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ABSTRACT

Machine learning is increasingly used as a computing paradigm in cartographic research. In this
extended editorial, we provide some background of the papers in the CaGIS special issue Machine
Learning in Cartography with a special focus on pattern recognition in maps, cartographic gener-
alization, style transfer, and map labeling. In addition, the paper includes a discussion about map
encodings for machine learning applications and the possible need for explicit cartographic knowledge
and procedural modeling in cartographic machine learning models.

Keywords cartography and machine learning and deep learning and pattern recognition and map generalization and
style transfer and map labeling

1 Introduction

Automation of cartographic processes has been on the research agenda for several decades, with the aim of improving
the production and maintenance of maps for specific users and usages as well as for developing new types of maps
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and map usage. This research has been influenced by research directions in neighboring fields, such as geography,
computational geometry, cognitive science, spatial analysis, and image science. During the last years, research in image
science has much focused on machine learning, especially since the introduction of deep machine learning models.
These models have seemingly surpassed more traditional (top-down) rule-based mechanisms in several domains with
impressive improvements in recent years. This rapid development in nearby fields – see, for example, reviews in remote
sensing (e.g. [1]) and in geospatial data encoding (e.g. [2]) – has directed researchers in the cartographic domain to
study the capability of machine learning models for map applications. To document this development, CaGIS launched
a special issue on Machine Learning in Cartography. This paper is an extended editorial of this special issue with
the aim of providing the background context for the papers presented in the special issue. It should be noted that this
paper is not a comprehensive review paper in the sense that it is not based on a systematic literature review. The papers
discussed below have been selected based on work cited by the papers of the special issue, background knowledge of
the authors, and some literature search.

Research in the automation of cartography has gone through several paradigms. In cartographic generalization, for
example, which is a main challenge in the cartographic domain, we can see an evolution from condition-action modeling,
to human interaction modeling, to a focus on constraint-based modeling [3]. What we learnt from this evolution in
paradigms is that none of them has been capable of creating end-to-end solutions, but that they have been useful for
solving sub-tasks in the cartographic (generalization) process. To which extent machine learning models will be capable
to create end-to-end solutions, or solving sub-tasks, is an open question (discussed in, e.g. [4]). Much of the research
described in this paper is still on an exploratory stage, with promising results but not necessarily better performance
than what has been achieved using other paradigms. However, there are several aspects that make machine learning
interesting, such as its ability to mimic the output of the human cartographer without having to mimic the actions of the
cartographer, which has proven to be difficult to model. Its success in neighboring applications, notably image science
and natural language processing (NLP) makes the use of machine learning in cartography appear very promising. With
the pervasive success of Chat-GPT, the general public has experienced how transformers and attention-based models
boosted NLP and achieve unexpected levels of performance. Although the use of off-the-shelf models dedicated to NLP
in cartographic applications is not straightforward, the transformers that represent their core network are already put in
use for computer vision and have been proven to be efficient, notably with Vision Transformer [5]. In addition, various
cartographic applications rely on the learning of context that can be learnt efficiently by such mechanisms. Furthermore,
machine learning opens up new directions in cartography that have not been previously possible. Examples of this
include style transfer techniques [6, 7], text-to-map generation (cf. products such as Imagen, DALL-E, and Disco
Diffusion; for map examples see [8]), and supporting 3D map applications with 2D sketches/images [9].

The main idea of (supervised) machine learning is to learn from examples; in case of cartographic applications,
learning from map examples. It is still under debate whether this is a good approach in cartography. One argument
for using machine learning is the difficulty to formalize cartographic knowledge. Cartographic knowledge is a skill
of an experienced cartographer, which entails substantial challenges for the knowledge acquisition and formalization
[10, 11, 12]. Another argument in favor of machine learning is linked to the complexity of the automated rule-based and
constraint-based models; this complexity requires substantial work in designing the framework of the models [13, 14]
and the parameter setting [15, 16]. For the latter, which is often unique for a certain context, much effort is needed in,
e.g. pattern recognition and input data enrichment. These are both tasks where machine learning models could facilitate
new solutions to guide rule-based and constraint-based models [17, 18, 19].

A main argument against machine learning models is that the models are, to a smaller or larger extent, black boxes with
a lack of explicitly formulated cartographic rules. Another main drawback is the massive computational demands of
deep learning models, which is problematic both from economical and environmental perspectives.

This paper starts with a description of map encodings for machine learning as well as a description of the evolution
of machine learning models. These models have been applied to several cartographic applications. In the paper, we
describe the following applications: (1) pattern recognition in maps, (2) cartographic generalization, (3) style transfer,
and (4) map labeling. Then follows a discussion about an issue that is important in all of these applications: the possible
need for explicit cartographic knowledge and procedural modeling in cartographic machine learning models. The paper
ends with concluding remarks including directions of further research.

The selection of cartographic applications reviewed in this paper is based on the application areas that the papers in the
special issue Machine Learning in Cartography cover. It should be acknowledged that machine learning techniques
have been applied to other fields within cartography, such as extracting information from historical maps [20, 21, 22],
fake maps and ethical issues [23, 24, 8], and map metadata enrichment [25].
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2 Map encodings for machine learning applications

Cartographic data can be encoded by, e.g. raster, vector, and graph data structures. A main question is which encoding is
most suitable for machine learning applications, which is elaborated on in several of the papers in this special issue. As
an analogy with the location encoding problem [26, 2], we call cartographic location encoding the process of deriving
a machine-readable vector that describes the configuration of cartographic symbols. The main difference between a
location embedding and cartographic location embedding is the fact that the cartographic embedding also encodes
the cartographic symbols and their semantics, and not only the vector geometries. The most usual way to obtain this
cartographic location embedding is to rasterize the map (Figure 1b). Though this encoding includes many of the
requirements of a cartographic encoding, several problems remain: (1) the geometry is blurred and approximated by the
rasterization process; (2) overlaps that can occur when a symbol renders a vector geometry are removed by the raster
encoding as the pixel only contains the value of the layer that is on top of all the others (which is a big problem for map
labeling for instance); (3) to keep the computation of convolutions manageable, the number of pixels must be limited,
which reduces either the resolution or the extent of the processed tile; (4) there are limitations of encoding geometrical
and topological relationships explicitly.

