It is found that the relative performance of the two methods is highly dependent on the forcing amplitude. For large forcing amplitudes, the damper is primarily slipping, and the methods produce results of comparable accuracy. As the forcing amplitude is decreased, the restoring forces associated with the friction damper become increasingly signi cant, and the CMS methodology produces a more e cient and, for a given number of component modes, more accurate formulation.

Finally, the CMS formulation is used to illustrate some of the complex nonlinear behavior exhibited by the beam system. Each resonant peak mayhave several associated sub-resonances, and there are particular cases when the system experiences a drift, or non-zero average displacement. In general, the system behavior has interesting, nonlinear, features for all frequency ranges, and useful information may often be obtained through comparison of the response at di erent locations on the beam. The complex dynamic behavior exhibited by this simple system warrants careful study of any structural system containing exible friction damper elements.

FORMULATION

The model under consideration is shown in Figure 1. The beam is considered to haveYoung's modulus, E, cross sectional moment of inertia, I, length, L, and a exible friction damper at location, x d . The beam is subject to harmonic forcing of amplitude F and frequency at the tip. The dry friction damper is modeled as a spring of sti ness, k, in series with a pure Coulomb damper. The Coulomb damper is considered to be rigid when subjected to forces less than f f in magnitude. When subjected to larger forces, the Coulomb damper slips, resisting motion with a constant force of f f . The dynamics of this system are to be compared using two sets of component modes to represent the beam de ection, one developed from ComponentMode Synthesis theory, and the other from modal analysis, using the classical Euler-Bernoulli modes of the xed-free beam. 

Development of CMS Equations

In Component Mode Synthesis theory, the de ection of each substructure is separated into a set of constraint modes and a set of normal modes. Each constraint mode consists of the static de ection of the substructure due to a unit displacement at one boundary point, while all other boundary points are considered xed. This results in one constraint mode for each boundary displacement coordinate. The substructure normal modes are then determined by assuming that all boundary displacement coordinates remain xed. CMS theory provides a complete procedure for coupling individual substructures and determining the entire structure's dynamics. Due to the simplicity of the model under consideration, the full procedure will not be necessary here.

The model in Fig. 1 features two substructures | the beam, and the dry friction damper | and only one common boundary point. Consequently, there is a single constraint mode, c x, based on the static de ection of the beam due to a unit displacement at the damper location. The ith substructure normal mode, i x, then consists of the ith free vibration mode of the beam with the damper location pinned. For illustration, the constraint mode and the rst substructure normal mode are shown in Fig. 2. The constraint mode is determined by applying a force, P at the damper location, such that a unit displacement is produced. The substructure normal modes are then developed by solving the associated boundary value problem, with continuity enforced at the damper location. The analytical expressions for both the constraint mode and the substructure normal modes may be found in Appendix A.

Using this formulation, the beam displacement eld may be written as:

ux; t = c x c t+ n X i =1 i x i t 1
where c t, and i t represent time-varying amplitudes for the constraint mode and the normal modes, respectively, and n is the number of modeled normal modes. This displacement expression may be used to formulate the potential energy, V , and kinetic energy, T , of the beam subsystem;

T = 2 Z L 0 c x_ c t+ n X i=1 i x_ i t ! 2 dx 2 V = EI 2 Z L 0 c t 00 c x+ n X i=1 i t 00 i ! 2 dx 3
where an overdot _ represents a time derivative and a prime 0 represents a derivative with respect to x.

The generalized force for a given mode results from the excitation force and from the force exerted by the friction damper, as follows:

Q j = Z L 0 F cos t x , L+ f ux d ;t; _ ux d ;t x , x d j xdx 4
Here, x represents a spatial Dirac delta function, and f u; _ u is the force exerted by the exible friction damper. This expression simpli es signi cantly for any speci c mode. For the constraint mode, c x d = 1, and the displacementa tx d is only due to motion of the constraint mode, c . As a result, the constraint mode generalized force is:

Q c = f c ; _ c +Fcos t c L 5
For a normal mode, there is no motion at the damper location, and Q i may be written as:

