
HAL Id: hal-04482192
https://hal.science/hal-04482192v1

Submitted on 28 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Increasing Trust in the Open Source Supply Chain with
Reproducible Builds and Functional Package

Management
Julien Malka

To cite this version:
Julien Malka. Increasing Trust in the Open Source Supply Chain with Reproducible Builds and
Functional Package Management. 46th International Conference on Software Engineering (ICSE 2024)
- Doctoral Symposium (DS) Track, Apr 2024, Lisbonne, Portugal. �10.1145/3639478.3639806�. �hal-
04482192�

https://hal.science/hal-04482192v1
https://hal.archives-ouvertes.fr


Increasing Trust in the Open Source Supply Chain with
Reproducible Builds and Functional Package Management

Julien Malka
julien.malka@telecom-paris.fr

LTCI, Télécom Paris, Institut Polytechnique de Paris
Palaiseau, France

ABSTRACT
Functional package managers (FPMs) and reproducible builds (R-B)
are technologies and methodologies that are conceptually very
different from the traditional software deployment model, and that
have promising properties for software supply chain security. This
thesis aims to evaluate the impact of FMPs and R-B on the security
of the software supply chain and propose improvements to the FPM
model to further improve trust in the open source supply chain.

I INTRODUCTION
A big promise of Free and Open Source Software (FOSS) is that
it improves the control one have on the code running on their ma-
chine. Indeed, one of the strong perks of FOSS is its auditability:
one can read through the source of a given software component
and determine if its security is up to one’s standards. Auditabil-
ity of the source, however, is not enough to achieve trust in the
software running on a machine. Indeed, to go from source code
to an executable binary on the end-machine, code typically has to
be built and then distributed through a package manager, a chain
of processes and actors called the software supply chain. Once
distributed, it is difficult to have any guarantee that the binary has
actually been built with the audited code, or that it has not been
tampered with during its compilation or distribution.

From a traceability perspective, this means that it is difficult
to assess what a given system is actually made of: what are the
software components it is depending on? Which versions of these
dependencies are currently installed? These questions are becoming
of greater importance as the European Union and the USA are
pushing towards regulations to enforce increased traceability of
software [1, 14], including the distribution of a software bill of
material (SBOM), a structured list of components needed to build
and run a given application.

From a security perspective, all the steps taken from the source
code to the executable binary correspond to an increase of the attack
surface: it may be that the compiler used to create the executable
files is malicious [24], or that the machine used to build the software
is compromised. It may also be the case that one of the dependency
of the software is malicious or vulnerable. The distribution phase

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0502-1/24/04
https://doi.org/10.1145/3639478.3639806

also has potential for exposure: the package manager could for
example download from untrusted or compromised sources [7]. In
the last years, we have witnessed attacks of major impact targeting
the software supply chain (see SolarWinds [6] or XCodeGhost [26]
for example), raising the need for new methods to increase trust-
worthiness in the software supply chain.

II CONTEXT AND DEFINITIONS
Reproducible builds (R-B) is a term used to designate software com-
ponents for which performing a compilation twice in the same
environment results in the same (bit-by-bit identical) generated
artifacts. Reproducible builds may be used to reduce the trust one
puts in a binary distributor by having several parties reach con-
sensus on the result of a compilation step. Build reproducibility
is difficult to achieve in general because compiler outputs may be
influenced by the current date and time, the state of the filesystem,
random inputs or memory, etc. [16].

Functional package managers (FPMs) are implementations of a
software deployment model first introduced by Dolstra [11]. In
FPMs, packages are distributed as pure functions of their build-
and run-time dependencies, and are described by expressions writ-
ten in a domain-specific functional language. The functional soft-
ware deployment model has two major implementations: Nix [11]
and Guix [8]. While most software distributions are binary-based,
source-based distributions like FPMs, allow for compilation of
software to take place directly on the user’s machine, helping to
avoid a whole class of software supply chain vulnerabilities relative
to distribution. FPMs builds are done in a hermetic and sandboxed
environment containing only the build-time dependencies declared
in the recipe, allowing for a reproducible build environment: any
machine executing the same FPM build will perform the compila-
tion in an environment containing exactly the same dependencies
and toolchain. Reproducible build environments are a necessary
condition to obtain reproducible builds, but not a sufficient one: if
the build step itself in not deterministic, the build artifact will still
differ between two builds. Because it is not always realistic to build
packages on the user machine, FPMs also have a cache containing
the build artifacts for the packages in their repository that users
commonly rely on to avoid performing a lot of compilation on their
local machine. Using binary caches invalidates some of the benefits
of FPMs for the security of the software supply chain though; im-
proving the security model of binary caches is one of the research
questions of this PhD project.