Figure 1: Different types of location encoding for cartographic data. a) Cartographic data to encode (vector + symbols);
b) raster encoding; c) layered raster encoding; d) graph encoding; e) spatial relations encoding.

To overcome these limitations, other types of encoding are proposed. For instance, multi-dimensional tensors can
be used to replace the simple tensor corresponding to an RGB image (Figure 1c), whether it is called a layered
representation [27], or a multi-channel representation [19]. Additional dimensions of the tensors can also be used to
encode semantic information, or information about the neighboring tiles [27].

To overcome the first and fourth limitation, a graph representation (Figure 1d) can enable a more precise encoding of
the geometries. This approach can be coupled with precise local descriptors of the vertices (e.g. the angle between
adjacent vertices), and global descriptors of the whole geometry (e.g. the orientation of the polygon) [18], as well as
topological and geometrical descriptors to generate cartographic embeddings. These cartographic embeddings can be
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used to simplify lines [28], or to detect patterns in road networks [29] and river networks [30]. This graph representation
only encodes one geometry at a time, or lines connected in networks. But there are other spatial relations that should
be encoded [31] to enable models that properly generate maps. A graph of spatial relations (Figure 1e) may allow to
encode additional spatial relations between the different geometries [32]. There are many location encoding techniques
that were proposed in recent years, in particular, for points or point sets [2].

All these encoding techniques provide cartographic embeddings that are slightly different, and can be useful in different
cartographic applications. For instance, spatial relations between symbols might not be important to encode for a given
application, and then the raster encodings might be sufficient for such an application. But, it appears that the best
cartographic encodings for machine learning are still to be designed. A challenge here is to form a regularly structured
input, which is required by the machine learning models, from the irregular cartographic data [18]. Encoding is not
just about the structure of the input data, the way the convolutions are processed is also important. We can introduce
new deep layers, which are more adapted to the cartographic nature of the data, such as the Getis Ord Gi* pooling to
replace the default max pooling layer [33]. Furthermore, cartographic data may also include text labels and icons that
potentially should be encoded in the machine learning models. [34] use a (layered) raster encoding for the labels, but
there are other encodings, such as graph and spatial relations encoding, that are potentially interesting for use with label
data.

3 Machine learning models

3.1 Evolution of machine learning techniques

In the early years of deep learning, the focus was on creating deeper and deeper machine learning models, and strategies
to learn from larger and larger data sets. However, a change of perspective has emerged, and researchers have worked
on less data-demanding methods [35]. Among these, the so-called semi-supervised representation learning (SSRL)
methods aim to reduce the need for annotated data in the following way: first, a large unannotated dataset is used to
learn the intrinsic structure of the data (pre-task); then a reduced annotated dataset is used to fine-tune the model to
perform the desired task (downstream task). These methods can be used for a large variety of data and downstream
tasks, for more information readers can refer to two recent reviews on the subject: one on general purposes [36] and
one on geographic information-related tasks [37]. For cartography, a promising approach may be to first use many map
images to teach a model how to read and structure a map, and then a downstream model to perform the cartographic
tasks without so much annotated data. Moreover, such a method may help to avoid the usage of a fully supervised
pre-trained model as often used in image-related tasks. In cartography, this is often not useful as natural images used
for the pretraining are too different from map images. In contrast to the semi-supervised scheme that requires a small
amount of labeled data, unsupervised methods involve training without any labels and learn to find patterns and structure
in the data on their own.

The self-training methods also belong to the semisupervised methods designed to reduce the amount of annotated data
required for learning. This is an iterative process where the model is trained with a growing amount of data. 1) In
the first iteration, only annotated data are used to train a supervised model. 2) The first model is used to predict a
pseudo-label on a subset of the unlabeled data. 3) A new annotated dataset is created with both the labeled data and
pseudo-labeled data. This operation is repeated until all unlabeled data has been pseudo-labeled and used for training a
model. Reviewing the literature, these methods appear promising [38]. Some experiments have even shown that under
some conditions they can outperform the quality level of some SSRL techniques [39].

Another interesting trend is meta-learning or learning-to-learn strategies. In such an approach, an outer model is trained
to improve the inner model, which performs the task. For instance, the objective of the outer model could be the
generalization performance or learning speed of the inner algorithm [40, 41]. Such strategies require a set of source
tasks each with both training and validation set, and can benefit any type of learning based on prior experience with
other tasks. As an example, a model for medium-scale topographic map generation could benefit to be learned from a
model that can already generate other maps at this scale or topographic maps at other scales.