Q i = F cos t i L i =1;2;:::;n 6

The equations of motion may be formulated using the generalized force and energy expressions, Eqs. 2-6, in conjunction with Lagrange's equation. For the constraintm o d e coordinate, one obtains: c h c ; c i+ P n i=1 i h i ; c i+ EI c h 00 c ; 00 c i + EI P n i=1 i h 00 i ; 00 c i = Q c 7 whereas, for the kth normal mode coordinate, c h c ; k i+ P n i=1 i h i ; k i+ EI c h 00 k ; 00 c i + EI P n i=1 i h 00 i ; 00 k i = Q k k =1;2;:::;n 8 Here, h 1 ; 2 i denotes the classical inner product of the functions 1 and 2 :

h 1 ; 2 i= Z L 0 1 x 2 xdx 9
Due to the orthogonality of the normal modes, h i ; k i = h 00 i ; 00 k i = 0 for i 6 = k in Eq. 8. In addition, integration by parts and the relevant boundary conditions may be used to show that h 00 i ; 00 c i = 0. These conditions allow Eqs. 7 and 8 to be simpli ed considerably, with the results:

c h c ; c i+ n X i=1 i h i ; c i+EI c h 00 c ; 00 c i = Q c 10 c h c ; k i+ k h k ; k i+EI k h 00 k ; 00 k i = Q k k =1
;2;:::;n 11 Equations 10 and 11 may be written in matrix form as:

M + K = Q 12
where the mass matrix is symmetric, and given by: 

M = 2 6 6 6 4 h c ; c ih c ; 1 i h c ; n i h c ; 1 ih 1 ; 1 i 0 . . . . . .
Q = 8 : Q c Q 1 . . . Q n 9 = ; = 8 : f c ; _ c +Fcos t c L F cos t 1 L . . . F cos t n L 9 = ; 15
It is worth noting that in this formulation, the nonlinearity is con ned to a single modal coordinate, namely the constraint coordinate, c . All the equations in the normal mode coordinates are linear, albeit coupled to the c equation.

Development of Modal Analysis Equations

The classical modal analysis formulation MA is similar to, but simpler than the CMS procedure. The beam de ection may be decomposed using the normal modes of the xed-free Euler-Bernoulli beam with no damper constraint, i x, producing the displacement eld expression:

ux; t = n X i=1 i xq i t 16
where q i is the ith modal coordinate, and n is the number of modeled modes. The analytical expression for the mode shapes, i , is given in Appendix A.

As with the CMS derivation, the potential and kinetic energies, and the non-conservative generalized force terms may be formulated;

T = 2 Z L 0 _ ux; t 2 dx 17 V = EI 2 Z L 0 u 00 x; t 2 dx 18 Q i = fux d ;t; _ ux d ;t i x d +Fcos t i L
i =1;2;:::;n 19 Using Lagrange's equations, the equations of motion may be produced. For the ith modal coordinate, the equation of motion is: h i ; i i q i +EIh 00 i ; 00 i iq i = fu; _ u i x d +Fcos t i L i =1;2;:::;n 20

The inner product, EIh 00 i ; 00 i i, mayb ewritten as ! 2 i h i ; i i, and the equations of motion for the system may be simpli ed to;

M f q + ! 2 qg = fu; _ ux d +Fcos tL 21
Here, M represents the diagonal matrix: M = 2 6 6 6 6 4 h 1 ; 1 i 0 0 0 h 2 ; 2 i . . . . . . . . . 0 0 0 h n ; n i 3 7 7 7 7 5 22 and q, ! 2 , and x are de ned as: q = 8 : q 1 q 2 . . . Note that, although equations of motion produced by modal analysis are uncoupled to linear order, each equation contains a nonlinear term. Furthermore, the physical displacement and velocity at the damper location must be reconstructed from the modal coordinates in order to determine the force exerted by the friction damper at any given instant.

Due to the nonlinearities present in the equations of motion, the governing equations produced by CMS, Eq. 12, and MA, Eq. 21, cannot be solved exactly for general motion. However, the system dynamics may be compared through numerical simulations of the two sets of equations of motion.

CASE STUDYPARAMETERS

It is impractical to study the system of Fig. 1 for the full range of parametric variations. Consequently, the results presented here concentrate on the e ects of variable forcing amplitude, F , and frequency, , for a particular set of physical parameters. The chosen values correspond to those used in Berthillier et al., 1995 for experimental work. These parameters were used so that both qualitative and rough quantitative comparisons with existing data could be made. The parameters used for the beam are as follows: E =2:010 11 Pa, I =1:312 10 ,7 m 4 , =3:619 kg m, and L =1:33 m. The damper is attached at x d =0:318 m, modeled with a sti ness, k =2:410 7 N m, and a sliding frictional force, f f = 246 N.

