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1 Goals of the research

For programming education to become truly accessible to any student, whether
they be primary, mid school or university students, students from less privileged
socio-economic or cultural backgrounds, female students (an underrepresented
audience for computer science studies), adults returning to study, or future infor-
matics teachers themselves, any tool that can help students and their teachers to
lower the bar to access and complete these studies is worth exploring. Of partic-
ular interest are automated teaching tools adapted to the particular needs, skills
and pace of each individual student. Ensuring a good informatics background
to students also depends a lot on the motivation, quality and background of
the teachers; having tools that can help less skilled teachers provide accurate
automated feedback to their students can be very helpful [13]. Such automated
tools are also beneficial to allow scaling up to larger student audiences, as is
increasingly the case for first year computer science courses, while still being
able to guarantee an individualised quality feedback.

Teaching something new to students is at least partly a matter of informing
them that some of what they think they know just isn’t so [34]. Identifying and
addressing students’ misconceptions should be a key part of computer science
teachers competences [12][30]. Students experience many difficulties for various
reasons including unfamiliarity of syntax, incomplete prior knowledge, miscon-
ceptions, and lack of problem-solving strategies. Knowing what misconceptions
students hold in programming helps educators offer appropriate teaching meth-
ods to correct those erroneous conceptions. In this project we will study not
only how to discover and encode these typical errors and what misconceptions
underly them, but also how to extend existing autograders to provide automated
feedback to students on their false conceptions and how to reduce, overcome and
correct them.

Existing classifications of common misconceptions by novice programmers
(cf. §2) serve as a starting point to build supportive tools that use this infor-
mation to react to student’s (wrong) behaviours and provide feedback tailored
to address suspected misconceptions. Exploring the technology, building proto-
types of and evaluating such advanced automated teaching tools will be the main
goal of this research project. We will first complete and improve upon existing
classifications, by applying pattern mining and program analysis to large code
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repositories of student submissions we have at our disposition [23], as well as
by collecting new data from new generations of students. This classification has
been used in a first tool that we developed [20]. Our tools creates unit test to
detect those coding flaws classified before. It help create more advanced feed-
back for the student that make common mistakes in the code submitted on the
autograder.

2 State of the art

Many authors have studied students’ misconceptions and other difficulties in
introductory programming [30]. Chiodini proposes a curated inventory of pro-
gramming language misconceptions [5]; Caceffo proposes the creation of a con-
cept inventory based on such misconceptions [2]; Sorva presents a catalogue
of misconceptions, drawn through exploratory research from actual novice pro-
grammers’ misconceptions [32]; and Grover also categorises common mistakes
and misconceptions made by novice programmers [12]. Several other authors
have studied possible misconceptions and types of errors made by novice stu-
dents in introductory programming education as well [1][31][17][6][18][35][19][33].
Such taxonomies will serve as our basis to build supportive tools that use this in-
formation to react to student’s (wrong) behaviours and provide feedback tailored
to address suspected misconceptions.

Research on source code mining [24][29] has been explored to discover inter-
esting structural regularities [21], coding idioms [28], API usage patterns [36],
code clones [8], bugs [4], crosscutting concerns [3], systematic changes [11][26].
refactoring opportunities, etc.

In a recent article [23] which formed the seed for the current research project,
we conducted an initial experiment where we used a frequent subtree pattern
mining algorithm to mine for interesting good, bad or ugly coding idioms made
by over 500 undergraduate students from their exam submissions to an introduc-
tory programming course. We did so by looking for patterns that distinguished
positive examples, corresponding to the more correct answers to each question,
from negative examples, corresponding to solutions that failed the question. That
paper was a first promising exploratory step to prove the potential of using this
technique to find possible misconceptions (corresponding to the bad coding id-
ioms that were discovered).

Many automatic graders [14][16], autograders in short, have been proposed
to grade programs submitted by students, either to scale up to larger audi-
ences through automation [25][7][10] or to provide alternative forms of feedback
[27][22][9][15]. In this project we will explore how extend the INGInious auto-
grader [10] with information on mined misconceptions to tell students not only
where their code is wrong and what tests it doesn’t pass, but also why it is wrong
and how it could be improved. Even students who solved a question correctly
could receive recommendations on how to improve their coding skills.
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3 Research project

In this research project we will investigate the following research questions:

1. What are the typical programming mistakes made by novice programmers?
2. What misconceptions do these typical mistakes correspond to?
3. What recommendations can help students overcome such misconceptions?
4. How to automate the detection of such misconceptions and their remedia-

tion?
5. How do such automated tools help students and their teachers?

To answer the first research questions, during my first year as a PhD student,, we
used a pattern miner to detect common mistakes in first year computer science
exam.

The repository we used is the set of programs submitted by students fol-
lowing the first-year introductory programming course for computer scientists
and engineers at UCLouvain. This course is followed by over 700 students yearly
and makes use of an autograder which collects and corrects students’ programs
throughout the year and during exam sessions. The course has been running for
4 years using Python as programming language and before that using the Java
language. All this data is available for analysis. For all the submissions we even
have a trace of all subsequent submissions each student made per question. As
outcome of this analysis, we found recurring errors and misconceptions.

For the second research question, research literature contains a vast body
of knowledge on programming misconceptions, including several classifications
and taxonomies of typical programming errors and their corresponding miscon-
ceptions. However, many of those are still incomplete or cover only some of the
programming concepts for some programming languages. We used these classi-
fications as a starting point on which to build our own.

Research questions 3 and 4 are dedicated to the development of our auto-
mated tool support. For this we will build upon and extend the existing INGIn-
ious autograder that was developed at our university. Since it was developed
in house, the necessary expertise is available to extend it. As the autograder is
already used by our students, the developed tool support will be integrated in
an environment that they are already familiar with.

I have integrated a new feature into this autograders to identify a wider range
of errors beyond just syntax and input-output issues. This includes detecting
conceptual errors, semantic errors, and poor coding practices [20].

Following this initial investigation, during this second year, we have recog-
nized the potential benefit of introducing a user-friendly language for defining
code patterns that can be identified within students’ work. This development
aims to assist educators who may not possess an extensive background in com-
puter science. Our ongoing research on this topic will be the subject of a forth-
coming paper.

A quantitative evaluations has been conducted by comparing the perfor-
mance of students using our tools support with those that are not. We also want
to evaluate their performance when using our tools as compared to using similar
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tools if they exist. We will also assess whether our automated tool support is
helpful for students and their teachers is by evaluating it through them. Quali-
tative evaluations will be conducted through interviews with volunteering tutors
and students involved in our first-year programming course. Their feedback will
help us understand whether the tool meets its objectives and steer its further
development and improvement if not. Such evaluations will happen at regular
intervals throughout the project rather than only at the end.

We also want to try to use more variety of techniques (such as formal concept
analysis, association rule mining, frequent subtree mining and clustering) to
mine for good or bad coding idioms in student code, in order to reveal potential
misconceptions.

Another outcome will be a comparative study of what techniques or combi-
nations of techniques prove most useful to mine for such errors and idioms, thus
contributing to the growing research domain of mining software repositories.

This entails conducting iterative research in which we aim to uncover in-
creasing numbers of misconceptions through techniques like pattern mining and
others. Subsequently, we will employ these methods to develop tools and evaluate
their effectiveness with our students on an annual basis.
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