
HAL Id: hal-04481879
https://hal.science/hal-04481879

Submitted on 29 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ENERGY LOSS MECHANISMS OF ROCKING
BLOCKS: EXPERIMENTAL OBSERVATIONS

Georgios Vlachakis, Carla Colombo, Anastasios Giouvanidis, Nuno Mendes,
Nathanaël Savalle, Paulo B Lourenço

To cite this version:
Georgios Vlachakis, Carla Colombo, Anastasios Giouvanidis, Nuno Mendes, Nathanaël Savalle, et al..
ENERGY LOSS MECHANISMS OF ROCKING BLOCKS: EXPERIMENTAL OBSERVATIONS.
9th ECCOMAS, Jun 2023, Athens, Greece. �hal-04481879�

https://hal.science/hal-04481879
https://hal.archives-ouvertes.fr


COMPDYN 2023 

9th ECCOMAS Thematic Conference on 
Computational Methods in Structural Dynamics and Earthquake Engineering 

M. Papadrakakis, M. Fragiadakis (eds.) 

Athens, Greece, 12-14 June 2023 

ENERGY LOSS MECHANISMS OF ROCKING BLOCKS: 

EXPERIMENTAL OBSERVATIONS 

Georgios Vlachakis1, Carla Colombo1, Anastasios I. Giouvanidis2, Nuno Mendes1, 

Nathanaël Savalle3, Paulo B. Lourenço1 

1 University of Minho, ISISE, ARISE, Department of Civil Engineering, 4800-058 Guimarães, 

Portugal 

E-mail: carla.colombo95@gmail.com, giorgovlachaki@gmail.com, nunomendes@civil.uminho.pt, 

pbl@civil.uminho.pt 

2 Department of Civil Engineering, University of Nottingham, University Park, NG7 2RD 

Nottingham, United Kingdom 

E-mail: anastasios.giouvanidis@nottingham.ac.uk 

3 Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal 

F-63000 Clermont-Ferrand, France 

E-mail: nathanael.savalle@uca.fr 

 

 

Abstract 

A variety of different structures experience rocking motion when subjected to dynamic actions, 

making rocking dynamics a fundamental problem of earthquake engineering. Rocking motion 

presents peculiar dynamic characteristics, such as negative stiffness during pivoting and non-

smooth phenomena during impacts. Hence, modelling of the rocking problem faces significant 

challenges. One of the most significant is related to the energy losses that occur during impacts, 

commonly represented by the coefficient of restitution. Despite the numerous theoretical 

attempts to accurately estimate the coefficient of restitution, it is apparent that experimental 

observations are essential in providing a direct insight into the complex and non-smooth 

phenomena of rocking motion. To this end, the present work conducts an extended experimental 

campaign on the free-rocking motion of limestone blocks. More specifically, a total of 36 blocks 

are tested, corresponding to 12 different geometrical aspect ratios. The free-rocking motion is 

thoroughly analysed, while attention is also given to three-dimensional effects. Finally, the 

coefficient of restitution is experimentally quantified and compared with both previous 

theoretical and experimental results gathered from the literature. 

 

Keywords: Rocking Motion, Coefficient of Restitution, Experimental Campaign, Free-

rocking, Masonry, Digital Image Correlation
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1 INTRODUCTION 

The dynamic behaviour of a block rocking freely on its base constitutes a fundamental, yet 

challenging, problem of nonlinear dynamics and earthquake engineering, as it reflects the basic 

dynamic response of a variety of structures, such as buildings [1,2], bridges [3–8], classical 

monuments [9,10], non-structural elements [11], statues [12,13] etc. In particular, with respect 

to masonry structures, rocking behaviour becomes evident when the façades experience out-of-

plane deformations due to lack of sufficient (or preliminarily fractured) connections with the 

adjacent walls [14,15]. In fact, such a collapse mechanism has been observed to be the most 

decisive and recurrent type of failure for masonry buildings after actual seismic events [16,17]. 

In general, the dynamics of a rocking block differs from the classical single-degree-of-

freedom oscillator and present peculiar characteristics [18,19]. In essence, the rocking motion 

is composed of two phases: i) the pivoting over each corner, and ii) the impacts with the base 

when alternating the corners of pivoting. Firstly, the pivoting phase is smooth (although 

nonlinear due to the negative stiffness of the system), while impacts are non-smooth, impulsive 

and lead to energy losses. As a result, the pivoting phase is usually adequately described when 

using geometrically nonlinear models [20], while impacts are burdensome to model explicitly 

[21–23]. Therefore, impacts are commonly treated in a phenomenological sense by studying 

the time instants immediately before and after each impact, while considering the energy losses 

with the Coefficient of Restitution (CoR) [24]. 