In addition, it was necessary to add some viscous damping to the system. Proportional damping was used, C = K + M, with =2:610 ,5 , and =7:49, corresponding to a damping factor of about =0:024 for the rst resonance. This adds one dissipative term to the left hand side of Eqs. 12 and 21, and allows the system to reach steady state behavior.

RESULTS

Both CMS and MA produce complete solutions, converging to an exact" solution when a su ciently large number of component modes are used in the governing equations. All results were obtained numerically using a fourthorder Runge-Kutta integration scheme. The convergence of the two formulations is indicated in Fig. 3 for several di erent forcing conditions. These curves represent the steady state frequency response of the system for the set of physical parameters given in the previous section, using both MA and CMS methods. It can be seen that both methods produce nearly equivalent results when enough component modes are used. Here, at frequencies near the rst resonance of the unconstrained beam, convergence is demonstrated using a total of six modes for each method six MA normal modes, versus one CMS constraint mode and ve CMS normal modes. Slight disparities in the results can be observed, most signi cantly for the second resonant peak corresponding to low amplitude forcing, where the error is greatest, and the modal convergence slowest.

It is useful to make a more complete examination of the frequency response behavior surrounding the rst natural frequency of the system. Figure 4 is a more complete portrait of the response amplitude versus forcing frequency for many di erent levels of forcing. It was produced using CMS with four component modes. The most signi cant features of this gure are the two distinct resonant peaks. This feature is characteristic of systems whose model includes a exible friction damper. The resonant peaks are indicative of the dominantcharacteristics of the friction damper for di erent motion amplitudes. For small motions, the friction damper is spring-like. The small motions do not produce forces with magnitudes large enough to induce slipping of the friction element. When the friction element remains stuck, the damper sti ness may be incorporated into the sti ness matrix for either method. However, in the MA formulation, the damper adds some sti ness to each mode, while in the CMS formulation, only the sti ness associated with the constraint mode is a ected. If the damper does not slip, the system is purely linear, and produces a smooth resonant peak at the frequency predicted by incorporation of the damper sti ness into the sti ness matrices. This results in a higher resonant frequency than that of the unconstrained beam. In general, the extent of this resonance frequency shift depends on the modal amplitude at the damper location x d aswell as on the damper sti ness.

As the forcing magnitude increases, the displacement magnitude eventually reaches a point where slipping begins to occur. Initially, this slipping simply truncates the resonant peak associated with the spring-like damper. Notice that the frequency response follows that of the linear, spring-like, system until some critical amplitude is reached and the damper begins to slip. When the damper begins to slip, there are two prominent e ects: the sti ness of the system is e ectively reduced, and the damping is e ectively increased.

For large motion amplitudes, the friction element lim- its the force which can be transmitted by the spring and thus must slip for the greater portion of each periodic cycle. For this type of motion, the spring element of the friction damper is largely ine ective, and the exible friction damper behaves very much like a rigid friction damper. It is commonly known that a rigid friction damper does not affect the natural frequency of a system and, consequently,a large excitation force produces resonance at the natural frequencies of the unconstrained, xed-free, beam. In Fig. 4, the left peak is associated with the rst natural frequency of the unconstrained beam large forcing amplitudes, while the right peak is at the natural frequency of the system if the friction damper is reduced to a spring small forcing amplitude. The intermediate curves document the amplitudedependent sti ness and damping associated with the exible friction damper.

As a measure of the relative convergence of the CMS and MA formulations, the frequency at which the resonant peak occurs may be plotted as a function of the number of modes used in the calculation. Figure 5 displays the relative convergence behavior of the two formulations for both the sticking and slipping resonant peaks. It can be seen that the methods both produce accurate results for large forcing amplitudes using few component modes, but that CMS has a signi cant advantage when the forcing amplitude is decreased. When the forcing is small, CMS captures the system behavior accurately with only two component modes the constraint mode and the rst normal mode, while MA requires ve modes to reach a comparable accuracy. This illustrates the value of concentrating the damper force on a single mode and the limitations of the commonly used modes associated with MA. From this information it can be deduced that the CMS modes are more versatile as basis functions for the beam motion.