III PROBLEM STATEMENT
The main objective of my PhD project is to increase trust in the
open source software supply chain using reproducible builds

https://orcid.org/0009-0008-9845-6300
https://doi.org/10.1145/3639478.3639806


ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Julien Malka

and functional package management. For this purpose, I will
first evaluate where and how these methodologies and technologies
can help, by comparing them to classical software deployment
models and establishing which classes of supply chain issues they
can eliminate. Then, based on that assessment, I will study how R-B
and FPMs can be improved to increase the safety of the open source
software supply chain. I’ll also assess whether these improvements
could benefit traditional (i.e., non FPM) package manager models.

IV RESEARCH QUESTIONS
As part of this thesis, I will study the following research questions:

RQ1: What are the comparative advantages of FPMs over
classical package deployment, in terms of software supply
chain failures?
— How do FPMs (using, or not, binary caches) compare to clas-

sical package managers against supply chain attack vectors
documented in the literature [15, 19]? What are the features
of FPMs that allow them to perform well against these attacks
and could some of them be added to other package managers?

— Do FPMs increase build reproducibility? What proportion of
packages in FPMs package repositories build reproducibly and
how does that proportion evolve over time?

— Can we identify and classify the patterns that do not allow for
a reproducible build, and are there general solutions to reach
better determinism in the build systems used?

RQ2:How can the FPMmodel be leveraged to further improve
the safety of the software supply chain?
— Binary caches greatly weaken the trust model of FPMs, forcing

users to trust the distributor of the binary.
What is the trust model for binary substitution using binary
caches and how could it be improved, in particular with de-
centralized binary distribution models [5]? Is it possible to
include traceable metadata in a build output that will increase
the trustworthiness of the distributed binary?

— Given that packages in Nix/Guix are pure functions from their
inputs, it is possible to build a static graph of all the build-time
and run-time dependencies of a given package.
Can we leverage the dependency graph created by FPMs to
increase software traceability? How precise are SBOMs gener-
ated using these dependency graphs?

V EXPECTED CONTRIBUTIONS
The expected contributions of this thesis are the following:

(1) A formal analysis of the security benefits of the functional
software deployment model including an analysis of the
distincts features of FPMs that have the most important
impact on software supply chain security;

(2) Propositions for improvements of the FPM model that have
positive impact of the software supply chain security;

(3) Derived from (1), propositions of amelioration of classical
package managers that can be cherry-picked from FPMs.

VI RESEARCH APPROACH
To address RQ1, I’ll first devise a model of package managers and
their features which I’ll compare with a selection of mainstream

package managers to validate that I’ve been able to capture their
main caracteristics. With my model, I’ll then perform an analysis of
the classical software supply chain attack vectors identified in the
literature [15, 19]. To analyse comparative performance on these at-
tack vectors of FPMs against classical package managers, I’ll assert
how features of my model relate to the identified attack vectors and
draw conclusions on the performance of each package manager
against them. In order to evaluate whether FPMs properties allow
them to have a large proportion of their packages building repro-
ducibly, I’ll perform empirical studies of the reproducibility over
time of Nix evaluation and builds on the Nix package repository.

The first part of the PhD thesis will allow for identification of
strengths and weaknesses of the FPM model when it comes to
software supply chain security. In a second part, I will use that
assessment to propose improvements to the FPM model to improve
trust in the software supply chain security. RQ2 identifies potential
ideas and work areas that could be explored around the binary
cache trust model or automatic SBOM generation, but outcomes
from the work described earlier may point to other directions.

