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Distributed Event-Triggered Leader-Follower Consensus of Nonlinear
Input-Affine Multi-Agent Systems

M. Marchand1, V. Andrieu2, S. Betrand1 and H. Piet-Lahanier1

Abstract— Achieving cooperative mission with a Multi-
Agents System (MAS) in a distributed way require agents to
communicate. Hence communication laws need to be defined.
In this article, we proposed two new event-triggered commu-
nication laws to make a MAS converges to a Leader-Follower
consensus in a distributed way.

I. INTRODUCTION

A Multi-Agent System (MAS) is a system composed of
multiple autonomous agents that interact with each other
to achieve a common goal. These agents are capable of
acting independently and can have different sub-objectives,
knowledge, and decision-making capabilities. The interac-
tions between the agents of a MAS can result in complex
and dynamic behaviours that are difficult to achieve with a
single agent. They are used in various fields such as robotics
[1], distributed systems [2]–[5] and artificial intelligence [6]–
[8].
Centralised control and distributed control are two different
approaches to control the dynamics of the agents of a MAS.
Centralised control refers to a system where a single agent,
often referred to a central coordinator, is responsible for
coordinating the other agents. In this strategy of control,
agents may have limited autonomy and decisions are made
based on a global view of the system. On the other hand,
distributed control refers to a system where decision-making
is distributed among the agents in the MAS. In this strategy
of control, each agent has its own objectives, knowledge and
decision making capabilities. This approach can lead to more
flexibility and robustness with respect to the loss of an agent,
as the control computation does not rely on a single agent.
Recently, there exits a growing interest in developing dis-
tributed law to make MAS reach a consensus. Consensus
mission consists of synchronising the agents in MAS to an
unique state. There exits two different strategies to achieve a
consensus: a leader-followers consensus [9]–[12] in which an
agent of the graph is designed as a leader and the other agents
synchronise their states with the state of the leader, and a
leaderless consensus [2], [13]. In these work, control laws
are based on either continuous communication or periodic
exchanges of the state values by agents within the same
neighbourhood.
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Continuous communication refers to a constant exchange of
messages between the agents without any specific trigger
or event. This method, even if it is easily implemented,
tends to saturate the transmission channel, and tends to be
energy consuming. On the other hand, event-triggered com-
munication only initiates a communication when a specific
Communication Triggering Condition (CTC) holds, usually
defined from a function of the current states and some
information error, is verified. This results in a more efficient
use of communication resources as messages are only sent
when necessary.
In the linear case, firstly, control laws with event-triggered
communication have been proposed to solve the consensus
problem when agents are modelled by single and double
integrator, see e.g. [3], [14]. Afterwards, the general linear
dynamics case has been addressed, see e.g. [4]. Several
extensions to improve the CTC have been suggested, see e.g.
[15] resulting in reduced communications, and in handled
perturbations.
Regarding nonlinear systems, firstly various distributed con-
trol laws with event-triggered communication has been pro-
posed with dynamic class of Euler-Lagrange nonlinear dy-
namics, see e.g. [16]–[18]. Recently, event-triggered schemes
dealing with packet losses have also been proposed for
this type of dynamic, see e.g. [19]. Secondly, solutions for
reaching the consensus with event-triggered communication
in a MAS with nonlinear fully actuated input-affine dynamics
have been suggested [20], [21]. In [22], the finite time
consensus problem is considered with distributed event-
triggered control law for this class of dynamics.
An interesting approach has also been proposed in [23] for
minimum phase dynamics MAS. The consensus problem is
split into a linear consensus problem and a nonlinear tracking
problem. Indeed each agent in the MAS virtually computes
a virtual consensus of a linear MAS with the same graph
topology as the real one. Once the virtual consensus solved,
the computed trajectories can be used a reference to track.
In this paper; we consider the leader-follower consensus
problem for general nonlinear input-affine MAS. This article
is an extension of [24]. Contrary to the article [24], the
distributed control input is not applied through a constant
matrix B but through a state dependant matrix g(xi), where
xi is the state of the agent i. The considered dynamics are
neither fully actuated nor described by a minimum phase
system.
The paper is organised as follows. In section II, the con-
sidered problem is exhibited. In section III, main results
are provided. And finally, in section V illustration of the



proposed distributed event-triggered laws is shown
Notations: The set of positive real number is denoted by

R+. Let A ∈ Rn×n be a matrix with real eigenvalues. We
denote by λi(A) the i-th eigenvalue of the eigenvalues of
A sorted in ascending order. The notation In denotes for
the identity matrix of size n× n. The Kronecker product is
denoted as ⊗. Given a C1 function P : Rn → Rn×n and a
C1 vector field ξ : Rn → Rn, we define the Lie derivative
of P along ξ as

LξP (x) = dξP (x) + P (x)
∂ξ

∂x
(x) +

∂ξ

∂x
(x)⊤P (x) (1)

where

dξP (x) = lim
h→0

P (x+ h ξ(x))− P (x)

h
, (2)

for all x ∈ Rn.

II. PROBLEM STATEMENT

A. System Description

Consider a MAS composed by a leader agent with state
x1 ∈ Rn, and N − 1 followers, with states x2, . . . , xN also
in Rn. Each agents’ dynamics are identical and described by
the following dynamics

ẋi(t) = f(xi(t)) + g(xi(t))ui(t), ∀i ∈ {1, . . . , N}, (3)

where xi ∈ Rn is the state of the agent i, f : Rn → Rn a C1

vector field, g : Rn → Rm, and ui ∈ Rm is the control input
applied to the agent for the MAS to perform its cooperative
mission. By convention, the leader agent is not controlled,
i.e. u1(t) = 0. We define T to be the time domain of the
existence of the solution x = (x⊤

1 , . . . , x
⊤
N )⊤.

The communication graph between the agents is repre-
sented by a triplet {V, E , A} in which V = {1, . . . , N}
denotes for the set of vertices or agents, E ⊂ {1, . . . , N}2
is the set of edges which represents the communica-
tion possibility between agents and the matrix A =
(aij)(i, j)∈{1, ..., N}2 ∈ RN×N denotes for the weight adja-
cency matrix. The entry aij > 0 if (i, j) ∈ E , meaning the
agent j can transmit information to the agent i, i.e. the agent
j is a neighbour of the agent i, while aij = 0 if (i, j) /∈ E .
From this framework, the Laplacian matrix associated to the
communication graph, L = (lij)(i, j)∈{1, ..., N}2 ∈ Rn×N can
be defined as

lij = −aij , for i ̸= j, lij =

N∑
k=1

aik, for i = j. (4)

The considered cooperative mission is the consensus, i.e. to
have consensus manifold defined as

D = {x = (x⊤
1 , . . . , x

⊤
N )⊤ ∈ RnN |x1 = · · · = xN} (5)

asymptotically stable along the solution of the complete
dynamical system (3). We denote for all x ∈ RnN the
Euclidean distance to the set D by |x|D. The main objective
of this article is to define event-triggered distributed control
laws to make the MAS described with the equation (3)
converges asymptotically a consensus.

B. Reducing communications

To achieve the consensus mission, the agents must either
know or estimate the state of their neighbour. Due to the
costs of communication, such as energy consumption or
the risk of saturating the transmission channel, the number
of state exchanges within the graph must be limited. A
metric for evaluating the need to communicate, called CTC,
must be defined so that agents know when to send their
current state. Therefore, for all j ∈ V there exists a discrete
sequence {tj,p}p∈N, where tj, p ∈ R+ is the p-th instant of
communication from agent j to its neighbours.

