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eMob-Twin: A Digital Twin for
Electromobility Flexibility Forecast *

Carlos Canudas-de-Wit, Baptiste Lefeuvre

CNRS, GIPSA-Lab, Grenoble, France
<carlos.canudas-de-wit>, <baptiste.lefeuvre> Qgipsa-lab.fr

Abstract: As environmental concerns grow, Electric Vehicles (EVs) are becoming essential for
sustainable urban traffic. Some countries plan to phase out conventional vehicles to cut carbon
emissions. Yet, challenges include a lack of charging infrastructure and potential strain on power
networks. EVs could benefit by integrating Vehicle-to-Grid connections. To leverage e-flexibility,
modeling EV power requirements and mobility patterns is crucial. The paper presents eMob-
Twin, a digital twin, combining urban EV mobility with an energy model, aiding simulations
with fine granularity including charging stations, its potential connections with the Grid and
electricity markets. We present details of the structure and operation of eMob-Twin and some
examples of their utility in connection with user cases such as impact of the EVs penetration

rate, and optimal locations of charge stations.

Keywords: Electromobility, Digital-Twins, Mobility, EVs, Simulation tools.

1. INTRODUCTION

Although the power sector is managing to quickly reduce
its carbon footprint, the transport sector is lagging far
behind the pledges made by all the countries represented
at successive IPCC COPs. In 2023, barely 18 % of the
77 million light-duty vehicles sold worldwide were fully
electric vehicles (EVs in short). By 2030, however, EVs
will account for 70% of all the vehicles sold, according to
the EU roadmap (the Fit for 55 plan), which envisions a
ban on the sale of new petrol and diesel cars as early as
2035. Contrary to what is generally thought to be the case,
electromobility (e-mobility), i.e., the electrification of the
transport system, will not necessarily be a hurdle to the
development of future electric power systems, where most
synchronous generators will be replaced by utility-scale
and behind-the-meter renewable energy sources (RES).
Massive amounts of daily and seasonal storage capacity
will be required in the medium-term future in order to
properly compensate for the lack of RES dispatchability.

On the daily horizon, a large portion of this storage capac-
ity could be provided by EVs (here named e-flexibility),
if the future vehicle-to-grid (V2G) technology is duly de-
veloped and managed to meet the needs of the moment.
The electrification of transport could therefore help to in-
tegrate much larger amounts of renewables at a lower cost,
which is crucial to achieving Europe’s long-awaited energy
independence. One of the main potential barriers to fully
exploit the e-flexibility potential available (by optimizing
the infrastructure, and developing new EV services and
business strategies), is the lack of tools and methods for
forecasting EV fleets’ e-flexibility in both time and space,
in terms of hours and kilometers. This means being able to

* Funds from PoC eMob-Twin 2023-24, and from the ERC-AdG
Scale-Free Control for Complex Physical Network Systems. Scale-
FreeBack, Canudas-de-Wit (2017-23)

forecast when and where EVs are going to move, how their
State of Charge (SoC) is evolving, and how they going to
interact with the infrastructure and the power grid.

2. GOALS AND FUNCTIONALITIES

eMob-Twin results for leveraging the results of the FRC-
AdG Scale-FreeBack Canudas-de-Wit (2017-23), resulting
in e-mobility simulation tool driven by digital twin tech-
nology. It is tailored for the Grenoble metropolitan area,
but a new version under development, will be able to
capture any other metropolitan city in France, and will
include auto-calibration features as well. It addresess maily
EVs mobility and tehir state of charge, but also includes
multi-power charging stations. Companies, stakeholders,
and electricity markets can use eMob-Twin for various
purposes such as forecasting, analysis, and unlocking EV
flexibility. Examples of such potential uses are:

e Predicting the density and state of charge (SoC) of
electric vehicles in a specific area for the upcoming
week. Users of eMob-Twin can adjust the penetration
rate of EVs, allowing them to assess whether the
existing public charging stations are sufficient in
both quantity and power to meet the overall energy
charging demands of the EVs..