Clearly, the CoR has a crucial role when modelling the rocking motion numerically, though 

its estimation is non-trivial. It may be estimated by using either theoretical assumptions or 

experimental observations [25]. In more detail, the first theoretical approach to compute the 

CoR was proposed by Housner [24], who assumed pure rocking motion (i.e. no sliding or 

bouncing), and computed the CoR using the conservation of angular momentum. Later, the 

research provided significant contributions in this theoretical framework by alleviating most 

assumptions [26–29]. Nevertheless, the general formulation of the problem appears to introduce 

undefined parameters that need to be experimentally or geometrically specified. On the 

contrary, experimental investigations of the CoR allow its direct quantification [30]. In this 

case, assumptions are omitted while the physical complexities of the problem are revealed. 

Indicatively, experimental investigations have shown the importance of bouncing [31], sliding 

[32], three-dimensional motion [33], the role of interface and material properties [34–37], 

and/or the influence of geometrical imperfections and irregularities [38]. Nevertheless, 

experimental studies are notably sparse, usually limited to few geometrical aspect ratios, while 

three-dimensional recording is often lacking. 

The objective of this study is to provide an experimental insight into the energy losses of 

rocking motion and investigate the impact of three-dimensional effects on the global rocking 

response. To this end, a total of 36 free-rocking tests are conducted and analysed using 36 

different limestone blocks of 12 different geometrical aspect ratios, i.e. height over width ratios. 

Attention is also given to the three-dimensional response of the rocking blocks, which is 

measured with a state-of-the-art contactless technique. Furthermore, the dependence of the CoR 

on the rocking amplitude and aspect ratio is presented and discussed. 

The paper is structured as follows: the present section (Section 1) introduces the research 

significance and objectives of the work. Section 2 presents the theoretical framework of rocking 

dynamics, while Section 3 describes the experimental campaign. Section 4 first provides a 

detailed discussion of the outcomes of a representative free-rocking test, which is followed by 

the illustration of the CoR results for all the 36 tests. Finally, Section 5 concludes the work by 

highlighting the main observations. 
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2 THEORETICAL ROCKING DYNAMICS 

Consider a block with height H  and width B  that experiences planar rocking motion on 

its base (Figure 1a). The rocking motion may be described using rigid body dynamics. Thus, 

the equation of motion writes [24]: 

 

2 sin( ) cos( )
g

xx xx xx

u
p

g
    

 
= −  − +  − 
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where 
xx  describes the rocking rotation,   is the critical slenderness angle of the block (i.e. 

( )1tan /H B −= ), p  is the frequency parameter of the block, defined as 0p mgR I= , with 

m  representing the mass, 
0I  the rotational moment of inertia with respect to the pivot points 

and R  the diagonal distance of the centre of mass to the pivot points, g  is the acceleration of 

gravity and gu  is the base (ground) acceleration. Finally, the signum   refers to the sign of the 

rocking angle xx  with the upper sign corresponding to clockwise and the bottom to counter-

clockwise rotations. Note that Eq. (1) is non-linear and thus the period T  of rocking motion is 

amplitude dependent [24]: 
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where ,0xx  is the amplitude of the rocking angle xx . 

Furthermore, assuming pure rocking behaviour (i.e. no sliding and bouncing), the two 

energy components of rocking motion, i.e. the Potential POTENTIALE  and Kinetic KINETICE  

energies, compose the Total energy TOTALE that read respectively: 

 ( )POTENTIAL cos cosxxE mgR    = − −   (3) 
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Equation (1) represents the smooth part of rocking motion, i.e. when pivoting, while non-

smooth impacts occur when the block changes pivot point, i.e. when 0xx = . Those impacts 

occur over finite, but extremely short, time periods and result in energy losses. An accurate 

description of the impacts is commonly omitted, in favour of a phenomenological treatment 

using the CoR [39]. More specifically, the post-impact angular velocity  +
 is related to the pre-

impact  −
 using the CoR: e  + −= . Assuming no bouncing or sliding, Housner [24] 

estimated the CoR using the conservation of angular momentum before and after impact, 

yielding: 
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Note that according to Housner’s theory [24], the CoR (Eq. (6)) depends solely upon the 

geometry of the block, and thus the material properties are assumed irrelevant to the overall 

damping of the system. 

