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Abstract—Due to the high data demand of machine learning
algorithms, multiple datasets are emerging in remote sensing.
But these datasets are costly and time consuming to annotate
especially for change detection or natural phenomena monitoring.
In particular, early warning systems on slow-moving disasters
are lacking of training datasets as they require both geomorpho-
logical and SAR interferometry expertise. In this paper, (i) we
propose a novel InSAR dataset for Slow SLIding area DEtection
(ISSLIDE) with machine learning algorithms. The latter consists
of manually annotated patches of generated interferograms over
slow moving areas. (ii) We implement the segmentation of
ISSLIDE interferograms with classical deep learning approaches.
FCN, DeepLabV3 and U-Net-like architectures are explored to
serve as baseline for future works. To the best of our knowledge,
this is the first dataset adapted to machine learning and targeting
slow sliding area detection.

Index Terms—Dataset, InSAR, Deep learning, ISSLIDE,
Ground motions

I. INTRODUCTION

Deep learning approaches are increasingly used for Earth
observation and monitoring due to their strong ability in terms
of performances, reliability and inference computation time.
These approaches are especially applied on satellite images
to benefit from their wide spatial coverage, their high revisit
frequency and their multiple available sensors (e.g. SAR,
multispectral or hyperspectral). Thus, to leverage both remote
sensing characteristics and deep learning efficiency, more
and more multimodal datasets are created [1]–[5] to ensure
relevant trainings. If getting access to remote sensing images
is straightforward with the Copernicus program, annotating
this amount of data is not only costly and time consuming
but requires also strong expert knowledge. This is the reason
why land-cover classification and change detection datasets
are often based respectively on pre-existing maps [6]–[8] or
inventories [4], [5], [9] for labelling. Early warning systems
are more challenging and, in particular, detecting ground
deformations or motions requires both geomorphological ex-
pertise and radar interferometry knowledge. Some studies are
emerging to predict volcanoes unresting periods and prevent
catastrophic tolls by using interferometric SAR (InSAR) [10].
But to the best of our knowledge, there is no dataset targeting
ground motion detection for deep approaches. Our contribution
summarized in Figure 1 is two-fold:

1) We release a novel InSAR dataset for Slow SLId-
ing area DEtection (ISSLIDE) with machine learn-
ing. A total 200 French Alps ground motions are

manually annotated ending up with 13,230 sam-
ples of interferograms ready for deep learning train-
ing purpose. The dataset is available on IEEE Dat-
aport (https://ieee-dataport.org/documents/isslide-insar-
dataset-slow-sliding-area-detection-machine-learning).

2) We propose a first deep segmentation study applied
on ISSLIDE samples. Different configurations of FCN
[11], DeepLabV3 [12] and U-Net-like models [13] are
compared to establish primary baseline results.

The remaining of the paper reviews related works in Section
II before introducing the ISSLIDE dataset in Section III.
Section IV details deep segmentation baselines and their
performances. Section V concludes and offers perspectives.

II. RELATED WORKS

In remote sensing field, applications such as super-
resolution [14], despeckling of radar images [15] or modality
translation [16] do not need any annotations. But other tasks as
land-cover mapping [17] require specific labels often based on
pre-existing maps or inventories. Authors of BigEarthNet-MM
[1] extracted 590,326 pairs of Sentinel-1 and 2 patches and
used the CORINE land-cover map [6] for labelling. SEN12MS
[2] is composed of 180,662 Sentinel image couples annotated
with the MODIS [7] land-cover map. Authors of SpaceNet-6
[3] computed labelling with the 3DBAG [8] land-cover map on
3,401 radar-optical couples respectively from Capella Space &
Metasensing and Maxar Worldview-2.