VII RELATEDWORK
Most research on the topic of software supply chain security is fo-
cused on a posteriori analysis of software supply chain incidents and
mitigation proposals [12, 20, 21, 23, 27]. Some metastudies [15, 19]
have leveraged these works to give an overview and categorization
of real-world incidents that were used to create a database of unique
attack vectors and mitigating safeguards. I will use these datasets
as the basis for the performance analysis of FPMs against classical
attacks of the software supply chain (RQ1).

Substantial work is done by the reproducible builds group [4] to
track down non-reproducibility issues in compilers and fix them,
allowing for more reproducible packages in downstream software
distributions. Interest has also been picked up by some software
distributions, that increase monitoring for their packages repro-
ducibility: for example, Debian now claims that over 95% of its
35 000 packages are reproducibly built [3], while NixOS claims that
their minimal installation image is perfectly reproducible [2]. Yet, a
study [13] shows that there is no consensus among experts on the
reachability of the goal to make a mainstream software distribution
fully reproducible.

Functional package managers have their origin in academic re-
search on software deployment models [8, 11]. Since the original
works describing the functional software deployment model, re-
search in that area has mainly focused on the use of FPMs for
reproducible science [22, 25] and more particularly applications in
high performance computing [10], but recent work explores the
security of the Guix software supply chain [9] and introduces a
method for authenticating Guix commits when users perform an
upgrade. Some non-academic proof of concepts have also been
introduced in the Nix ecosystem around automatic SBOM genera-
tions [18] and binary cache distribution [5]. Additionally, functional
package distributions have been the stage for experiments around
full-source bootstrap [17], progressing towards a solution to the
trusting trust problem [24].



Increasing Trust in the Open Source Supply Chain with Reproducible Builds and Functional Package Management ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES
[1] 2022. Cyber Resilience Act | Shaping Europe’s digital future. https:

//web.archive.org/web/20231109015038/https://digital-strategy.ec.europa.eu/
en/library/cyber-resilience-act

[2] 2023. NixOS Reproducible Builds: minimal installation ISO successfully
independently rebuilt - Announcements - NixOS Discourse. https://web.archive.
org/web/20231030141336/https://discourse.nixos.org/t/nixos-reproducible-
builds-minimal-installation-iso-successfully-independently-rebuilt/34756

[3] 2023. Overview of various statistics about reproducible builds.
https://web.archive.org/web/20231029223006/https://tests.reproducible-
builds.org/debian/reproducible.html

[4] 2023. Reproducible Builds — a set of software development practices that create
an independently-verifiable path from source to binary code. https://web.archive.
org/web/20231113151826/https://reproducible-builds.org/

[5] 2023. Trustix - A newmodel for Nix binary substitutions. https://github.com/nix-
community/trustix original-date: 2020-12-03T15:30:40Z.

[6] Rahaf Alkhadra, Joud Abuzaid, Mariam AlShammari, and Nazeeruddin Moham-
mad. 2021. Solar Winds Hack: In-Depth Analysis and Countermeasures. In
2021 12th International Conference on Computing Communication and Networking
Technologies (ICCCNT). 1–7. https://doi.org/10.1109/ICCCNT51525.2021.9579611

[7] Justin Cappos, Justin Samuel, Scott M. Baker, and John H. Hartman. 2008. A
look in the mirror: attacks on package managers. In Proceedings of the 2008 ACM
Conference on Computer and Communications Security, CCS 2008, Alexandria,
Virginia, USA, October 27-31, 2008, Peng Ning, Paul F. Syverson, and Somesh Jha
(Eds.). ACM, 565–574. https://doi.org/10.1145/1455770.1455841

[8] Ludovic Courtès. 2013. Functional Package Management with Guix. https:
//doi.org/10.48550/arXiv.1305.4584 arXiv:1305.4584 [cs].

[9] Ludovic Courtès. 2022. Building a Secure Software Supply Chain with GNU
Guix. The Art, Science, and Engineering of Programming 7, 1 (June 2022), 1.
https://doi.org/10.22152/programming-journal.org/2023/7/1 arXiv:2206.14606
[cs].

