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Design Optimization of a Soft Gripper using Self-Contacts

Tanguy Navez∗, Baptiste Liévin∗, Quentin Peyron∗, Stefan Escaida Navarro ∗†,
Olivier Goury∗ and Christian Duriez∗

Abstract— The design of soft robots’ deformable bodies is
complex, partly due to the trade-off between softness for motion
and stiffness for force generation. Self-contacts in soft structures
can be used to address this problem but have been marginally
investigated. In parallel, parametric designs and computational
optimization tools constitute an important trend paving the way
toward shareable and reproducible results. In this paper, we
study the potential of self-contacts in the design of soft grippers
using a multi-objective design optimization environment. This
open-source environment is targeted toward grasping tasks and
is used both for design and model calibration. Soft fingers with
improved grasping quality and energy are obtained, taking
into account different friction coefficients at the contacts and
different shapes of the objects to grasp. They are experimen-
tally validated in terms of mechanical behavior and grasping
performances.

I. INTRODUCTION

Soft robots take advantage of compliant materials for
flexible interactions with their environment. Their ability to
reconfigure their shape and conform to hard objects makes
them ideal candidates for manipulation tasks. Designing and
assessing both soft grippers and soft manipulators is a broad
area of research getting more and more attention from the
soft robotics community [1] [2].

A soft gripper design is classically optimized in a multi-
objective setting. However, the design task is difficult re-
garding the stiffness of the deformable part. The latter has
to be able to easily reach the object to be handled while
transmitting significant forces for grasping and handling.
On the one hand, a consistently flexible manipulator will
easily reach the object but will eventually fail to pick it
up. On the other hand, a constantly stiffer manipulator will
require a lot of effort and energy just to reach the object.
Similarly, developing soft grippers capable of generating a
desired grasping force requires them to be soft enough to
conform to the object shape and maximize the contact area,
and rigid enough to transfer loads. Therefore a compromise
has to be found between the abilities of the gripper both to
deform during the grasping phase and to stiffen during object
manipulation.

Satisfying these requirements has been addressed through
active stiffness modulation [3]. Another interesting approach
is to leverage self-contacts. These can be used to create
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closed parallel chains for specific actuation values and there-
fore stiffen the structure. Few works consider using self-
contacts in their soft robot design. One famous example is
the design of a fast PneuNet actuator developed in [4]. The
actuator is composed of an inextensible layer deformed by
a series of cube-like chambers, whose walls collide upon
inflation to create additional forces. In [5], a bio-inspired
soft manipulator robot based on a compliant spine uses self-
collision of its vertebrae to limit local deformations. Finally,
a catheter made with several segments with joint stops is
introduced in [6] that can stiffen locally and achieve a desired
shape for the same actuation force. These soft robot designs
exploit a-posteriori self-collisions and there is no general
methodology to design soft robots using self-contacts. More-
over, there is, to the best of our knowledge, no analysis of
the influence of self-contacts on the robot behavior and their
potential for designing grippers and manipulators.

Given the trend toward computational design in soft
robotics, there is a growing interest for sharing parametric
families of designs coupled with simulation tools, that can
be easily adapted to the user needs through computational
optimization. Few works on design optimization frameworks
targeting contact-aided soft robot design have been proposed.
In [7], design optimization of contact-aided continuum robots
is addressed. In the field of compliant mechanisms synthesis,
a computational framework has been developed for optimiz-
ing the topology of a contact-aided compliant mechanism
[8]. However, we are not aware of works considering a
general methodology for the optimization of grippers and
flexible manipulators leveraging self-contacts.

Contribution:
This paper introduces two main contributions: the demon-

stration of an optimization framework for soft robot design
with both self-contacts and external contacts, as well as the
analysis of the potential of using self-contacts for soft robot
design. The aim is not to design an advanced gripper but
to work with a design space parameterization that enables
highlighting the contribution of self-contacts to the gripper’s
performances. This practical design is easily manufactured.
Both the simulation and numerical optimization results are
experimentally validated.