A more detailed analysis of the modal contributions, and of the di erences between MA and CMS, may be obtained by examining the modal amplitudes of the component modes as the forcing level is increased. In this manner, the linear regimes may more easily be identi ed, and the relative signi cance of the component modes maybe evaluated. In Figs. 6 and7 the CMS and MA formulations are used, respectively, for a forcing frequency of = 241:4 rad s . This corresponds to the resonant frequency of the sticking spring-like system. Upon observation of Fig. 4, it can be seen that as the forcing amplitude increases the friction becomes more signi cant, while the e ective sti ness of the damper decreases. These e ects are apparentinboth Figs. 6 and7, where three distinct regimes exist. For low amplitude excitation F 1 N, the system is linear, and this is evidenced by the parallel nature of the modal amplitudes' dependence on force amplitude. At larger forcing amplitudes, F 50 N the behavior is not quite linear, but approaches the linear asymptote that would be obtained by neglecting the friction damper all together. Both gures exhibit an intermediate range which documents the transitional period between the purely linear, and the asymptotically linear regimes.

There are several signi cant di erences between Figs. 6 and 7, which serve to point out the superiority of the CMS procedure. Atl o w amplitudes, the rst four MA modes cover only two orders of magnitude, while the CMS modes cover almost ve. This validates the results shown in Fig. 5, since it takes about four MA modes to approximate the accuracy of rst two CMS modes the constraint mode, and one normal mode. Also, the magnitude of the rst CMS normal mode, in comparison to the remaining component modes, indicates that, for low forcing amplitudes, it is a good approximation of the spatial response. That is, when the damper is stuck the beam's response shape resembles the rst CMS normal mode, 1 See Fig. 2. Conversely, additional MA normal modes, unconstrained at the damper, are needed to recover the de ection shape, resulting in a relatively poor convergence rate at low forcing amplitude. In the nonlinear transitional range, the primary response mode in both Figs. 6 and 7 remains nearly at, but the higher CMS modes increase markedly in magnitude, indicating that they contribute more signi cantly to the nonlinear response. For large forcing amplitudes, the damper is primarily slipping, and neither method has a distinct advantage. In both cases, the rst four modal contributions cover approximately three orders of magnitude, and are nearly parallel at F = 1000 N. The parallel nature of the modal contributions is indicative of the system's nearly linear behavior at high forcing levels. Consequently, the CMS modes have been shown to be much more versatile, out-performing MA at low forcing amplitudes byachieving a given accuracy with signi cantly fewer component modes, and producing an equivalent response at higher forcing amplitudes.

FURTHER DISCUSSION OF SYSTEM BEHAVIOR

There are manyinteresting phenomena associated with the dynamics of this system which are not speci cally relevant to the formulation used, but warrant further discussion. Some of these behaviors are simply worth noting, while others suggest fundamental questions.

Sub-Resonance

A portion of the sub-resonance behavior for this system is shown in Figure 8. The system as a whole is extremely complex, with each potential mode of the beam having many possible sub-harmonic resonances. These subresonances are excited by the forces exerted by the exible friction damper. At steady state, when the displacement amplitudes are large enough to cause the damper to slip, the periodic forcing from the damper is composed of inte- ger multiples of the forcing frequency. These high frequency components may excite higher modes at or near resonance, resulting in signi cant super-harmonic response. As an illustration, Fig. 8 shows the rst three sub-resonances of the rst modal resonance, for several di erent forcing amplitudes. It should be noted that the responses in this regime may contain signi cant contributions from several harmonics and, as a consequence, the overall amplitude is particularly sensitive to forcing frequency. As with the modal resonance, the sub-resonant peak frequencies vary with the response amplitude. As before, this behavior is indicative of the amplitude-dependent sti ness of the system. For large amplitude forcing, the sub-resonant behavior becomes less signi cant, and the n th sub-resonant peak approaches 1=2n + 1! res , where ! res is the resonant frequency of the associated unconstrained beam mode. That is, as the forcing amplitude increases, the super-harmonic e ects decrease, with peaks approaching 1=3; 1=5; 1=7 :::! res .

Behavior at damper

All previous results have focused on the displacement amplitudes associated with the tip of the beam. However, further insightinto the system dynamics maybeachieved by observing the displacement at the damper location, x d . Figure 9 shows the normalized displacement of the beam at the damper location for several di erent forcing magnitudes. In this gure, the distinction between the linear and nonlinear behavior is more clearly de ned. The departure from the linear behavior of the spring-like damper is much more severe, and it is apparent that the system behavior becomes increasingly linear as the forcing amplitude increases. It is also apparent that the dominant mode shape shifts as the forcing amplitude is increased. In Fig. 9, the right peak is smaller than the left, indicating that the normalized maximum damper displacement is more signi cant for large forcing, when the damper is slipping. In a similar manner, Fig. 4 shows that the normalized maximum displacement at the end of the beam is decreased by the slipping of the damper.