e Predicting energy demands for electric vehicles in a
specific area enables Transmission System Operators
(TSO) to identify potential hot spots where energy
congestion is likely to occur in the power grid,

e Optimal placement and power-capacity dimension of
charging stations. eMob-Twin users may be able to
set the number of charging stations required, and the
interface will help to compute their optimal locations
and power-capacity,

e Determining the ideal locations and power capac-
ity for charging stations. Users of eMob-Twin can
specify the desired number of charging stations, and



the interface will assist in calculating their optimal
placement and power capacity.

e Evaluation of charging strategies for ride-hailing fleet
operators. Operators will be able to compare the cost
of charging and profit from being able to serve the
transportation demand using various strategies, etc.

3. MATHEMATICS MODELS

The EV flexibility model in eMob-Twin is based on the
results from ERC AdG Scale-FreeBack, which provides a
large-scale mobility model describing daily movements in
an urban network. This model generates a dynamic bipar-
tite graph representing origins and destinations, utilizing
an origin/destination matrix with connection directions,
weights, and temporal profiles. Nonlinear ordinary differ-
ential equations (ODEs) describe aggregated anonymized
movements, including EV mobility with battery charg-
ing/discharging dynamics (State-of-Charge or SoC).

The model incorporates charging station models of varying
power levels with states including the number of EVs at
each node (N;(t)), EV flow between nodes ¢; ;(t) [veh/h],
normalized average SoC of EVs at each node ¢;(t) € [0, 1],
and total energy in EVs at a node F;(t).

In what follows we provide a description of the general
functionalities of the model shown by the block diagram in
Fig. 1. For a more detailed description, refer to Rodriguez-
Vega et al. (2023).

8.1 People mobility module

To model the people’s mobility we use the model intro-
duced in Niazi et al. (2021), and extended and applied
to the Grenoble urban metropolitan area in Pratap et al.
(2022), which is based on a set of coupled conservation
Ordinary Differential Equations (ODEs) of the form

NI =D (@) — ¢l 5(2)) 1)
J
where Nih corresponds to the number of people in node 1,
and qblh) ; 1s the flow of people from node ¢ to node j.

3.2 Fastest-path graph module

This module generates a graph, denoted as G, wherein
each pairing of origin node ¢ and destination node j spec-
ifies the path topology ( in the z — y coordinates). These
paths are designed to minimize the free-flow traveling time
for vehicles moving between nodes ¢ and j. Subsequently,
the path topology information is utilized in the charging
station module to identify the public chargers utilized
by electric vehicles (EVs) along the path. Moreover, the
module calculates various metrics for each path, including
the length /¢; ;, the average vehicle speed v;;, and the
average road inclination 6; ;.

3.8 Mode choice module

To shift from conventional mobility to electric vehicle
(EV) mobility, it is essential to initially determine the
proportion of individuals utilizing private cars. This task,
known as modal choice analysis, has been extensively
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Fig. 1. The Electromobility Model consists of seven modules:
people mobility, mode choice, EVs mobility, fastest-path graph,
power losses, charging station model, and State-of-Charge.
These modules collectively compute node populations, flow
between nodes, EV numbers, EV flow, paths for EVs, power
losses during trips, power injection at charging stations, and
aggregated State-of-Charge and energy of EVs at each node.
Figure taken from from Rodriguez-Vega et al. (2023)

explored in existing literature, as referenced in Bouscasse
et al. (2019); Mondal and Bhat (2022). In this context, we
employ the well-established logit model, which assesses the
likelihood that an individual opts for their private vehicle
over public transport, in terms of the probability p<" (At),
depending on the traveling time difference between public
transport and private cars, At.