3 FREE-ROCKING EXPERIMENTAL CAMPAIGN 

The free-rocking tests are performed on limestone parallelepiped blocks (Figure 1b) of 

density 2238 =  kg/m3 and elastic modulus 32.7 =  GPa [40]. All the blocks have common 

nominal dimensions in plan ( 50B =  mm and 150L =  mm, 3L B = ), while their height H  

spans from 200 mm to 750 mm with steps of 50 mm, resulting in 12 groups with aspect ratios 

H B  ranging from 4 to 15. More specifically, 3 different blocks for each of the 12 H B  aspect 

ratios are investigated, yielding a total of 36 specimens. Due to material irregularities and 

geometrical imperfections, the blocks’ actual geometrical dimensions might slightly differ from 

the nominal ones. Such incongruity, especially if occurring at the edges [38], could cause an 

asymmetric response behaviour between the two rocking signs of rotation. In order to take into 

account such effects, the experimental parameters describing the actual properties of the system 

(i.e. p  and  ) are herein extracted distinctly for each sign of rotation by leveraging the 

relationship between the amplitude and the period of motion (Eq. (2)) [30]. 

Figure 1c schematically shows the main components of the free-rocking experimental setup. 

More specifically, it consists of a bottom block fixed on a rigid base, and a top block standing 

free on the former constitutes the structure under investigation. The free-rocking motion is 

activated in two steps. Firstly, an initial positive rotation xx  larger than the critical slenderness 

angle  +
 is imposed on the block (Figure 1a). Secondly, a threaded rod, which is locally in 

contact with the top of the block, is screwed, triggering the initiation of free-rocking motion 

with an initial condition of almost zero angular velocity [25]. The free-rocking motion is 

recorded by a Digital Image Correlation (DIC) system. The DIC is a contactless optical 

technique that allows the recording of the displacement field over time, with the advantage of 

avoiding any physical interference that might affect the dynamics of the system. Four cameras 

record the motion of the two faces of the block in the yz  plane (Figure 1c), with a sampling 

frequency of 145 Hz. Figure 1b illustrates the preliminary preparation of the block surfaces, 

 

Figure 1: (a) Schematic view of the planar asymmetric rocking block, (b) limestone block with the speckle 

pattern used by the Digital Image Correlation (DIC) system, and (c) schematic 3D drawing of the free-rocking 

experimental setup. 
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which is characterised by a speckle pattern made of randomly distributed dots in greyscale and 

of uniform size (calibrated with respect to the camera's field of view). From each surface i and 

j shown in Figure 1c, the displacement time histories of two vertically aligned points (P1 and 

P2) are extracted (Figure 1b). Assuming rigid body motion, the displacement over time of the 

four points allows the estimation of the three rotations over the x-x, y-y and z-z axes as follows. 

The rocking rotation over the x-x axis 
xx  is estimated as: 
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where ,i topy  and ,i bottomy  are the displacements in the y direction of the top and bottom points of 

the surface i , and dH  is their relative vertical distance. Similarly, xx  is calculated for the 

surface j , while the final xx  is the average of the rotations of the two surfaces. 

The rotation over the y-y axis yy  is estimated as: 
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where ,i topz  and ,j topz  are the displacements in z direction of the top points of surface i  and j , 

respectively, whereas L  is the length of the block. Similarly, yy  is estimated for the bottom 

points, while the final yy  is the average of the top and bottom points. 

The rotation over the z-z axis zz  is estimated as: 
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where ,i topx  and ,j topx  are the displacements in x direction of the top points of surface i  and j , 

respectively. Similarly, zz  is evaluated using the bottom points, and the final zz  is estimated 

as the average of the top and bottom points. 

Finally, the energy loss during the free-rocking motion is quantified using the CoR. 

Experimentally, the CoR is preferably estimated using the energy balance of Eqs. (3-5), rather 

than directly using the ratio of angular velocities after and before each impact. More 

specifically, assuming that energy is preserved during the pivoting (i.e. smooth rocking) phase, 

the kinetic energy at impact (Eq. (4)) can be equated with the potential energy at the peak 

response of the corresponding half cycle (Eq. (3)), as they are alternatively nullified. This 

deliberate choice stems from two main reasons [25,30,35]: i) the DIC acquisition system 

directly measures displacements, which are consequently experimentally more reliable than 

velocities (which are computed as the gradient of displacements), and ii) instances of maximum 

rotations are captured with higher fidelity than instances of impacts, considering a constant 

sampling acquisition frequency of 145 Hz, and the high velocities of the system around impact. 