In addition to the mentioned techniques, which deal with scarcity of labeled data, transfer learning and active learning
techniques can also be employed for similar purposes as well as for boosting model performance. Transfer learning
techniques enable the reuse of the knowledge gained from one task or domain in another task or domain with the
ultimate goal of improving the performance. Specifically, domain adaptation is a method that can enhance a model’s
effectiveness in a target domain that lacks sufficient labeled data by leveraging the knowledge it has gained from a
related domain with huge and sufficient labeled data. In the extreme case of labeled data scarcity, human-in-the-loop
approaches can be used. Active learning involves iteratively selecting the most informative data points from a large pool
of unlabeled data for annotation by an expert or a labeling algorithm. Humans are required to handle low confidence
instances and feed them back into the model.
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Finally, Ensemble Learning is based on a common concept in artificial intelligence. The assumption is that several
models will most likely not fail at the same place, and thus combining efficiently the prediction of several models gives
better results than using the prediction from a unique one. Applied to cartography, such a combination could allow
dealing with local specificity (e.g. combining a model that performs better in the city center with one for rural areas,
etc.). However, applying this idea to deep learning models is not so easy as it requires dealing with variability and cost
in the models [42].

This variety of methods provides a high level of flexibility as it allows to choose the best scheme suitable for each specific
problem depending on the task to learn, the availability of labeled data, its complexity, performance requirements,
computational resources, and domain expertise, among others. It also allows to increase the performance generalizability,
interpretability, and robustness of the models as the kind of method used has a significant impact on the design of the
machine learning model architecture.

3.2 Machine learning models applied to cartography

After providing an overview of advances in machine learning techniques, we will now focus on machine learning models
that are currently used in cartography. The fast development of machine learning, especially deep learning (DL), has
resulted in several potential models. How to select suitable DL models for cartographic questions depends on the task,
the data structure, the application object, and other conditions. From the perspective of DL studies, researchers mainly
focus on large-scale media data, such as web text, images, video, audio, etc. Map data encodings, often vectors, seem
not to be of particular interest in this area of research, and therefore suitable DL models are limited. However, some
universal DL models can be adapted to conduct cartographic tasks considering map characteristics. For an investigation
of opportunities and challenges of large pre-trained (in a task-agnostic manner) models in geospatial applications [43].

The underlying data structure of DL models can be divided into various types depending on the input data, such as
linear structure, matrix array structure, and graph structure, that correspond, respectively, to the map encodings vector,
raster, and graph. Several researchers have used universal DL models based on all these three structures for cartographic
applications. There are also other types of DL models, e.g. based on a tree structure, which are (currently) not much
used for map encodings and cartographic machine learning studies.

DL models that utilize a linear structure are, e.g. recurrent neural networks (RNN). RNN models have demonstrated
significant potential in the processing of sequential data in the geographic domain. For instance, RNNs and derived
LSTM (Long Short-Term Memory) networks have been utilized for time series data analysis, including trajectory
data and time series image processing, to perform tasks such as traffic prediction [44], taxi demand prediction [45],
pedestrian next-stop prediction [46], and urban spatial-temporal event detection [47].

Deep learning models for matrix array structures (images, raster maps, etc.) include Convolution neural network (CNN)
models. Examples of CNNs are, e.g. U-Net, ResNet [48] and Generative Adversarial Networks (GANs) [49]. In
cartography, among others U-net, residual U-net and GAN have been applied to map generalization tasks [50], and
ResNet has been used for extracting raster maps metadata from geospatial vector data [25].

A GAN includes two networks trained in contest: the generative network generates new samples and learns to map
from a latent space to a given data distribution, while the discriminative network evaluates the generated samples and
distinguishes them from the true data distribution. To make the link with the general techniques explained earlier, GANs
can be either applied in a supervised manner, such as in the case of the Pix2Pix model, which is trained on pair images,
or they can be designed to be unsupervised, such as CycleGAN (that uses unpaired images). In cartography, GANs have
been used for, e.g. style transfer [6], map labeling [34] and map generalization [51]. Beyond GANs, recent research
introduced Diffusion Models (DM) [52, 53], which introduce some noise in the training data, and then learn how to
generate some coherent images from the noise. DM can also be combined with a GAN for, e.g. image generation tasks
[54].

Deep learning models for graphs are called Graph Neural Networks (GNN) [55] with variants, such as Graph Convolu-
tional Networks (GCN), Graph Attention Networks (GAT), and Graph Generative Networks (GGN). GNNs open a
wide door for map applications, especially since they allow for explicit modeling of the connections between spatial
objects. A map graph has an irregular structure with varied edge connections and node numbers. This map graph is
implemented in a GNN by a set of nodes that represent the datapoints embedded in a multidimensional space and
edges that capture the relationships linking the datapoints. Through a set of operations that can be convolutional in the
case of GCN to nodes and edges in the graph, these models can learn representations for each node and edge based
on its local neighborhood in the graph. The main advantage of GNNs is their ability to capture the complex intricate
interdependencies and interactions among objects in a graph. This makes them ideal for many cartographic network
applications [56, 29, 57].
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In the same context, to learn hierarchical relationships between features in complex data, Capsule Networks are
interesting candidates. The key innovation of capsule networks is the use of dynamic routing between capsules, which
allows to learn spatial relationships between features, for example, between objects in an image. When a higher-level
capsule receives input from lower-level capsules, it dynamically routes the input based on how well the input agrees
with the capsule’s prediction of the properties of the entity it represents [58].

An interesting feature with the new models (e.g. DMs and GNNs) is the possibility to incorporate prior knowledge of
certain fields (e.g. cartography) with data-driven machine learning models. This has emerged as an effective means to
increase the performance of the models, guide and speed up the learning process and ensure their plausibility, alleviate
the scarcity of training data, and increase the models’ generalizability. Similar to the embedding of knowledge in other
domains in machine learning [59, 60], cartographic knowledge can be integrated on three levels: data enhancement,
deep neural network architecture, or cartographic-informed optimization. This is further discussed in Section The need
for explicit cartographic knowledge and procedural modeling in machine learning models.