3.4 EVs mobility module

Once the number of cars performing each trip is known,
the corresponding number of EVs, N;, can be computed
using the penetration rate 7 from the mass conservation

property, .
Ni(t) =Y (65(t) = ¢i,5(1) (2)

J

i, (t) = " (At )y 5 (1) (3)

3.5 Power loss module

where

The total power lost during the EVs displacement from
node 7 to j is described by:

AP, j = ¢i;E; (4)
where Ef ; 1s the average energy lost per vehicle Fiori et al.
(2016),

Eig = EF(éhj,vi,j,Hm) + EY(vi,j) + B (4 j,vi.5) (5)
where the first term, EF, represents the losses due to
external forces from i + j, The second term, Ev, is
the kinetic energy needed to reach a speed v without
consideration of energy losses, and the last term, E*“*
is the energy used by auxiliary vehicle systems (e.g. air
conditioning).

8.6 Charging station module

To model the power injected by charging stations, we
consider three types of chargers: a) Home Chargers (HC),
b) Office Chargers (OC), and ¢) Public Chargers (PC).
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Fig. 2. Example with 2 OD paths and 2 PC from Rodriguez-Vega
et al. (2023). The arrows from the PC to the path indicate if
the PC supplies power to EVs making this trip according to the
“attraction” between the PC and the path. 6;% is the distance
between PC k and the path (¢, j), and Zf’j is the distance from
i to k along the path towards j.

Home chargers These chargers are only present at origin
nodes (residential) and their injected power, P2 is mod-
eled as the product of the the average power per charger,
Prrd, times the number of EVs at home during the night
that are willing to charge when their power is below a
given threshold (i.e. min(N;, N9)).

Office chargers  These chargers are available at destina-
tion nodes at workplaces and shopping areas. The supply
power from OC, P]»OC, follows similar model as HC, with

P35 being the average cha.urger_ power, and NV joc is the
number or chargers at location j.

Public access chargers  The charging stations, known as
PC (Public Chargers), serve vehicles in transit between
nodes. The specific location and average power per station
in the area are provided. Since PC locations are not nec-
essarily directly aligned with a specific Origin-Destination
(OD) link but are situated in their vicinity, it becomes
necessary to define how these charging stations contribute
to supplying power to each link in the graph.

To address this, we initially determine which PC will
furnish power to each link in the graph using a gravity
attraction law, as outlined in Barbosa et al. (2018). This
law takes into account the shortest distance between the
geographic location of the PC and the link’s graph on
one hand, and the average power supply capacity of each
station on the other. The underlying rationale for this
model is that drivers are more likely to be ”attracted”
to nearby PC locations with ample power availability.
This attraction ”force” of station k to the link (i),
is denoted as Al ';» and depends on: the average power
charging station capacity,P;"?, the distance between node
¢ and the closest point to PC k along the path (4, j), and
the distance that people are willing to deviate from their
original destination path to go for a charge. We consider
that a given PC k is connected to (4, j) if the normalized
attraction law is larger than a given threshold.

Once the CS is declared to be connected to a given link,
the power provided by this station to the identified link is

computed by using a demand/supply rule, of the form

Pi]f]*mln(vavsk ) (6)
where the demand D specifies the maximum power that
the flow of vehicles in the route can receive, and the supply
S specifies how much power can be provided by the PC.
If it is connected to multiple routes, the maximum power
is divided proportionally according to the energy needs of
each route,

Power in each node from all chargers contributions  For
each origin node i, the total received power from charging
is the sum of the contributions from home chargers and
public chargers located in the D/O paths,

O +y > P (7)

7 kEQ(jvi)

P

and for each destination node j the total received power
from charging is the sum of the contributions from office
chargers and public chargers located in the O/D paths,

PPS(6)=PPO(0) +) Y P (8)

1 KEQy )

3.7 State-of-Charge module

The dynamics of the energy stored by EVs in node ¢ is
given by a energy-balance law

Ei(t) = PES(t) Z (Pin(t

where Pm is the power ﬂow entering node 4 from j, P"“t
is the power flow ex1t1ng node i towards j. The energy tn
each node is given in terms of the SoC:

- Pj'(t) (9)