Additionally, an environment targeted toward soft grip-
per optimization for grasping tasks is introduced. Al-
though a case study based on a particular parameterization
is analyzed in this work, both simulation and grasping
quality metrics generalize to other soft grippers. All the
code is available as part of the open source plugin Soft-
Robots.DesignOptimization [9] for SOFA, initially intro-



duced in [10]. It also shows how heuristic-based algorithms
implemented in the toolbox can be applied to the calibration
of mechanical parameters of soft robots in the practical
case of the soft grippers. It is especially relevant in cases
with non-smooth events such as contact, in which gradient-
based methods might struggle with highly non-convex fitness
function landscapes. Finally, the flexibility of the proposed
framework is highlighted in the design optimization of soft
finger shapes for handling different objects.
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Fig. 1. Illustration of the finger design parameterization. Finger composed
of left (1a), top (1c), and right (1b) walls. (2) Servomotor. (3) Example
of object to grasp, fixed in space. Left: rest configuration. Right: closed
configuration.

II. METHODOLOGY

A. Parametric design

The design topology is chosen to enable the creation of
self-contacts for specific actuation values during optimiza-
tion, while being simple enough to understand their effect on
the finger performances, and simple to fabricate and actuate.
The finger design is depicted in Fig. 1. It consists of two
legs attached to a top wall, one being fixed in space at its
base and intended to come into contact with the object to
grasp, and the other being actuated using a servo motor. The
design parameters to optimize are the thickness of each leg
and the top wall (e1, e2, e3) and the distances (d1, ..., dn)
between the left leg and n intermediate points along the right
leg. Varying these distance values enables the production of
zigzag patterns on the right leg to create self-contacts and
adapt to the shape of the object to grasp. Additionally, the
finger shape is an extruded planar pattern and is therefore
easy to fabricate using additive manufacturing techniques.
The design parameters are constrained in intervals with fixed
boundaries to prevent interpenetration, limit the finger size,
and respect the minimum thickness that can be obtained
using the 3D printer considered in this work. The total finger

thickness w, the finger width l2, and the length L are fixed
for simplicity.

B. Quasi-Static Finite Element Modeling and Forward Sim-
ulation

The quasi-static behavior of the soft finger is simulated
using the SOFA Framework and its SoftRobots plugin [11].
The mechanical behavior of the soft gripper deformation is
described using continuum mechanics for which there are
no analytical solutions in the general case, justifying the use
of non-linear FEM for obtaining an approximate solution.
Under the assumptions of both low robot acceleration and
velocity, using the quasi-static equilibrium is enough for
accurately modeling soft robot behavior. It is written as
follows:


KDD(xi) KDR(xi)J 0 HT

c

JTKRD(xi) JTKRR(xi)J HT
a 0

0 Ha 0 0
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JT (fext − fint(xi−1))
θ
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∆xi are small displacement of nodes around their current
position xi, J is the Jacobian, Kij are the tangent stiffness
matrices depending on the current positions of the FEM
nodes where D and R refer respectively to deformable and
rigidified degrees of freedom. Rigidified nodes are the ones
fixed to the servomotor. fext are gravity forces and fint are
nonlinear internal forces of the deformable structure com-
puted from the material constitutive laws. Considering both
the low thickness of the finger’s leg and the low angle values
achieved with the servo-motor, the deformation inside the
material is assumed to be small and the material to be elastic
linear. Its behavior is characterized by a Poisson ratio ν and a
Young’s Modulus E. Both actuation and contact constraints
effects are integrated into the model as Lagrange multipliers,
denoted respectively λa and λc, whereas the corresponding
constraints displacements are δa and δc. They respectively
depict the angular displacement of the servomotor and the
distance between contact points computed with the model.
The angle θ is the desired servomotor angular displacement
specified by the user. Finally, the symbol ⊥ is used for
referring to complementary constraints such as contacts.

The servo motor is modeled using stiffness projection of
the node elements of the soft finger parts attached to the
actuation device. The degrees of freedom of the rigid part are
then directly given by the angular displacement δa imposed
on the servomotors.