C. State estimation

As the neighboured agents do not send their states continu-
ously, each agent has to estimate the state of its neighbours.
The estimate of the agent j performed by the agent i is
denoted as x̂i

j , for all (i, j) ∈ E .{
˙̂xi
j(t) = f(x̂i

j(t)), ∀t ∈ [tj, p, tj,(p+1))

x̂i
j(tj, p) = xj(tj, p),

(6a)

(6b)

where tj, p ∈ R+ is the p-th communication instant of the
agent j.

Remark 1: The input of an agent is usually unknown
by its neighbours, therefore to limit the complexity of the
estimators and the amount of information exchanged, it was
decided not to use the input ui in the estimators (6). This
corresponds to the open-loop estimation approach described
for example in [4], [25]. Some articles, see e.g. [15], suggest
more complicated structures of estimators which contains the
input and tends to reduce the number of communication but
may require exchanging more data in the messages.

In addition, in order to know whether its neighbours have
a good representation of its state or not, each agent performs
an estimation of its own state, using the same dynamics as
the estimations performed by its neighbours, for all i ∈ V{

˙̂xi
i(t) = f(x̂i

i(t)), ∀t ∈ [ti, p, ti,(p+1))

x̂i
i(ti, p) = xi

i(ti, p).

(7a)

(7b)

Note that if there are no communication delays or packet
losses, then x̂j

i (t) = x̂i
i(t), for all (i, j) ∈ E . In this article,

we do not consider packet losses nor communication delay.
More work could be done on these phenomena.

III. MAIN RESULTS

A. Assumption

Before stating the theorem, we introduce two assumptions:
one must assume connectivity of the communication graph
and a stabilisability property (see for example [2]).

Assumption 1: The communication graph is assumed to
be connected, i.e. from any agent there exists a sequence of
edges that connects it to any other agent, and undirected, i.e.
if (i, j) ∈ E then (j, i) ∈ E .
As a consequence, the Laplacian matrix can be written as

L =

(
l11 L12

L21 L22

)
(8)



where l11 ∈ R+, L21 = L⊤
12 ∈ R(N−1) and L22 = L⊤

22 ∈
R(N−1)2 . We recall the separation theorem, also known as
the Cauchy’s interlacing theorem for a Hermitian matrix, see
e.g. [26],

Theorem 1 (Cauchy): Let E22 ∈ C(N−1)×(N−1) be Her-
mitian, let E21 ∈ C(N−1) and e11 ∈ R and let E ∈ CN×N

such that
E =

(
e11 E∗

21

E21 E22

)
, (9)

where ∗ is used for noting the conjugate transpose operator
(only here). Then

λ1(E) ≤ λ1(E22) ≤ λ2(E) ≤ · · · ≤ λN−1(E)

≤ λN−1(E22) ≤ λN (E). (10)
Using this theorem it can be noticed that L22 is a positive
matrix, since λ1(L) = 0. Furthermore, since L22 is full rank,
L22 is a positive definite matrix satisfying

ε−1 IN−1 ≤ L22, (11)

with ε ≥ λ2(L)
−1 where IN−1 stands for the identity matrix

of size N − 1. Moreover, since the graph is connected, the
Laplacian matrix L has N − 1 stricly positive eigenvalues
and λ1(L) = 0. Thus, for any µ ≤ λN (L)−1 one has

µL ≤ IN , (12)

where IN stands for the identity matrix of size N .
Assumption 2: There exists a C1 function P : Rn →

Rn×n, such that for all x ∈ Rn, P (x) is a definite, positive,
and symmetric matrix such that the following conditions hold

• The Control Matrix Function (CMF) condition holds

LfP (x)− ρP (x) g(x) g(x)⊤P (x) ⪯ q P (x),

¯
pIn ≤ P (x) ≤ p̄In

(13)

for any x ∈ Rn, and ρ, q,
¯
p, p̄ ∈ R∗

+, where

LfP (x) = Ṗ (x) + P (x)
∂f

∂x
(x) +

∂f

∂x
(x)⊤P (x). (14)

• The function g is a killing vector field for P , i.e.

LgP (x) = 0, ∀x ∈ Rn. (15)

• There exists α : Rn → Rm such that

Ψ(x) =
∂α

∂x
(x) = g(x)⊤P (x), ∀x ∈ Rn, (16)

and Ψ(x) is Lipschitz, i.e. there exists kΨ ∈ R+ such
that

|Ψ(x)−Ψ(y)| ≤ kΨ |x− y| , ∀x, y ∈ Rn, (17)

and Ψ(x) is bounded, i.e. there exists m̄ ∈ R+ such
that

|Ψ(x)| ≤
√
m̄, ∀x ∈ Rn. (18)

Finding a matrix function P that satisfies all the conditions
of the assumption 2 is not an easy task. Indeed, it depends
on the coordinates in which the dynamics of the system is
written. Using deep learning to learn a local P satisfying
the conditions of the assumption 2 can be an interesting
approach. It will be particularly powerful, for example, for

systems where trajectories are bounded, typically vehicles
moving in a closed area. Also, in [27], the authors propose
several methods to write the equation (13) as a linear matrix
inequality (LMI), which could be easily checked. It is based
on the decomposition of f as a linear system to which an
incremental sector-bounded nonlinearity is added. This type
of assumption was also used in [28].

B. Asymptotic consensus

Consider the following CTC defining the sequence of
communication instants ti, p for the followers, i.e. for all
i ∈ {2, . . . , N}

ti, p+1 = inf
{
s> ti, p | 2Ti |ei|3 |wi|+ ε Ti |ei|2 |wi|2

+Si |ei|2 +Qi |ei|4 − σiRi |wi|2 > 0
}
, (19)

with ei = xi−x̂i
i the estimation error between xi and x̂i

i, and
wi =

∑N
j=1 lij x̂

i
j , Ri, Si, Qi and Ti are positive number

and their expression are detailed in (114)-(117) in section
VII.

For the leader agent, the sequence of communication
instants t1, p are defined according to the following CTC

t1, p+1 = inf
{
s> t1, p |S1 |e1(s)|2 +Q1 |e1|4

−σ1 R1 |w1(s)|2 > 0
}
, (20)

with constant R1, S1 and Q1 defined in (118)-(120) in the
section VII.

Theorem 2: If the assumption 1 and 2 hold. Then with the
distributed control law ui(t) for i = 2, . . . , N defined as

ui = −κ

N∑
j=1

lij α
(
x̂i
j(t)
)
, (21)

with α defined in (16) and κ > ρ ε, where ρ and ε are
respectively defined in (13) and (11), and the communication
instant ti, p defined according to the CTC (19), for i =
2, . . . , N and (20) for i = 1, there exists positive constants
c1, c2 such that for any x(0) ∈ RNn and for all t ∈ T

|x(t)|D ≤ c1 exp(−c2 t) |x(0)|D , (22)

where x(t) denotes the solution of the system (3) and T is
the time domain of the existence of the solution.

C. Proof

Proof: The first steps of this proof is inspired by
the proof of the theorem 1 in [12] in which authors are
considering the consensus problem for a MAS described by
(3) with continuous communications. For clarity reasons, the
time dependency of variables will not be written. Define the
error coordinates r =

[
r⊤1 , . . . , r

⊤
N

]⊤
with ri = xi−x1, and

the estimation error e =
[
e⊤1 , . . . , e

⊤
N

]⊤
. By convention,

r1 = 0, for all t. Since there are no communication delay or
packet losses, one can notice that

x̂j
j = x̂i

j = x1 + rj − ej . (23)



The dynamics of ri are given by

ṙi = f(ri+x1)−f(x1)−κ g(ri+x1)

N∑
j=1

lij α(x1 + rj − ej) .