E;i(t) = CN;(t)ei(t) (10)
and the power transported out by EVs is
P (1) = Coij(Dei(t). (11)

The power entering each node takes into account the link
losses
(12)

in __ pout __ .
Py =P — ARy

Note that from (10),
Ei = C(Ni{:‘i + szfz)
Substitution of (2), (4), (11), (12), and (13

rearranging terms gives
AP;;
<¢j z i) - Cjﬂ>

4. MODEL PARAMETER CALIBRATION

(13)
) into (9) and

1 PCS
= —

(14)

The model is calibrated for the Grenoble metropolitan
area in the French Alps, whose boundaries are shown
in Fig. 3. Highlighted in orange are the 60 origin nodes
representing the municipalities. Highlighted in purple are
the 374 destination nodes. The population in the area is
approximately 470.000 people. Calibration is performed
using data sources and algorithms exclusively from public
government agencies and open source repositories, see
Table 1 in Appendix 7



Fig. 3. Layout of the Grenoble metropolitan area. Orange circles
represent origin nodes; purple circles are destination nodes.

4.1 Human mobility calibration

The calibration process for the people mobility module is
extensively explained in Pratap et al. (2022), relying solely
on open data. While we omit specific details regarding this
portion of the model calibration here, we provide a more
in-depth description below, focusing on the calibration
process of the others modules of the electric vehicles
models components.

4.2 EVs mobility calibration

Paths attributes. To compute the road-paths between
origin and destination nodes, we compute the road network
graph using the fastest-path algorithm OSMnx with input
data from OpenStreetMaps. The paths are given as a
set of point coordinates, and the lengths and traveling
times between consecutive points are also provided by the
algorithm. Node elevations were obtained from MERIT-
DEM. We used the road network graph and the fastest-
path algorithm implemented in OSMnx using the free-flow
traveling time.

Mode choice parameters are computed from the house-
hold survey EMD2010. This dataset provides the number
of people using car or public transport according to: the
origin and destination sectors, and destination class. While
the EMD2010 sectors do not precisely align with the nodes
in the electromobility model, calibrated parameters from
EMD2010 will be applied to the electromobility model
as both consider the same population. For sample n in
EMD2010, pS*" represents the proportion of surveyed in-

n
dividuals using cars for an OD pair and destination class.

The average travel time difference At,, is computed using
OSMnx for cars and OpenTripPlanner for public transport

Number of EVs by municipality The current distribu-
tion of EVs number and penetration rate by municipality
can be seen in Fig. 10, obtained from the Ministry of
Ecological Transition. The city of Grenoble, however, has
a lower penetration rate, as it contains a larger vehicle
population. The northeast axis, although having fewer
total vehicles, have a similar number of EVs, as evidenced
by a higher penetration rate. It can be seen that some areas
in the north have very high penetration rates compared to
the rest of the map. However, these areas have very few
vehicles in total, so the high penetration values might be
artificially high.

Fig. 4. Spatial distribution of the penetration rate, and numbers of
EVs by municipality (2023).

Charge stations data. The locations of the Public
chargers are obtained from OpenChargeMap. To deter-
mine which PC contributes to each link, we use the
process described in Section 3.6 with the paths com-
puted using OSMnx. To estimate the number of Home
Chargers in each municipality, we use parking data from
EMD2010, which provides the proportion of vehicles park-
ing overnight in private garages, shared parking, or road-
side spaces. We assume that EVs with access to a private
garage also have access to a home charger. Therefore,
we calculate the number of home chargers by multiplying
the proportion of vehicles parked in garages by the total
number of registered EVs in municipality. Finally, The
average power per home charger is obtained from ENEDIS.
Estimation of the number of Office chargers and its related
power is done by using the data provided by ENEDIS,
which specifies the ratio between the number of PC and
the number OC at a national level. As the number of PC
in the area is known, the total number of OC is calculated
proportionally. For each destination node, the number of
OC is distributed in proportion to the node capacity.