Specific meshes of the soft finger and the manipulated
object are provided for modeling collisions. Contact points
and surfaces are detected at each time step using a collision
detection algorithm. The constraint response is then com-
puted using Signorini’s law and friction is modeled using
the Coulomb law with a friction coefficient µ.

Solving the constraints is done in two steps by first solving
a free configuration of the robot without any constraint:

K(x)∆xfree
i = fext − fint(xi−1) (2)

and then computing the new shape of the robot from δa. The
motor torque λa is then computed.



C. Fitness functions for calibration

Calibration of mechanical parameters is a crucial step
for ensuring that the simulation is reliable enough for the
targeted applications. Because of the non-linearities and non-
smooth events induced by both self-contacts and elastic
material behavior, heuristic-based algorithms are suitable for
exploring the space of mechanical parameters.

For this purpose, the general idea is to build a fitness
function as a distance between sensor measurements on the
physical prototypes and the same measurements obtained
from the simulation. For the considered soft finger, the
servomotor torque is measured and used for calibration. This
gives the following fitness function:

F calib torque(p) =

√
1

N

∑
θi

(λa(p, θi)− λ∗
a(θi))

2 (3)

where p is a vector containing the optimized design pa-
rameters, θi are the sampled angular displacements imposed
on the servomotor, N is the total number of measures, λa

and λ∗
a are respectively the servomotor torques computed

through simulation and measured on the physical prototype.

D. Fitness functions for design optimization

Several metrics have previously been used for assessing
soft grippers and manipulators, considering whether object
shape matching [12], grasping forces [13], workspace [14] or
sensing [10]. When designing a soft gripper finger, the best
compromise between its abilities to deform to easily reach
the target object to manipulate and to apply forces during the
grasping has to be found. One objective is also to reduce the
necessary electric energy needed for both actions. Finally,
actuation limits in terms of maximum force and torque are
taken into account to avoid oversizing the actuation system.
These compromises are expressed in the form of three fitness
functions to be optimized for the design parameters p =
(e1, e2, e3, d1, ..., dn).

In order to evaluate these fitness functions, a direct simu-
lation where an angular displacement θmax is imposed at the
base of the finger is implemented. The angular displacement
θ is gradually increased and the resulting torque is monitored
at each simulation time step. The angular displacement sam-
ples are denoted θi. When the maximum torque is reached,
the fitness functions are then computed. The expressions of
these three functions are introduced below.

The first function to optimize is the maximum contact
force applied by the soft finger on the object, denoted F str.
Only the component along the x-axis i.e. the direction from
the finger towards the object, is considered. In simulation,
this objective is computed as being the sum of the forces
λj
c,x exerted on each node of the finger mesh colliding with

the nodes of the object at equilibrium:

F str(p, θmax) =
∑

λj
c,x (4)

The second function directly relates to the necessary
energy for maintaining the object during the grasp. It is

computed as a resistance F grasp res to be minimized. To
encourage the creation of designs with an effective grasp at
the smallest actuation cost, the minimum of the computed
resistance for each angular displacement is kept. This gives:

F grasp res(p) = minθi(
λa(p, θi)

F str(p, θi)
) (5)

Finally, the F grasp ener is a metric proportional to the
electric energy needed for grasping the object. The torque
λa(p, θi) is measured for each angular step θi. For a specific
angular displacement, the mechanical work is:

E(p, θi) = λa(p, θi)θi (6)

This mechanical work is directly proportional to the electric
energy absorbed by the actuator by a constant transmission
ratio. Under the hypothesis of constant torque in a sam-
pled angular interval, the total electric energy F grasp ener

absorbed during the grasping cycle can be represented by:

F grasp ener =
∑
θi

λa(p, θi)θi (7)

E. Optimization algorithm

The design system we defined is a multi-objective prob-
lem with highly non-linear fitness functions regarding de-
sign parameters and without available analytical gradi-
ents. Heuristic-based algorithms such as Evolutionary and
Bayesian algorithms are therefore good candidates for ex-
ploring a bounded design space. We use the solver imple-
mented in the Optuna library [15]. The expected outcomes
typically take the shape of a Pareto front enabling selection of
the best compromise between the considered metrics. In our
experiments and with our choices of algorithms and hyper-
parameters, the used Bayesian algorithms are usually better
at giving good solutions in a few optimization iterations
as they privilege exploitation over exploration. Nevertheless,
evolutionary algorithms are mainly used for generating the
results in this work for their didactic purpose. Indeed, they
enable exploring more in-depth what are good and bad results
regarding the fitness metrics.