Figure 2: A topographic map cut into 15 small tiles in order to be processed by a convolutional neural network. Each
tile lacks the context of its neighboring tiles to be fully understandable (source: IGN France).

While it is not straightforward to borrow entire (universal) machine learning models from other domains, it is of great
interest to reuse some advanced mechanisms to tackle specific issues in cartography. One such issue is the learning of
context, which is studied in, e.g. the NLP domain. Cartographic problems suffer from a lack of context when small tiles
or graphs are used, which most of the time is the case (see most of the papers presented in this special issue). As can be
seen in Figure 2, it is required to consider the surrounding tiles for most cartographic processes (generalize the map,
place labels, or transfer the style of the center tile, etc.). In NLP, transformers enable the use of the context of a word
(e.g. the sentence it is included in) while encoding or decoding the word [61]. Several propositions have been made to
translate the principles of transformers to computer vision problems [62, 5, 63, 64]. Two recent review papers give a
good idea of these flourishing new applications [65, 66] with possible implications for cartography.

4 Examples of machine learning studies in cartography

4.1 Pattern recognition in maps

Pattern recognition in cartography refers to identifying, interpreting, organizing, and utilizing the latent knowledge from
spatial data. This includes spatial relations, structure, and distribution of features, such as roads, buildings, rivers, and
topography. Traditionally, cartographers and remote sensing experts have relied on manual interpretation and rule-based
methods to identify these patterns. However, with the emergence of machine learning algorithms, particularly deep
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learning, pattern recognition in cartography can now be automatically carried out. This enables faster and more efficient
map applications including map analysis, map evaluation, and pre-processing in map generalization.

Pattern recognition for map analysis involves examining and interpreting meaningful information from maps to inform
decision-making and improve our understanding of the world. With the development of convolutional neural networks
and different kinds of spatial data, cluster detection and classification has become a crucial application in map analysis
field. Based on POI data and related VGI support data, the special model by graph-based GNN has been applied to
partition urban functional areas [67, 68, 69] and to quantify the spatial homogeneity of urban road networks worldwide
[70]. Detecting landforms and topology is another important application, such as the classification of different types of
landforms, e.g. dune patterns [71]. The intelligent recognition of map elements is also essential for enhancing map
services and analyzing the region’s development. For example, Schnürer et al. [72] used CNNs to identify pictorial
objects in historic and contemporary maps to improve the advanced search of digital map catalogs. Saeedimoghaddam
and Stepinski [73] employed a region-based CNN (RCNN) framework to automatically detect road intersections in
historical maps for temporal analysis. Overall, pattern recognition for map analysis utilizing machine learning has
significant potential for improving our understanding of geo-phenomena and spatial decision-making.

Pattern recognition for map evaluation focuses on the comparison between two or more data versions to find pattern
inconsistency. This could happen in different temporal, theme, and applied domain data. Duan et al. [74] presented a
temporal comparison automatically aligning contemporary vector data and historical maps by reinforcement learning
methods. The work of Xi et al. [75] to quantify the emotional semantics of maps belongs to the evaluation of pattern
recognition through different themes. Pattern recognition supported by machine learning includes similarity evaluation,
which is an important way to judge the quality after applying map processes. For example, Li et al. [76] proposed a
metric learning model (denoted LineStringNet), based on a Siamese model, that measures the similarity between single
lines. Li et al. [17] extend this by introducing a deep neural network for learning patterns in linear feature sets, such
as networks (e.g. rivers and roads) and clusters (e.g. contours). Their approach also works for closed linear features
such as buildings. Inputs to the models are the linear features as well as topological and geometrical relationships
between the features. In their study, they successfully apply their model for classifying building groups and segmenting
interchanges in road networks.

Pattern recognition and detection in map processing is one of the fundamental operations, especially in map generaliza-
tion. Pattern recognition usually serves as a pre-process in map generalization, making explicit the implicit structures
of the map, such as collinear building groups and typical drainage patterns. Traditional rule-based approaches using
manually defined rules based on geometric, topological, or both properties fail to capture deeper feature information
about the pattern [77]. Pattern recognition and later scaling actions are usually combined together in map generalization.
Yang et al. [78] employed a Back Propagation Neural Network (BPNN) based approach to analyze building shapes and
then determine the optimal building simplification method, while Yan et al. [79] utilized a graph autoencoder (a type of
GNN) to first recognize building outline patterns and then to simplify templates accordingly [80, 81]. Additionally,
GNNs can facilitate building group clustering [82, 83] and preserve group features during building aggregation. Knura
[18] performs shape classification as a preprocess to cartographic generalization. In their test they use the neural
networks CNN, RNN, and GCNN (graph convolutional neural networks). As input to the networks, they used both
closed line (building) and open line (coastline) data with three different encodings: plain coordinates, sketch sequences,
and feature descriptors. Their results show, among others, that feature descriptors improve the accuracy for all three
types of networks.

As far as the data type is concerned in machine learning of map application, vector pattern recognition shows great
potential. Early machine learning methods, such as random forest [84, 85] or Markov random field [86], act as a
classifier to classify groups into potential patterns based on a feature vector (e.g. building types (regular vs. irregular)
[85], building group (collinear, curvilinear, and grid, etc.) [84]. Due to convolution and neural-layer stacking techniques,
deep learning is better at information mining than vector data can be fed into image-based deep learning models
(e.g. VGGNet, AlexNet, GoogleNet, and Mask-RCNN) to conduct building shape classification [28], drainage pattern
classification [87] and road intersection detection [77, 78]. However, given the detailed information lost caused by
rasterization, the vector data input into the model is considered to be reorganized from the data structure. For example,
Yang et al. [88] proposed 1D-U-Net fed into a line’s grid shape context descriptors to conduct the segmentation of
boundary lines.