Another typical application on remote sensing images is
the detection and monitoring of landscape changes. But tasks
as flood [18], forest fire [18] and landslide detection [19] or
the evaluation of their damage on buildings [20] require more
expertise in the annotation process. The xBD dataset [21] con-
tains 700,000 annotated buildings based on their post-disaster
destruction level. The Landslide4Sense [19] competition pro-
vides 3,799 annotated optical patches for post-event landslide
detection. The dataset from [9] contains 1,918 landslides
from the United States Geological Survey to implement their
detection on optical images. Authors of SEN12-FLOOD [4]
gathered Sentinel-1 and 2 images as well as labels provided by
Copernicus Emergency Management Service to create a flood
dedicated multimodal dataset with 412 time series. The same
labelling source is used in MMFlood [5] for flood delineation
based on 1,748 triplets of Sentinel-1 images, Digital Elevation
Model (DEM) and hydrography maps.

https://ieee-dataport.org/documents/isslide-insar-dataset-slow-sliding-area-detection-machine-learning
https://ieee-dataport.org/documents/isslide-insar-dataset-slow-sliding-area-detection-machine-learning
https://ieee-dataport.org/documents/isslide-insar-dataset-slow-sliding-area-detection-machine-learning
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Fig. 1: Flowchart of the generation and use of ISSLIDE. A collection of successive radar images is used to generate 6-, 12- and 18-days
delay interferograms. These interferograms are manually annotated to release the raw dataset. Every move is extracted within a patch to

create the ISSLIDE dataset. Delay-independent samples are then selected to train the neural network inputting the coherence (ρ), the cosine
and the sine of the phase difference (φ). The output probability map is then compared to the manual annotation to optimise the network.

These sudden natural disasters are especially studied for
post-event policies, but early warning systems and monitoring
of slow-moving phenomena are of crucial importance for
disaster forecasting. Their objective is to localize deformations
which are invisible by offset tracking from standard satellite
resolutions (e.g. 10m for Sentinel constellations). This issue is
tackled by studying the phase of radar images through InSAR-
based approaches [22]. If authors of [23] propose to compute
interferograms on large zones with advanced algorithms, they
do not provide any annotations. In contrary, authors of [24]
make an inventory of slow-moving areas as rock glaciers and
landslides without providing a dataset adapted to machine
learning trainings. Hephaestus [10] is one of the few annotated
InSAR datasets for volcanoes unresting period detection. It
is composed of 216,106 samples among which only 2,247
contains volcanic deformations. The InSAR dataset proposed
in this work extends deformation studies to ground motions
as slow landslides and rock glaciers.

III. ISSLIDE DATASET

A. Interferogram Generation

Interferograms are generated based on Copernicus Sentinel-
1 SAR images provided by the ESA. Before 2021, this two-
satellites constellation released a new image of a same zone
every six days over Europe. To benefit from this high revisit
frequency, SAR images are selected every six days from the
2nd of July 2018 to the 24th of October 2018. Summer season
is favoured to keep a high coherence between radar images
and avoid non-coherent snowing periods. Images are Level-1
Single Look Complex products acquired on descending pass
in interferometric wide swath mode. Only the VV polarization
is used to ensure a better coherence between the acquisitions.

Interferograms are generated with the Sentinel Application
Platform (SNAP)1 and based on their standard ”Command-

1https://step.esa.int/main/toolboxes/snap/, visited on the 6th of July 2023.

Line InSAR Tutorial”. The following process does not require
any additional information as atmospherical predictions or
meteorological assessments: the freely available SRTM [25]
1sec HGT DEM is the only requirement at this point.

The generation procedure is divided is 8 successive steps:
• Application of σ0-calibration to the VV band;
• Orbital distortion corrections;
• Co-registration of the images with respect to the DEM;
• Interferogram generation;
• Topographic phase correction with respect to the DEM;
• Goldstein Filtering for interferogram smoothing;
• Multilooking of size 8×2 (range×azimuth);
• Orthorectification with the WGS84 projection map.

These steps result in the coherence and phase difference maps
provided in the ISSLIDE dataset.

B. Annotation Generation

Annotation process is set up in collaboration with geomor-
phologists to establish robust identification strategies. Every
following steps are computed with the QGIS software2 on each
generated interferogram.

Manual annotations are based on the research of phase
difference odd patterns. Two of them are targeted: bubbles
and fringes as illustrated in Figure 2. Bubbles (Figure 2a)
are the most common patterns characterizing slow-moving
phenomena as landslides and rock glaciers. Compared to
the stable background phase difference, they show significant
phase changes slowly attenuated when reaching their borders.
This is revealing a fast moving area triggering aside earth to
follow. The second pattern of interest is fringes (Figure 2b).
They appear when continuous displacements occur and when
a 2π delay is created between the stable background and the
moving area. It creates a cyclic pattern ranging from −π to π.

2https://www.qgis.org/fr/site/index.html, visited on the 6th of July 2023.

https://step.esa.int/main/toolboxes/snap/
https://www.qgis.org/fr/site/index.html
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(a) Bubble pattern (b) Fringe pattern (c) Optical image
Fig. 2: Example of moving areas patterns in the phase difference

map of a same zone at (a) 6 days and (b) 18 days of delay.

Fringes appear if the phenomenon is fast enough compared to
the interferogram delay. This is illustrated in Figure 2 where a
bubble pattern in a 6-days interferogram (Figure 2a) changes
into a fringe pattern in the 18-days interferogram (Figure 2b).

To avoid incorrect annotations, phase difference images are
masked with a layover map. Each suspected pattern is then
confirmed or refuted based on three major criteria. First, the
coherence map is used to ensure phase difference reliability.
Indeed, the ratio between the targeted displacement range (cm)
and the image pixel resolution (m) prevents from coherence
losses between the two acquisition dates. Therefore, suffi-
ciently high coherence is expected at least in the surroundings
to validate the presence of a ground motion. The magenta
circled area in Figure 3 illustrates a typical non coherent
suspicious pattern to avoid. The second indicator is the repeti-
tiveness in time of the movement. Indeed, targeted phenomena
are both rock glaciers and landslides. The first ones are
moving due to the melting of the underground ice which
results in a continuously moving zone. On the other hand,
landslides are expected to move for several weeks between two
possible deactivation periods. Thus, both phenomena should
have visible patterns on successive interferograms. The last
criterion is based on an optical assessment from SPOT6-7
images in 2018. This final verification removes nonsense areas
(e.g. forests or lakes) and identify optical patterns such as
downhill earth accumulation (see Figure 2c) or fallen rocks.

C. Final Dataset

Three specific French Alps regions are selected to be man-
ually annotated, namely the Vanoise mountains, the north-east
of the Écrin Park and the Queyras Park. Additional moving
areas are identified outside of these areas to be used as a
more variable source of data for the training. The dataset is
composed of 200 different phenomena identified on 19, 18
and 17 interferograms with a respective delay of 6, 12 and
18 days. Every single interferogram is manually annotated so
that each phenomenon has a distinct segmentation on each
interferogram. A total of 13,230 images surrounding moving
areas are extracted from the interferograms with their respec-
tive segmentation. 8,701 images show actual moving periods
while the remaining 4,529 are provided for multi-temporal
studies. The dataset is released under different configurations.

1) Raw dataset: The raw dataset contains the 54 interfero-
grams used for the annotation process with the 54 shapefiles
identifying moving areas within them. A given shapefile
contains not only the annotated polygons in its corresponding
interferogram but also a confidence index, the number of

repetitions among the X-days interferograms as well as a
movement class: Landslides, Rock Glaciers or Unknown phe-
nomena. The raw dataset is released for future users to process
their own extraction, use available attributes for training or
enrich the dataset with more annotations.

2) Ready to be used dataset: The second dataset is already
cropped around the annotated moves, merging all classes into
a single Moving Area class for detection purpose. Based on
a global annotation map - including all annotations at all
dates for every delays - we used a distance transformation
to extract moving areas coordinates. Each interferogram and
its respective annotation map is then cropped around these
coordinates to extract patches of size 100×100px. For mul-
titemporal monitoring approaches, samples of interferograms
with movements showing a deactivation period are kept but
associated with a ”no-move” annotation maps (only 0 values).

IV. LEARNING ON ISSLIDE

A. Baseline models

To study the performances of approaches from the literature,
we used the FCN [11] and DeepLabV3 [12] architectures with
a ResNet50 [26] backbone already implemented in Pytorch
libraries. These models are both trained from scratch (ModelS)
and with available PASCAL VOC dataset pre-trained weights
(ModelP ).

Three shallower networks are also implemented to explore
their relevancy in comparison with the deep ones from the
literature. These U-Net-like [13] architectures differ in their
encoding strategy - classical convolutional blocks [13], resid-
ual blocks [26] or separable convolutional blocks [27]. They
are respectively named as UNet, ResUNet and SepUNet.

B. Experimental setup

For generalizability purpose, the whole dataset is split in
training and evaluation sets. The first one contains the patches
extracted on a random 80% selection of the interferograms
in every zone except the Queyras Park which is reserved
for the evaluation set. The latter is thus composed of the
samples from the 20% remaining interferograms. For this
single interferogram study, only images with visible moving
areas are kept. Resulting datasets contain respectively 4,821
and 572 images. Data augmentation is applied for phase
shifting invariance by introducing a random additional offset
to the phase difference map.

As illustrated in Figure 1, all networks input the coherence
map, the cosine and the sine of the phase difference map.
They are optimized with a binary cross entropy loss and an
Adam optimizer on mini-batches of size 8. The three shallow
networks are trained with a learning rate of 1.10−5 for 300
epochs. To avoid overfitting with FCN [11] and DeepLabV3
[12], a learning rate of 1.10−7 is used for 600 epochs.

In Section IV-C, five metrics are used to evaluate the
performances of the networks. The Hausdorff Distance (HD)
is used as a distance metric, the Dice and the Intersection over
Union (IoU) scores as ensemble metrics and the F1-score (F1-
S) and the Area Under the Receiver Operating Characteristic
Curve (AUC) as classification metrics. Metrics are calculated
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Fig. 3: Qualitative comparison of the predictions of FCNS [11], DeepLabV3S [12] and ResUNet [26] which shown the best quantitative
results. Red borders denote the segmentation used to calculate Table I results. Magenta circles illustrate a suspicious pattern in the phase
difference map but with a low coherence identifying an unreliable pattern. Orange circles identify an area with strong layover distortions.

F1-S ↑ AUC ↑ Dice ↑ IoU ↑ HD ↓
FCNS [11] 0.690 0.980 0.645 0.503 21.695
FCNP [11] 0.677 0.976 0.628 0.486 22.951

DeepLabV3S [12] 0.673 0.978 0.630 0.486 22.352

DeepLabV3P [12] 0.666 0.976 0.620 0.480 22.887

UNet [13] 0.675 0.977 0.636 0.497 25.912

ResUNet [26] 0.681 0.979 0.639 0.500 25.921

SepUNet [27] 0.651 0.972 0.606 0.466 28.026

TABLE I: Quantitative comparison of the performances of the
networks trained on ISSLIDE. Bold and underline results show

respectively best and second-best performances.

based on the binarized output probability map, the threshold
of which maximizes the F1-Score.

C. Results
Following discussions are based on quantitative and qualita-

tive results from Table I and Figure 3. For readability reasons,
we select the best configuration of each architecture to appear
in Figure 3 based on their quantitative performances.

The first major conclusion emerging from these results is the
poor transferability of the pre-trained weights to our detection
task. Indeed, performances of FCNP (resp. DeepLabV3P ) are
dropping of 0.013 (resp. 0.007) points in F1-Score, 0.017
(resp. 0.01) points in Dice Score, 0.17 (resp. 0.006) points
in IoU and 1.256 (resp. 0.535) points in Hausdorff distance.
This significant gap illustrates the crucial need of interfero-
gram datasets as their patterns, distributions and contents are
completely different from those of classical image processing
datasets making transfer learning inefficient.

In terms of architecture, FCN show actual benefits compared
to DeepLabV3. Indeed, FCNS increases the performances of

DeepLabV3S by 0.013 points in F1-Score, 0.015 points in
Dice, 0.017 points in IoU and 0.657 in Hausdorff Distance.
This gain in metrics can be explained by the use of dilated con-
volutions in DeepLabV3 against classical (local) convolutions
in FCN. Dilated convolutions are extracting characteristics in
a larger field of view assuming that multiple non-neighbouring
pixels can serve for the segmentation of the targeted object.
Nevertheless, the resolution of Sentinel-1 images is 10m×10m
meaning that two pixels in the same patch of 100px×100px
can be located at several kilometers the one from the other.
Thus exploring so distanced pixels to segment an actual move
covering some square meters is helpless and lead to coarse
segmentations as in the last row of Figure 3.

On the other hand, the comparison of the three shallower
networks show that ResUNet reached the best results. If Re-
sUNet obviously overperform UNet as stated in [26], SepUNet
reaches unexpected low results. This may be due to two
reasons. First, in order to keep a similar amount of parameters
in the networks, we used only 2 kernels for each channel in
the depthwise convolutions. This might be too restrictive and
introduces a lack of variability in terms of spatial extracted
patterns. Then, separable convolutions are especially used to
compute convolutions on channels which are not or weakly
correlated. But these experiments input the coherence map
and the cosine and sine of the phase difference map, i.e. the
interferogram in its whole. Thus, each channel is extremely
correlated with the others which may explain the drop in
performance of SepUNet.

The most striking point based on Table I is that the second
best performances are reached by the small ResUNet network.
Indeed, despite its shallower architecture, ResUNet metrics are
lower than FCNS ones by only 0.009 points in F1-Score,
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0.006 points in Dice and 0.003 points in IoU. The most
significant drop lies in Hausdorff Distance as it is 4.226
points greater. The latter can be explained by the use of skip
connections between the encoder and the decoder of ResUNet
introducing more high resolution details which disturbs the
final decision as visible on the last row of Figure 3 within
the orange circled layover area. The use of skip connections
is still beneficial to extract more detailed segmentations. As
illustrated by the landslide on the second row, the segmentation
by ResUNet has more nuanced and precise borders than the
coarse segmentation of FCNS and DeepLabV3S .

Finally, the first row of Figure 3 shows that the three
networks are mimicking the manual annotation process. As
expected, bubbles and fringes are correctly identified by the
networks on the phase difference map and the coherence map
is used to discriminate reliable patterns. This is illustrated
by the magenta circle identifying a low coherent odd phase
pattern. All networks identify the zone as non-moving despite
its similarities in phase with the two northern moves. This
behaviour helps to limit the number of false positives in the
predictions and focus on actual moving areas as illustrated by
the high AUC score of every networks in Table I.

V. CONCLUSION

In this work we first propose a new InSAR dataset for Slow
SLIding areas DEtection (ISSLIDE) using machine learning.
The latter contains 200 moves manually annotated on 54
generated interferograms following geomorphologist criteria.
We then establish baseline results for the deep segmentation
of these moves on a single interferogram. They end up with
three major conclusions: transfer learning is inefficient on
interferograms, shallow networks can be as performing as deep
ones and all networks can mimic the annotation process.

The ISSLIDE dataset is released to encourage for more
studies on Earth deformations. In particular, a multi-temporal
approach would certainly reinforce the segmentation process
as it mimics geomorphologist annotation strategies. On the
other hand, ISSLIDE can be used to follow the evolution of
the moves in time by stacking interferograms with different
delays but with the same starting or ending date.
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