III. NUMERICAL ANALYSIS

A. Design Optimization Results and Analysis

The considered scenario consists of grasping a vertical
hexagon-shaped rigid object. For the optimization, a Young’s
Modulus of 3.62MPa and a Poisson’s Ratio of 0.452 are
selected. They are obtained through torque calibration as
described in section IV-B. Moreover, strong hardware con-
straints come from the maximum torque exerted by the
chosen servomotors. Preliminary experimental studies have
shown it to be a limiting factor in the angular displacement of
the finger when interacting with objects. A maximum torque
of λmax = 1.2Nm is thus considered. A single friction
coefficient is taken equal to 0.85 for all contacts. These
hypotheses are further discussed in section III-C. For a given
set of design parameters, the three objectives are assessed
using a 3D mesh with a constant density, resulting in a
number of nodes varying from 2000 to 3000 with the design.



A total of 40 intermediate angular positions θi are sampled in
the range [0◦,30◦]. With these settings, evaluating a design
takes between 30 s to 90 s with our setup 1, depending on
the number of contact surfaces met during the grasping
trajectory.

Both algorithm’s hyper-parameters and results obtained
for the three fitness functions introduced in section II-D are
displayed in Fig. 2.

Fig. 2. Pareto Front and a few sampled geometries at the grasping pose
obtained for 300 trials of the Soft Finger design optimization. Pareto optimal
solutions are represented by red dots. Results are generated using the NSGA-
II algorithm with an initial population of 50 design candidates, probabilities
of crossover, and swapping parameters between parents of 0.9 and 0.5,
respectively.

For generating high contact forces, the best performing
results, such as designs B and C, are the ones with thicker
walls and self-contacts, leading to a higher rigidity when
contacting the object. The respective designs D and A are
examples of ineffective designs.
The relevance of both the grasping resistance and the grasp-
ing energy metrics is now highlighted. On the one hand, poor
grasping resistance scores reflect designs where keeping the
grasped position is expensive in terms of actuation effort. It
is the case for design A where the absence of self-contacts
does not enable to rigidify the finger enough. It is also the
case for design E where self-contacts appear too close to the
base of the soft finger structure, then directly opposing to
the servomotor course. On the other hand, minimizing the
grasping energy enables the exclusion of designs where self-
contacts appear too soon when the soft finger is closing on an
object, as it is the case for E. Finally, efficient designs also
feature large contact surfaces shared between the soft finger
and the considered object. Good compromises between all
metrics are designs B and C.

1Laptop with eight cores 2.70 GHz Intel Core i7 - 6820

B. Influence of relative object pose and shape

The potential of self-contacts to adapt to objects with
different poses and shapes, as well as the modularity of
the design optimization framework, are here demonstrated.
Indeed, changing both these parameters has a strong impact
on the optimization outcomes.

First, two different object-shape scenarios are considered:
one with a horizontal hexagon-shaped object and one with
a spherical object. The choice of these object shapes is to
explore two different scenarios: one involving contacts with
a plane, which is one of the simplest cases, and another
one featuring contacts with a small convex surface. This
last scenario aims to favor the emergence of designs that
wrap around the object to develop more grasping forces. The
approach is fairly general and can be extended to any other
object shape. In order to favor the appearance of contact
surfaces with a specific object shape, a value of 40◦ for the
maximum angle command of the servomotor is considered.
Design optimization results are displayed in Fig. 3.