Among different model members in the deep learning family, the graph-related models specially apply to map pattern
recognition. The graph representation of vector data is becoming a more popular data structure due to the advent of
graph neural networks (GNNs). The map organization uses a graph to model neighborhood and other spatial relations,
and efficient graph convolution operations to process the node features [81, 89, 30]. Well-designed graph structures
successfully solve the pattern recognition problem of different elements based on the graph convolutional networks
(GCN, such as 1stchebyshev, GraphSAGE, and GAT). Some examples include skeleton-line-based [90], triangle-based
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[91, 83, 92], boundary-point-based [79], and minimum-spanning-tree-based GCN [81] for building shape classification
and group recognition, road-based undirected graphs for complex intersection detection [89], and drainage dual graphs
for drainage pattern classification [30, 93] and segmentation [94]. Besides, unsupervised graph-autoencoder-based
shape embedding [79] and semi-supervised few-shot learning methods [95] have also been introduced and tested in
shape recognition to get rid of reliance on supervised learning.

4.2 Cartographic generalization

When you design a map at a scale at which your spatial data are too detailed to be legible, you need to abstract, simplify
your spatial data to adapt it to the scale of the map. This abstraction process is called map generalization, and it can be
a tedious task when performed manually or interactively. From the inception of research on the automation of map
generalization, researchers have used novel artificial intelligence methods, such as expert systems, multi-agent systems,
early machine learning techniques, or optimization techniques. Deep learning may also be a useful technique to solve
map generalization problems [4]. Early attempts to use deep learning for map generalization focus on the generalization
of individual map features, such as buildings [50, 96, 97], roads [98, 99], or coastlines [100, 101], and they make use
of U-Net or GAN architectures, which is common in computer vision. A main difficulty of the automation of map
generalization lies in the orchestration of multiple algorithms to generalize all the features contained in a map, but deep
models dedicated to map generalization are not there yet [102]. All these deep models that process map images provide
promising outputs but face limitations due to the raster nature of the input/output of the model [27]. To overcome this
limitation, researchers now try to encode the input given to the model differently. Some encode the map image as a
multi-dimensional tensor [27], others encode the map as a graph [103], while yet others transform a line into a vector
that can be processed by an autoencoder [104]. Finally, map generalization is usually an iterative process where the
intermediate map is evaluated to assess whether the previous transformation actually improved the map. Some recent
research using machine learning also tried to address this topic [105, 78].

In this special issue, several papers propose to go further with the use of deep learning models for map generalization,
and they address the limitations faced by the first deep models cited above. Fu et al. [19] follow on the idea of the
multi-dimensional tensor instead of the plain map image, as the input of a U-Net architecture, where they use one layer
for the building to be generalized, while the other layers store the context. This technique improves the rectangularity
and parallelism of buildings in the generalization process, which is tested in scale transitions from 1:5,000 to 1:10,000
and 1:15,000. Yan and Yang [28] propose an approach comparable to Yu and Chen [104], by modeling the lines
and polygons as graphs, which are processed by a self-supervised graph autoencoder to simplify them. To obtain
better results, they modeled both shape preservation, area balance, and angle-characteristic enhancement in the loss
function. A quantitative evaluation reveals that their method gives low changes in position, area and scale, and visual
comparison with simplified lines by common simplification methods also provides good results. Also, Xiao et al. [29]
use graph networks, but in their study for point cluster generalization. Their point selection method is a combination
of a data-driven approach (supervised network) and explicit domain knowledge in the input data. The latter includes
spatial (generated by, e.g. a Delaunay triangulation) and contextual features. The methodology demonstrates the ability
to maintain both local and overall characteristics in the selection process. To address the orchestration of multiple
deep models, Courtial et al. [51] propose a framework where the map is separated into layers, generalized by different
models, with a final GAN assembling the layers into the map. The framework is tested on building, water, and road
data, where the data is generalized from detailed scale to medium scale (1:50,000). The experimental test shows that
sub-diving the generalization problem into sub-processes (solved independently by machine learning techniques) is
more promising than using a single machine learning model for the whole generalization task. Finally, Karsznia et al.
[106] show that deep learning is not the only machine learning solution applicable to map generalization. They propose
to use the machine learning techniques random forests, support vector machines, decision tree, and neural networks to
learn how to properly select roads for maps at smaller scales. They compare their machine learning results with some
traditional methods (based on guidelines and graph theoretical measures) where the results indicate that the machine
learning models are more similar to an atlas product of the same area.

4.3 Style transfer

Cartographic style – including symbols, colors, typography, icon design, etc. – is an important part of the aesthetics
and efficiency of maps [107]. Digital techniques have enabled that a geographic dataset can be visualized by several
cartographic styles to generate various maps. In practice, most maps are defined by style regulations based on either
international specifications (used in e.g. sea charts), or national specifications (most commonly used in topographic
mapping [108]). Cartographic style is represented as stylesheets, stored in specific mapping or GIS software formats,
open formats, such as the OGC Symbol Encoding [109], or in program code. The latter is, e.g. common for multiscale
web maps. Some researchers have introduced machine learning techniques as an alternative to stylesheets or program
code for transferring cartographic style. The basic idea is to transfer a style from one map (or even artistic painting) to
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another map; that is, learning map style from examples. Researchers in image science [110, 111, 112] have developed
techniques to transfer the style from one image to another image using GAN networks, for example. Early adopters of
this technique in cartography were Kang et al. [6]. They utilized the cartographic style from Google Maps to create
maps of unstyled OpenStreetMap vector datasets. To facilitate this transfer, they applied image-to-image mapping using
the GAN networks Pix2Pix and CycleGAN. This type of transfer is interesting especially in the context of generating
specific map styles for certain applications and user groups, or even to create individual designs.