(24)
Using the fact that

N∑
j=1

lij g(x1 + ri)α(x1) = g(x1 + ri)α(x1)

N∑
j=1

lij = 0,

(25)
we can write

ṙi = f(ri + x1)− f(x1)

− κ g(ri + x1)

N∑
j=1

lij (α(x̂1 + rj − ej)− α(x1)) . (26)

Consider the C1 functions Φi(s, t) : [0, 1] × R+ → Rn

defined as

Φi(1, t0) = ei, Φi(0, t0) = 0, Φi(s, t0) = ei s, (27)

for all i ∈ {1, . . . , N} and Γi(s, t) : [0, 1] × R+ → Rn

defined as

Γi(1, t0) = ri, Γi(0, t0) = 0, Γi(s, t0) = ri s, (28)

for all i ∈ {1, . . . , N}. Γi defined as solution of the
following ordinary differential equation

∂Γi

∂t
= f(Γi + x1)− f(x1)

− κ g(Γi + x1)

N∑
j=1

lij (α(x1 + Γj − Φj)− α(x1)) . (29)

We introduce Γ : [0, 1] × R+ → RNn defined as Γ =[
Γ⊤
1 , . . . , Γ

⊤
N

]⊤
. In equation (29) and in the following we

have skipped the dependency of the variables to t and s
for clarity reasons. By convention Γ1 = 0. Consider the
following function as a Lyapunov candidate function

Vi(t) =

∫ 1

0

∂Γi

∂s

⊤
P (x1 + Γi)

∂Γi

∂s
ds . (30)

One can notice that, for all vector υ ∈ Rn

∂

∂t
υ⊤P (x1 + Γi) υ = υ⊤dfP (x1 + Γi) υ

− κ (α(x1 + Γi)− α(x1))

N∑
j=1

lijυ
⊤dgP (x1 + Γi) υ .

(31)

Using the killing vector field (15), the relation (16) and (31),
the time-derivative of Vi can be computed as

V̇i =

∫ 1

0

∂Γ⊤
i

∂s
LfP (x1 + Γi)

∂Γi

∂s
− 2κ

∂Γ⊤
i

∂s
Ψ(x1 + Γi)

⊤

×
N∑
j=1

lij Ψ(x1 + Γj − Φj)

(
∂Γj

∂s
− ∂Φj

∂s

)
ds .

(32)

Note that, according to the definition of Φi and Γi in (27)
and (28), we have

∂Γi

∂s
= ri,

∂Φi

∂s
= ei, ∀ (s, t) ∈ [0, 1]× R+ . (33)

Define V =
∑N

i=1 Vi and a function ∆Ψi : Rn → Rm×n as
∆Ψi(−Φj) = Ψ(x1 + Γi − Φj) − Ψ(x1 + Γi), for all i, j.
One has

V̇ =

∫ 1

0

N∑
i=1

r⊤i LfP (x1 + Γi) ri −
N∑
i=1

2κ r⊤i Ψ(x1 + Γi)
⊤

×
N∑
j=1

lij (∆Ψ(−Φj) + Ψ(x1 + Γj)) (rj − ej) ds . (34)

By introducing the vector vΨr ∈ R(N−1)n such that

vΦr =

 Ψ(x1 + Γ2) r2
...

Ψ(x1 + ΓN ) rN

 , (35)

one can notice that, since r1 = 0

N∑
i=1

2κ r⊤i Ψ(x1 + Γi)
⊤

N∑
j=1

lij Ψ(x1 + Γj) rj

=

N∑
i=2

2κ r⊤i Ψ(x1 + Γi)
⊤

N∑
j=2

lij Ψ(x1 + Γj) rj ,

= 2κ v⊤Ψr (L22 ⊗ IN−1) vΨr, (36)

and according to the assumption 1

−2κ v⊤Ψr (L22 ⊗ IN−1) vΨr

≤− 2 ε−1 κ v⊤ΨrvΨr . (37)

Using the relation (37) into (34), we obtain

V̇ ≤
∫ 1

0

N∑
i=1

r⊤i LfP (x1 + Γi) ri − ε−1 κ v⊤Ψr vΨr

−
N∑
i=1

2κ r⊤i Ψ(x1 + Γi)
⊤

N∑
j=1

lij ∆Ψj(−Φj) (rj − ej)

+

N∑
i=1

2κ r⊤i Ψ(x1 + Γi)
⊤

N∑
j=1

lij Ψ(x1 + Γj) ej ds .

(38)

According to the assumption 2, since κ > ρ ε, we have

V̇ ≤ −q V +

∫ 1

0

N∑
i=1

−2κ r⊤i Ψ(x1 + Γi)
⊤

×
N∑
j=1

lij ∆Ψj(−Φj) (rj + ej)

+

N∑
i=1

2κ r⊤i Ψ(x1 + Γi)
⊤

N∑
j=1

lij Ψ(x1 + Γj) ej ds .

(39)



Note that with continuous communication the proof ends
here. Due to event-triggered communication, a term depend-
ing on the estimation error remains and needs to be bounded.
We define the function M : Rn → Rn×n such that M(Γi) =
Ψ(x1 +Γi)

⊤Ψ(x1 +Γi), and ∆Mi : Rn → Rn×n such that
∆Mi(−Φj) = ∆Ψi(−Φj)

⊤∆Ψi(−Φj). In order to prove
the convergence of the MAS to the consensus, we need to
prove that the two final terms in (39) can be bounded by the
first term. We recall the following relation

∣∣x⊤y
∣∣ ≤ b

2
x⊤x+

1

b
y⊤y, ∀x, y ∈ Rn, (40)

for any constant b ∈ R+. Thus, we have

N∑
i=1

N∑
j=1

2 lij κ r
⊤
i Ψ(x1 + Γi)

⊤∆Ψj(−Φj) (rj + ej)

≤
N∑
i=1

N∑
j=1

|lij |κ
b1

(rj + ej)
⊤∆Mj(−Φj) (rj + ej)

+

N∑
i=1

N∑
j=1

b1 |lij | κ r⊤i M(Γi) ri , (41)

for any b1 ∈ R+. According to the assumption 1, the graph
is assumed to be undirected, thus lij = lji, thus by changing
the index j into i

N∑
i=1

N∑
j=1

2 lij κ r
⊤
i Ψ(x1 + Γi)

⊤∆Ψj(−Φj) (rj + ej)

≤
N∑
i=1

N∑
j=1

|lij |κ
b1

(ri + ei)
⊤∆Mi(−Φi) (ri + ei)

+

N∑
i=1

N∑
j=1

b1 |lij | κ r⊤i M(Γi) ri . (42)

Due to the properties of the Laplacian matrix, we have∑N
j=1 |lij | = 2 lii, consequently

N∑
i=1

N∑
j=1

2 lij κ r
⊤
i Ψ(x1 + Γi)

⊤∆Ψj(−Φj) (rj + ej)

≤
N∑
i=1

2
liiκ

b1
(ri + ei)

⊤∆Mi(−Φi) (ri + ei)

+

N∑
i=1

2 b1 lii κ r
⊤
i M(Γi) ri . (43)

Similarly, we obtain

N∑
i=1

N∑
j=1

2 lij κ r
⊤
i Ψ(Z + Γi)

⊤ Ψ(Z + Γj) ej

≤
N∑
i=1

2 b1 lii κ r
⊤
i M(Γi) ri + 2

lii κ

b1
e⊤i M(Γi) ei . (44)

Using the relation (43) and (44) into (39), we have

V̇ ≤ −q V +

∫ 1

0

N∑
i=1

[
2 b1 lii κ r

⊤
i M(Γi) ri

+ 2 b1 lii κ r
⊤
i M(Γi) ri + 2

lii
b1

κ e⊤i M(Γi) ei

+2
lii κ

b1
(ri + ei)