[10] Ludovic Courtès and Ricardo Wurmus. 2015. Reproducible and User-Controlled
Software Environments in HPC with Guix. https://inria.hal.science/hal-01161771

[11] Eelco Dolstra. 2006. The purely functional software deployment model. Ph. D.
Dissertation. s.n., S.l. OCLC: 71702886.

[12] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner. 2021. Con-
tainingMalicious Package Updates in npmwith a Lightweight Permission System.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
1334–1346. https://doi.org/10.1109/ICSE43902.2021.00121 ISSN: 1558-1225.

[13] Marcel Fourné, Dominik Wermke, William Enck, Sascha Fahl, and Yasemin
Acar. 2023. It’s like flossing your teeth: On the Importance and Challenges
of Reproducible Builds for Software Supply Chain Security. https://teamusec.
de/publications/conf-oakland-fourne23/

[14] The White House. 2021. Executive Order on Improving the Nation’s Cybersecu-
rity. https://web.archive.org/web/20231114135442/https://www.whitehouse.gov/
briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-
the-nations-cybersecurity/

[15] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. 2022.
Taxonomy of Attacks on Open-Source Software Supply Chains. https:
//doi.org/10.48550/arXiv.2204.04008 arXiv:2204.04008 [cs].

[16] Chris Lamb and Stefano Zacchiroli. 2022. Reproducible Builds: Increasing the
Integrity of Software Supply Chains. IEEE Software 39, 2 (March 2022), 62–70.
https://doi.org/10.1109/MS.2021.3073045 Conference Name: IEEE Software.

[17] Janneke Nieuwenhuizen and Ludovic Courtès. 2023. The Full-
Source Bootstrap: Building from source all the way down. https:
//web.archive.org/web/20231112105303/https://guix.gnu.org/en/blog/2023/the-
full-source-bootstrap-building-from-source-all-the-way-down/

[18] nikstur. 2023. Bombon. https://github.com/nikstur/bombon original-date:
2022-08-18T23:06:53Z.

[19] Marc Ohm, Henrik Plate, Arnold Sykosch, andMichael Meier. 2020. Backstabber’s
Knife Collection: A Review of Open Source Software Supply Chain Attacks. In
Detection of Intrusions and Malware, and Vulnerability Assessment (Lecture Notes
in Computer Science), Clémentine Maurice, Leyla Bilge, Gianluca Stringhini, and
Nuno Neves (Eds.). Springer International Publishing, Cham, 23–43. https:
//doi.org/10.1007/978-3-030-52683-2_2

[20] Marc Ohm, Timo Pohl, and Felix Boes. 2023. You Can Run But You Can’t Hide:
Runtime Protection Against Malicious Package Updates For Node.js. https:
//doi.org/10.48550/arXiv.2305.19760 arXiv:2305.19760 [cs].

[21] Adriana Sejfia and Max Schäfer. 2022. Practical automated detection of malicious
npm packages. In Proceedings of the 44th International Conference on Software
Engineering (ICSE ’22). Association for Computing Machinery, New York, NY,
USA, 1681–1692. https://doi.org/10.1145/3510003.3510104

[22] Francesco Strozzi, Roel Janssen, Ricardo Wurmus, Michael R. Crusoe, George
Githinji, Paolo Di Tommaso, Dominique Belhachemi, Steffen Möller, Geert Smant,
Joep de Ligt, and Pjotr Prins. 2019. Scalable Workflows and Reproducible Data
Analysis for Genomics. In Evolutionary Genomics: Statistical and Computational
Methods, Maria Anisimova (Ed.). Springer, New York, NY, 723–745. https://doi.

org/10.1007/978-1-4939-9074-0_24
[23] Matthew Taylor, Ruturaj K. Vaidya, Drew Davidson, Lorenzo De Carli, and

Vaibhav Rastogi. 2020. SpellBound: Defending Against Package Typosquatting.
https://doi.org/10.48550/arXiv.2003.03471 arXiv:2003.03471 [cs].