For the general case of asymmetric response, the results of each sign of rotation are preferably 

analysed. Therefore, the CoR is estimated as: 
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where POTENTIAL, peak,iE  and POTENTIAL, peak,i+2E  are the potential energies at time instances of peak 

responses i  and 2i + . In Eq. (10), the first square root derives from the squared angular velocity 

(Eq. (4)), while the second one is introduced since two impacts separate the peak responses i  

and 2i + . 

4 RESULTS 

Figure 2 presents the response time history of a representative free-rocking test performed 

with a block of aspect ratio 5H B = . In detail, Figure 2a shows the rotational response over 

the x-x axis 
xx , which constitutes the preeminent rocking response. 

xx  starts from an initial 

rotation equal to the critical slenderness angle, while the end of the motion is assumed to occur 

when an uncertainty threshold is reached, displayed in Figure 2 with a dashed line. Such 

threshold aims to delineate the boundary of reliable acquired response and it is defined 

assuming the ratio between the uncertainty value, recorded by the DIC system, and the 

amplitude of the rotation xx  to be less than 10%. Figure 2b plots the absolute value of the 

rocking angle xx , where a modest asymmetric response can be observed. This phenomenon 

 
Figure 2: Response time histories in terms of (a) rotation over the x-x axis, (b) absolute rotation over the x-x 

axis, (c) angular velocity and angular acceleration over the x-x axis, (d) potential, kinetic and total energies, and 

(e) rotation over the x-x, y-y, and z-z axes. 
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may be attributed to one or a combination of several factors, such as the presence of irregular 

contact interfaces, geometrical defects, a non-centred centre of mass, inclination of the bottom 

block etc. Figure 2c reports the angular velocity 
xx  and angular acceleration 

xx  response time 

histories, obtained from the first and second numerical derivatives of the rotation xx , 

respectively. The angular velocity 
xx  shows a rather linear trend, which gradually decreases 

its amplitude over time. Its value becomes zero when the rotation 
xx  becomes maximum, while 

its maximum value occurs during impact. The angular acceleration 
xx  response is 

approximately constant during the pivoting (smooth rocking) phase, except for an internal 

oscillation caused by the cumulative noise introduced by the double derivatives, while it 

changes its sign suddenly at each impact. Figure 2d shows the experimentally measured energy 

balance of rocking motion (Eqs (3-5)). For each cycle, the 
xx  amplitude peaks correspond to 

a maximum potential energy and zero kinetic energy, with the latter reaching its maximum 

during impact. Overall, the total energy reduces with a stepwise fashion, i.e. being constant 

during the pivoting and experiencing abrupt reductions during impacts, thus being perfectly in 

line with the theoretical rocking dynamics [24]. Importantly, as the total energy remains 

constant during the pivoting (smooth rocking) phase, it appears reasonable to compute the CoR 

using the potential energy as per Eq. (10). Finally, Figure 2e depicts the rotations of the block 

in all three axes, x-x, y-y and z-z, where it is clearly shown that the xx  is the main component 

of motion, while yy  and zz  present negligible values. 

Figure 3 illustrates with dots the experimental maximum amplitude 
xx  of each half cycle 

versus the corresponding period for the representative test of Figure 2, separately for positive 

and negative oscillations. Note that the first half cycle is omitted since it might include small 

interferences triggered by the screwing device. The experimental parameters p  and   are 

estimated as the best fit resulting from the minimisation of the error between the amplitude-

period law (Eq. (2)) and the experimental data. The outcomes of the fitted p  and   parameters 

are shown in Table 1 and plotted in Figure 3, together with the values for nominal (i.e. ideal) 

geometry. Table 1 indicates that the experimentally computed frequency parameter p  perfectly 

resembles its nominal value for both signs of rotation, with a maximum difference of 0.02 % 

for the positive sign, while the slenderness angle   shows a minor difference of 5.5 % and 0.3 

% for the positive and negative signs, respectively. Overall, the experimental period-amplitude 

 
Figure 3: Period-amplitude dependency: experimental versus nominal geometry. 
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data appears to follow closely the form of Eq. (2) and indicates a small asymmetry of the block 

between its two signs of rotation. 