Fig. 3. Pareto Front and a few sampled geometries at the grasping pose
obtained for 300 trials of the Soft Finger design optimization for different
objects scenarios. Scenarios are 1) a horizontal hexagon-shaped object and
2) a spherical object. Pareto optimal solutions are represented by red dots.
Results are generated using the NSGA-II algorithm with an initial population
of 50 design candidates, probabilities of crossover, and swapping parameters
between parents of respectively 0.9 and 0.5.

Compared with the results in Fig. 2 for the baseline
finger design A, the considered actuation angle leads to self-
contacts during grasping. However, this design still gives
poor performances for both object shapes, due to the finger
slenderness and the proximity of the contact to the base.

In the hexagon-shaped scenario, because of the object
layout, there is little room for generating large contact areas
shared between the soft finger and the object unlike in the
previous experiment. Only one or two contact lines along
the width of the finger are possible at most. This is why
the best-performing designs feature double closed kinematic
chains for transmitting more contact forces, as shown in both
designs B and C.

For the spherical object, Pareto designs such as designs D
and E both comply with the shape of the object and feature
an internal closed chain far away from the base of the finger



and close to the object for an enhanced stiffening. However,
E is also an example of a design where a second internal
closed chain appears too close to the finger base and opposes
its course: because of the maximum servomotor torque, only
a maximum angular displacement of 35◦ is reached.

C. Influence of friction

The impact of the chosen friction coefficients µ for both
soft finger self-contacts and contacts with the object is now
discussed. Numerical values of the fitness functions for
different designs and friction coefficients are displayed in
Table I.

Decreasing the friction coefficient results in reducing the
generated contact force and increasing the grasping energy as
illustrated in the cases of both designs Fig.2.B and Fig.3.E.
This can be explained by the fact that generated forces
are lost in sliding motion. However, some designs may
take advantage of an increased sliding motion to generate
additional contact surfaces. This is particularly the case in
manipulation tasks considering small objects such as the
sphere. Without necessarily decreasing the contact force,
considering altering the µ coefficient and maximizing this
contact surface with an additional fitness function would
ensure more stable grasping. In practice, these coefficients
may be easily altered on the physical prototype by installing
pads of different materials located at the expected contact
areas on the soft finger. It is interesting to notice that the
optimization tools are able to find solutions that go against
normal intuition: one would think that increasing friction
is always beneficial for stable grasping, as suggested by
Table. I, but we show here that this is not always true as
it impacts the number of contact surfaces.

IV. EXPERIMENTAL STUDY

A. Experimental setup

The experimental test bench used to characterize the finger
design is represented in Fig. 4 This setup incorporates
a Herkulex DRS-0101 servomotor (DFRobot) with a stall
torque of 1.18Nm and a resolution of 0.321◦ to actuate
the finger. The actuation torque is evaluated using a strain
gauge placed on the servo motor arm and by multiplying the
measured torque by the arm length. The gauge is capable of
measuring forces up to 1 kg with a measurement accuracy of
±0.02%, connected to a high-precision 24-bit hx711 analog-
to-digital converter. As a result, torques up to 0.36Nm can
be measured with an accuracy of ±7.2 × 10−3 Nm. The

Design µ F str F grasp res F grasp ener

B from Fig.2 0.85 4.32 0.075 1.49
B from Fig.2 0.30 3.09 0.086 1.40
E from Fig.3 0.85 11.08 0.090 4.32
E from Fig.3 0.30 8.97 0.094 7.14

TABLE I
FITNESS FUNCTIONS VALUES FOR A TWO SOFT FINGER DESIGN AND

DIFFERENT FRICTION COEFFICIENT ν .

servo motor control and torque estimation are performed
on an Arduino Mega acquisition board connected to a
PC. This test bench incorporates also a Velleman precision
balance enabling precise readings of the contact force with
a precision of 9.81mN; The rest of the components making
up the test bench were produced on a Prusa MK3 3D printer
using PLA as the material. All the fingers tested were 3D
printed (Prusa mk3) using FilaFlex flexible filament with
a shore hardness of 60A and a stretch capacity of around
950%.