[24] Ken Thompson. 1984. Reflections on Trusting Trust. Commun. ACM 27, 8 (1984),
761–763. https://doi.org/10.1145/358198.358210

[25] Ricardo Wurmus, Bora Uyar, Brendan Osberg, Vedran Franke, Alexander Gosd-
schan, Katarzyna Wreczycka, Jonathan Ronen, and Altuna Akalin. 2018. PiGx:
reproducible genomics analysis pipelines with GNU Guix. GigaScience 7, 12 (Dec.
2018), giy123. https://doi.org/10.1093/gigascience/giy123

[26] Claud Xiao. 2015. Novel Malware XcodeGhost Modifies Xcode, Infects Apple iOS
Apps and Hits App Store. https://web.archive.org/web/20230920153656/https:
//unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-
infects-apple-ios-apps-and-hits-app-store/

[27] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Small World with High Risks: A Study of Security Threats in the npm
Ecosystem. 995–1010. https://www.usenix.org/conference/usenixsecurity19/
presentation/zimmerman

https://web.archive.org/web/20231109015038/https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://web.archive.org/web/20231109015038/https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://web.archive.org/web/20231109015038/https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://web.archive.org/web/20231030141336/https://discourse.nixos.org/t/nixos-reproducible-builds-minimal-installation-iso-successfully-independently-rebuilt/34756
https://web.archive.org/web/20231030141336/https://discourse.nixos.org/t/nixos-reproducible-builds-minimal-installation-iso-successfully-independently-rebuilt/34756
https://web.archive.org/web/20231030141336/https://discourse.nixos.org/t/nixos-reproducible-builds-minimal-installation-iso-successfully-independently-rebuilt/34756
https://web.archive.org/web/20231029223006/https://tests.reproducible-builds.org/debian/reproducible.html
https://web.archive.org/web/20231029223006/https://tests.reproducible-builds.org/debian/reproducible.html
https://web.archive.org/web/20231113151826/https://reproducible-builds.org/
https://web.archive.org/web/20231113151826/https://reproducible-builds.org/
https://github.com/nix-community/trustix
https://github.com/nix-community/trustix
https://doi.org/10.1109/ICCCNT51525.2021.9579611
https://doi.org/10.1145/1455770.1455841
https://doi.org/10.48550/arXiv.1305.4584
https://doi.org/10.48550/arXiv.1305.4584
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://inria.hal.science/hal-01161771
https://doi.org/10.1109/ICSE43902.2021.00121
https://teamusec.de/publications/conf-oakland-fourne23/
https://teamusec.de/publications/conf-oakland-fourne23/
https://web.archive.org/web/20231114135442/https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://web.archive.org/web/20231114135442/https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://web.archive.org/web/20231114135442/https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://doi.org/10.48550/arXiv.2204.04008
https://doi.org/10.48550/arXiv.2204.04008
https://doi.org/10.1109/MS.2021.3073045
https://web.archive.org/web/20231112105303/https://guix.gnu.org/en/blog/2023/the-full-source-bootstrap-building-from-source-all-the-way-down/
https://web.archive.org/web/20231112105303/https://guix.gnu.org/en/blog/2023/the-full-source-bootstrap-building-from-source-all-the-way-down/
https://web.archive.org/web/20231112105303/https://guix.gnu.org/en/blog/2023/the-full-source-bootstrap-building-from-source-all-the-way-down/
https://github.com/nikstur/bombon
https://doi.org/10.1007/978-3-030-52683-2_2
https://doi.org/10.1007/978-3-030-52683-2_2
https://doi.org/10.48550/arXiv.2305.19760
https://doi.org/10.48550/arXiv.2305.19760
https://doi.org/10.1145/3510003.3510104
https://doi.org/10.1007/978-1-4939-9074-0_24
https://doi.org/10.1007/978-1-4939-9074-0_24
https://doi.org/10.48550/arXiv.2003.03471
https://doi.org/10.1145/358198.358210
https://doi.org/10.1093/gigascience/giy123
https://web.archive.org/web/20230920153656/https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://web.archive.org/web/20230920153656/https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://web.archive.org/web/20230920153656/https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://www.usenix.org/conference/usenixsecurity19/presentation/zimmerman
https://www.usenix.org/conference/usenixsecurity19/presentation/zimmerman

	Abstract
	I Introduction
	II Context and definitions
	III Problem statement
	IV Research questions
	V Expected contributions
	VI Research approach
	VII Related work
	References