⊤
∆Mi(−Φi) (ri + ei)

]
ds . (45)

Introducing η ∈ (0, 1), one has

V̇ ≤ −q (1− η) V +

∫ 1

0

N∑
i=1

[
−η q r⊤i P (x1 + Γi) ri

+ 4 b1 lii κ r
⊤
i M(Γi) ri + 2

lii κ

b1
e⊤i M(Γi) ei

+ 2
lii κ

b1

(
e⊤i ∆Mi(−Φi) ei + r⊤i ∆Mi(−Φi) ri

)
+4

lii κ

b1
r⊤i ∆Mi(−Φi) ei

]
ds . (46)

We can define β = max{l11, . . . , lNN}, thus the following
upper bound can be made

V̇ ≤− q (1− η) V +

∫ 1

0

N∑
i=1

[
−η q r⊤i P (x1 + Γi) ri

+ 4 b1 β κ r⊤i M(Γi) ri + 2
β κ

b1
e⊤i M(Γi) ei

+ 2
β κ

b1

(
e⊤i ∆Mi(−Φi) ei + r⊤i ∆Mi(−Φi) ri

)
+ 4

β κ

b1
r⊤i ∆Mi(−Φi) ei

]
ds . (47)

From here, one can notice that the quantity ri is not known
by the agent i since it does not know the state of the leader
agent. Therefore, in order to define a CTC, we replace the ri
in (47) by the quantity wi =

∑N
j=1 lij x

i
j which is known by

the agent i. One can notice that since r1 = 0 and
∑N

j=1 lij =
0

N∑
j=2

lij rj =

N∑
j=1

lij (xj − x1)

=

N∑
j=1

lij xj ,

=

N∑
j=1

lij x̂
i
j +

N∑
j=1

lij ej ,

= wi + ξi, (48)

where ξi =
∑N

j=1 lij ej . Since there are four term which
depends on ri in the expression (47), there will be four parts
in the following of the proof.



a) Part 1. Concerning
∑N

i=1 r
⊤
i M(Γi) ri : We define

the following vectors

r̄ =

 r2
...
rN

 , vme =

M(Γ2) ξ2
...

M(Γ2) ξN

 ,

vmr =

 M(Γ2) r2
...

M(ΓN ) rN

 , vmw =

 M(Γ2)w2

...
M(ΓN )wN

 . (49)

Since r1 = 0, we have

N∑
i=1

r⊤i M(Γi) ri =

N∑
i=2

r⊤i M(Γi) ri ,

= r̄⊤ (IN−1 ⊗ In) vmr. (50)

The function M(·) is positive, therefore∑N
i=1 r

⊤
i M(Γi) ri ≥ 0. Due to the properties of L22

exhibit in (11), one has

r̄⊤(IN−1 ⊗ In) vmr ≤ ε r̄⊤(L22 ⊗ In) vmr, (51)

moreover since L22 is symmetric one has

ε r̄⊤(L22 ⊗ In) vmr = ε ((L22 ⊗ In) r̄)
⊤(IN−1 ⊗ In) vmr,

= ε

N∑
i=2

 N∑
j=2

lij rj

⊤

M(Γi) ri ,

= ε

N∑
i=2

(wi + ξi)
⊤
M(Γi) ri ,

= ε
(
v⊤mw (IN−1 ⊗ In) r̄+ v⊤me(IN−1 ⊗ In) r̄

)
. (52)

One has

v⊤me(IN−1 ⊗ In) r̄ ≤
∣∣ε v⊤me(L22 ⊗ In) r̄

∣∣ , (53)

v⊤mw(IN−1 ⊗ In) r̄ ≤
∣∣ε v⊤mw(L22 ⊗ In) r̄

∣∣ . (54)

We can obtain∣∣ε v⊤mw(L22 ⊗ In) r̄
∣∣

=

∣∣∣∣∣∣ε
N∑
i=2

w⊤
i M(Γi)

 N∑
j=1

lij rj

∣∣∣∣∣∣
=

∣∣∣∣∣ε
N∑
i=2

w⊤
i M(Γi)wi

∣∣∣∣∣+
∣∣∣∣∣ε

N∑
i=2

w⊤
i M(Γi) ξi

∣∣∣∣∣ ,
(55)

and∣∣ε v⊤me(L22 ⊗ In) r̄
∣∣

=

∣∣∣∣∣∣ε
N∑
i=2

ξ⊤i M(Γi)

 N∑
j=1

lij rj

∣∣∣∣∣∣
=

∣∣∣∣∣ε
N∑
i=2

ξ⊤i M(Γi)wi

∣∣∣∣∣+
∣∣∣∣∣ε

N∑
i=2

ξ⊤i M(Γi)ξi

∣∣∣∣∣ . (56)

Thus the following upper bound can be found

N∑
i=1

r⊤i M(Γi) ri ≤ ε2

(
N∑
i=2

∣∣ξ⊤i M(Γi) ξi
∣∣

+

N∑
i=2

∣∣w⊤
i M(Γi)wi

∣∣+ 2

N∑
i=2

∣∣w⊤
i M(Γi) ξi

∣∣) . (57)

The quantity ξi can not be computed by the agent i since
it require the knowledge on ei for all i ∈ {1, . . . , N},
therefore we need to replace it by quantity that agent i knows.
Using the conditions (13) and (17), there exists m̄ ∈ R+ such
that

0 ≤ M(x) ≤ m̄ In, ∀x ∈ Rn. (58)

One can notice that

∣∣ξ⊤i M(Γi) ξi
∣∣ ≤ N∑

i=2

m̄

∣∣∣∣∣∣
N∑
j=1

lij ej

∣∣∣∣∣∣
2

,

≤
N∑
i=2

m̄

∣∣∣∣∣∣
 N∑

j=2

lij ej

+ li1 e1

∣∣∣∣∣∣
2

,

≤ m̄

N∑
i=2


∣∣∣∣∣∣

N∑
j=2

lij ej

∣∣∣∣∣∣
2

+ l2i1 |e1|2 +
N∑
j=2

|lij | |li1| |ej | |e1|

 .

(59)

On one hand, note that, using the relation (40),

N∑
i=2

∣∣∣∣∣∣
N∑
j=1

lij ej

∣∣∣∣∣∣
2

=

N∑
i=2

N∑
j=2

N∑
k=2

|lij | |lik| |ej | |ek| ,

≤
N∑
i=2

N∑
j=2

N∑
k=2

(
b1
2
l2ij |ej |

2
+

1

2 b1
l2ik |ek|

2

)
,

≤
N∑
i=2

N∑
j=2

(N − 1)
b1
2
l2ij |ej |

2

+

N∑
i=2

N∑
j=2

(N − 1)
1

2 b1
l2ij |ej |

2
,

≤
N∑
i=2

N∑
j=2

(N − 1) l2ij

(
b1
2

+
1

2 b1

)
|ej |2 , (60)

for any b1 ∈ R+. We define the constant ζ̄i =
∑N

j=2 l
2
ij .