As the ultimate aim of the test bench was to check the
gripping capacities of the various finger designs, a complete
gripper was developed, shown in Fig. 5. This gripper uses
the same servomotor-finger assembly concept as in Fig. 4,
which is repeated 2 times with a 120◦ offset. Its modular
design makes it easy to change the design of the fingers
using the various fixing and locking screws and to adjust
their distance from the gripper center. Different distance val-
ues are indicated using 3D-printed graduations for accurate
positioning. In order to carry out grasping operations, this
gripper was assembled on the end-effector of a UR3 robot
arm (Universal Robot). The integration of the gripper enables
various ’pick and place’ processes to be carried out with
objects of different sizes, shapes, and weights.

B. Simulation calibration

The previously mentioned optimization toolbox can also
be used to calibrate the model parameters of a soft robotic
system involving contacts. In this work, the mechanical
properties of the material composing the finger, i.e. E and
ν, as well as the distance from the finger do to the object
and the torque offset τ0 must be estimated. The Young’s
modulus is computed from the shore hardness given by
the filament manufacturer using the relation in [16], giving,
E = 3.62MPa. The Poisson ratio and the two other pa-
rameters are obtained through optimization, using the fitness
function (3). The Poisson ratio is typically close to 0.5
for rubber material, and small changes around these values
can lead to large changes in the simulated robot behavior.
Therefore, the algorithm is forced to explore values close to

Fig. 4. Experimental setup for the finger design (1). Test bench consisting
of a strain gauge (2), a Herkulex drs-0101 servomotor (3) and a Velleman
precision balance (4).



Fig. 5. Prototype of gripper composed of three fingers. Screws and
graduation are used to adjust the distance between the finger and the gripper
center (1) and the finger width (2). The gripper is assembled on the UR3
collaborative robot in a pick-and-place situation.

0.5 by optimizing a modified Poisson ratio νo in the range
[0, 1] such as:

ν = (ν∞ − νm)(1− e−
νo
τ ) + νm

τ = −1/ ln

(
1− νM − νm

ν∞ − νm

)
(8)

where [νm, νM , ν∞] = [0.4, 0.499, 0.501] are the values of
ν for νo = [0, 1,∞].

Fig. 6. Measured and simulated relations between angular displacement
and torque for the base finger (left) and the C finger (right).

Experimental data was acquired on both the baseline
and finger design C from Fig.2. On the test bench, the
servomotor’s angle was increased and then decreased in
the range [0◦, 40◦] with steps of 1◦. Each experiment was
repeated 3 times, leading to point clouds with hysteresis
patterns as shown in Fig 6. The centerline of these two point
clouds, one for each finger, was extracted using a recursive
barycentric method and evaluated at 8 angular displacement
values in [0◦, 30◦], giving the experimental torque values
λ⋆
a. To reach the function minimum as fast as possible,

the Tree-Structured Parzen Estimator Bayesian algorithm
was used. After 250 iterations, the cost function reaches
an acceptable value of 4.3× 10−3 Nm with the parameters
(ν, do, τ0) = (0.451, 35.3mm,−3.2 × 10−3 Nm) for the
base finger design, and (0.451, 30.3mm, 1.5×10−2 Nm) for
the C finger design. The obtained value of the Poisson ratio
is consistent with the usual values for elastomer materials.
The relatively high torque offset observed during the C finger
calibration is due to the amplifier of the hx711, whose offset
was observed to increase with its temperature. Moreover, the
distance to the object varies reasonably around the nominal
value of 30mm, considering the possible assembly and
manufacturing defaults on the test bench and the 3D printing
errors on the finger. This validates the ability of the model
to predict the finger’s behavior both when colliding with the
object and when self-contact occurs.