5. SOFTWARE DESCRIPTION

This section describes the software from two distinct
perspectives: the user interface and the software technical
architecture.

5.1 User interface

The eMob-Twin software interface has two main compo-
nents: a map centered on Grenoble metropolis showing
various geographical data, and the simulation parameter
selection and graph display.



Fig. 5. EMob-Twin map of Grenobla area, with the layer selection
buttons highlighted in red.

The map component of the interface is inherently linked to
a series of layer selection buttons (shown in the red square
in the Fig. 5). These buttons allow the user to choose which
static data he wishes to display. Available layers/buttons
are:

e Borders: Displays division borders, with divisions
consisting of all communes in the Grenoble metropoli-
tan area.

e Nodes: Shows locations of O/D nodes, with their
types and capacities. Destination nodes are orga-
nized per categories (schools, hospitals, workplaces,
shopping centers, and leisure spots). Users can select
node types and choose to display all nodes or only
aggregated nodes that will ultimately be used by the
model. You can see these aggregated nodes on Fig. 3.

e Population Distribution: Presents a heatmap de-
picting population density across the Grenoble region.

e O/D Graph: Illustrates the Origin/Destination peo-
ple mobility matrix, showcasing links between origin
and destinations nodes and their respective daily
mean flow, with link importance indicated by a color
gradient, as shown on Fig. 6.

e Charging Stations: Displays the location and type
of charging stations, including public and private sta-
tions at work and home, with tooltips providing addi-
tional station-specific data (CSO, power per chargers,
etc.). The different type of CS are displayed in Fig. 7.

e Penetration Rate: Presents a choropleth map in-
dicating the EVs penetration rate in each commune,
with color gradients representing rates from 0% to
5%.

e Number of EVs: Shows the absolute number of
electric vehicles in each commune.

A large tab (at the left in Fig. 8) enables users to define
input parameters for simulations from a preset list. Main
parameters include average penetration rate [0-100%],
simulation duration in weeks, initial state of charge [0-

Fig. 6. EMob-Twin O/D network as shown in the interface

100%], and public charging station occupancy, crucial for
testing various scenarios. Additional parameters include
multiplicative factors on charger numbers and average
charger power at home and work, allowing for further
scenario exploration.

Fig. 7. EMob-Twin platform visualization of charging stations
locations around the Grenoble area

Upon completion of the simulation, the interface displays
model outputs through a few data visualizations. Four
plots depict this simulation output data, with time in days
as the x-axis. (Fig. 9)

Visualizations include:

e State-of-Charge (SoC) of EVs: Sum of energy in
Wh over time or mean SoC € [0, 1] of all EVs.

e Power Provided by Charging Stations: Total
power provided at each time in W or total cumulative
energy provided in Wh.

A red vertical bar, moving along the x-axis, indicates
the current time for geographic data visualizations. In
the same manner, users can interact with a timerange to



Fig. 8. EMob-Twin parameters selection for simulation

animate time-dependent data visualization on the map.
Indeed, the most significant data visualization occurs
directly on the Grenoble map. It includes:

e Energy Distribution heatmap: Shows energy dis-
tribution of energy stored in all EV batteries

e Energy distribition choropleth: Show energey
distribution aggregated by division

e Mean State of Charge choropleth: Displays mean
state of charge of EVs aggregated by division

These visualizations provide comprehensive insights into
model outputs and facilitate scenario exploration and
analysis.

Fig. 9. EMob-Twin simulation results as shown in the interface
5.2 Software architecture

The model relies heavily on actual static data for parame-
ter calibration, sourced from various open data repositories
accessible online, primarily governmental platforms and
local organizations. This data encompasses global mobil-
ity patterns and electric vehicle-specific metrics such as
EV distribution per region and detailed information on
public charging stations. The diversity of data sources is
illustrated in Tab. 1, necessitating an initial preprocessing
step as part of our data mining process.