Since L22 is symmetric, we have

N∑
i=2

∣∣∣∣∣∣
N∑
j=1

lij ej

∣∣∣∣∣∣
2

≤
N∑
i=2

(N − 1) ζ̄i

(
b1
2

+
1

2 b1

)
|ei|2 . (61)



On another hand, due to the properties of the Laplacian
matrix, we have

∑N
j=2 |lij | = 2 lii − |li1|, thus

N∑
i=2

N∑
j=2

|lij ||li1||ej ||e1| =
N∑
i=2

(2 lii − |l1i|) |li1| |ei| |e1| ,

≤
N∑
i=2

δi |ei| |e1| ,

≤
N∑
i=2

δi

(
b1
2
|e1|2 +

1

2 b1
|ei|2

)
,

(62)

with δi = (2 lii − |l1i|) |li1|. Finally, we have∣∣∣∣∣
N∑
i=2

ξ⊤i M(Γi)ξi

∣∣∣∣∣ ≤
N∑
i=2

m̄

[(
(N − 1) ζ̄i

(
b1
2

+
1

2 b1

)
+

δi
2 b1

)
|ei|2 +

l2i1(1 + δi b1)

2
|e1|2

]
. (63)

Moreover∣∣∣∣∣
N∑
i=2

w⊤
i M(Γi) ξi

∣∣∣∣∣≤ m̄

N∑
i=2

|wi|

∣∣∣∣∣∣
 N∑

j=1

lijej

∣∣∣∣∣∣ ,
≤ m̄

N∑
i=2

N∑
j=1

|wi| |lijej |

≤ m̄

N∑
i=2

N∑
j=1

(
b1
2
|wi|2 +

1

2 b1
|lijej |2

)
,

≤
N∑
i=2

m̄

(
b1 N

2
|wi|2 +

1

2 b1
ζi |ei|2

)
,

(64)

with ζi =
∑N

j=1 l
2
ij . Thus, using the relation (63) and (64)

in (57), we can write

N∑
i=1

r⊤i M(Γi) ri ≤
N∑
i=2

ε2 m̄

[(
(N − 1) ζ̄i

b21 + 1

2 b1
+

ζi
b1

+
δi
2 b1

)
|ei|2 + (1 + b1 N) |wi|2 +

l2i1(1 + δi b1)

2
|e1|2

]
,

(65)

which concludes this part of the proof.
b) Part 2. Concerning

∑N
i=1 r

⊤
i ∆Mi(−Φi) ri : One

can notice that this term is close to the term concerned by
the first part. This only changes is the function ∆Mi instead
of M . In this first part, we have used the relation (58) to
bound the function M . In this second part, using the relation
(17), we propose the following bound on ∆Mi

|∆Mi(−Φi)| =
∣∣∆Ψi(−Φi)

⊤∆Ψi(−Φi)
∣∣ ,

= |∆Ψi(Φi)|2 ,
≤ k2Ψ |Φi|2 . (66)

Now we can use the result of the previous part of the proof
and we have

N∑
i=1

r⊤i ∆Mi(−Φi) ri

≤
N∑
i=2

ε2k2Ψ |Φi|2
[
(N − 1) ζ̄i

(
b21 + 1

)
+ δi + 2 ζi

2 b1
|ei|2

+ (1 + b1 N) |wi|2 +
l2i1(1 + δi b1)

2
|e1|2

]
, (67)

with δi = (2 lii − |l1i|) |li1|, ζ̄i =
∑N

j=2 l
2
ij and ζi =∑N

j=1 l
2
ij . One can notice that the quantity |Φi| is not known

by the agent 1, therefore we need to separate the product
|Φi|2 |e1|2 into a sum, we have

N∑
i=1

r⊤i ∆Mi(−Φi) ri ≤
N∑
i=2

ε2k2Ψ

[
(1 + b1 N) |wi|2 |Φi|2

+
(N − 1) ζ̄i

(
b21 + 1

)
+ δi + 2 ζi

2 b1
|ei|2 |Φi|2

+
l2i1(1 + δi b1)

2

(
b1
2
|e1|4 +

1

2 b1
|Φi|4

)]
,

(68)

which conclude this part of the proof.
c) Part 3. Concerning

∑N
i=1 e

⊤
i ∆Mi(−Φi) ri : We

define the following vector v∆e ∈ R(N−1)n

v∆e =

 ∆M2(−Φ2) e2
...

∆MN (−ΦN ) eN

 . (69)

We have

N∑
i=1

e⊤i ∆Mi(−Φi) ri =

N∑
i=2

e⊤i ∆Mi(−Φi) ri ,

= v⊤∆e (IN−1 ⊗ In) r̄,

≤ ε
∣∣v⊤∆e (L22 ⊗ In) r̄

∣∣ ,
≤ ε

∣∣∣∣∣∣
N∑
i=2

e⊤i ∆M(−Φi)

N∑
j=2

lij rj

∣∣∣∣∣∣ .
(70)

Moreover using (48), we have

N∑
i=1

e⊤i ∆Mi(−Φi) ri ≤ ε

∣∣∣∣∣
N∑
i=2

e⊤i ∆M(−Φi)(wi + ξi)

∣∣∣∣∣ ,
≤

N∑
i=2

ε k2Ψ |Φi|2 |ei| |wi|+
N∑
i=2

N∑
j=1

|lij | ε k2Ψ |Φi|2 |ei| |ej | ,

(71)



And using the laplacian property
∑N

j=1 |lij | = 2 lii, we have

N∑
i=2

N∑
j=1

|lij | |Φi|2 |ei| |ej |

≤
N∑
i=2

N∑
j=1

|lij | |Φi|2
(
b1
2
|ei|2 +

1

2 b1
|ej |2

)

≤
N∑
i=2

lii b1 |Φi|2 |ei|2 +
N∑
i=2

N∑
j=1

|lij |
2 b1

|Φi|2 |ej |2 , (72)

for any b1 ∈ R+. Moreover,

N∑
i=2

N∑
j=1

|lij |
2 b1

|Φi|2 |ej |2

≤
N∑
i=2

N∑
j=1

|lij |
2 b1

(
b1
2
|Φi|4 +

1

2 b1
|ej |4

)
,

≤
N∑
i=2

lii
2
|Φi|4 +

N∑
i=2

N∑
j=1

|lij |
4 b21

|ej |4 , (73)

and

N∑
i=2

N∑
j=1

|lij |
4 b21

|ej |4 =

N∑
i=2

|li1|
4 b21

|e1|4 +
N∑
i=2

N∑
j=2

|lij |
4 b21

|ej |4 ,

=

N∑
i=2

(
|li1|
4 b21

|e1|4 +
2 lii − |li1|

4 b21
|ei|4

)
.

(74)

Finally, using (72)-(74) in (71), we obtained

N∑
i=1

e⊤i ∆Mi(−Φi) ri ≤
N∑
i=2

ε k2Ψ

(
|Φi|2 |ei| |wi|

+ lii b1 |Φi|2 |ei|2 +
lii
2
|Φi|4 +

|li1|
4 b21

|e1|4

+
2 lii − |li1|

4 b21
|ei|4

)
, (75)

which completes this part of the proof.
d) Part 4. Concerning

∑N
i=1 −r⊤i P (x1 +Γi) ri : Due

to the relation (12), we have

− (IN ⊗ P (·)) ≤ −
(
µ2 L2 ⊗ P (·)

)
. (76)

We define the vectors vpr ∈ RN×n defined as

vpr =

 P (x1 + Γ1) r1
. . .