Cartographic style transfer could also be applied to aerial (ortho-) and satellite images. This means that styled maps
could be generated directly from images. For example, Christophe et al. [?] generate maps of historical styles from
modern ortho-images, and Ganguli et al. [113] generate maps from satellite images, both using GAN techniques. Li et
al. [114] use a similar approach in their creation of their MapGAN network. In their comparison with other machine
learning techniques, the MapGAN network provides maps with a higher visual quality. Chen et al. [7] extend previous
work by introducing a generation of multi-scale maps from satellite images. This multi-scale mapping could have
been implemented by parallel scale-wise mapping for several scales, but this would inevitably lead to inconsistencies
between scales. Instead, Chen et al. [7] designed a machine learning model where high-resolution satellite images are
inputted to a GAN generator to output large-scale maps, which are then generalized to multiscale maps through a series
of multiscale map generators. One shortcoming of maps generated directly from images is that the topology is not
always consistent. To facilitate topologically improved maps, additional information could be added to the machine
learning models. This is performed by, e.g. Zhang et al. [115] who added GPS traces to the satellite images as input to
the GAN models to improve the topology of the road networks in maps. Another approach to improve topology in the
generated map, designed and implemented by Xu et al. [116], is to add topological consistency loss as part of the total
loss function.

In the examples given above, the machine learning models are trained for all map layers, or at least the majority of
layers. There are also machine learning models developed for specific layers, such as relief layers. Shaded relief
has been a challenge in the digital cartographic era, since quantitative methods, such as using the diffuse reflection
properties [117], do not provide results of the same quality as manually created reliefs. As an alternative to current
quantitative methods, Jenny et al. [118] developed an image-to-image translation, based on a U-net neural network
architecture. The network was trained with manually shaded relief images of the Swiss topographic map series and
terrain models of the same area. The result was satisfying; the network-generated shaded reliefs were visually similar to
the manually made reliefs.

A specific type of cartographic style transfer was performed by Schnürer et al. [9]. They created 3D human figures from
2D images/sketches on maps using machine learning techniques, and then added these 3D figures to 3D visualizations
of the maps. This application is interesting for, e.g. creating naturally looking 3D figures (taken directly from e.g.
historical maps) in story map applications.

4.4 Map labeling

Label placement is an important task in map production. Since this task demands a considerable amount of manual
effort and time, several studies have been conducted to automate the label placement process. The majority of research
on map labeling relies on quantifying the rules found in the cartographic literature [119]. In the early stages, the
problem was formulated as a geometric independent set problem and considered one of the computational geometry
tasks, which are NP-hard [120].

Considering the task as an optimization problem and expressing the cartographic requirements (generally legibility,
association, readability, and aesthetics) as objective functions, (near-)optimal solutions can be found using several
approximation and heuristic methods, such as simulated annealing [121], genetic algorithms [122] and integer pro-
gramming [123]. Later, some researchers formulated the problem as multicriteria optimization by specifying and
evaluating more detailed cartographic principles as quality functions, particularly for point feature labeling [124]. These
optimization approaches have led to the development and implementation of rule-based systems and optimization
tools (e.g. PAL [125]) which provide satisfactory solutions to several labeling applications. However, the level of map
labeling automation for production purposes remains relatively low and the resulting quality does not achieve the same
level as that of a skilled human cartographer. Therefore, semi-automatic approaches were developed, such that the
algorithm can give a good but not perfect solution, which will be a starting point for a cartographer who can then locally
refine and improve the labeling and, thus, save much time [126].

With the growing utilization of machine learning in various application domains, some cartographic researchers have
studied the use of deep learning in map labeling and, implicitly, whether the cartographic knowledge embedded in
map examples can be used for generating high-quality map labels. One early study was performed by Pokonieczny
and Borkowska [127] who used machine learning to determine feature labeling in topographic maps. They trained
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a basic neural network (multilayer perceptron) with input terrain coverage data obtained from military topographic
maps to determine in which rectangle a label should be placed around a polygon feature (built-up area). It is worth
mentioning that this study does not deal with conflicting labels, and the maps they used had relatively few features that
could overlap with the labels.

There are three machine learning approaches that can be [128]. The first approach is based on key point detection
models, such as stacked hourglass networks, that have to learn the raster key points that indicate the positions where
labels should be placed. One example is work by Li et al. [129] who developed a deep learning approach for placing
labels on area features based on a stacked hourglass network to create heatmaps that show good positions of the area
labels. This approach differs from the common strategy used in many GIS programs, which involves placing the label
on specific candidate positions, particularly on the centroid of the polygon.

The second approach uses generative models that are able to learn the mapping between a source domain that includes
the maps without labels and a target domain where the maps are labeled. Investigating the feasibility of this approach,
Oucheikh & Harrie [34] trained GAN models, namely CycleGAN and Pix2Pix, on map examples and evaluated their
ability to predict good locations of the labels given unlabeled raster maps. The obtained results were compared with
manual map labeling and a state-of-the-art optimization-based method using metrics for legibility, readability, and
association. The deep learning models showed similar legibility results, but manual labels are better in terms of
association, while labels placed by the optimization tool have higher readability scores.

The third approach is image composition [130] in which deep learning models should learn how to generate consistent
composite images considering the relationship between the features and their labels as well as the relationship between
the labels themselves. To the authors’ knowledge, this approach has not yet been tested in map labeling research.

Using image-to-image deep learning techniques for map labeling has inherent problems. They all focus mainly on
synthesis of appearance features (the labels in this case) by learning the style of images of the target domain. This implies
that the actual label geometries are not included in the modeling. Ideally, a solution for the label placement problem
should incorporate both the label geometries and appearance realism. This could be implemented by, e.g. utilizing a
geometry synthesizer to learn the local geometry of background images (maps) on which the labels representing the
foreground objects can be transformed and placed. To our knowledge, no research has been conducted in this direction
yet. In the last section of this paper, we propose some ideas on how to integrate label geometry or, in general, knowledge
related to map labeling in a deep learning framework.

5 The need for explicit cartographic knowledge and procedural modeling in machine
learning models

As noted in the previous sections, machine learning models are increasingly used in cartography. Machine learning
models derive their power from their ability to identify patterns (and biases) in data that result in regularities and more
general characteristics that go beyond specific data points (samples). By using a substantial number of examples,
machine learning models often achieve very good reliability in identifying patterns in the training phase that could be
used in applications. For these mechanisms to work, sufficiently many, and sufficiently useful examples need to be
provided. The more complex the task is, the more examples are needed.

A disadvantage of the machine learning models is that it is not (fully) predictable what exactly they will learn.
Essentially, they solve a classification (pattern recognition, function approximation) task, and will use whatever
principles or attributes allow best to discriminate inputs, or offer highest gain in their outputs in case of generative
models. The principles employed by these models may well not at all be related to any principles of good cartographic
practice. This holds in particular if the models operate directly in the image domain, but the task they are meant to
solve may rather reside on another level as, for example, in vector and network simplification. Two shortages of purely
data-driven machine learning models for cartographic applications can be identified: a lack of explicit representation of
(cartographic) world knowledge (e.g. visual design esthetics or preservation of topology, such as the need for connected
road networks), and a lack of pragmatics, i.e. how (and why) to perform specific cartographic operations [131].

The lack of explicit modeling of cartographic knowledge can especially be identified in pioneering usage of machine
learning in cartography, for example in cartographic generalization of buildings (e.g. Feng et al., 2019) and roads [98],
as well as in map labeling [129]. However, since these deep learning networks are comparably simple models, they can
be extended if the user has cartographic expertise. This adding of cartographic knowledge has been utilized in some
recent studies. For example, Fu et al. [19] introduce a multi-channel model for building generalization, where one
building to be generalized is given in one channel and the geographic context in another channel. Furthermore, the
encoding of cartographic data is important for adding cartographic knowledge. Generally, it is easier to add cartographic
knowledge for vector and network data. One example of this is found in Knura [18] who use cartographic knowledge in
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the form of shape measures together with a vector encoding as input to a machine learning model for the classification
of building and coastline data. Other examples are provided by Xiao et al. [29] and Yu et al. [94] who use graph
encodings, where several geometrical and topological measures are explicitly added as input to a graph convolutional
network.

The lack of any kind of pragmatics in purely data-driven machine learning models would entail that the models do
not incorporate any procedural knowledge about good cartographic practices or any cartographic principles. This
implies that they may lead to incorrect or at least counter-intuitive results. This may also mean that a lot of effort is
spent on training the models to learn principles that everybody (in cartography) knows anyway. Some researchers
in the geosciences have introduced well-known geographical constraints and more explicit semantic knowledge in
machine learning models [132, 133]. Such models are supposed to lead to more targeted results. Since the models have
already some knowledge about the domain at hand, they may potentially also require smaller training sets. Also, in
cartography, researchers have started to add pragmatics into the machine learning models. Courtial et al. [51] divide the
generalization task into several sub-tasks according to common cartographic practice and then train machine learning
models for each sub-task. While this approach will not lead to an end-to-end solution using a single machine learning
model, such an approach will allow for a more targeted choice for the machine learning models to solve specific tasks
(which would require less training data) and their results may be easier to explain, i.e. contribute to more explainable
AI in cartography.

To enhance the interpretability further, integration strategies combining data-driven computation and domain knowledge
will play an important role. Mapmaking rules, map analysis models, spatial cognition principles, and other related
cartographic domain knowledge can be embedded into a deep learning model. This integration can be done before,
during and after the machine learning computations. Before the machine learning step, the input data (in, e.g. vector
encoding) can be extended to add some specific properties of mapping applications, such as geometric measures on
Gestalt cognition principles, or constraints in neighboring object aggregation. During the learning step, a machine
learning model can be opened to change or add some targeted computation operator suitable for map applications. In a
convolution network, for example, we can replace or add new convolution computation cores or pooling cores to detect
geometric patterns, or we can add cartographic knowledge into the objective functions that govern the machine learning
outcomes [99, 57]. Another possibility is to create a workflow where some sub-tasks are solved by rule-based or
constraint-based models based on domain knowledge, while others are solved by machine learning models [51]. After
the machine learning step, the output results can be further enhanced with cartographic knowledge in post-processes,
such as applying principles of selection, as e.g. formalized by Töpfer and Pillewizer [134], to enhance the selection
results of a GCN model [29]. Improving the machine learning models themselves requires knowledge of the basic
principles of machine learning. However, adding cartographic knowledge before and after the machine learning
computations relies mostly on cartographic domain knowledge.

Currently, there is a general debate in the geosciences about whether or not explicit models are required, i.e. whether
“spatial is so special” that standard machine learning models will not suffice [135, 136, 137]. This debate is interesting
also in the cartographic context. Explicit models have several advantages, as discussed in the previous paragraphs.
However, they are also clearly more complex than “normal” machine learning models. And in some ways, explicit
models have less “freedom” to pick out characteristics of the data that allow them to solve the task at hand. Some claim
that given enough data, the need for explicit models will vanish. The question remains whether we will reach a stage
where there will ever be enough quality (training) data to make away with the need for explicit cartographic domain and
procedural knowledge in machine learning, and whether this would even be desirable.

6 Concluding remarks

A cartographic dream would be to create high-quality multi-scale maps directly from aerial and satellite images. We
are quite far from achieving this today, but machine learning techniques – together with other computing paradigms –
could possibly solve this task in the future. What is illustrated in this paper is that some building blocks have emerged
toward this end, such as: (1) deriving basic multi-scale maps directly from aerial and satellite images [7], (2) identifying
patterns/characteristics of features and group of features, (3) generalizing maps, and (4) labeling maps. A challenge here
is that to perform the later steps in the process (e.g. generalization and labeling) we need to enrich the purely geometric
data (derived from the images) with semantic information. This is not only important for creating high-quality maps but
also for going from a map as a free-standing product to it being part of a digital twin [138]. To facilitate this linkage, we
need to (automatically) establish linkages between the geometries created from the images and semantic information in
external databases. If such enriched dataset would exist (possibly as part of a digital twin), it would be interesting to
utilize both images and text (linked to the images) as input to (future) multi-modal machine learning models (models
that take both images and text as input).
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To achieve the vision, we need to improve all the subprocesses. Below follow some ideas, from respective fields, of
what could be researched in the near future.

Pattern recognition used to be a traditional decision-making question, and supported by machine learning it becomes
an active new topic. Cartography and remote sensing image processing both have pattern recognition tasks but with
different focuses. Remote sensing focuses on the identification from pixel to object. On the other hand, cartography
focuses on class judgment and characteristic detection from object to high-level clusters. The application of data-driven
approaches has promoted the development of rule-based methods. Based on the training of typical sample data, deep
learning methods can identify different feature patterns in map space. Currently, the main work of pattern recognition
focuses on geometric data, such as graph, network, polygon cluster, etc. This will be extended to include other data,
such as social attributes, semantic descriptions, functional data, and others. Based on the integration of different data,
generalized pattern recognition can be conducted, such as identifying urban functional zones, CBD regions, and others.
Another trend in map pattern recognition is to combine cartographic domain knowledge and deep learning methods, for
example, to incorporate spatial cognition or scaling principles. Such integrated deep learning models will enhance map
pattern recognition.

Regarding map generalization, deep learning models showed promising results for different tasks, but they are not
able to generalize better than traditional automated techniques yet. To go further, deep learning models will have to
(1) better encode the vector geometries in the map (using graph encodings?), and (2) to be able to “look around,” and
make decisions based on the cartographic context (using transformers?). One last challenge is to better convey with loss
functions what a good generalized map is. As the deep models optimize the value of this loss function, we have to make
sure that a better loss really corresponds to a better map.

Style transfer, in combination with object extraction, has been successfully applied in generating basic maps, and even
multiscale maps, directly from images. To improve these maps – from a cartographic perspective – there are several
issues to solve, both in terms of information content and presentation. From an information content perspective, it
would be interesting to study the utilization of the automatically generated maps with other information sources. One
aspect is that several maps do not only contain visible objects, but also, e.g. functional information (e.g. land use, urban
functional regions, etc.). Such information could possibly be derived from images [139] and point of interest (POI)
databases [69]. It would also be interesting to conflate the automatically generated maps with other (map) data sources.
As part of this, we need to establish linkages between objects in the two datasets, performed by machine learning
techniques and/or geometrical and topological matching. From a presentation perspective, it would be interesting to
study generation models that translate textual descriptions to images (or maps). Ideally, these generation models should
support generation of maps to user groups with specific needs, such that they translate a textual description to a map
representation that can be understood by the user.

As noted above, research in using machine learning for map labeling has been quite limited, and most of it has been
purely data-driven. In future research, there is a need to use explicit cartographic and map labeling knowledge, which
can be embedded in machine (deep) learning on three different levels. The first level is the data enhancement where one
can feed the model with additional features to learn from, such as the text attributes (length, font, etc.) and the attributes
of the labeled objects (centroid coordinates, area, vertices coordinates, etc.). The second level is the model architecture
where it is possible to include some subnetworks specialized, for example, in learning or evaluating the context of a
possible label location determined by the core network or another subnetwork. The third level is the design of loss
functions related to the labeling objectives (e.g. legibility, association, and map readability requirements); for instance,
the legibility metric can be included in the loss function by computing the intersection of bounding boxes of the labels,
which is somehow similar to the Intersection over Union (IoU) or Dice score used in image segmentation.

In conclusion, research in cartography – including the papers in this special issue – has shown the potential of using
machine learning in cartographic applications. In some applications, e.g. in style transfer and pattern recognition,
machine learning models often already outperform traditional methods, while in other applications they are promising
but not necessarily better. To which extent machine learning models will be successful in cartographic applications, and
to which degree we need to explicitly model cartographic knowledge in these models, are still open questions.
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