Once cleaned, the data for the Grenoble area is statically
stored in optimal solutions tailored to each data type,
including geographic, time-sensitive, and statistical data,
primarily in static files of various formats (geojson, json,
csv, ete.). This static source of truth serves as a readily
accessible foundation for our model.

The model itself is implemented as a Python library,
leveraging both Python and C, designed for ease of use and

Fig. 10. EMob-Twin technical components

extensively documented. Its internal structure comprises
three model layers housing the seven submodules outlined
in Fig. 1, intricately interconnected to compute the model
output.

e The EVs mobility layer utilizes the people mobility
and mode choice modules to determine the number
of EVs at each node and the flow of vehicles along
links over time.

e The charging stations layer utilizes EV mobility data,
alongside details of public and private charging sta-
tions and user behavior, to forecast EV charging
demand over time.

e The EV state-of-charge layer leverages the outputs
of the previous layers, combined with road network
topology, to calculate the final state of charge for
vehicles across all links and nodes throughout the day.

For the eMob software, which is computationally intensive,
the model runs on a backend server. A task queue, built
using Celery - a distributed task queue framework - and
Redis — an in-memory data structure store serving as a
message broker — manages tasks efficiently.

Communication between the task queue and the front
end of the software is facilitated by Flask, a Python
web framework. Flask handles incoming web requests
from users, such as launching simulations with specified
parameters, by managing the model in the task queue,
executing simulations, collecting results, and responding
to user requests with simulation outcomes for display. Due
to the duration of simulations, which can last several tens
of seconds, simulations are run asynchronously, with the
front end making periodic requests to track simulation
progress and retrieve final outputs upon completion.

The front end of the interface, also served by the
Flask server, is constructed using HTML and CSS for
static components and JavaScript for interactive features.
Geographic information and maps are displayed using
the Leaflet library, which dynamically retrieves Open-
StreetMap (OSM) data.

6. USER CASES AND EXAMPLES
6.1 Sustainability
In the context of electric vehicles, sustainability refers to

the ability to develop and maintain a charging infrastruc-
ture that meets the increasing demand for electric vehicle



Fig. 11. Evolution of the mean state of charge with varying EV
changing penetration rates, from Rodriguez-Vega et al. (2023)

charging. using eMob-Twin, we can examine the sustain-
ability existing charging station network in Grenoble. The
goal is to identify the critical electric vehicles penetration
rate, denoted as n*, at which the charging station network
becomes incapable of satisfying the energy requirements
of EVs, indicating a phase transition. For that, we define
the overall average SoC of all EVs in the network as
2 Ni(t)ei(t)

W="SNo

Fig. 11 shows the trajectories of &(¢) from an initial
condition £(0) = 0.4, where each color corresponds to a
different 1. We note three cases: a) for n < 0.22, £ increases
and then remains around a value close to 1; b) for p > 0.22,
&(t) decreases until vehicles are discharged; and ¢) for n =
0.22, &(t) oscillates around the initial value. Thus, there
exists a phase-transition value n* = 0.22 that differentiates
between sustainable charging and discharging of vehicles.

(15)

Fig. 12. Behavior of the average SoC trajectories according to the
penetration rate and initial conditions. The black line is an
attractive invariant set, as all points move vertically toward
the line. Points in the red region will move towards 0. From
Rodriguez-Vega et al. (2023)

Figure 12 displays the phase portrait of £(¢) versus n. The
plot is segmented into distinct regions based on trajectory
behavior. The black band indicate an attractive invariant
set; initial conditions outside this band converge toward
it. Arrows indicate trajectory directions for trajectories
reaching the invariant set. Three main sub-regions are
identified: green sub-region describes the sustainability
domain; red region the unsustainable one, and the blue
region is the transition one.