P (x1 + ΓN ) rN

 , (77)

since P is positive, we notice that

N∑
i=1

−r⊤i P (x1 + Γi) ri = −v⊤pr (IN ⊗ In) r ,

≤ −µ2 v⊤pr
(
L2 ⊗ In

)
r, (78)

and

−µ2 v⊤pr
(
L2 ⊗ In

)
r

=

N∑
i=1

−µ2

 N∑
j=1

lij rj

⊤

P (x1 + Γi)

 N∑
j=1

lij rj


=

N∑
i=1

−µ2 (wi + ξi)
⊤

P (x1 + Γi) (wi + ξi)

=

N∑
i=1

−µ2
(
w⊤

i P (x1 + Γi)wi + 2 ξ⊤i P (x1 + Γi)wi

+ ξ⊤i P (x1 + Γi) ξi
)
. (79)

Similarly as before, we want to replace the quantity ξi by
quantities the agent i know. According to the assumption 2,
one has

N∑
i=1

ξ⊤i P (Z + Γi) ξi ≤
N∑
i=1

p̄ |ξi|2 ,

≤
N∑
i=1

p̄

∣∣∣∣∣∣
N∑
j=1

lij ej

∣∣∣∣∣∣
2

,

≤
N∑
i=1

N∑
j=1

N∑
k=1

p̄ |lij | |ej | |lik| |ek| ,

≤
N∑
i=1

N∑
j=1

N∑
k=1

p̄

(
b2
2
|lij |2 |ej |2 +

1

2 b2
|lik|2 |ek|2

)
,

≤
N∑
i=1

N∑
j=1

N∑
k=1

p̄

(
b2
2
|lij |2 |ei|2 +

1

2 b2
|lik|2 |ei|2

)
,

≤
N∑
i=1

p̄ N ζi
b22 + 1

2 b2
|ei|2 , (80)

for any b2 > 0 and with ζi =
∑2

j=1 l
2
ij . And

N∑
i=1

ξ⊤i P (x1 + Γi)wi ≤
N∑
i=1

p̄ |ξi| |wi| ,

≤
N∑
i=1

p̄

(
1

2 b2
|ξi|2 +

b2
2
|wi|2

)
. (81)

Using the relation (80), we obtain

N∑
i=1

ξ⊤i P (x1 + Γi)wi ≤
N∑
i=1

p̄ N ζi
b22 + 1

4 b22
|ei|2

+

N∑
i=1

p̄
b2
2
|wi|2 . (82)

And

−w⊤
i P (x1 + Γi)wi ≤ −

¯
p |wi|2 (83)



Using the relation (80), (82) and (83) in (79), we finally have

N∑
i=1

−r⊤i P (x1 + Γi) ri ≤
N∑
i=1

µ2

(
−
(
¯
p− p̄ b2

)
|wi|2

+p̄ N ζi
b22 + 1

2 b2

(
1

b2
+ 1

)
|ei|2

)
, (84)

which concludes this part of the proof. The unknown quan-
tities by the agent i has been replaced by ones which are
known. One can notice that

e⊤i Mi(Γi) ei ≤ m̄ |ei|2 , (85)

e⊤i ∆Mi(−Φi) ei ≤ k2ϕ |Φi|2 |ei|2 . (86)

Now, we can return to the Lyapunov function. Using (65),
(68), (75) and (84)-(86) in (47) we obtain the following
inequality. The terms have not yet be reorganised to facilitate
the reviewing process.

V̇ ≤− q (1− η) V +

N∑
i=1

η q µ2

(
−
(
¯
p− p̄ b2

)
|wi|2

+p̄ N ζi
b22 + 1

2 b2

(
1

b2
+ 1

)
|ei|2

)
+

N∑
i=2

4 b1 β κ ε2 m̄

×

[
(N − 1) ζ̄i

(
b21 + 1

)
+ δi + 2 ζi

2 b1
|ei|2

+ (1 + b1 N) |wi|2 +
l2i1(1 + δi b1)

2
|e1|2

]
+

N∑
i=1

2
β κ

b1
m̄ |ei|2 +

N∑
i=1

2
β κ

b1
k2ϕ |ei|

2
∫ 1

0

|Φi|2 ds

+

N∑
i=2

2
β κ

b1
ε2k2Ψ

[
(1 + b1 N) |wi|2

∫ 1

0

|Φi|2 ds

+
(N − 1) ζ̄i

(
b21 + 1

)
+ δi + 2 ζi

2 b1
|ei|2

∫ 1

0

|Φi|2 ds

+
l2i1(1 + δi b1)

2

(
b1
2
|e1|4 +

1

2 b1

∫ 1

0

|Φi|4 ds
)]

+

N∑
i=2

4
β κ

b1
ε k2Ψ

(
|ei| |wi|

∫ 1

0

|Φi|2 ds

+ lii b1 |ei|2
∫ 1

0

|Φi|2 ds+
lii
2

∫ 1

0

|Φi|4 ds+
|li1|
4 b21

|e1|4

+
2 lii − |li1|

4 b21
|ei|4

)
. (87)

One can notice that

∫ 1

0

|Φi(s)|k ds =
∫ 1

0

|ei|k skds =
1

k
|ei|k , (88)

for all k ∈ N. Using the relation (88), we have

V̇ ≤ −q (1− η) V +

N∑
i=1

η q µ2

(
−
(
¯
p− p̄ b2

)
|wi|2

+p̄ N ζi
b22 + 1

2 b2

(
1

b2
+ 1

)
|ei|2

)
+

N∑
i=2

4 b1 β κ ε2 m̄

×

[
(N − 1) ζ̄i

(
b21 + 1

)
+δi + 2 ζi

2 b1
|ei|2 + (1 + b1 N) |wi|2

+
l2i1(1 + δi b1)

2
|e1|2

]
+

N∑
i=1

2
β κ

b1
m̄ |ei|2

+

N∑
i=1

β κ

b1
k2ϕ |ei|

4
+

N∑
i=2

2
β κ

b1
ε2k2Ψ

[
1 + b1 N

2
|wi|2 |ei|2

+
(N − 1) ζ̄i

(
b21 + 1

)
+ δi + 2 ζi

4 b1
|ei|4

+
l2i1(1 + δi b1)

2

(
b1
2
|e1|4 +

1

8 b1
|ei|4

)]
+

N∑
i=2

4
β κ

b1
ε k2Ψ

[
1

2
|ei|3 |wi|+

|li1|
4 b21

|e1|4

+

(
lii (4 b1 + 1)

8
+

2 lii − |li1|
4 b21

)
|ei|4

]
. (89)

Now we reorganise the term to exhibit the CTCs (19) and
(20)

V̇ ≤ −q (1− η) V − η q µ2
(
¯
p− p̄ b2

)
|w1|2

+

(
2β κ k2ϕ + β κ ε2k2Ψ ω1 b1

2 b1
+

β κ ε k2Ψ |l11|
b31

)
|e1|4

+

(
2 b1 β κ ε2 m̄ ω1 +

η q µ2p̄ N ζ1
(
b22 + 1

)
(1 + b2)

2 b22

+2
β κ m̄

b1

)
|e1|2 +

N∑
i=2

[
2
β κ ε k2Ψ

b1
|ei|3 |wi|

−
(
η q µ2

(
¯
p− p̄ b2

)
− 4 b1 β κ ε2 m̄ (1 + b1 N)

)
|wi|2

+

(
2
β κ m̄

b1
+

η q µ2p̄ N ζi
(
b22 + 1

)
(1 + b2)

2 b22

+2 b1 β κ ε2 m̄
(N − 1) ζ̄i

(
b21 + 1

)
+ δi + 2 ζi

b1

)
|ei|2

+
β κ

b1
k2Ψ

(
1 + ε

lii b
2
1 (4 b1 + 1) + 2 (2 lii − |li1|)

2 b21

+ ε2
4
(
(N − 1) ζ̄i

(
b21 + 1

)
+ δi + 2 ζi

)
8 b1

+
ε2l2i1(1 + b1 δi)

8 b1

)
|ei|4

+
β κ ε2k2Ψ (1 + b1 N)

b1
|wi|2 |ei|2

]
. (90)

with ω1 =
∑N

i=2 l
2
i1 (1 + b1 |li1| (2β − |l1i|)). We recognise

the constant Qi, Ri, Si, Ti and Q1 , R1 and S1, thus we



have

V̇ ≤ −q (1− η)V −R1 |w1|2 +Q1 |e1|4 + S1 |e1|2

+

N∑
i=2

[
2Ti |ei|3 |wi| −Ri |wi|2 + Si |ei|2 +Qi |ei|4

+Ti (1 + b1 N) |wi|2 |ei|2
]
. (91)

According to the CTC (19), if 2Ti |ei|3 |wi| + Si |ei|2 +
Qi |ei|4 + Ti (1 + b1 N) |wi|2 |ei|2 > σi Ri |wi|2 then a
communication occurs, and the estimation error is reset to 0.
Thus we have

2Ti |ei|3 |wi|+Si |ei|2+Qi |ei|4+Ti (1 + b1 N) |wi|2 |ei|2

≤ σi Ri |wi|2 (92)

Similarly for the CTC (20) for the leader agent. We obtain

V̇ ≤ −q (1− η)V −
N∑
i=1

(1− σi)Ri |wi|2 . (93)

If we choose 0 < b2 < ¯
p

p̄N − 4 b1 β κ ε2 m̄(1+b1 N)
η q µ2 p̄ N where 0 <

b1 < 1
2N

(√
1 +

N η q
¯
p µ2

β κ ε2 m̄ − 1

)
then the Ri are positive

number for i = 1, . . . , N . Since R1 and Ri are positive
number and σ1 < 1 and σi < 1, we obtain

V̇ ≤ −q (1− η)V , (94)

which conclude the proof.

IV. ZENO

The CTCs (19)-(20) do not exclude any Zeno behaviour.
In this section, we proposed new CTCs which exclude Zeno
behaviour. Before stating the theorem, we introduce two
assumptions

Assumption 3: The input applies to the agents is bounded,
i.e. there exists ᾱ such that

|α(x)| < ᾱ, ∀x. (95)
In practice, this assumption is always verified, since the value
of the input is proportional to the energy given to the agent.
As the agents have a limited amount of energy, their input
is always limited. So it is not a strong assumption.

Assumption 4: The function f are Lipschitz, i.e. there
exist kf ∈ R+ such that

|f(x)− f(y)| ≤ kf |x− y|, ∀x, y ∈ Rn, (96)
A positive term ξ > 0 is added in the CTC to avoid Zeno
behaviour when wi is small. Consider the following CTC
defining the sequence of communication instants ti, p for the
followers, i.e. for all i ∈ {2, . . . , N}

ti, p+1 = inf
{
s> ti, p | 2Ti |ei|3 |wi|+ ε Ti |ei|2 |wi|2

+Si |ei|2 +Qi |ei|4 − σiRi |wi|2 − ξ > 0
}
, (97)

with ei = xi−x̂i
i the estimation error between xi and x̂i

i, and
wi =

∑N
j=1 lij x̂

i
j , Ri, Si, Qi and Ti are positive number

and their expression are detailed in (114)-(117) in Appendix
VII.

For the leader agent, the sequence of communication
instants t1, p are defined according to the following CTC

t1, p+1 = inf
{
s> t1, p |S1 |e1(s)|2 +Q1 |e1|4

−σ1 R1 |w1(s)|2 − ξ > 0
}
, (98)

with constant R1, S1 and Q1 defined in (118)-(120) in
Appendix VII.

Theorem 3: If the assumption 1, 2, 3 and 4 hold. Then
with the distributed control law ui(t) for i = 2, . . . , N
defined in (21), and the communication instant ti, p defined
according to the CTC (97), for i = 2, . . . , N and (98) for
i = 1, there exists positive constants c3, c4 such that for any
x(0) ∈ RNn

lim
t→∞

|x|2D ≤ c3 e
−c4 t +

N ξ

¯
p q (1− η)

. (99)

with η ∈ (0, 1) and q
¯
p satisfying (13) and where x(t)

denotes the solution of the system (3). Moreover, there is
no Zeno behaviour.

Proof: Starting from (93), we have

V̇ ≤ −q (1− η)V −
N∑
i=1

[
(1− σi)Ri |wi|2 − ξ

]
. (100)

Since Ri > 0 for all i and 0 < σi < 1, we have

V̇ ≤ −q (1− η)V +N ξ. (101)

By integrating (101), we obtain

V (t) ≤ e−q(1−η)V (0) +N ξ

∫ t

0

e−q(1−η)(t−τ)dτ,

≤ e−q(1−η)t

(
V (0) +

N ξ

q (1− η)

)
+

N ξ

q (1− η)
.

(102)

We recall that V =
∫ 1

0

∑N
i=2 r

⊤
i P (x1+ri s) ri ds. According

to the properties of the function P , we have

¯
p |ri(t)|2 ≤ V (t). (103)

Hence
|ri(t)|2 ≤ c1 e

−c2 t +
N ξ

¯
p q (1− η)

. (104)

with c1 = 1

¯
p

(
V (0) + N ξ

q (1−η)

)
and c2 = q (1− η). And

|x|2D = min
z∈Rn

N∑
i=1

|z − xi|2 ≤
N∑
i=1

|x1 − xi|2 =

N∑
i=1

|ri|2.

(105)
Thus

lim
t→∞

|x|2D ≤ c1 e
−c2 t +

N ξ

¯
p q (1− η)

. (106)

In the second part, we want to show that with the CTC (97)
the inter event time between two communications can be



bounded. Let’s consider the error |x̃i| dynamics, using the
assumptions 2 and 4, we have,

d
dt
|x̃i| = (x̃⊤

i x̃i)
− 1

2 x̃⊤
i

d
dt
x̃i,

=
x̃⊤
i

(x̃⊤
i x̃i)

1
2

f(xi)− f(x̂i
i)− κ g(xi)

N∑
j=1

lijα(x̂
i
j)

,

≤ kf |x̃i|+ κ

∣∣∣∣∣∣g(xi)

N∑
j=1

lijα(x̂
i
j)

∣∣∣∣∣∣ ,
≤ kf |x̃i|+ κ |g(xi)|

∣∣∣∣∣∣
N∑
j=1

lijα(x̂
i
j)

∣∣∣∣∣∣ ,
≤ kf |x̃i|+ κ

√
m̄

p̄

∣∣∣∣∣∣
N∑
j=1

lijα(x̂
i
j)

∣∣∣∣∣∣ . (107)

Moreover according to the assumption 3, we have

d
dt
|x̃i| ≤ kf |x̃i|+ 2κ

√
m̄

p̄
|lii| |ᾱ| . (108)

From here, it can be noticed that the derivative of the
estimation error is bounded. We denote by di in this proof
only the quantity 2Ti |x̃i|3 |wi| + Si |x̃i|2 + Qi |x̃i|4 +
Ti (1 + b1 N) |wi|2 |x̃i|2 for all i ∈ V \{1}. It can be noticed
that the time it takes for di to grow from 0 to σi Ri |wi|2+ξ
is not smaller that the time needed for di to grow from 0 to
ξ. Since the the derivative of the estimation error is bounded,
there exists a positive time for di to grow from 0 to ξ. This
reasoning is similar for the leader agent and its CTC.

V. SIMULATION EXAMPLES

Consider a MAS composed by N = 5 agents whose
dynamics are described by the relation (3) with

f(x) =

(
ς + θ cos(κ)

−κ + θ cos(ς) + θ2cos(κ) sin(κ)

)
, (109)

with x = [κ, ς]⊤. The function f is parameterised by θ =
0.5. To assess the robustness of the proposed CTCs and the
control laws, the estimators are parametrised by θ̂ instead of
θ. The function g is defined as

g(x) =

(
cos(ς)
−1

)
. (110)

The graph formed by the agents is illustrated in Figure 1.

1

2 4

3 5

Fig. 1: Structure of the considered MAS

The agent 1 is the leader agent, thus, u1(t) = 0 for all t. A
sampling period of Ts = 0.04 s has been chosen for all the
numerical simulations. The simulation duration is Tsim =
20 s. Selecting µ = 0.27 and ε = 2.7 meet the assumption
1 with the communication graph described in Figure 1.

As underlined previously, solving the relation (13) to ob-
tain the matrix function P is a complex task. In this example
we consider a deep learning method to approximate the
matrix function P solution of the relation (13) using neural
network σP , see for example [29], [30]. Deep learning is a
numerical method that approximates a local optimal solution.
Therefore, the database on which the neural network σP is
trained must correctly represent the state space in which the
neural network σP will operate. The algorithm proposed in
[29] is illustrated in Algorithm 1.

Algorithm 1 Finding a matrix function satisfying (13)

Input: number of training epochs Ne, number Nτ of train-
ing points, the parameters

¯
p, ρ, q defined in (13).

Generate a training data set Sτ of Nτ points τ = {x}
from multiple random samples.
Initialise the parameters of a neural network σP (·).
for ε = 1 to Ne do

for each trajectory τ in Sτ do
Compute

M1(x) = LfσP (x)− ρ σP (x) g(x) g(x)
⊤σP (x)

+ q σP (x).

Compute M2(x) = LgσP (x).
Compute M3(x) = −σP (x) +

¯
pIn.

Compute λi(M1(x)), λi(M2(x)) and λi(M3(x)) re-
spectively the eigenvalues of M1(x), M2(x) and
M3(x).
Evaluate the loss

Lτ =

N∑
i=1

[
max(0, λi(M1(x))) + max(0, λi(M2(x)))

−max(0, λi(M2(x))) + max(0, λi(M3(x)))
]
.

end for
Update the parameters of the network σP (·) by min-
imising 1

Nτ

∑
τ∈Sτ

Lτ using backward propagation.
end for

A training database is created by randomly generating
109 different values of x according to a normal distribution
N (0, 100). The parameters of the neural network are then
optimised so that the neural network σP satisfies all the nec-
essary conditions. Finally, the performance of the obtained
solution is tested on a database composed of 109 random
different values of x, not seen during training, generated
according to a normal distribution N (0, 100). Once the
model trained, we obtained q = 0.001, ρ = 5.5, p̄ = 0.019,

¯
p = 0.0094 and m̄ = 0.0006 and kΨ = 10−7. We have
selected κ = 80. One can notice that κ > ρ ε. We also choose
b1 = 6.8e − 8 and b2 = 0.0185. To illustrate our results,
we have selecting σi = 1012 which does not guarantee any
stability but provides better results.



The initial condition x(0) are chosen as

x(0) =


[0.8033, 0.1748]⊤

[0.0890, −0.6137]⊤

[0.0462, −1.3683]⊤

[0.3375, 1.0111]⊤

[−1.4352, 0.9774]⊤

 . (111)

The robustness of the CTCs and the control laws is
assessed by considering several values of θ̂. The figure 2
presents the time evolution of the disagreement Υ defined as

Υ(k) =

N∑
i=1

|xi(t)− xm(t)| , (112)

with xm = 1
N

∑N
i=1 xi(t), of the MAS and the communica-

tion instants for each agent for several values of θ̂ using the
CTC (19).
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Fig. 2: Time evolution of the disagreement of the MAS and
the communication events using the CTCs (19) and (20) for
different values of θ̂.

It can be noticed that the MAS converges to the consensus
for all the values of θ̂. Moreover, the communications are not
triggered at each instant. The leader agent does not need to
initiate a lot of communications since its estimation error is
only due to the wrong representation of θ and not of the
input.

The figure 3 shows the time evolution of the disagreement
of the MAS and the communication instants using the
CTCs (97)-(98) which exclude any Zeno behaviour but does
not guarantee an asymptotic consensus of the MAS. The
parameters ξ is chosen as ξ = 5e7. The other parameters
remain unchanged.
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Fig. 3: Time evolution of the disagreement of the MAS and
the communication events using the CTCs (97) and (98) for
different values of θ̂.

It can be seen that the number of communications has
decreased. However, the asymptotic convergence of the MAS
to a consensus is not obtained.

In order to compare the resulting performances, we intro-
duce a performance index Γ to qualify the evolution of the
consensus error and the reduction of communications from
the CTC. Γ is defined as

Γ =
1

N

T∑
k=0

[
N∑
i=1

|xi(k Ts)− x1(k Ts)|+ χ vi(k Ts)

]
,

where T = Tsim

Ts
is the number of simulated instants, vi(k)

is defined as

vi(k Ts)=

{
1, if the CTC is verified for the agent i,
0, otherwise,

and χ > 0 is a tuning parameter that allows to balance
between consensus accuracy and communication reduction.



For this simulation, we selected χ = 0.3. The Table I present
the value of Γ for each simulation.

Values of Γ
CTC (19) CTC (97)

θ̂ 0.50 0.49 0.40 0.50 0.49 0.40
Γ 120 120 140 133 127 128

TABLE I: Comparison of number of communications in the
MAS

VI. CONCLUSION

In this article, firstly new distributed event-triggered con-
trol laws have been proposed for the leader-follower consen-
sus problem of a MAS described by control-affine nonlinear
dynamics. They are based on two novel Communication
Triggering Conditions (CTCs): the first one allows to obtain
an asymptotic consensus but without any guarantee of Zeno
behaviour, and the second one excludes Zeno behaviour
but a practical consensus property is ensured in this case.
Simulations are presented to compare the performance of
the two approaches. Robustness to noises is also illustrated.
However, the obtained CTCs tends to be too conservative re-
sulting in many unnecessary communications. Future works
concerning the optimisation of the communication laws are
investigated.

VII. APPENDIX

The real constant Ri, Si, Qi, Ti, for all i ∈ {2, . . . , N}
are defined as

Ri = η q µ2
(
¯
p− p̄ b2

)
− 4 b1 β κ ε2 m̄ (1 + b1 N) , (114)

Si = 2
β κ m̄

b1
+

η q µ2p̄ N ζi
(
b22 + 1

)
(1 + b2)

2 b22

+ 2 b1 β κ ε2 m̄
(N − 1) ζ̄i

(
b21 + 1

)
+ δi + 2 ζi

b1
,

(115)

Qi =
β κ

b1
k2Ψ

(
1 + ε

lii b
2
1 (4 b1 + 1) + 2 (2 lii − |li1|)

2 b21

+ε2
4
(
(N − 1) ζ̄i

(
b21 + 1

)
+ δi + 2 ζi

)
+ l2i1(1 + b1 δi)

8 b1

)
,

(116)

Ti =
β κ ε k2Ψ

b1
, (117)

where 0 < η < 1, 0 < b1 < 1
2N

(√
1 +

N η q
¯
p µ2

β κ ε2 m̄ − 1

)
,

0 < b2 < ¯
p

p̄N − 4 b1 β κ ε2 m̄(1+b1 N)
η q µ2 p̄ N , δi = (2 lii − |l1i|) |li1|,

ζ̄i =
∑N

j=2 l
2
ij and ζi =

∑N
j=1 l

2
ij . The real constant

R1, S1, Q1 are defined as

R1 = η q µ2
(
¯
p− p̄ b2

)
, (118)

S1 = 2 b1 β κ ε2 m̄ ω1 b1 +
η q µ2p̄ N ζ1

(
b22 + 1

)
(1 + b2)

2 b22

+ 2
β κ m̄

b1
, (119)

Q1 =
2β κ k2ϕ + β κ ε2k2Ψ ω1 b

2
1

2 b1
+

β κ ε k2Ψ |l11|
b1 b21

(120)

where ω1 =
∑N

i=2 l
2
i1 (1 + b1 |li1| (2β − |l1i|))
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