Figure 4a illustrates the experimentally estimated CoR values versus the maximum angular 

velocity 
xx  of each corresponding cycle, for the representative test previously presented. Note 

that Figure 5a shows the evolution of the test starting from the right side of the graph and 

evolves towards the left side, following the reduction of the angular velocity. Moreover, Figure 

4a plots the CoR given by Eq. (6), which is based on the assumption of conservation of angular 

momentum and is constant throughout the response time history. However, Figure 4a shows a 

non-constant trend of the experimental CoR that rather presents a gradual decrease over time 

with a scattered distribution at the end of the response. Nevertheless, the experimental CoR 

does not differ significantly from the theoretical CoR of Eq. (6). Finally, Figure 4b plots the 

experimental CoR values coming from all the 36 free-rocking tests performed herein. In 

addition, Figure 4b collects the experimentally measured CoR values found in the literature 

[20,26,30,31,34,36,41–46], together with the theoretical CoR computed using Eq. (6). Overall, 

Figure 4b shows that the 36 free-rocking tests follow the theoretical prediction of Eq. (6) up to 

an aspect ratio H B  of 12, while for higher aspect ratios the experimental outcomes indicate a 

smaller CoR. This discrepancy probably arises either due to the violation of the assumption of 

elastic impact behind Eq. (6) (i.e. no plastic deformation occurs at the surface asperities) or due 

to the presence of three-dimensional motion. Furthermore, the experimental results show a 

higher scatter for lower aspect ratios, with Eq. (6) providing a lower bound estimation. One 

potential explanation for this divergence has been provided by previous theoretical research 

Table 1: Nominal and experimental parameters   and p . 

   [rad] diff. [%] p  [Hz] diff [%] 

Nominal 0.197 - 7.597 - 

Experimental positive 
xx  0.187 5.5 7.595 0.0 

Experimental negative 
xx  0.197 0.3 7.597 0.0 

 
Figure 4: (a) Experimental versus Housner’s theoretical CoR values for a representative free-rocking test, and 

(b) comparison of the CoR values estimated for all the 36 free-rocking tests with pertinent values from the 

literature [20,26,30,31,34,36,41–46] and Housner’s model of Eq. (6) [13]. 
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[26–29] that highlighted that the impulsive forces during impact might not be concentrated 

solely at the corner pivot points. Nonetheless, the experimental CoR outcomes of this work lie 

within the scatter of the existing literature results for lower aspect ratios, while they provide 

novel experimental indications for higher aspect ratios, currently lacking from literature. 

5 CONCLUSIONS 

This paper presents an experimental characterisation of the free-rocking response of free-

standing limestone blocks. The experimental campaign includes the investigation of 36 blocks, 

grouped into 12 aspect ratios (i.e. from 4 to 15) with three blocks for each group. Special 

attention is given to the energy dissipation mechanism at impacts, which is quantified via the 

coefficient of restitution (CoR), while the three-dimensional response, which is captured by a 

four-camera digital image correlation system, is also investigated. 

The time history response of a representative test is firstly introduced and thoroughly 

discussed. The results show an oscillatory free-rocking behaviour, featured by modest 

asymmetry between the positive and negative rotations. Such an aspect is attributed to several 

sources of imperfection, which, however, are found to be of negligible interest given the very 

close resemblance between the nominal and experimental geometrical parameters, i.e. p  and 

 . Overall, the planar rocking rotation xx  dominates the response compared to the other 

rotations ( yy , zz ), reinforcing the common assumption of planar rocking response. 

Furthermore, particular emphasis is given to the experimental estimation of the energy 

losses during free-rocking motion through quantification of the CoR. The CoR values of a 

representative test appear to gradually decrease over time characterised by scattered values for 

small angular velocities − in contrast with Housner’s assumption of constant CoR throughout 

the response time history. Finally, a comprehensive comparison is made among the CoR values 

extracted from all the 36 free-rocking tests conducted herein, the experimental results gathered 

from the literature, and the theoretical CoR of Housner’s model. In general, the experimentally 

estimated CoR values follow the trend of the theoretical Housner’s model prediction. 

Specifically, the experimental results verify the high scatter of the CoR values observed in the 

literature for lower aspect ratios, while the CoR is underestimated for higher aspect ratios. 

Nevertheless, the results shown herein are part of a wider experimental investigation currently 

in progress aiming to provide a deeper insight into the estimation of the energy dissipation 

throughout the response time history and the complex nonlinear rocking phenomena. 
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