6.2 Optimal CS placement

The optimal placement problems can be formulated as fol-
lows. First,complete electromobility model is be compactly
written as

N =T¢(t), (16)
e=f(N(t), (1), e(t),u) = f(t,e,u), (17)

where u here represent the vector of the CS locations to
be optimized. The dynamic of £(t) can be approximated
using the Taylor expansion of f around (N, ¢, &) as

LD~ F(N.bE) ). (1)
where N, ¢,&, are week averaged variables of N, ¢,¢,
respectively: N = %ftth N(r)dr,, ¢ = %f;T o(T)dr,

Et) =L [! ., F(N,¢,e,u)dr.

The optimal CS placement problem is then formulated as
finding the solution of the above optimizatoin problem
i J(e

min (6_ ﬂf)

st F(N,¢,&%u) =0,
where J(e,u) is the cost function considering profits for
the charge stations operators, user satisfaction, and social
equity,

(19)

J(e,u) = Ji(e,u) + Jo(e,u) + J3(u),

—_— Y= =

profit satisfaction  equity

Information regarding this formulation, along with initial
findings featuring academic examples, is available in Mour-
gues et al. (2023). Our current research activity aims at
extending this approach to cover the entire Grenoble area
and identifying optimization solutions to facilitate scala-
bility. The resulting algorithms will be integrated into a
forthcoming version as part of the eMob-Twin V1 update.

(20)

7. FURTHER DEVELOPMENTS

Further advancements in the eMob-Twin platform are
currently focused on two main objectives:

The first objective involves enhancing the platform’s appli-
cability to any major urban area in France. By maintaining
the utilization of open data sources, efforts are directed
towards expanding local datasets to national databases.
We are then able to use geographic filtering for specific
regions, enabling the computation of tailored calibration
parameters and granting users the capability to utilize the
platform for their desired area.

The second objective entails a redesign of the user interface
to enhance the user experience and enable practical appli-
cation of the model. For instance, integrating access to
our optimal CS placement algorithm within the platform
would serve as a valuable tool for local authorities to
develop their strategies of CS development or validate their
approaches against our findings.

8. CONCLUSIONS

In conclusion, as global environmental concerns escalate,
Electric Vehicles (EVs) play a crucial role in achieving sus-
tainable urban traffic. However, challenges persist, includ-
ing a lack of charging infrastructure and potential strain on



Source

Function

Data

National institute of statistics

Calibration of people mobility

Node population and capacity

Mobility and Urbanism agencies of
Grenoble-Alpes region

Calibration of mode choice model, and
number of HC per node.

Household mobility survey EMD2010: in-
ter municipality trips, and type of parking
used.

OpenStreetMaps, OSMnx

Computation of car trajectories and trav-
eling time.

Car road graphs and fastest-path calcula-
tion algorithms.

SMobility agency of Grenoble-Alpes region

Computation of public transport traveling
times.

Public transport map and itineraries.

OpenTripPlanner

Computation of public transport traveling
times

Fastest path algorithm.

MERIT-DEM: Open source data

Road inclination computation for energy
loss.

Digital Elevation Map

ENEDIS: French energy distribution sys-
tem operator.

Calibrate the number and power of charg-
ers.

Number of chargers of each type at the
national level and total power.

OpenChargeMap Input data for PC.

PC location and nominal power.

Ministry of Ecological Transition

Initial condition for EVs distribution

Number of vehicles, EVs and penetration
rate per municipality.

Table 1. Data sources description for parameter calibration.

power networks. To overcome these obstacles, integrating
Vehicle-to-Grid (V2G) connections becomes imperative for
optimizing EV efficiency. This paper has presented eMob-
Twin, a digital twin merging urban EV mobility with an
energy model, facilitating simulations with fine granular-
ity. eMob-Twin’s structure and operation offer valuable
insights, demonstrated through examples like assessing the
impact of EV penetration rates and identifying optimal
charge station locations. The tool proves instrumental in
addressing challenges and optimizing EV integration into
urban environments. Digital twins, like eMob-Twin, signif-
icantly contribute to advancing sustainable urban mobility
and managing Electric Vehicle ecosystems effectively. More
advanced versions of eMob-Twin are under developments
to include grid connections, and interactions with electric-
ity markets.
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