Drift

Any structural system which contains a exible dry friction damper in parallel with another sti ness elementmay experience a non-zero average displacement at steady-state, a phenomenon known as drift. In this case, the friction damper is in parallel with the beam sti ness when considered statically. There exists a range of displacements, ux d , for the damper position which are static equilibrium positions. For example, if the beam were displaced to a degree which allowed the damper to slip, and then slowly released, the beam would remain slightly displaced. This position is maintained by the friction element, and constitutes one possible equilibrium position. If there is no steady-state slipping, vibrations may occur about this equilibrium position, and not about zero. If slipping has occurred during the transient motion, but does not occur in the steady state motion, there will be some small amountof drift. In most cases, when the motion amplitude decreases slowly until slipping is eliminated, the drift is insigni cant. However, there are cases where the drift is not small when compared to the vibration amplitude. The magnitude of the drift is strictly limited by the strength of the friction element. Occasionally, when the steady state amplitude is small, but the transient is large, and quickly decays, a signi cant drift may result. This is the case in Fig. 10, where the transient induces a large slip, from which the system never recovers. Though this type of condition is rare in simulation, it may occur naturally during operation of the turbo-machinery which is modeled by this system. Practically, this results in a non-zero mean stress in the blade, which could a ect the fatigue life. However, large vibration amplitudes and signi cant drift may not co-exist.

Further Analysis

For the purposes of this discussion, it was only necessary to focus on the rst resonance of the system. However, signi cant nonlinear behavior exists at all frequency levels, and there may be aspects of this behavior which are worth investigation. Figure 11 is an illustration of the rich dynamic behavior which pervades the system behavior. There always appears to be some forcing amplitude for which the system exhibits strongly nonlinear behavior. However, the system exhibits consistent qualitative regimes throughout its frequency range. For low forcing amplitudes, the system is always linear, while for high forcing amplitudes, the system approaches linear behavior. At the intermediate forcing values nonlinear behavior will remain prevalent. It is conceivable that in some systems, the linear resonance associ- ated with small amplitude forcing in one mode may coincide with the large amplitude forcing resonance for another mode. That is, the sticking resonance for one mode may coincide with the slipping resonance of another. In this situation, a particular frequency could induce resonance regardless of forcing amplitude. In this respect, the frequency response is highly dependent on, and maychange signi cantly with, the location and sti ness of the friction damper.

CONCLUSIONS

It is apparent that for many forcing conditions, traditional modal analysis performs as well as the Component Mode Synthesis formulation. This is the case for large amplitude forcing, when the friction damper is primarily slipping, and the behavior is nearly linear. However, as the forcing amplitude becomes small, the exible friction damper forces become more signi cant and, in these regimes, the CMS formulation is much more e cient. Nominally, this is due to the fact that the sticking damper is very sti , and results in a spatial response closely resembling the normal modes of the CMS formulation. A comparatively large number of traditional, unconstrained, modes is required to replicate this response shape.

Each natural frequency of the unconstrained beam will experience resonance for large amplitude forcing. For each of these resonances, there is an additional, linear, resonance whichm a y be found by incorporating the sti ness of the damper into the sti ness matrix of the two formula-tions. Also, each unconstrained resonance mayhave several associated sub-resonances which are excited by the multiharmonic content of the frictional force. The complexityof this system makes it di cult to achieve a full understanding of the dynamics for even one set of physical parameters. As these parameters change, signi cant quantitativec hanges may occur. This suggests careful dynamic analysis of any structure sharing qualitative similarities with the system evaluated here.