C. Performance validation

To validate the performances of the finger designs, the
fitness functions values obtained experimentally and numeri-
cally are compared. For the comparison, the numerical values
of the performance indicators are obtained in simulation with
the calibrated parameters determined in section IV-B for
the baseline design. The results are presented in Table II.
There is a good agreement between the simulated values
of grasping energy and the reality, as they depend on the
calculated torques that were calibrated. There is a significant
difference in contact force for the two designs with self-
contacts, leading to discrepancies in the values of grasping
resistance as well. After investigation, several sources of
error were detected. There are variations of the effective
finger length and the relative finger-to-object distance due to
manual assembly, leading self-contacts to happen for higher
angular displacements and decreasing the final contact force.
Also, simulation parameters such as the friction coefficient
µ and the density of the surface contact meshes were not op-
timized. A lower value of µ and a denser mesh significantly
reduce the simulated contact force, decreasing further the gap
of measured contact forces between simulation and reality.
Furthermore, the assumption that both internal and object
contacts share the same friction coefficient creates errors as
well. However, despite this difference in contact force, finger
designs A, C, and B in this order have increasing contact
forces and decreasing grasping energy as expected from
the Pareto front in Fig. 2. In conclusion, the experiments
confirm that the optimization process yields correct sim-to-
real behavior in terms of the relative performance of the
designs.

D. Grasping demonstration

Designs are demonstrated on a pick-and-place task cor-
responding to grasping a weighted cylinder and moving it
to a given location. In order to have friction coefficients
consistent with those used in simulation, tabs of the same
material as the fingers are glued to the cylinder in the places
where it is gripped. The final angle command imposed to all
servomotors is 37◦. The video of the grasping experiments



Design F str F grasp res F grasp ener

Sim. Exp. Sim. Exp. Sim. Exp.
A 0.65 0.63 0.154 0.155 0.296 0.308
B 4.32 0.87 0.075 0.320 1.49 1.247
C 1.88 0.69 0.142 0.430 0.654 0.769

TABLE II
FITNESS FUNCTIONS VALUES FOR THE THREE SOFT FINGER DESIGNS

OBTAINED EXPERIMENTALLY (EXP.) AND IN SIMULATION (SIM.).

is available here [17]. The gripper is tested with the designs
A, B and C from Fig.2, and manages to lift respectively
150g, 650g, and 750g. The fact that the gripper performs
better with design C rather than design B is explained by
the considered greater angle control than the one considered
during the optimization. The results obtained validate the
superior performances of the optimized designs with self-
contacts. Pictures of the gripper design C taken at different
times during the grasping scenario are provided in Fig. 7.

Fig. 7. 1) Gripper design C at different moments of the considered grasping
scenario, respectively at the initial position, once the object is grasped, and
during object displacement. 2) Gripper design C during the grasping phase
for different angular displacements.

V. CONCLUSIONS

In this article, the computational design of a parametric
soft finger, leveraging contact conditions, is explored. Design
optimization considering contact conditions is challenging,
because of the non-convex nature of the optimization prob-
lem when contacts are involved. The optimization task is
solved with the help of a previously proposed toolbox, that
uses a FEM-based simulation to evaluate the cost functions.
We show that the best-performing designs make effective
use of self-contacts, both for improving grasping metrics and
for adapting to the object shape. The designs were validated
experimentally, confirming the plausibility of the Pareto front
resulting from simulation with real fabricated design. Thus,
more generally, we show that is feasible to address design
optimization challenges in Soft Robotics involving contacts
with the proposed tools.

Several perspectives are considered to continue this line of
work. The considered design parameterization leads to sharp

line-shaped contact areas. This strengthens the influence
of friction at both the Finger-Finger and Finger-Objects
interfaces. In future iterations, we plan to consider building
smooth elbow-shaped surfaces between the control points
instead of lines, by using Bezier curves for instance.

Also, the design optimization of a soft finger shape is
done for a single specific object shape. In future work,
we plan to extend the introduced tools for designing a
more universal soft gripper, by considering the evaluation of
fitness functions averaged on a dataset of different objects.
Moreover, other fitness functions may be considered for
accounting whether for manufacturing constraints such as
minimizing the material volume needed for building the
finger, or functional constraints such as the grasping stability
i.e. maximizing the shared surface area between the soft
finger and object.
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