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Antiferromagnetic spin-1 chains host the celebrated symmetry protected topological Haldane
phase, whose spin-1/2 edge states were evidenced in bulk by, e.g., Electron Spin Resonance (ESR).
Recent success in assembling effective spin-1 antiferromagnetic chains from nanographene and por-
phyrin molecules opens the possibility of local, site-by-site, characterization. The nascent technique
of combined ESR-STM is able to measure the spin dynamics with atomic real-space resolution, and
could fully reveal and manipulate the spin-1/2 degree of freedom. In this work, we combine exact
diagonalization and DMRG to investigate the local dynamic spin structure factor of the different
phases of the bilinear-biquadratic Hamiltonian with single-ion anisotropy in presence of an external
magnetic field. We find that the signature of the Haldane phase is a low-energy peak created by
singlet-triplet transitions in the edge-state manifold. We predict that the signature peak is exper-
imentally observable, although for chains of length above N = 30 its energy should be first tuned
by application of external magnetic field. We fully characterize the peak in real-space and energy,
and further show its robustness to weak anisotropy and a relevant range of temperatures.

Introduction.— In accordance with Haldane’s
conjecture[1] which states that integer-spin antiferro-
magnetic chains have an energy gap, a non-degenerate
ground state of a closed chain with a finite excitation
gap was confirmed by the exact AKLT solution[2, 3]
of a particular biquadratic antiferromagnetic spin-1
chain Hamiltonian. The ”Haldane phase” of spin-1
chains[4, 5] adiabatically connected to the AKLT state,
as any interaction driven insulator in one dimension,
has hidden non-local order[6–8], and is today under-
stood as a symmetry-protected topological phase in
one dimension[9, 10]. The topology explains[11] the
early realization[2, 3] that an open chain in the ther-
modynamic limit hosts a projective, spin-1/2, degree
of freedom on each edge[12], making the ground state
four-fold (quasi)degenerate within the sectors of total
spin S = 0 and S = 1. Experimentally, the presence
of free spin-1/2 degrees of freedom was evidenced in
quasi-1d antiferromagnetic bulk compounds using ESR
and NMR (see Ref.[5] for a review). More recently,
exciting progress in direct access to the Haldane phase
was made by engineering effective antiferromagnetic
spin-1 chains from open-shell nanographene[13] and
phtalocyanine[14], where the expectation value of spin
seems to indicate a spin-1/2 edge state. Theoretically,
since the Haldane phase is realized due to interactions,
the study of static properties such as magnetization
of edge states[5, 12, 13], single-particle excitations
and static susceptibility[15], typically includes heavy
numerics calculations. Understanding the spin dynamics
through dynamic susceptibility is an even bigger chal-
lenge, recently addressed using translational symmetry
of closed chains[16, 17], but remains largely unexplored
for open chains.

In recent years a new experimental technique combin-

ing Scanning Tunneling Microscopy (STM) with Electron
Spin Resonance (ESR)[18–20] revealed local spin dynam-
ics with atomic precision. As the technique has pro-
gressed from isolated atoms[18, 19, 21] to molecules[20,
22, 23], there is clear motivation to understand the lo-
cal atom-by-atom spin dynamics of the edge states of
a chain in a Haldane phase, which is known to consti-
tute a resource for universal measurement-based quan-
tum computation[24], and may provide longer spin co-
herence times due to topological protection. The exist-
ing regular STM measurements, in accord with numeri-
cal modeling[13], find that starting from the edge of the
chain the static magnetization decays exponentially, as
expected universally due to the energy gap. Addition-
ally, the magnetization oscillates, hence there are some
non-universal features depending on the details of the
Hamiltonian. Notably, with most chains being of lengths
less than N = 16, the observed magnetization decays too
slowly for the bulk of the chain to be well seen[13, 14].

In this Letter, we theoretically study the local spin
dynamics in spin-1 chains, which may be accessed by
ESR-STM, to reveal how an edge state behaves as an in-
dependent spin-1/2, and to better characterize the Hal-
dane phase in shorter chains relevant for experiments.
More specifically, we focus on the dynamical spin struc-
ture factor (DSF) as the fundamental observable of spin
dynamics. Using both exact diagonalization and DMRG
we calculate the DSF atom-by-atom along a chain, for a
large range of chain lengths N = 6 . . . 30. We consider a
family of spin-1 Hamiltonians that realize several phases,
such as antiferromagnetic, ferromagnetic, and the Hal-
dane phase. Our main finding is that DSF peaks locally
at the edge of chain for a certain energy, but uniquely
in the Haldane phase, thanks to transitions between the
S = 0 and S = 1 components of the edge states. We also
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find that this behavior should be practically useful for
characterization of short and medium chains, while for
longer chains applying an external magnetic field at low
temperatures simply increases the energy of the peak and
makes it observable. We also find that the spatial profile
of the DSF in the Haldane phase indicates the proximity
of a transition to different trivial gapped states, mak-
ing it plausible to extract the Hamiltonian parameters
from simple observations of the local dynamics. Some-
what surprisingly, the signature peak in DSF is lost for
the special case of AKLT state due to its finely tuned
exact degeneracy of the edge states for any chain length,
but the signal is strong for the Heisenberg antiferromag-
net. In summary, we theoretically predict that local spin
dynamics of experimentally available spin chains would
powerfully characterize and distinguish the trivial and
topological phases.

Phase diagram and the gap of spin-1 chain models.—
We consider the family of spin-1 bilinear-biquadratic

Hamiltonians for a chain of N spins, which is conve-
niently parametrized by means of the angle θ as follows
[5]:

H = J
N−1∑

j=1

[
cos θSj · Sj+1 + sin θ(Sj · Sj+1)

2

]
, (1)

where the terms proportional to cos θ and sin θ are, re-
spectively, the nearest neighbour Heisenberg exchange
interaction and the biquadratic exchange term. From
now on we fix the energy scale as J = 1. Note that the
Hamiltonian for any θ is invariant under global spin ro-
tations, and hence eigenstates are in principle labeled by
the total spin S and total Sz quantum numbers. The
phase diagram of this Hamiltonian is well-known [5, 25]
and is conveniently captured by the angular diagram
shown in Fig. 1(a). The Haldane phase, which occurs
for −π/4 < θ < π/4, shows fractionalized S = 1/2 states
nucleating at the edges of the chain, arising from the
topology of the Hamiltonian[5]. Indeed, the low-lying
energy levels are described by a spin singlet (S = 0) and
a spin triplet (S = 1), separated by the energy Ω, reach-
ing a four-fold degeneracy in the thermodynamic limit
[26–29]. The higher energy states are separated from
the low-energy ones by an energy gap ∆. To illustrate
that, we plot the energy spectrum of H in Fig. 1(b) as a
function of the eigenvalue m of the total Sz operator for
θ = π/12.
An exact solution for the ground state has been found for
θ = arctan(1/3) by Affleck, Kennedy, Lieb and Tasaki
(AKLT chain) [30]. The AKLT ground state can be ex-
pressed as a symmetrical linear superposition of spin 1/2
states where one of the two S = 1/2 variables at each
site is paired in a (valence bond) singlet state with one
of the two S = 1/2 variables at the neighbouring site.
Due to this special configuration, the edge states of an
open chain of any length are localized exactly on the end-

sites, hence they are decoupled and exactly degenerate,
so that the splitting Ω = 0. A similar picture emerges in
the θ = 0 case as first pioneered by Haldane [31], but the
localization length of the edge states, and hence their
overlap and splitting energy Ω, is finite away from the
AKLT point. Fig. 1(c) shows that indeed there is a small
range around the AKLT point where Ω(θ) is strongly
suppressed. We also confirm that the splitting Ω decays
exponentially with the chain length N for a generic θ in
the Haldane phase, as expected[32] from the exponential
decay of the edge states, see Fig. 1(d). It is also clear
that for a given chain the value of splitting energy Ω is
suppressed by orders of magnitude as the model nears
the AKLT point. Hence, beside the Haldane gap ∆, the
splitting energy Ω(θ,N) is an informative observable in
the Haldane phase.
Fig. 1(d) demonstrates the agreement between the low-

est excitation energies obtained with two techniques (see
[33]). First, numerical exact diagonalization, which we
used for chains up to N = 16. Second, having estab-
lished the peak at Ω, we used DMRG[34, 35] for chains
up to N = 30. With DMRG we extract the four lowest
energy states in the Haldane phase by finding the lowest
state in the Sz = ±1 sectors, and the two lowest states
in the Sz = 0 sector, hence spanning the low-energy sub-
space in the S = 0 and S = 1 sectors.
Dynamical spin structure factor (DSF).— When un-

polarized electromagnetic waves are used for excitation,
the standard ESR absorption spectrum I(ω) at fre-
quency ω is given by the dynamical spin structure fac-
tor χ, i.e., the imaginary part of the dynamical spin
susceptibility[36–38], I(ω) ∼ −ImKspin(ω) ≡ χ(ω).[39]
Motivated by this, we consider a situation where locally
at each chain site j the ESR-STM signal[40] is determined
by the on-site DSF, namely Ij(ω) ∼ −ImKspin

j (ω) ≡
χj(ω). In linear response theory, the latter quantity can
be expressed at zero temperature as

χj(ω) = −ImGR
S+
j S−

j

(ω) =

π

p

p∑

GS=1

∑

n

[
| ⟨GS|S+

j |n⟩ |2δ(ω + E0 − En)

−| ⟨GS|S−
j |n⟩ |2δ(ω + En − E0)

]
, (2)

where GR is the retarded Green’s function for the spin
ladder operators S± = Sx ± iSy (see [33] for further de-
tails), while we used the Lehmann representation in the
frequency domain ω [41]. In Eq. (2) the two sums extend,
respectively, over all the p states of the degenerate ground
state manifold, and over all the 3N many-body eigen-
states of the open chain with N sites. Considering both
positive and negative values of ω, by applying the time
reversal operation we can deduce, in absence of external
constant magnetic field, the oddness χj(ω) = −χj(−ω).
Furthermore, all our chain models are invariant under
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FIG. 1. Energy properties of the spin S = 1 bilinear-biquadratic Hamiltonian. (a) The phase diagram. (b) Energy spectrum
vs. the total Sz quantum number, for the system with θ = π/12 and N = 10. The energy splitting between the spin singlet
and the spin triplet (green circles) is Ω = 0.004 while the energy separation between the four lowest energy states and excited
ones is ∆ = 0.7. (c) Dependence of the splitting Ω on the model, for a fixed chain length. (d) Exponential decay of Ω with
chain length, for various models (defined by θ) in the Haldane phase. The circle vs. triangle symbols indicate the numerical
method used (see text).

spatial inversion with respect to the middle point, so that
χj(ω) = χN−j+1(ω).

Figure 2 illustrates our main observations about the
DSF, contrasting the examples of an N = 10 chain in
the Haldane phase (Fig. 2(a),(b)), and in the topologi-
cally trivial dimerized phase (Fig. 2(c)). In both cases
there is the dominant peak at the energy ∆, which corre-
sponds to the bulkgap, and is of the order of J . However,
only in the Haldane phase there is an additional isolated
peak at the low energy Ω caused by transitions between
the S = 0 and S = 1 states spanned by the two spin-
1/2 edgestates (compare Fig. 2(a) and (c)). Depending
on the evenness or oddness of N , either the S = 0 or
the S = 1 will be the lowest in energy, but the DSF
Ω either way comes from the fact that there is an al-
lowed transition. We note that for chains up to N = 10
we obtain the entire spectrum by exact diagonalization,
and perform the full sum over excited states n in Eq. 2.

For longer chains we limit ourselves to states up to a
cutoff energy w ≤ 5∆, and check that the DSF up to
1.5∆ does not depend on the cutoff. The number of ex-
cited states increases smoothly as ω increases above the
bulkgap, hence there are not too many states to include
and we can use exact diagonalization for N < 18 (see
[33]). In the Haldane phase we now focus on the Ω-peak.
Fig. 2 illustrates how the Ω-peak decays monotonically
with each site away from the edge. The ∆-peak grows as
we move away from the edge, and in the deep interior of
the chain develops a flat profile characteristic of the bulk
(not plotted). Fig. 2(b) focuses on the Ω-peak. Note that
the width of the peak is entirely due to the Lorentzian
broadening we added.

We further perform a systematic study of the DSF
peak at energy Ω, which characterizes the Haldane phase,
by varying the model, chain length, and by observing
site-by-site along the chain. We considered chains up to
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FIG. 2. Frequency features of the atomically-resolved DSF χj(ω). (a) Dependence on ω for a chain of N = 10 sites in the
Haldane phase, with ∆ the Haldane bulkgap (units of J). The low-energy peak at the splitting energy Ω is characteristic of
the topological edge states. We apply the usual Lorentzian broadening of the Dirac delta function (Eq. 2) with width η = 0.02.
(b) A zoom in on the peak at Ω, as panel (a) but with η = 0.001. The inset shows the χj(ω) on a log scale. (c) As panel (a)
but for a chain in the trivial dimerized phase. There are no additional peaks below the one at the bulkgap.
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FIG. 3. (a) The signal χMAX
j=1 vs N for four selected models,

obtained by DMRG simulations. In DMRG, for the two states
with total Sz = ±1 we fix a bond dimension of 50 and we
perform 300 sweeps, while for finding the two lowest statez
with Sz = 0 we use a bond dimension of 1200 and we perform
600 sweeps. (b) Scaling of χMAX

j vs j for the same values of
θ as in panel (a), for a chain of N = 18 sites.

N = 30 by DMRG, since only the 4 lowest states are nec-
essary. We confirmed by exact diagonalization for shorter
chains that adding the contribution of further excited
states does not change the results[33]. In Fig. 3(a) we
present the evolution with chain length of the strongest
signal in the Ω-peak of the Haldane phase, i.e., the quan-
tity χMAX

j=1 , which is the peak value of the DSF achieved
at ω = Ω, observed on the edge site j = 1. The signal
decays quite slowly, by less than a decade as the chain
is quadrupled in length. This holds for models which
are away from the AKLT point. At the AKLT point the
value of Ω goes to zero, while the DSF is antisymmetric
in ω and hence vanishes at ω = 0 (see after Eq. 2), so
the height of the peak χMAX

j=1 has to vanish at the AKLT
point and is suppressed for models near it (see [33] for
details). Quantitatively, as long as the chain is not too
long, and the model is not too close to AKLT, so that
the peak position Ω/J > 5∗10−3, the peak height χMAX

j=1

remains numerically non-zero. These properties suggest
that antiferromagnetic Heisenberg spin chains of moder-
ate lengths below N = 30 unambiguously distinguish the
Haldane phase by means of the DSF. (For longer chains,
an external magnetic field can be used to circumvent the
issue of vanishing Ω (see below)).

In Fig. 3(b) we show the decrease of the signal χMAX
j=1

when j moves from an edge of the chain towards the
middle point, for several values of θ inside the Haldane
phase. Note, the spin-spin correlation function also de-
cays roughly exponentially (deviations are expected be-
fore the asymptotic regime is reached[12]) but peaks
again at the opposite end of chain due to the overlap
of edge states (see [33]). Apart from the expected decay
from the edge towards the middle of chain, we observe
oscillations with period two for θ < 0, i.e., for the part of
Haldane phase nearer to the dimerized phase, and with
period three for θ > 0, i.e., the part of Haldane phase
nearer to the trimerized phase. These oscillations have
not been analyzed in detail[12]. In longer chains, the
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decay is more pronounced, but the oscillations become
more regular and period two dominates, so that by length
N = 28 we cannot identify the period three for the stud-
ied θ values. Observing the atomically resolved DSF at
the Ω peak could therefore reveal the sign of θ within the
Haldane phase, but only in moderately long chains.

Tuning by external magnetic field.— We consider a
constant uniform external magnetic field acting as a Zee-
man term added to the Hamiltonian in Eq. 1:

HB = B
N∑

j=1

Sz
j = BSz, (3)

where Sz is the total spin-z component, which is still
conserved by H + HB . Hence, the Zeeman field sim-
ply splits the S = 1 triplet part of Haldane edge states
to energies 0,±B. The DSF (Eq. 2) with S = 0 the
lowest-energy edge state component now contains one
peak at ω+ = Ω − B from the spin-lowering transition
to S = 1, Sz = −1, and another peak at ω− = −(Ω +B)
from the spin-increasing transition to S = 1, Sz = 1. The
breaking of time-reversal symmetry now obviously breaks
the antisymmetry of DSF as peaks are not even at op-
posite energies, ω− ̸= −ω+. Hence, the signature peak
at Ω and its equivalent at −Ω are not split, but shifted
uniformly by B, at least while |B| < Ω and no reorder-
ing of states occurs (see [33] for details). The magnetic
field hence allows a simple tuning of a too-small Ω in
long chains so as to make the peak observable. We also
confirmed that the spatial profile of the DSF signal is not
affected by the magnetic field (see [33]).

Robustness to anisotropy.— For chains grown on sur-
faces for access by ESR-STM, in principle the substrate
induces spin anisotropy. We hence consider the effect of
adding a uniaxial single-ion anisotropy

HD = D
N∑

j=1

(Sz
j )

2, (4)

to the chain Hamiltonian, Eq. 1. This anisotropy is
among the most important perturbations in real chains,
but it is known that the Haldane phase survives with a re-
duced gap ∆ even for quite large values −0.3 < D/J < 1.
Here we consider small but non-negligible perturbations
D < 0.1 to stay within the Haldane phase. Regarding
the four low-energy levels, the anisotropy splits the S = 1
triplet into Sz = 0 and Sz = ±1. The anisotropy split-
ting δD is small, of order δD ∼ D2 for small D (see [33]
for more details). In principle this may cause a new low-
energy peak in DSF at ω = δD, but for our range of values
of D this is such a small scale that it is suppressed by the
fact that DSF is zero at ω = 0 (see below Eq. 2. On the
other hand, the height of the DSF peak at ω = Ω is more
strongly influenced by the anisotropy, surprisingly it in-
creases by about 10% for D/J = 0.1, although it does
not seem to affect the spatial behavior of the DSF peak

(see [33]). We conclude that a weak anisotropy does not
affect our qualitative conclusions about the DSF in the
Haldane phase, and it may even be beneficial for detec-
tion of the Ω peak.

Discussion and conclusions.— In conclusion, we have
established the local dynamical spin structure factor as a
useful probe of the Haldane phase of spin-1 antiferromag-
netic chains. The probe utilizes both the universal topo-
logically protected ground state manifold, and its non-
universal splitting in energy by the finite chain length.
We find that for a large range of chain lengths and a wide
range of Hamiltonian parameters in the Haldane phase
of the bilinear biquadratic Hamiltonian, the peak in DSF
at the energy of the splitting appears as an observable.
We don’t expect these conclusions to be changed by con-
sidering other spin models exhibiting the Haldane phase.
Experimentally, considering S = 1 chains[13] based on
open-shell nanographene molecules, the typical exchange
scale is J ∼ 1 − 10meV , while the energy scales best
probed by ESR-STM are of order ω > 40µeV , so one
would prefer a system where the signature of the Hal-
dane phase is at |Ω±B|/J ∼ 1/20. Further, for carbon-
and molecule-based spin systems, one expects a dominant
standard antiferromagnetic coupling, θ = 0. Finally, in
contrast to magnetic adatoms, the single-ion anisotropy
is very small, D/J < 10−3. Hence we predict that with-
out magnetic field optimal chain lengths are N = 10÷30,
while for longer chains a magnetic field of order Tesla is
enough to make the peak observable. Our calculations
are at zero temperature. A finite temperature that is less
than the Haldane gap, kBT ≪ ∆ would start populating
both S = 0 and S = 1 low-lying states, and hence would
diminish the intensity of the signature peak. In presence
of magnetic field, a temperature of order min(Ω, |Ω−B|)
would introduce new peaks at exact energies ±B from
transitions within the S = 1 sector, but it wouldn’t intro-
duce any other features from states beyond the bulkgap.
Given that in Haldane chains of open-shell nanographene
and porphyrin molecules the typical J = 1 − 10meV ,
the thermal broadening hence should stay well below the
scale of 50K to prevent non-topological peaks from be-
yond the bulkgap. As a further example, for chains of
order N = 10 the Ω ∼ 0.1∆, so the temperature should
be further reduced below ∼ 5K to avoid diminishing the
peak, while for chains above N = 30 where Ω becomes
too small, the field can be tuned to about a Tesla and the
temperature kept at about a Kelvin. Experimentally, the
main perturbation is expected to be an anisotropy, but
for adsorbed molecules it is quite small, and we show that
hence it doesn’t affect our findings. On the other hand,
an open challenge remains to consider other dynamical
observables which may be more accurate in describing
the experimental ESR-STM signal.
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DENSITY OF STATES AND SUMMING OVER
EXCITED STATES

The density of states for gapped phases we consider
has the same feature: it starts raising slowly from zero
as ω passes the bulkgap ∆ ∼ J , see Fig. 1. Hence there
are not too many states at energies of order a few ∆,
which helps the calculation of the DSF. Namely, as we
calculate at zero temperature and are interested in DSF
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FIG. 1. Density of states (symmetrized in ω) for a N =
10 chain with broadening η = 0.02, representing the entire
spectrum obtained by exact diagonalization. (a) AKLT point,
periodic (PBC) and open (OBC) boundary conditions for the
chain. The red vertical line marks our cutoff Λ = 5J for
calculating the χj(ω). The bulkgap is ∆ ≈ 0.7J . (b) Haldane
phase, θ = π/12, open chain. (c) Dimerized phase, θ = −π/3,
open chain.

feature up to ω ∼ ∆, we only have to sum excited states
up to that energy. In practice, we use the high-energy
cutoff Λ = 5J for the sum (see Fig. 1(a)), and check
that the results do not change when varying Λ. Finally
we note that the total range of energies in the spectrum
increases with N .

SPIN-SPIN CORRELATION FUNCTION

Inside the Haldane phase (Fig. 2(a)-(c)), the site de-
pendence of the correlation function from the first site
| ⟨GS|Sz

1S
z
j |GS⟩ | shows an exponential decay towards

the middle of the chain, and then an increase so that
there is a second peak at the opposite end of the chain.
This reveals the correlations due to the overlapping edge
states. In accord, the peak at the opposite end of the
chain (j = N) diminishes as we approach the phase
transition out of the Haldane phase. Outside the Hal-
dane phase (Fig. 2(d)), the | ⟨GS|Sz

1S
z
j |GS⟩ | is peaked

at one edge (j = 1) and vanishes exponentially all the
way towards the other edge. Note, due to spin-rotation
invariance of the Hamiltonian in Eq. 1, the correlation
function ⟨GS| S⃗i · S⃗j |GS⟩ = 3 ⟨GS|Sz

i S
z
j |GS⟩.

ADDITIONAL RESULTS ON THE DYNAMIC
SPIN STRUCTURE FACTOR

In Fig. 3 we show the DSF for a periodic chain in
the Haldane phase, demonstrating the absence of low-
energy peaks due to the absence of (quasi)degenerate
edge states. We show a wider range up to ω = 5J to
demonstrate the sparse peak structure beyond the bulk-
gap ω = ∆ ∼ 0.7J . Note that the majority of the 310
states in the spectrum lay at the even higher energies up
to the maximal ω = 20J (see Fig. 1(b)), but the peak
structure remains sparse due to the strong selection rule
δSz = ±1 in the DSF.
In Fig. 4 (a) we compare the DSF χ obtained by exact

diagonalization with χ obtained by means of the DMRG
simulations. The exact χ has been obtained by sum-
ming over all the 3N states while the DMRG χ has been
obtained only including the lowest four energy states
|S Sz⟩ = |0 0⟩, |1 0⟩, |1 1⟩, |1 − 1⟩. We have numer-
ically verified that near the Ω frequency, χ is entirely
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FIG. 2. Absolute value of the correlation function from the
left edge, | ⟨GS|Sz

1S
z
j |GS⟩ |, for a chain of N = 16 sites. (a)-

(c) Inside the Haldane phase, there are non-local correlations
between the edges. (d) Outside the Haldane phase, the cor-
relation just decays exponentially.

FIG. 3. The DSF on a site of a periodic chain in the Haldane
phase, on a wider scale of energies up to ω = 5J . Maximal
energy for this chain is 20J (see Fig. 1(b)).

due to these four states. The quantitative matching of
the two plots also shows the convergence of the DMRG
simulations.

In Fig. 4 (b) we investigate χ near the AKLT point.
Exactly at the AKLT point, θ = arctan 1/3, the Ω peak
is absent (red curve) because of the exact degeneracy of
the four lowest states, already present for short chains.
Nevertheless a small shift of model, δθ = 0.012, is already
sufficient to restore the Ω peak in χ (green and orange
curves).

Finally, in Fig. 5 we present the DSF signal site-by-
site on longer chains N = 28 throughout the Haldane
phase, analogous to the Fig.3(b) of main text which is te
same plot for N = 18 chains. One can see that for long
chains the oscillations develop the same periodicity of 2

θ=π/12 (a)

(b)

FIG. 4. (a) Comparison between the DSF χj=1(ω) obtained
by exact diagonalization and by DMRG, for an edge site at
low energies ω <∼ Ω. The DMRG DSF has been obtained by
only including the four lowest energy states. In the DMRG
simulations, in the sector Sz = 0 we fix for the states |0 0⟩ and
|1 0⟩ a bond dimension of 1200 and we perform 600 sweeps,
while for states |1 1⟩ and |1 − 1⟩ we fix a bond dimension of
50 and we perform 300 sweeps. (b) χ near the AKLT limit.
For both the panels we are considering a chain of N = 10
sites.

sites, even when the Hamiltonian is close to the transition
towards the trimerized phase.

MAGNETIC FIELD DEPENDENCE

Fig. 6 shows an example of how a uniform magnetic
field shifts the DSF peak in energy, without affecting
other properties, at least while |B| < Ω. We note that
both here and in the main text we presented examples
of positive Zeeman field 0 < B < Ω, however the general
peak structure and dependence on ω± = ±Ω−B remains
for any sign of B, as long as |B| < Ω. We also only
presented even-length chains for which the lowest-energy
component of edge states is the S = 0. In odd-N chains
the order of states at B = 0 is reversed [1]. For odd-N
the spin-lowering or raising transition would still be at
ω+ = Ω−B > 0, and ω− = −Ω−B, respectively, where
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FIG. 5. Scaling of χMAX
j vs j for the same values of θ as in

panel Fig.3(b) of main text, but for a longer chain of N = 28
sites.

Ω > 0 is now the B = 0 splitting between the S = 1
ground state and the excitation with S = 0. In odd
chains, even when |B| > Ω, the ground state would re-
main the same (Sz = ∓1 for B > 0(B < 0)) and nothing
changes as the peaks are rigidly shifted by B. For even-N
chains the evolution is more complicated. Once |B| > Ω,
the ground state changes from S = 0 to Sz = ∓1 in case
of B > 0(B < 0), see Fig. 6(a). Focusing on B > 0, as
B becomes greater than Ω, and the ω+ = Ω−B changes
sign, the spin-lowering transition (S = 0 to Sz = −1
at ω+ > 0) changes to a spin-raising one (Sz = −1 to
S = 0 at ω+ < 0), while the spin-raising one (S = 0
to Sz = +1 at ω− = −Ω − B < 0) is discontinuously
replaced by another spin-raising transition Sz = −1 to
S = 1, Sz = 0 at −B < 0. Hence in this example of
even-N with B > 0 at zero temperature, a positive DSF
peak at ω = ω+ = Ω − B > 0 passes through ω = 0 (at
the tuning |B| = Ω) and emerges as a negative DSF peak
at ω = ω+ = Ω − B < 0, while the negative DSF peak
at ω = ω− = −Ω − B < 0 is discontinuously replaced
by also a negative DSF peak but at ω = −B < 0, hence
at the tuning |B| = Ω this peak’s position jumps from
ω = −2B = −2Ω to ω = −B = −Ω.

SINGLE-ION ANISOTROPY

Fig. 7(a) illustrates how the anisotropy splitting δD is
of order δD ∼ D2 for small D. The slight increase of the
height of the DSF peak at ω = Ω due to the anisotropy
is presented in Fig. 7(c)), while the spatial behavior of
the DSF peak semmes less affected (Fig. 7(b)).

(a)

(b)

(c)

FIG. 6. Example of effect of uniform Zeeman field on a
Heisenberg chain in Haldane phase. (a) The linear splitting
by B of edge states due to Zeeman field. (b) The DSF as
function of both positive and negative ω, showing the linear
shift of peaks by B. The peak at ω+ = Ω−B (in this example
ω+ > 0, and we chose B > 0) is caused by a spin-lowering
transition from the S = 0 ground state, while the peak at
ω− = −Ω − B (here ω− < 0) is due to the spin-raising tran-
sition. (c) The DSF as function of site j on chain, at the
maximum signal ω = ω+. The inset confirms that the spatial
profile of DSF didn’t change compared to the signal at ω = Ω
for B = 0.
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(b)(a) (c)

FIG. 7. Effect of single-ion spin anisotropy of strength D on a N = 14 chain in the Haldane phase. (a) The splitting of the
S = 1 sector of the low-energy states. (b) The dependence of the tomographic DSF on ω. (c) Dependence on D of the DSF at
the edge site.