  Figure 1. CANTILEVERED BEAM WITH A FLEXIBLE FRICTION DAMPER ATTACHED AT LOCATION, xd, AND HARMONIC FORCING AT THE TIP.
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 3 Figure 3. FREQUENCY RESPONSE STEADYS T A TE BEHAVIOR US-ING CMS AND MA FOR THREE DIFFERENT FORCING AMPLITUDES. HERE, USING SIX MODES, THE TWO METHODS ARE NEARLY EQUIV-ALENT FOR ALL FORCING CONDITIONS. NOTE THAT ALL DISPLACE-MENT AMPLITUDES HAVE BEEN NORMALIZED WITH RESPECT TO THE FORCE AMPLITUDE, F, AND SCALED BY A FACTOR OF 10 5 .
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 4 Figure 4. A FULL PORTRAIT CMS RESULTS OF THE FREQUENCY RESPONSE AS IT MAKES THE TRANSITION FROM A SPRING-LIKE DAMPER RIGHT PEAK TO A RIGID-LIKE DAMPER LEFT PEAK. NOTE THAT THE SPRING-LIKE DAMPER NO SLIPPING IS A PURELY LINEAR SYSTEM, AND THAT INDIVIDUAL CURVES DIVERGE FROM THIS LINEAR BEHAVIOR AT SOME CRITICAL AMPLITUDE. THE CURVES ARE NORMALIZED WITH RESPECT TO FORCING AMPLI-TUDE, AND SCALED BY A FACTOR OF 10 5 .
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 5 Figure 5. FIRST RESONANT FREQUENCY VERSUS NUMBER OF MODES. NOTE THAT THE HIGHER RESONANT FREQUENCIES COR-RESPOND TO THE SMALLER FORCING MAGNITUDE. THE DIFFER-ENT FORMULATIONS PRODUCE NEARLY EQUIVALENT RESULTS FOR LARGE FORCING AMPLITUDES, WHILE CMS IS MUCH MORE ACCU-RATE FOR SMALLER FORCING AMPLITUDES.
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 6 Figure 6. MODAL AMPLITUDE VERSUS FORCE AMPLITUDE WITH CMS FORMULATION = 241:4 rad s. AT SMALL AND VERY LARGE FORCING AMPLITUDES, THE BEHAVIOR IS LINEAR, WHILE AT IN-TERMEDIATE LEVELS OF FORCING, THE BEHAVIOR IS MUCH MORE COMPLEX WITH CONTRIBUTIONS FROM THE HIGHER MODES IN-CREASING SIGNIFICANTLY. NOTE THAT THE FIRST NORMAL MODE IS DOMINANT DAMPER LOCATION PINNED, WHILE THE CONSTRAINT MODE HAS A MUCH LOWER RESPONSE. ALSO, THE RELATIVE MAGNI-TUDE OF THE CONSTRAINT MODE AND THE FIRST NORMAL MODE CHANGES CONSIDERABLY BETWEEN THE TWO LINEAR REGIMES.
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 7 Figure 7. MODAL AMPLITUDES VERSUS FORCE AMPLITUDE WITH MA FORMULATION. AS WITH THE CMS RESULTS, THERE ARE TWO CLEAR LINEAR REGIMES SEPARATED BY A TRANSITIONAL SEGMENT. NOTE THAT AS THE FORCING AMPLITUDE INCREASES, THE FIRST NORMAL MODE BECOMES MORE PROMINENT.

Figure 8 .

 8 Figure 8. THE FIRST THREE SUB-RESONANCES FOR THE FIRST MODAL RESONANCE. NOTE THAT THE SUB-RESONANT FREQUENCY SHIFTS AS THE FORCING AMPLITUDE IS INCREASED. THE DISPLACE-MENT AMPLITUDE HAS BEEN NORMALIZED AS IN THE PREVIOUS FIGURES.

Figure 9 .

 9 Figure 9. RESPONSE AMPLITUDE AT THE DAMPER LOCATION, xd. NOTE THAT THE RESPONSE AMPLITUDE AT THE DAMPER CHANGES MARKEDLY WHEN SLIPPING OCCURS. AS BEFORE, THE AMPLITUDES ARE NORMALIZED BY 10 5 =F .
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 10 Figure 10. TIME HISTORY ILLUSTRATING DRIFT. FOR THIS CASE, xd = l, F = 263N, AND = 745 rad s.

Figure 11

 11 Figure 11. FREQUENCY RESPONSE CURVES OVER A LARGE FRE-QUENCY RANGE, AT THE DAMPER LOCATION. NOTICE THAT THE SYSTEM EXHIBITS COMPLEX NONLINEAR BEHAVIOR THROUGHOUT THE FREQUENCY RANGE SHOWN. THE RIGHT RESONANT PEAK IS THAT ASSOCIATED WITH THE SECOND FIXED-FREE BEAM MODE.
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APPENDIX A: NATURAL FREQUENCIES AND MODE SHAPES CMS analytical expressions

The constraint mode, c ,may be written as follows:

The ith CMS normal mode may be written as: i = sinU ,sinhU cosU ,coshU coshT, cosT + sinT , sinhT for x x d , and

Here,

and the individual i may be determined by solving the transcendental equation:

for the ith solution.

Modal Analysis analytical expressions

The ith normal mode of the xed-free beam is given by the expression: i = sin i L , sinh i L sin i x , sinh i x + cos i L + cosh i L cos i x , cosh i x where i is determined from the transcendental equation: