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Abstract

The flow equations of the renormalisation group permit to analyse rigorously the

perturbative n-point functions of renormalisable quantum field theories including

gauge theories. In this paper we want to do a step towards a rigorous nonperturbative

analysis of the flow equations (FEs). We restrict to massive scalar (one-component)

fields and analyse a mean field limit where the Schwinger functions are considered to

be momentum independent and thus are replaced by their zero momentum values.

We analyse smooth solutions of the system of FEs for the n-point functions for

different sets of boundary conditions. We will realise that allowing for nonvanishing

irrelevant terms permits to construct asymptotically free nontrivial smooth solutions

of the scalar field mean field FEs.

1 Introduction

Quantum field theory, originally developed to implement the principles of quantum me-

chanics in relativistic systems, has become the general theoretical framework to study

physical systems with an infinite (or large) number of degrees of freedom. Relativistic

quantum systems are described by relativistic quantum field theory, euclidean field theory

gives access to critical systems in statistical mechanics, systems from solid state physics

∗christoph.kopper@polytechnique.edu
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can be modeled by field theories at finite density and temperature. These systems have

different kinematics which is reflected in particular by the form of the (free) propagator

or two-point function. Interactions are introduced via the path integral formalism.

Aiming at mathematical rigour one is faced with the problem that path integrals de-

scribing interacting systems in field theory are generally not defined a priori. Whereas

there is a complete theory of Gaussian measures applying to the noninteracting case,

a mathematically oriented study of interacting field theories generally starts from regu-

larised versions of the theory, where the number of degrees of freedom in space and mo-

mentum has been made (essentially) finite by hand, through the introduction of regulators

like finite volume and large momentum cutoffs. One then studies correlation functions

and proves that these have uniform limits in the cutoffs. For a general introduction to

these methods see [13], euclidean scalar field theories are analysed in [31, 33].

The functional flow equation is a differential equation for the effective action functional

of the field theory considered. The basic ideas go back to Wilson [35]. In its differen-

tial form it seems to appear first in [34]. When expanded in moments it becomes an

infinite system of differential equations for the connected amputated Schwinger functions

of the theory. In a seminal paper [30] Polchinski observed that when expanding these

functions order by order in the number of loops, there is an airtight inductive scheme

which permits to sufficiently control the perturbative functions such that renormalisabil-

ity follows. In subsequent papers Polchinski’s result was implemented in a rigorous path

integral framework [16], extended to physical renormalisation conditions and sharpened

such that cutoff independence became immediate [18, 17]. The scheme has also been

extended to Minkowski space [19]. For reviews see [20, 27]. As a consequence ultraviolet

renormalisability can be largely reduced to power counting on the basis of a sufficiently

sharp induction hypothesis. The complicated combinatoric aspects of the problem, which

had found their deep solution in Zimmermann’s forest formula [37], turned out not to be

intrinsic to the renormalisation problem, but rather to stem from the fact that the pertur-

bative contributions had been split up in too fine a way, namely into Feynman diagram

amplitudes 1.

In contrast, methods originally stemming from statistical physics like cluster and

Mayer expansions [26, 3, 13, 31, 4], permit to analyse regularised path integrals non-

perturbatively, but are relatively straightforward only in theories which do not have to

be renormalised in an essential way, like massive ϕ4
2 and ϕ4

3 or other superrenormalisable

models. They are technically very hard to apply in strictly renormalisable theories. The

1This remark does of course not put into question the value of Feynman diagrams. It only says that

they are not optimally adapted for a mathematical analysis of the UV divergences (and related problems).
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review [4] shows the state of the art and reveals important progress made in this respect

over the last decades. In this context we cite a beautiful paper [32] on a construction of

planar “wrong sign” ϕ4
4 -theory which is intermediate between constructive and perturba-

tive continuous renormalisation group methods. In quantum field theory with hindsight

to particle physics the relevance of the constructive path integral method is also limited

by the fact that the physically interesting theories are either plagued by the triviality

statement [9, 1, 2], or in the case of quantum chromodynamics, by infrared problems

which are presently beyond the scope of mathematical physics. As a consequence the

work performed in constructive field theory has not entered typical text books on quan-

tum field theory, in spite of the fact that the nonperturbative analysis of field theory is

generally recognised to be an important problem.

Regarding on the other hand the differential FEs, one realises that they have not

been used with much success in the rigorous analysis of quantum field theory beyond

perturbation theory. A notable exception is [5] where the FEs are integrated over a fi-

nite interval for bounded and analytic initial data. Whereas the renormalisation problem

becomes transparent in Polchinski’s framework, by being related immediately to power

counting, the mathematical structure of the FEs for the n-point functions generally hin-

ders a rigorous nonperturbative analysis, even in the absence of renormalisation, due to

their dependence on the index n . This then even applies to ϕ4
1 or ϕ4

0 theory. We will

come back to this point in the first remark after (29).

In perturbative or constructive quantum field theory, one typically starts from a bare

action which contains only a few local monomials of low degree in the fields. In a theory

like quantum electrodynamics this leads, after perturbative renormalisation, to results

which are in extremely good agreement with experiment. The simple form of the bare ac-

tion is also justified by the fact that higher order monomials in the fields, if not multiplied

by a corresponding negative power of the renormalisation scale, are nonrenormalisable in

perturbation theory and do not lead to physically predictive theories.

From the point of view of the Wilson renormalisation group such low order monomial

lagrangians are related to an impressive fine tuning procedure - unless one would attribute

a very distinguished physical role to the UV cutoff where the flow is started. To illustrate

this point consider quantum electrodynamics. Starting from a bare lagrangian containing

the monomials

ψ̄ ψ , ψ̄ ∂µψ , ψ̄ γµA
µ ψ , FµνF

µν , (∂µA
µ)2 ,

and integrating out degrees of freedom (in whatever small a momentum range), one imme-

diately obtains a nonpolynomial effective lagrangian containing monomials of any degree

3



in the fields and their derivatives (as far as they are allowed by the symmetries of the

theory). The above mentioned fine tuning thus consists in arranging the renormalisation

group trajectory such that the infinite number of all (connected amputated) higher n-point

functions are forced to pass through 0 each, and for all momentum or position arguments,

at exactly the same value of the renormalisation scale, thus leaving only the small number

of local terms we wrote above for the bare lagrangian of QED.

In perturbation theory the infinite number of terms generated by the renormalisation

group evolution can be shown to contain each a negative power of the renormalisation

group scale, this power corresponding to its mass dimension, times a suitable function

bounded uniformly in the scale, up to logarithms. All these terms are uniformly bounded

in the UV cutoff [27]. Therefore their contributions do not produce any new ultraviolet

divergences, as compared to those stemming from the initial bare lagrangian. Thus the

argument of nonrenormalisability disappears due to the aforementioned inverse powers of

the renormalisation group scale. Nevertheless we should note that the the highly successful

perturbative calculations in physical models like QED are based on such monomial bare

lagrangians, for which also the perturbative calculations are easier to carry out.

In this paper we shall consider FEs for scalar field theories in four dimensions in

the mean field limit. These have the same power counting and scaling behaviour as the

full four dimensional theory and seem to capture well some of the basic features of four

dimensional scalar field theories. Our point is that different, generally nonpolynomial

bare actions, scaling with the cutoff as indicated before, may lead to essentially different

solutions of the FEs. We will show that, depending on the choice of the bare lagrangian,

one may in particular obtain asymptotically free solutions of the mean field scalar FEs

which escape the so-called triviality statement [9, 1] which has been sharpened recently

[2]. Our results are not in contradiction with this statement, since we will verify that

for the bare Lagrangian containing only local terms of the type ϕ4 and ϕ2, the trivial

solution emerges indeed. We will characterise this solution quite explicitly. It will turn

out that enforcing the fine tuned boundary conditions generates much larger values for

the derivatives of the n-point functions w.r.t. the renormalisation group scale than for

the asymptotically free solutions.

The mean field or local potential approximation to the FEs of scalar field theory has

been analysed previously in the literature. One of the earliest references is [29] in which

renormalisation group trajectories are calculated. In [38] critical exponents are evaluated

in this approximation for O(n) models with convincing results. The paper [7] gives a

comprehensive rigorous analysis of fixed points of scalar mean field theory below and

up to four dimensions. The mean field approximation is closely related to the so-called
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hierarchical models for which a rigorous fixed point analysis has been performed in [10].

These fixed points are the nontrivial infrared fixed points relevant to the analysis of critical

phenomena [36]. We are mainly interested in the existence of a (trivial) ultraviolet fixed

point characteristic of UV asymptotically free field theories. We will comment in more

detail on the paper [7] in section 4.1.

This paper is organized as follows : In section 2 we introduce the flow equations. In

section 3 we perfom the mean field limit. Section 4 is at the heart of our argument. We

study various types of smooth solutions of mean field FEs. In 4.1 we study solutions for

which we impose certain smallness and smoothness conditions at the UV boundary. In 4.2

we show that there are asymptoticially free solutions among those studied in 4.1. Then in

4.3 we study a class of strictly positive asymptotically free solutions which are of similar

type as those studied previously. In 4.4 we also impose bounds on the initial conditions

which are sufficient to make the starting regularised path integral - or the starting mean

field action in this approximation - well defined. In 4.5 we study the trivial solution

corresponding to boundary data containing only the monomials ϕ2 and ϕ4. This paper

has strong overlap with an earlier preprint [22]. We have tried to clarify and present

in a clearer way certain points and we have added important references. Many of these

changes are due to remarks of David Brydges. In the present presentation we have not

included section 5 from [22], which extends certain results to one-particle irreducible

functions. These results are technically more complicated to obtain and (presently) do

not seem to open new perspectives.

To describe our main result we introduce some notation (which is developed in more

detail in the main text). We study the renormalisation group flow in terms of a logarithmic

scale µ which varies between 0 for the bare action and µmax ≫ 1 for the fully integrated

or renormalised action. Taking away the UV cutoff corresponds to the limit µmax → ∞ .

The field variable φ of the mean field approximation does not depend on position or

momentum. Our statement is then:

Theorem: There exist bare mean field actions L0(φ) which are uniformly bounded from

below for φ ∈ R and locally analytic in the (constant) mean field variable φ such that the

moments An(µ), µ ∈ [0, µmax] , of the effective mean field actions Lµ(φ) exist as smooth

solutions of the system of FEs. Choosing the bare action L0(φ) suitably as a function of

µmax, the ultraviolet limits µmax → ∞ of the moments of Lµmax(φ) exist and are nontrivial.

The bare action vanishes in the limit µmax → ∞ (asymptotic freedom).
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2 The flow equations

We consider a (one-component) self-interacting scalar field on four dimensional euclidean

space. We adopt the renormalisation group flow equation framework [35, 34, 30]. In the

following we will give a brief review of the general formalism and define the objects of

interest for the purpose of this paper. See [27, 20, 15] for more comprehensive reviews of

the flow equation approach within our context.

2.1 The flow equations for the effective action

We start formulating our theory with ultraviolet (UV) cutoff and infrared (IR) cutoff in

the standard path integral formalism. This requires two main ingredients:

1. We define the regularised momentum space propagator as

Cα0,α(p;m) =
1

p2 +m2

[
exp

(
−α0(p

2 +m2)
)
− exp

(
−α(p2 +m2)

)]
. (1)

Upon removal of the cutoffs, i.e. in the limit α0 → 0 (UV), α→ ∞ (IR), we indeed

recover the free propagator 1
p2+m2 . For the Fourier transform, we use the convention

f(x) =

∫

p

f̂(p) eipx using the shorthand

∫

p

:=

∫
d4p

(2π)4
(2)

so that in position space

Cα0,α(x− y;m) =

∫

p

eip(x−y) Cα0,α(p;m) . (3)

2. The bare interaction Lagrangian is supposed to be of the form 2

L0(ϕ) =

∫

d4x
[

b0(α0) (∂ϕ(x))
2 +

∑

n∈2N

c0,n(α0) ϕ
n(x)

]

, (4)

where the bare couplings b0(α0) , c0,n(α0) should be such that

−∞ < K < L0(ϕ) < ∞ ∀ ϕ ∈ supp µα,α0 . (5)

Here K is some finite real constant and µα,α0 is the normalised Gaussian measure

with covariance (1) 3. The basic field ϕ is assumed to be in the support of µα,α0 .

In order to obtain a well defined limit of the quantities of interest for α0 → 0 , the

constants c0,n generally need to be chosen as appropriate functions of the ultraviolet

cutoff α0.

2In the mean field limit the term b0 (∂ϕ(x))
2 vanishes.

3See the Appendix to Part I of [13] for mathematical details about Gaussian functional integrals.
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The correlation (= Schwinger = n-point) functions of n basic fields with cutoff are defined

by the expectation values

〈ϕ(x1) · · ·ϕ(xn)〉 ≡ Eµα,α0

[

exp

(

− L0

)

ϕ(x1) · · ·ϕ(xn)

]/

Zα,α0

=

∫

dµα,α0 exp

(

− L0

)

ϕ(x1) · · ·ϕ(xn)

/

Zα,α0 .

(6)

This expression is simply the standard euclidean path-integral, where the free part of

the Lagrangian has been absorbed into dµα,α0. The normalisation factor Zα,α0 is chosen

so that 〈1〉 = 1. For finite values of the cutoffs 0 < α0 < α < ∞ and on imposing a

finite (space) volume, the functional integral (6) exists in the nonperturbative sense, if

L0 is bounded from below. In the perturbative theory it has been shown that one can

remove the cutoffs, α0 → 0 and α→ ∞, for a suitable choice of the bare running couplings

b0(α0), c0,n(α0) at each given but fixed order in the number of loops. The correct behaviour

of these couplings (in terms of bounds) is determined from the FEs which are a system

of differential equations in the parameter α for the (amputated) Schwinger functions.

These differential equations are written most conveniently in terms of the hierarchy

of “connected, amputated Schwinger functions” (CAS functions), whose generating func-

tional is given by the following convolution4 of the Gaussian measure with the exponen-

tiated interaction,

−Lα0,α := log

[

µα0,α ⋆ exp

(

− L0

)]

− logZα0,α . (7)

The full Schwinger functions can be recovered from the CAS functions in the end. One

can expand the functionals Lα0,α as formal power series in terms of Feynman diagrams

with ℓ loops, n external legs and propagator Cα0,α(p). Then one can show that, indeed,

only connected diagrams with an even number of external legs contribute, and that the

(free) propagators on the external legs are removed. While we will not use diagrammatic

decompositions in terms of Feynman diagrams, we start from analysing the functional (7)

in momentum space, expanded in moments, i.e. powers of ϕ

Lα0,α(ϕ) :=
∑

n∈2N

∫
d4p1
(2π)4

. . .
d4pn
(2π)4

L̄α0,α
n (p1, . . . , pn) ϕ̂(p1) · · · ϕ̂(pn) . (8)

Here no statement is made about the convergence of this series. By performing the Fourier

transformation in (4) we find the relation

(2π)4 δ4(

n∑

i=1

pi)c0,n(α0) = L̄α0,α0
n (p1, . . . , pn) , n ≥ 4 , (9)

4The convolution is defined in general by (µα0,α ⋆ F )(ϕ) =
∫
dµα0,α(ϕ′) F (ϕ+ ϕ′).
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(2π)4 δ4(p1 + p2)
[
c0,2(α0) + b0(α0)p

2
1

]
= L̄α0,α0

2 (p1, p2) .

Translation invariance of the CAS functions in position space implies that L̄α0,α
n (p1, . . . , pn)

is supported at p1 + . . . + pn = 0 (momentum conservation), and thus only depends on

n− 1 independent four momenta. We write

L̄α0,α
n (p1, . . . , pn) = δ4(

n∑

i=1

pi) L
α0,α
n (p1, . . . , pn) (10)

so that

c0,n(α0) + δn,2 b0(α0) p
2
1 = (2π)−4Lα0,α0

n (p1, . . . , pn) . (11)

We use the convention that the variable pn is determined in terms of the remaining n− 1

four vectors by momentum conservation, i.e. pn = −p1 − . . . − pn−1. One should keep

in mind, however, that the functions L̄α0,α
n (p1, . . . , pn) are in fact fully symmetric under

permutation of all p1, . . . , pn. Note also that the previous definitions imply that the

free CAS two-point function is not included in the function L2(p,−p) so that L2(p,−p)

vanishes, if the bare interaction does so.

To obtain the flow equations for the CAS functions, we take the α-derivative5 of (7):

∂αL
α0,α =

1

2
〈
δ

δϕ
, Ċα ⋆

δ

δϕ
〉Lα0,α −

1

2
〈
δ

δϕ
Lα0,α, Ċα ⋆

δ

δϕ
Lα0,α〉+ ∂α logZ

α0,α . (12)

Here we use the following notation: We write Ċα for the derivative ∂αC
α0,α , which, as

we note, does not depend on α0. Further, by 〈 , 〉 we denote the standard scalar product

in L2(R4, d4x) , and ⋆ stands for convolution in R4. As an example,

〈
δ

δϕ
, Ċα ⋆

δ

δϕ
〉 =

∫

d4x d4y Ċα(x− y;m)
δ

δϕ(x)

δ

δϕ(y)
(13)

is sometimes called the “functional Laplace operator”. We can now write the flow equation

(12) in an expanded version as

∂αL
α0,α
n (p1, . . . , pn) =

(
n+ 2

2

) ∫

k

Ċα(k;m)Lα0,α
n+2 (k,−k, p1, . . . , pn)

−
1

2

∑

n1+n2=n+2

n1n2 S

[

Lα0,α
n1

(p1, . . . , pn1−1, q) Ċ
α(q;m)Lα0,α

n2
(−q, pn1 , . . . , pn)

]

,
(14)

with q = pn1 + . . .+ pn = −p1 − . . .− pn1−1 , and where S is the symmetrisation operator

acting on functions of the momenta (p1, . . . , pn) by taking the mean value over all permu-

tations π of 1, . . . , n satisfying π(1) < π(2) < . . . < π(n1 − 1) and π(n1) < . . . < π(n).

5See for example [13] for the derivatives of Gaussian measures depending differentiably on a parameter.
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Note again that for the theory proposed through (4), only even moments (i.e. even in

n, n1, n2 ) will be nonvanishing due to the symmetry ϕ → −ϕ . The infinite system of

equations (14) then constitutes an infinite dimensional nonlinear dynamical system.

The CAS functions are defined uniquely as a solution to these differential equations

on imposing suitable boundary conditions. Noting that Lα0,α0 = L0 , these are fixed

through the choice of the constants c0,n in L0 (4). The CAS functions are then obtained

by integrating the flow equations subject to the boundary conditions. For an existence

and uniqueness proof in the context of perturbation theory see e.g. [18, 20, 27]. There

also exist farther reaching results like e.g. large momentum bounds [23], bounds on large

orders in perturbation theory [21], applications to finite temperature field theory [24],

application to nonabelian gauge theories [6], or a proof of convergence of the operator

product expansion [15]. The transition to Minkowski space is analysed in [19].

We have already mentioned the so-called triviality theorems which say that the con-

tinuum limit of lattice regularised scalar ϕ4 theory in four dimensions [9, 1, 2] 6 is

(generalised) Gaussian. This statement has its counter part in perturbation theory in the

so-called Landau pole which is related to the positive sign of the perturbative β-function

of the theory. This sign leads to a growth of the effective coupling with the energy scale so

that perturbation theory becomes unreliable. Using naively the Callan-Symanzik equa-

tions leads to a pole of the two-point function at high energies which violates unitarity.

The main point of this paper is to prove in the mean field context that irrelevant

terms in the bare action can modify this behaviour and lead to UV asymptotically free

theories. We shortly illustrate the mechanism which is behind our result by a lowest order

perturbative calculation. To adapt the flow equations to this case we have to expand them

also w.r.t. the number of loops ℓ ≥ 0 . We use BPHZ type renormalization conditions at

zero external momentum. Also, to simplify a bit, we set m = 0 and write C(q) ≡ C(q; 0)

for the massless propagator. In turn we impose the renormalisation conditions at α = 1
m2

(in suitable units) and not at α = ∞ . This corresponds to a slight rearrangement on the

infrared side without affecting the small α, i.e. ultraviolet properties. We also set

L̂n = n!Ln (15)

which is the normalisation used in perturbation theory, The loop-expanded FEs then read

∂αL̂
α0,α
n,ℓ (p1, . . . , pn) =

1

2

∫

k

Ċα(k) L̂α0,α
n+2,ℓ−1(k,−k, p1, . . . , pn)

−
1

2

∑

n1+n2=n+2
ℓ1+ℓ2=ℓ

Ŝ

[

L̂α0,α
n1,ℓ1

(p1, . . . , pn1−1, q) Ċ
α(q) L̂α0,α

n2,ℓ2
(−q, pn1, . . . , pn)

]

.
(16)

6in the symmetric phase and without additional irrelevant terms in the bare action
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Here Ŝ indicates not the mean value, but the sum over the rearrangements defined after

(14), due to our change of normalization (15).

For the one-loop four-point function at zero external momentum this gives

∂αL̂
α0,α
4,1 (0, . . . , 0) =

1

2

∫

k

Ċα(k) L̂α0,α
6,0 (k,−k, 0, . . . , 0)

−
1

2
2 · 4 L̂α0,α

4,0 (0, . . . , 0) Ċα(0) L̂α0,α
2,1 (0, 0) .

(17)

First consider pure ϕ4
4-theory where L̂α0,α

4,0 (0, . . . , 0) = g , L̂α0,α0

6,0 (0, . . . , 0) = 0 . The terms

on the r.h.s. of (17) are obtained from

∂αL̂
α0,α
6,0 (k,−k, 0, . . . , 0) =−

1

2
· 8 L̂α0,α

4,0 (k,−k, 0, 0) Ċα(0) L̂α0,α
4,0 (0, . . . , 0)

−
1

2
· 12 L̂α0,α

4,0 (0, 0, 0, k) Ċα(k) L̂α0,α
4,0 (−k, 0, 0, 0) ,

∂αL̂
α0,α
2,1 (0, 0) =

1

2

∫

k

Ċα(k) L̂α0,α
4,0 (k,−k, 0, 0)

so that we find for pure ϕ4-theory

∂αL̂
α0,α
4,1 (0, . . . , 0) = −2 g2

∫

k

Ċα(k)

∫ α

α0

dα′ Ċα′

(0)− 3 g2
∫

k

Ċα(k)

∫ α

α0

dα′ Ċα′

(k)

− 2 g2 Ċα(0)

(

−

∫ 1
m2

α

dα′

∫

k

Ċα′

(k)

)

− 4 g Ċα(0) L̂
α0,

1
m2

2,1 (0, 0) .

For the last two terms remember that we impose BPHZ renormalisation conditions at

α = 1
m2 . Those conditions imply L̂

α0,
1

m2

2,1 (0, 0) = 0 . Performing the integrals then gives

α∂αL̂
α0,α
4,1 (0, . . . , 0) = −2g2

1

16π2
(1−

α0

α
) − 3g2

1

16π2
(
1

2

α− α0

α + α0
) + 2g2

1

16π2
(1− αm2)

= −
g2

16π2
(
3

2
+ 2αm2 +O(

α0

α
)) −→

αm2→0,α0→0
−

3

2

g2

16π2
, (18)

which is the standard value for the one-loop β-function of ϕ4
4-theory. As a consequence the

effective coupling Lα0,α
4,1 (0, . . . , 0) grows logarithmically with the energy scale (squared)

1
α

for large energies.

If on the other hand we set L̂α0,α
4,0 (0, . . . , 0) = 0 but impose a nonzero boundary value for

the six-point function setting

L̂α0,α0
6,0 (p1, . . . , p6) = g6 α0
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then (17) gives

α∂αL̂
α0,α
4,1 (0, . . . , 0) =

1

2

g6
16π2

α0

α
> 0 , L̂α0,α

4,1 (0, . . . , 0) =
1

2

g6
16π2

(1−
α0

α
) −→

α0→0

1

2

g6
16π2

.

For g6 > 0 we thus get to lowest order an effective four-point coupling decreasing with

energy. This lowest order perturbative argument is evidently not conclusive. In fact we

now have to analyse the flow of the six-point function which will be negative unless we

add also a bare term to the eight-point function etc.

Our subsequent analysis is devoted to unravel necessary conditions on the bare action

to obtain an asymptotically free theory. It is nonperturbative but limited to the mean

field case.

3 The mean field limit of the flow equations

The flow equations constitute an infinite dimensional nonlinear dynamical system. The

system of functions Lα0,α
n (p1, . . . pn) is defined on configuration spaces whose dimension

also goes to infinity for n → ∞ . The mean field limit implies a drastic simplification

of this system. It is obtained by replacing the functions Lα0,α
n (p1, . . . pn) by constants

Aα0,α
n corresponding to their zero momentum values. So one sets all external momenta

equal to zero in (14). In particular one replaces Lα0,α
n+2 (k,−k, p1, . . . pn) in the integral by

Lα0,α
n+2 (0, . . . , 0) . We hope that this simplification nevertheless captures essential aspects

of the behaviour of the full dynamical system. This hope is in particular based on the fact

that the simplification amounts to replacing the derived propagator in the second term

on the r.h.s of (14) by 1 . In fact we have

0 < Ċα(q;m) = e−α(q2+m2) ≤ e−αm2

≤ 1 . (19)

So the full system is obtained from the simplified one by contracting the second term

on the r.h.s. in a momentum dependent manner. Controlling this contraction is maybe

not completely out of range. In this respect we also remind the fact that the critical

behaviour in statistical physics is exactly described by the mean field approximation in

d > 4 dimensions [9, 1], as was first pointed out by Ginzburg [12]. The hard technical

problems one is faced with when going beyond mean field, are in particular due to the

fact that the n-point functions we want to construct have to respect Bose symmetry and

euclidean invariance.

A rather mild second simplification which we will adopt, consists in choosing m = 0

and in restricting in turn our analysis to the interval α ∈ [α0, 1]
7 to avoid infrared

7on choosing units such that the original mass satisfies m2 = 1
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problems. It should then be a straightforward extension of the present analysis to take

the limit α→ ∞ while keeping m > 0 .

The system of mean field FEs (21) below is obtained from (14) by setting all external

momenta and m equal to zero writing

Aα0,α
n := Lα0,α

n (0, . . . , 0) . (20)

The mean field effective action Lα0,α
mf action then takes the form (as a formal power series)

Lα0,α
mf (φ) =

∑

n

Aα0,α
n φn ,

where φ ∈ R . The k-integral in (14) can now be carried out explicitly, and we get for

n ∈ 2N

∂αA
α0,α
n =

(
n+ 2

2

)

cα A
α0,α
n+2 −

1

2

∑

n1+n2=n+2

n1 n2 Aα0,α
n1

Aα0,α
n2

, (21)

where the sum, here and subsequently, can always be restricted to even values of n1, n2 .

Furthermore

cα :=
c

α2
with c :=

1

16π2
(22)

so that cα is the value at m = 0 of

cα(m) :=

∫

k

Ċα(k;m) =
1

16π2

1

α2
e−αm2

. (23)

It is useful to factor out the basic scaling behaviour w.r.t. α and a combinatoric factor,

setting

Aα0,α
n =: αn/2−2 1

n
an(α) , (24)

where we suppressed the variable α0 on the r.h.s. for shortness. In terms of the functions

an(α) , our dynamical system can be rewritten as

an+2(α) =
1

(n+ 1)c

∑

n1+n2=n+2

an1(α) an2(α) +
n− 4

n(n+ 1)c
an(α) +

2

n(n + 1)c
α ∂α an(α) .(25)

This system permits to construct the functions an(α) inductively in n if the function

a2(α) is known. We make another change of variables in order to also factor out the 1/c

factors

fn(µ) := cn/2−1 an(α) = α2−n/2 cn/2−1 n Aα0,α
n , µ := ln(

α

α0

) . (26)

12



The system (25) can then be rewritten

fn+2 =
1

n+ 1

∑

n1+n2=n+2

fn1 fn2 +
n− 4

n(n+ 1)
fn +

2

n(n+ 1)
∂µ fn , µ ∈ [ 0, ln

1

α0
] . (27)

We have again suppressed the dependence on α0 in the notation, and in fact the solutions

which we are going to construct, will depend on µ only.

Making the functions f2 and f4 more explicit, this gives equivalently

f4 =
1

3
f2 (f2 − 1) +

1

3
∂µ f2 , (28)

fn+2 =
1

n+ 1

∑

n1+n2=n+2
ni≥4

fn1 fn2 +
1

n+ 1
fn [ 2 f2 + 1−

4

n
] +

2

n(n + 1)
∂µ fn , n ≥ 4 .(29)

Smooth solutions of the dynamical system (28), (29) are fixed if we choose a smooth

function f2(µ) . In perturbative quantum field theory one primarily considers the flow of

the four-point function which is represented by f4(µ) . From (28) we realise that we may

first fix f4(µ) and then solve the differential equation (28) for f2(µ) to obtain a solution

for f2(µ) .

We add a few general remarks in relation with the structure of the system (28), (29).

• The first remark concerns what one might call the combinatorial instability of the

system. By this we mean that trying to solve the system by iterated integration

starting from a first educated guess on the fn, will not define a convergent procedure.

In fact the prefactor 2
n(n+1)

in front of ∂µfn, will lead to a blow-up w.r.t. n on

iteration, unless one were able take into account cancellations of terms of opposite

sign. But this is typically beyond scope. The remark applies also when considering

scalar (mean) field theory in lower dimensions.

• As a consequence of the previous statement we rather proceed in a different way: We

start by fixing f2(µ) and construct the higher n-point functions from the two-point

function. This will permit us to find smooth solutions of the system (29). When

trying to apply this procedure to the full system (14), one is faced with the problem

of how to define a function Lα0,α
n+2 (p1, . . . , pn+2) on prescribing its integrals

∫

k

Ċα(k;m)Lα0,α
n+2 (k,−k, p1, . . . , pn) .

The function Lα0,α
n+2 (p1, . . . , pn+2) has to be Bose symmetric and symmetric under

the euclidean group, in particular translation invariant. It also should have good

13



analyticity properties as required by a full-fledged quantum field theory, which can

be analytically continued to Minkowski space. A hard challenge is to identify the

conditions which determine these functions uniquely in agreement with the axioms

of quantum field theory.

• We also mention in this context the so-called hierarchy problem of scalar field theory.

It consists in the observation that in perturbative scalar field theory the two-point

function diverges quadratically with the UV cutoff Λ0 = α
−1/2
0 , as suggested by

(26). In fact it is the only term diverging stronger than logarithmically in pertur-

bation theory, even when inspecting the whole of the standard model of particle

physics. It is then argued that this divergence leads to a fine-tuning problem when

viewing Λ0 as a very high energy scale (“the Planck mass”) since fixing the mass of

the Higgs particle associated to the scalar field at its much lower physical value re-

quires fine-tuning of the corresponding counter terms. Consequently this quadratic

divergence is often cited as a motivation for supersymmetric (or other) extensions of

the standard model where the perturbative divergences are only logarithmic. Once

we look at the rescaled system (28), (29) - the same rescaling can be performed for

the full system (14) - this quadratic divergence disappears. In the scale free system

there is no particular instability linked to the two-point function. To some degree it

seems that the precedent fine-tuning problem is only palpable if one attributes direct

physical significance to the mass counter terms. On the other hand supersymmetric

cancellations appear to be due to a subtle fine-tuning procedure from the point of

view of the corresponding dynamical FE system.

4 Solutions of the mean field equations

We will consider solutions of (28), (29) which are smooth functions of the renormalisation

group scale µ in the interval [ 0, ln 1
α0
] . The existence of the ultraviolet limit means that

the system of solutions has a finite limit for α = 1 ⇔ µ = ln 1
α0

(“where all degrees

of freedom have been integrated out”) when the UV cutoff 1/α0 is sent to infinity. In

other words claiming the existence of a mean field solution of the FEs in the UV limit is

tantamount to prove that

the limits lim
µmax→∞

fn(µmax) exist for all n , where µmax = ln
1

α0
. (30)

The solutions studied in 4.1 and in 4.2 are the simplest to obtain. We will show that

there exist smooth solutions fn(µ), uniformly bounded w.r.t. µ, which vanish at µ = 0

14



when taking the UV limit α0 → 0 . They are thus asymptotically free in the ultraviolet.

For these solutions we however do not control the signs of the n-point functions, not

even at µ = 0 , i.e. for the bare action. We find a bare action which is nonpolynomial,

and its moments are not necessarily positive. From the functional integral point of view

the existence of the bare action for an arbitrary field configuration in the support of the

Gaussian measure is therefore not assured. And for the (mean) field configurations for

which the bare action exists, we do not know whether it is uniformly bounded from below.

In section 4.3 we will then study solutions with strictly positive boundary conditions at

µ = 0 for all n-pont functions. So the bare action is nonpolynomial, and all of its moments

have positive coefficients. The bare action is bounded from below (by 0) whenever it is

well-defined. The solutions we obtain are again ultraviolet asymptotically free. Still the

bare action (restricted to finite volume) may be not well-defined for all admissible field

configurations - or for all values of φ in the mean field limit - since it may diverge due to

its nonpolynomial character.

We therefore study in section 4.4 solutions, the boundary conditions of which, while

being again nonpolynomial, can be resummed into bounded functions of the field variable

and lead to well-defined bare actions in the (finite volume) path integral. These actions

are also bounded from below. So the (regularised) path integral exists, and the mean

field bare action is globally well-defined. The mean field solutions from 4.4 constitute

subclasses of those considered in 4.1 and 4.2. We show in particular that there exist

UV asymptotically free mean field solutions with well-defined path integral. The proof

requires much sharper restrictions on the couplings than those needed in 4.1 and 4.2.

Section 4.4 presents the main result of this paper.

Finally we study the boundary conditions of pure ϕ4 theory in section 4.5. The mean

field solutions corresponding to these boundary conditions have alternating signs (at least

for small µ) and large µ-derivatives which is related to the aforementioned fine-tuning of

the boundary conditions required for polynomial bare actions.

We shall find that with the exception of 4.4, the upper bounds on the coupling con-

stants required in the existence proofs of the solutions are quite moderate when compared

to constructive field theory upper bounds which typically are “astronomically small” (like

exponentials of a very big negative number) due to the high complexity of the contri-

butions from iterated cluster expansions. The upper bounds from 4.4 are however much

smaller and not really made explicit. This is because the proof of Theorem 1 is delicate.

We did not try to optimise the bounds w.r.t. the size of the couplings, also for the sake

of readability. More realistic upper bounds should be attainable with reasonable effort.
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4.1 Bounded mean field solutions

The simplest solutions of (28), (29) are scale-invariant solutions for which

∂µ f2 ≡ 0 . (31)

By induction it then follows directly from (28), (29) that

∂µ fn ≡ 0 ∀n (32)

so that we obtain the µ independent system

f4 =
1

3
f2 (f2 − 1) , fn+2 =

1

n+ 1

∑

n1+n2=n+2
ni≥4

fn1 fn2 +
1

n+ 1
fn [ 2f2 + 1−

4

n
] , n ≥ 4 .(33)

The solutions of (33) are fully determined on imposing the value of f2 .

In [7] Felder has analysed rigorously and in great generality global solutions of the

differential equation
1

2
uxx −

d− 2

2
xux + du −

1

2
u2x = 0 (34)

in dimensions 2 < d < 4 . The system (33) is obtained when taking d→ 4 , by expanding

a solution u(x) in moments according to 8

u(x) =
∑

n≥0

fn
n
xn . (35)

Felder’s conclusion is that for d → 4 − 0 the nontrivial fixed point solution u4 found in

dimensions 3 < d < 4 tends to zero. Felder’s analysis does not exclude the existence of

fixed points other than those he found explicitly. If other fixed points can be excluded,

then the conclusion to be drawn from [7] and our results is that the moment expansion

(35) is not valid for arbitrarily large x ∈ R or that the solution u obtained from the

momentum expansion is not sufficiently regular to satisfy (34).

It is instructive to look at the fixed point solutions of (33), i.e. on performing the moment

expansion. We consider different cases as regards the value of f2 .

a) 0 < |f2| ≤ ε ≪ 1

In this regime we find that f4 = O(ε) , with sign opposite to that of f2 , f6 = O(ε2) with

negative sign, and fn > 0, fn = O(ε) for n ≥ 8 . So we have an action bounded from below.

This regime is not perturbative, in the sense that fn is not of increasing order in ε for increasing

8There is a slight difference of normalisation since Felder’s flow parameter t satisfies 2t = µ . As a

consequence, the second term on the r.h.s. of (27) is multplied by 2 .
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n . The |fn| for n ≥ 6 are bounded by ε2 times a numerical coefficient becoming small (≪ 1)

rapidly for increasing n .

b) 0 < f2 < 1

In this case f4 < 0 . Generally the fn may have either sign, depending on n .

c) f2 = 1

We find fn = 0 ∀ n ≥ 4 , i.e. a “free theory”. This is the so-called high temperature fixed

point.

d) f2 > 1

By induction on n one finds that the coefficients fn of the system (33) satisfy

• fn > 0 , so the action is bounded from below.

• fn are strictly increasing when viewed as functions of f2 and geometrically bounded by

a constant to the power n .

In particular for f2 = 1+ ε with 0 < ε ≪ 1 we find f4 = 1
3 (1 + ε)ε , f6 = 2

15 (1+ ε)2ε ,

fn = O(ε) ∀ n ≥ 4 . The |fn| for n ≥ 6 are bounded by ε times a numerical coefficient

becoming small (≪ 1) rapidly for increasing n .

e) f2 < 0

In this case we do not control the signs of the fn . The |fn| may become large in modulus for

large f2 .

It is relatively straightforward to see (and follows from the subsequent bounds) that the moment

expansion (35) has (at least) a finite radius of convergence for f2 close to 0 or close to 1 .

We now study more general solutions for which all | fn(µ) | are uniformly bounded 9.

We consider a smooth two-point function satisfying

−K1 δ ≤ f2(0) ≤ −δ < 0 , | ∂lµ f2(µ) | ≤
K l

1 δ
l+1

(l + 1)2
l ! ∀ µ ∈ [ 0, ln

1

α0

] and ∀ l ≥ 0

(36)

for some fixed 0 < δ ≤ 1 , K1 > 1 being a positive constant. We restrict ourselves for

simplicity and definiteness to the interval 0 < δ ≤ 1 , but larger values could be analysed

similarly. We note that the sign of f2(0) in (36) is in agreement with the sign of the mass

counter term in perturbative ϕ4-theory at lowest order.

Proposition 4.1 For suitable K ≥ sup(K1, 4) and f2(µ) satisfying (36), the functions

fn(µ) solving (29) are smooth and satisfy for µ ∈ [0, ln 1
α0
] , n ∈ 2N+ 2 , l ≥ 0 ,

|∂ l
µ fn(µ)| ≤

Kn+l−2 δl+1

(l + 1)2
(n + l − 2)!

(n− 2)!
. (37)

9It is possible to choose the initial conditions such that | fn(µ) | ≤ 1 ∀n, µ .
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Remark.

Assuming that f2(µ), and then also all fn(µ) are defined for complex values of µ, the

bound (37) implies that the fn(µ) are analytic in a strip of width 2
δK

around the real

µ-axis for 0 ≤ µ ≤ ln 1
α0

. The mean field action Lα0,α
mf (φ) is then analytic w.r.t. the field

variable φ in a disk of radius (c/αK2)1/2 uniformly in α0 , see (41) below.

Proof. The proof is by induction in n+ l ≥ 2 .

The bounds hold for the two-point function by assumption (36). Verification of the bounds

on ∂ l
µ f4(µ) using (28) is straightforward and simpler than the general case n ≥ 4 . So

we leave this case to the reader. For n ≥ 4 we insert the induction hypothesis on the

r.h.s. of (29), derived l times w.r.t. µ . This gives the bound

∣
∣ ∂ l

µ fn+2(µ)
∣
∣ ≤

δl+2

n + 1

∑

n1+n2=n+2,ni≥4
l1+l2=l

(
l

l1

)
Kn+l−2

(l1 + 1)2 (l2 + 1)2
(n1 + l1 − 2)!

(n1 − 2)!

(n2 + l2 − 2)!

(n2 − 2)!

+
δl+1

n+ 1

∑

l1+l2=l

(
l

l1

)
Kn+l1−2

(l1 + 1)2
(n+ l1 − 2)!

(n− 2)!
[ δ

K2+l2−2

(l2 + 1)2
2 (2 + l2 − 2)! + δl2,0 (1−

4

n
) ]

+
2 δl+2

n(n+ 1)

Kn+l+1−2

(l + 2)2
(n+ l + 1− 2)!

(n− 2)!
.

(38)

From the standard bound (all entries are supposed to be nonnegative integers)

(
l

l1

)(
n− 2

n1 − 2

)

≤

(
n− 2 + l

n1 − 2 + l1

)

(39)

which follows from Vandermonde’s identity, we obtain
(
l

l1

)
(n1 + l1 − 2)!

(n1 − 2)!

(n2 + l2 − 2)!

(n2 − 2)!
=

(
l

l1

)(
n− 2

n1 − 2

)
(n1 + l1 − 2)!(n2 + l2 − 2)!

(n− 2)!
≤

(n + l − 2)!

(n − 2)!
.

This then allows to deduce from (38)

∣
∣ ∂ l

µ fn+2(µ)
∣
∣ ≤

δl+2

n + 1

∑

n1+n2=n+2,ni≥4
l1+l2=l

Kn+l−2

(l1 + 1)2 (l2 + 1)2
(n + l − 2)!

(n− 2)!

+
δl+1

n+ 1

∑

l1+l2=l

Kn+l−2

(l1 + 1)2
(n+ l − 2)!

(n− 2)!
[

2 δ

(l2 + 1)2
+ δl2,0 (1−

4

n
) ]

+
2 δl+2

n(n + 1)

Kn+l+1−2

(l + 2)2
(n+ l + 1− 2)!

(n− 2)!
.

(40)
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We may use the bounds

1

(l1 + 1)2 (l2 + 1)2
≤

2

(l + 1)2

(
1

(l1 + 1)2
+

1

(l2 + 1)2

)

,
∑

l≥1

1

l2
≤ 2

to get
∑

n1+n2=n+2,ni≥4
l1+l2=l

1

(l1 + 1)2 (l2 + 1)2
≤

8n

(l + 1)2
.

Choosing K sufficiently large such that for n ≥ 6

δ

n + 1

∑

n1+n2=n+2,ni≥4
l1+l2=l

1

(l1 + 1)2 (l2 + 1)2
≤

1

3

K2

(l + 1)2
(n+ l)(n + l − 1)

n(n− 1)

and such that

1

n + 1

∑

l1+l2=l

1

(l1 + 1)2 (l2 + 1)2
[ 2δ + δl2,0 (1−

4

n
) ] ≤

K2

2 (l + 1)2
(n+ l)(n + l − 1)

n(n− 1)

and such that
2 δ

n(n + 1)

1

(l + 2)2
≤

1

6
K

1

(l + 1)2
n+ l

n(n− 1)

we find that (38) is bounded by

(
1

3
+

1

2
+

1

6
)
δl+1Kn+l

(l + 1)2
(n+ l)!

n!
.

One can straightforwardly convince oneself that K = 4 is admissible for δ = 1 , K1 ≤ 4 .

Smaller values of K are allowed if δ < 1 , K1 < 4 . �

Going back to the dynamical system (21) we obtain from the set of smooth functions

fn(µ) , the system of smooth functions Aα0,α
n . If the functions fn(µ) satisfy the bounds

from Proposition 4.1, then the Aα0,α
n satisfy uniformly in α0 the bounds

|Aα0,α
n | ≤ δ

(
αK2

c

)n−2
2 1

αn
for 0 < α0 ≤ α ≤ 1 . (41)

So the mean field action

Lα0,α
mf (φ) =

∑

n∈2N

Aα0,α
n φn (42)

is analytic in a disk of radius [ c
αK2 ]

1
2 .
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4.2 Asymptotically free mean field solutions

Generally ultra-violet asymptotically free theories are those for which the effectif cou-

plings, as a function of the energy scale, tend to zero if the energy scale tends to infinity.

In the perturbative analysis of the field theories from particle physics this expresses itself

in the fact that the so-called β-function has a negative leading term when expanded in

a (formal) power series with respect to the renormalised couplings. In φ4 scalar theory

this renormalised coupling, generally called g, is related to the four-point function, the

flow of which is then viewed as a function of the energy scale, see also the discussion after

(17). The β-function controls this flow of the effective coupling g(λ) as a function of the

logarithmic energy scale λ via
dg

dλ
= β(g(λ)) .

If β is negative, the coupling vanishes logarithmically for λ→ ∞ ,

g(λ) → 0 for λ→ ∞ : asymptotic freedom .

Here g(0) is the finite (positive) renormalised coupling. Since in renormalised perturba-

tion theory, all higher n-point functions are expanded with respect to the renormalised

coupling, asymptotic freedom in the perturbative context implies that all these functions

asymptotically vanish at high energies.

In the mean field context the logarithmic energy scale is given by the variable µ . The

ultraviolet limit corresponds to µ = 0 , the relation between µ and λ is

λ = µmax − µ .

To stay close to previous notations we may set

f̃n(λ) = fn(µ)|µ=µmax−λ .

Note that the f̃n(λ) also depend on the parameter µmax which is the ultra-violet cutoff.

This cutoff is to be sent to infinity while keeping the physical couplings at λ = 0 fixed.

Asymptotically free solutions fulfill

lim
λ→∞

f̃n(λ) = 0 ∀n ∈ 2N , (43)

while the physical couplings f̃n(0) are kept fixed. In our nonperturbative context the

previous statement (43) directly includes all n-point functions since we do not (necessarily)

expand the higher n-point functions in terms of the four-point function.

On the contrary, solutions for which

lim
µmax→∞

f̃n(0) = 0 ∀n ∈ 2N , (44)
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while the f̃n(µmax) are kept fixed, are called trivial. We come back to the trivial solution

in section 4.5.

In our analysis it is more natural to stay with the variable µ, since we are posing

our boundary conditions at µ = 0 . We want to show now that there is a subclass of

asymptoticaly free solutions among those from Proposition 4.1. These solutions describe

a mean field theory in the sense that the solutions fn(µmax) have a well-defined limit for

µmax → ∞ ⇔ α0 → 0 . We choose

f2(µ) = −δ(µ) , δ(µmax) = δ , ∂µ δ(µ) = β δ2(µ) , 0 < δ , β <
1

2
, µ ∈ [0, ln

1

α0
] .

(45)

Here β δ2(µ) plays the role of the β-function from the previous discussion.

The well-known solution of (45) is

δ(µ) =
δ

1 + (µmax − µ)β δ
. (46)

Evidently (45) and (46) verify the assumptions of Proposition 4.1. We have in particular

lim
µmax→∞

f2(µmax) = − δ , lim
µmax→∞

∂lµ f2(µmax) = − βl l! δl+1 . (47)

By straightforward induction in n + l , proceeding as in the proof Proposition 4.1, we

then find that the limits limµmax→∞ fn(µmax) , n ≥ 4 , also exist and obey the bounds of

Proposition 4.1. We collect our findings in

Proposition 4.2 Among the solutions from Proposition 4.1 there are nontrivial asymp-

totically free solutions, for which the following relations hold

f2(µmax) < 0 , f4(µmax) > 0 , (48)

lim
µmax→∞

fn(µmax) exists ∀n ∈ 2N , (49)

lim
µmax→∞

∂lµ fn(0) = 0 ∀n ∈ 2N , l ∈ N0 . (50)

Proof. When choosing boundary conditions (45), the second inequality in (48) is true if
1
3
δ(µmax)(δ(µmax) + 1)− ∂µδ(µmax) > 0 , which is the case for δ, β bounded as in (45).

For these solutions the last statement (50) follows by induction proceeding as in the proof

of Proposition 4.1. In fact it suffices to replace in this proof the powers of δ appearing in

the inductive bound (38) by the respective powers of δ(µ) , and to note that for µmax → ∞

we have δ(0) → 0 .
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We also remark that solutions of the type (45), but with β negative, lead to trivial

theories, namely we find that

lim
µmax→∞

fn(µmax) = 0 , (51)

if δ(0) is fixed to be positive and not too large. In fact one obtains in this case

δ(µ) =
δ(0)

1 − µ β δ(0)
, (52)

which vanishes for µ = µmax → ∞ . This implies the vanishing of all fn in this limit,

using again the inductive scheme of proof of Proposition 4.1. We do not work out this

point further here. We will come back to the triviality question for pure ϕ4
4 in 4.5.

4.3 Asymptotically free mean field solutions with positive bare

values

The bare actions constructed from the solutions fn(0) in 4.1 are generally not bounded

from below. In this subsection we look at solutions for which all fn are positive and

monotonic in µ :

fn(µ) ≥ 0 , ∂µfn(µ) ≥ 0 . (53)

The first inequalities for µ = 0 assure positivity - and thus in particular boundedness

from below - of the bare action, whenever it is well-defined.

We obtain smooth solutions of (28), (29) satisfying the conditions (53) on considering

functions f2(µ) such that

f2(µ) = 1+δ(µ) , 0 < δ(µ) ≤ 1 , ∂µ δ = β δ2(µ) , 0 < β ≤ 1 , µ ∈ [ 0, ln
1

α0

] . (54)

The main difference between (54) and (45) is that f2 in (54) is not of order δ . So the

solutions studied are nonperturbative from the beginning.

Rewriting (28) as

3 f4(µ) = (1 + δ(µ)) δ(µ) + ∂µδ(µ) =
(

1 + (1 + β)δ(µ)
)

δ(µ) , (55)

we see that the relations (54), (55) imply

∂ l
µ f4(µ) ≥ 0 ∀l . (56)
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Proposition 4.3 For suitable K > 1 and f2(µ) = 1 + δ(µ) smooth, satisfying (54),

the functions fn(µ) are smooth, and satisfy for µ ∈ [ 0, ln 1
α0
] , n ∈ 2N+ 2 , l ≥ 0

0 < ∂ l
µ fn(µ) ≤ δ(µ)

Kn+l−2

(l + 1)2
(n + l − 2)!

(n− 2)!
. (57)

Proof. The proof is by induction in n+l ≥ 2 . Positivity follows immediately by inspecting

the r.h.s. of (29) using (54) and (56). The bound does not contain higher powers of δ(µ)

as in Proposition 4.1 since f2 is no more of order δ. Otherwise the proof follows strictly

the one of Proposition 4.1. So we do not rewrite it. We find again that K = 4 is an

admissible value. �

From (21) and Proposition 4.3 we find again bounds uniform in the UV cutoff α0 for the

Aα0,α
n

0 < Aα0,α
n < (δn,2 + δ(µ))

(
αK2

c

)n−2
2 1

αn
for 0 < α0 ≤ α ≤ 1 . (58)

The initial data fn(0) ≥ 0 assure the positivity of all moments of the bare action, which

obey (58). The bound assures again analyticity of the mean field effective action (42) in

a disk of radius ( c
αK2 )

1/2 .

The solutions studied in Proposition 4.3 are again asymptotically free. When choosing

δ = δ(µmax) > 0 fixed, we have statements analogous to (46, 47, 48, 49, 50) :

δ(µ) =
δ

1 + (µmax − µ)β δ
, (59)

lim
µmax→∞

∂lµ f2(µmax) = δl,0 + βl l! δl+1 , lim
µmax→∞

f4(µmax) =
1

3
(1 + δ)δ + βδ2 , (60)

lim
µmax→∞

fn(µmax) exists and is positive ∀n ∈ 2N , (61)

lim
µmax→∞

∂lµ f2(0) = δl,0 , lim
µmax→∞

∂lµ fn(0) = 0 ∀n ∈ 2N+ 2, l ∈ N0 . (62)

These asymptotically free solutions seem quite special. An interesting task is to analyse

the different classes of solutions more systematically. As regards the UV limit, the basic

possibilities are nontrivial asymptotically free or safe (i.e. scale independent) solutions,

or trivial solutions which are free at µ = µmax .

In perturbative quantum field theory one generally analyses in a first place the scaling

behaviour of the four-point function, and not that of the two-point function. When
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imposing f4(µ) and then solving the differential equation for the two-point function (55),

which is of Riccati type, we find as a particular solution

f2(µ) = −3f4(µ) . (63)

This implies that we can find all solutions of the Riccati equation.

For example, the solution satisfying f2(0) = 0 is given by

f2(µ) =
3 f4(0) e

∫ µ
0 (6f4(µ′)+1) dµ′

1 + 3 f4(0)
∫ µ
0 dµ′ e

∫ µ′

0
(6f4(µ′′)+1) dµ′′

− 3 f4(µ) . (64)

It satisfies

f2(µ) ≥ 0 , ∂µf2(µ) ≥ 0 , f2(0) = 0 .

Higher order derivatives of this solution are not positive for all values of µ so that the corre-

sponding solutions of (29) cannot be expected to satisfy Proposition 4.3 for l = 0 . Since the

solution (64) corresponds to a vanishing mass counter term, it may well be that the ultraviolet

limit for this solution does not exist. It would be interesting to know whether it is possible to

construct along these lines asymptotically free solutions, in particular for the four-point function,

satisfying Proposition 4.3 and which are such that the bare action is well defined and bounded

from below.

4.4 Solutions of bounded action

The mean field actions Lα0,α
mf (φ) corresponding to the solutions of the mean field FEs

constructed in the previous sections 4.1, 4.2, 4.3 are analytic w.r.t. φ in a disk of radius

( c
αK2 )

1/2 . For those constructed in 4.3 all coefficients Aα0,α
n of the moment expansion

are positive. But L0(φ) = Lα0,α0

mf (φ) is not defined for arbitray φ ∈ R . And if we want

to obtain this bare action as the mean field limit of an action functional L0(ϕ(x)) of a

complete scalar field theory, then L0(ϕ(x)) is generally not well-defined on the whole

of the support of the Gaussian measure, even in the presence of regulators, due to its

nonpolynomial character.

The solutions we will construct in this section satisfy sufficiently strong bounds in order

to assure well-defined bare field action functionals or bare mean field action functions,

bounded from below. Since the estimates become more delicate the upper bounds on the

coupling constants required, are much more restrictive. The solutions from this section

will in fact be subclasses of those from section 4.1, 4.2.

The bare functional (4) L0(ϕ(x)) =
∑

n∈2N

∫
d4x c0,n ϕ

n(x) is local. The constants c0,n are

related to the A
α0,α0
n via

c0,n =
1

(2π)4
Aα0,α0

n
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as can be seen from (9), (10), (20). For the A
α0,α0
n we have deduced the bounds (41) resp. (58).

The functional L0(ϕ) is well-defined for all ϕ in

D(α0) =

{

ϕ
∣
∣
∣ ϕ ∈

⋂

n∈2N

Ln(R4, d4x) , L0(ϕ) < ∞

}

.

If the bounds (41) resp. (58) hold, the set D(α0) contains

Mε(α0) :=

{

ϕ

∣
∣
∣
∣
∣
ϕ ∈

⋂

n∈2N

Ln(R4, d4x) , lim sup ||ϕ||n < (
c

α0 K2
)1/2 − ε

}

⊂ D(α0)

for arbitrarily small positive ε . The sets Mε(α0) do not exhaust the support of the measure

µ(Cα0,α) for finite α0 . One might then be tempted to introduce one more regularisation by

setting

V (ϕ) ≡ e−L0(ϕ) , if ϕ ∈ suppµ(Cα0,α) ∩ D(α0) ,

V (ϕ) ≡ 0 , if ϕ ∈ suppµ(Cα0,α)−D(α0) .

But V (ϕ) is not differentiable w.r.t. ϕ , and it is thus no more possible to derive the FEs from

the path integral by partial integration. In fact boundary terms appear where the potential

V (ϕ) is cut off.

To impose boundedness from the beginning we now consider local bare actions (as func-

tionals) of the form

L0(ϕ(x)) =
∑

n∈2N

∫

d4x L̃α0,α0
n sin(α

n/2
0 ϕn(x)) α

−n/2
0 . (65)

In the mean field approximation we obtain correspondingly 10

L0(φ) =
∑

n∈2N

Ãα0,α0
n sin(α

n/2
0 φn) α

2−n/2
0 . (66)

We will show in the following that there exist solutions such that the |Ãα0,α0
n | are

bounded by n−5/4 α
n/2−2
0 . Since the sine functions in (66) are bounded by 1, the series

in (66) is in fact convergent. The boundary conditions we will impose are a subclass of

10We could then also try to analyse the functional Lα0,α(ϕ(x)) and the function L
α0,α
mf

(φ) for general

values of α in the same form

L0(ϕ(x)) =
∑

n∈2N

∫

d4x L̃α0,α
n sin(αn/2ϕn(x)) α−n/2 , L

α0,α
mf

(φ) =
∑

n∈2N

Ãα0,α
n sin(αn/2φn) α2−n/2

which would be more complicated. We do not do so here since our main point is to show that the starting

functional integral and its mean field limit are well-defined.
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those considered in 4.1. So for general α , the moments of the effective action Lα0,α
mf (φ)

can be written as in the previous sections, and the flow of the moments can be studied as

before.

We now analyse the FEs for the functions Ãα0,α
n and their α-derivatives evaluated at

α = α0 . We will show that there are convergent solutions for sufficiently small values of

Ãα0,α0
2 and its µ-derivatives. These FEs are obtained by expressing the moments Aα0,α0

n

in terms of the Ãα0,α0

n′ . Expanding (65) in moments as we did in (14) and taking the mean

field limit, as in (21), the mean field FEs for the Ãα0,α0
n take the form 11

∑

ν≥0
(1+2ν)n′=n

αn′ν
0

(−1)ν

(2ν + 1)!
∂αÃn′ +

∑

ν≥1
(1+2ν)n′=n

αn′ν−1
0 n′ν

(−1)ν

(2ν + 1)!
Ãn′

=
c

2
(n+ 2)(n+ 1)α−2

0 Ãn+2 +
c

2
α−2
0

∑

ν≥1
(1+2ν)n′=n+2

αn′ν
0 n′(n′ − 1)

(−1)ν

(2ν)!
Ãn′

+
c

2
α−2
0

∑

ν≥1
(1+2ν)n′=n+2

αn′ν
0 n′ 2 (−1)ν

(2ν − 1)!
Ãn′

−
1

2

∑

n1+n2=n+2, ν1,ν2≥0
(1+2ν1)n′=n1

(1+2ν2)n′′=n2

αn′ν1 +n′′ν2
0 n′ n′′ (−1)ν1+ν2

(2ν1)!(2ν2)!
Ãn′ Ãn′′ .

(67)

The additional terms appearing as compared to (14) and (21) carry ν ≥ 1 or νi ≥ 1 in

the various sums. They stem from higher order terms on expanding the sine in (65). Note

that

Ã2 ≡ Ãα0,α0

2 = Aα0,α0

2 . (68)

As before, see (24), (25), we introduce dimensionless quantities ã(n) via the definition

Ãn =:
1

n
α
n/2−2
0 ã(n) . (69)

Comparing to (24) we find again for n = 2

ã(2) = a2(α0) .

11We suppress the upper index α0, α0 on Ãn, ãn . Note that the second term in the first line of (67)

stems from deriving the power ανn′

at α = α0 .
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This gives the following FEs for the ã(n) , evaluated at α = α0 or equivalently at µ = 0

ã(n + 2) =
1

n+ 1

∑

ν≥1
(1+2ν)n′=n+2

(n′ − 1)
(−1)ν−1

(2ν)!
ã(n′) +

1

n + 1

∑

ν≥1
(1+2ν)n′=n+2

n′ (−1)ν−1

(2ν − 1)!
ã(n′)

+
1

(n+ 1)c

∑

n1+n2=n+2, ν1,ν2≥0
(1+2ν1)n′=n1

(1+2ν2)n′′=n2

(−1)ν1+ν2
1

(2ν1)!(2ν2)!
ã(n′) ã(n′′)

+
2

(n+ 1)c

n− 4

2n
ã(n) +

2

(n+ 1)c

∑

ν≥1
(1+2ν)n′=n

n′ − 4

2n′

(−1)ν

(2ν + 1)!
ã(n′)

+
2

(n+ 1)c

1

n
∂µã(n) +

2

(n+ 1)c

∑

ν≥1
(1+2ν)n′=n

1

n′

(−1)ν

(2ν + 1)!
∂µã(n

′)

+
2

(n+ 1)c

∑

ν≥1
(1+2ν)n′=n

(−1)ν
ν

(2ν + 1)!
ã(n′) .

(70)

For n = 2 we obtain simply

ã(4) =
1

3 c
[ã(2)(ã(2)− 1) + ∂µã(2)] (71)

in agreement with (25) for n = 2 .

For the µ-derivatives evaluated at µ = 0 we write for shortness

ã(n, l) := ∂lµ ã(n) . (72)

Our bound will be expressed in terms of the decomposition of n into prime numbers. For

any integer n we can write its prime number decomposition

n =
∏

j≥2, j prime

jpj(n) = 2p2(n) · 3p3(n) · 5p5(n) · 7p7(n) · 11p11(n) . . . , (73)

where the nonnegative integer pj(n) is the (uniquely determined) multiplicity of the prime

number j in the prime number decomposition of n . We then define

B(n, 0) := B(n) :=
[

2p2(n)/4 · 3p3(n)/4 · 5p5(n)/2
∏

j≥7,j prime

j
9
8
pj(n)

]−1

,

Bε(n) := B(n) ε , B(n, l) := B(n)
(n + l)!

n!
, Bε(n, l) := B(n, l) εl+1 .

(74)
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It is straightforward to verify12 that

∑

ν≥1

1

B(1 + 2ν)(2ν + 1)!
≤

1

4
, (75)

∑

ν≥1

2ν

B(1 + 2ν)(2ν + 1)!
≤

11

20
, (76)

and as a consequence
∑

ν≥0

1

B(1 + 2ν)(2ν)!
≤ 2 . (77)

Lemma 4.1 For fixed ε > 0 sufficiently small, there exists ε′, 0 < ε′ ≤ ε such that if

| ã(2, l) | ≤ Bε′(2, l) ∀ l ≥ 0 , (78)

then

| ã(n, l) | ≤ Bε(n, l) ∀ l ≥ 0 , n ≥ 2 . (79)

Remark.

On inspecting (71), (70) it is obvious that the bound (79) holds for all (n, l) with n + l ≤

N0 , for some fixed N0 , if ε′ is chosen sufficiently small depending on N0 and ε . We

will not derive an explicit upper bound on ε′(ε,N0) > 0 , satisfying ourselves with the

existence statement, but comment on the size of N0 in the proof. We are not ambitious

on the size of ε , ε′ . To show that one may allow for not too small values of ε , ε′ , one has

to consider small values of N = n + l individually, and also to bound in a different way

those particular cases, where B(n + 2) is much bigger than B(n) . The most stringent

case is n + 2 = 2k with k large. Then B(n + 2) = (n + 2)−1/4 , whereas B(n) may

equal n−9/8 .

Proof. We proceed by induction in N = n + l ≥ 2 , going up in l for fixed N . We

consider (70) and bound successively the terms on the r.h.s. of (70) by induction. This

then allows to verify the inductive bound for the l.h.s. The µ-derivatives of (70) will be

treated afterwards.

• 1st term

The first term to bound is

1

n + 1

∑

ν≥1
(1+2ν)n′=n+2

(n′ − 1)
(−1)ν−1

(2ν)!
ã(n′) . (80)

12The convergence statement is trivial, we give quite precise bounds though this does not really matter.
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By induction ã(n′) ≤ Bε(n
′) . From the definition (74) it follows that

Bε(n1n2) = Bε(n1)B(n2)

for integers n1, n2 . Therefore for (1 + 2ν)n′ = n + 2 ,

ã(n′) ≤
Bε(n+ 2)

B(1 + 2ν)
.

Using (n′ − 1)(1 + 2ν) ≤ n + 1 and (75) we get
∣
∣
∣
∣
∣

1

n+ 1

∑

ν≥1
(1+2ν)n′=n+2

(n′ − 1)
(−1)ν−1

(2ν)!
ã(n′)

∣
∣
∣
∣
∣
≤

1

4
Bε(n+ 2) . (81)

• 2nd term

For the second term we get similarly using (76)
∣
∣
∣
∣
∣

1

n+ 1

∑

ν≥1
(1+2ν)n′=n+2

n′ (−1)ν−1

(2ν − 1)!
ã(n′)

∣
∣
∣
∣
∣
≤

n + 2

n + 1

11

20
Bε(n+ 2) . (82)

• 3rd term
∣
∣
∣
∣
∣

1

(n+ 1)c

∑

n1+n2=n+2
ν1,ν2≥0

(1+2ν1)n′=n1

(1+2ν2)n′′=n2

(−1)ν1+ν2
1

(2ν1)!(2ν2)!
ã(n′) ã(n′′)

∣
∣
∣
∣
∣

≤
1

(n+ 1)c

∑

n1+n2=n+2
ν1,ν2≥0

(1+2ν1)n′=n1

(1+2ν2)n′′=n2

1

B(1 + 2ν1)(2ν1)!B(1 + 2ν2)(2ν2)!
Bε(n1)Bε(n2)

≤
4

(n+ 1)c
2
∑

n1≤n2
n1+n2=n+2

Bε(n1)Bε(n2) ,

(83)

where we used (77). We have

∑

n1≤n2
n1+n2=n+2

B(n1)B(n2) ≤
∑

n1≤(n+2)/2

B(n1) [
2

n+ 2
]
1
4 (84)

and 13

∑

n1≤(n+2)/2

B(n1) ≤
∑

µ,ν,ρ≥0

2−
µ
4 3−

ν
4 5−

ρ
2

∑

n′≥2

(
1

n′
)
9
8 ≤ K (85)

13We may choose K = 400 .
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so that if we choose ε sufficiently small to assure

8 2
1
4 K

(n + 1)c
ε ≤

1

30

1

(n+ 2)7/8
, (86)

(83) is bounded by
1

30

1

(n+ 2)9/8
ε ≤

1

30
Bε(n+ 2) . (87)

• 4th and 5th term
∣
∣
∣
∣
∣

2

(n+ 1)c

n− 4

2n
ã(n) +

2

(n + 1)c

∑

ν≥1
(1+2ν)n′=n

n′ − 4

2n′

(−1)ν

(2ν + 1)!
ã(n′)

∣
∣
∣
∣
∣

≤
(n− 4)

n(n + 1)c

5

4
Bε(n) ≤

1

20
Bε(n + 2) for n ≥ (

25

c
)8 . (88)

• 6th and 7th term

2

(n+ 1)c

∣
∣
∣
∣
∣

∑

ν≥0
(1+2ν)n′=n

1

n′

(−1)ν

(2ν + 1)!
ã(n′, 1)

∣
∣
∣
∣
∣
≤

2

(n + 1)c

∑

ν≥0
(1+2ν)n′=n

1

B(1 + 2ν)(2ν + 1)!
Bε(n, 1)

≤
2

(n+ 1)c

5

4
Bε(n, 1) ≤

1

20
Bε(n+ 2, 1) for n ≥ (

25

c
)8 .

(89)

• 8th term

2

(n+ 1)c

∣
∣
∣
∣
∣

∑

ν≥1
(1+2ν)n′=n

(−1)ν
ν

(2ν + 1)!
ã(n′)

∣
∣
∣
∣
∣
≤

1

(n+ 1)c

∑

ν≥1
(1+2ν)n′=n

2ν

B(1 + 2ν)(2ν + 1)!
Bε(n)

≤
11

20(n + 1)c
Bε(n) ≤

1

30
Bε(n+ 2) for n ≥ (

33

2c
)8 .

(90)

Using our lower bound on n (88) we then obtain

1

4
+

11

20

n + 2

n + 1
+

2

20
+

2

30
< 1

and thus have inductively proven the assertion

ã(n+ 2) ≤ Bε(n + 2) . (91)

The lower bound on n (88) (which equals N0 for l = 0) and the upper bound on ε (86)

could be relaxed if treating individually a number of different cases.
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It is straightforward to verify the assertion for the ã(4, l) by bounding inductively the

µ-derivatives of (71). When taking µ-derivatives of (70) we get

ã(n+ 2, l)

=
1

n+ 1

∑

ν≥1
(1+2ν)n′=n+2

(n′ − 1)
(−1)ν−1

(2ν)!
ã(n′, l) +

1

n+ 1

∑

ν≥1
(1+2ν)n′=n+2

(n′ − 1)2

n′

(−1)ν−1

(2ν − 1)!
ã(n′, l)

+
1

(n+ 1)c

∑

l′+l′′=l

(
l

l′

)
∑

n1+n2=n+2
ν1,ν2≥0

(1+2ν1)n′=n1

(1+2ν2)n′′+n2

(−1)ν1+ν2
1

(2ν1)!(2ν2)!
ã(n′, l′) ã(n′′, l′′)

+
2

(n+ 1)c

n− 4

2n
ã(n, l) +

2

(n+ 1)c

∑

ν≥1
(1+2ν)n′=n

n′ − 4

2n′

(−1)ν

(2ν + 1)!
ã(n′, l)

+
2

(n+ 1)c

1

n
ã(n, l + 1) +

2

(n+ 1)c

∑

ν≥1
(1+2ν)n′=n

1

n′

(−1)ν

(2ν + 1)!
ã(n′, l + 1)

+
2

(n+ 1)c

∑

ν≥1
(1+2ν)n′=n

(−1)ν
ν

(2ν + 1)!
ã(n′, l) .

(92)

Going from l to l + 1 , the inductive bound allowed for the l.h.s., i.e. for a(n + 2, l) , is

multiplied by a factor of n+2+ l+1 . The respective bounds on the linear terms on the

r.h.s. take factors of

1) n′+l+1 , 2) n′+l+1 , 4) n+l+1 , 5) n′+l+1 , 6) n+l+2 , 7) n′+l+2 , 8) n′+l+1 .

All these factors are strictly smaller than the one allowed for the l.h.s. so that the inductive

verification of the bound for l > 0 follows directly from its verification for l = 0. For the

quadratic term (the third term) we use the bound (39) which gives
(
l

l′

)
(n′ + l′)!

n′!

(n′′ + l′′)!

n′′!
≤ l!

(
n+ 2 + l

n+ 2

)

. (93)

Here the factors (n′+l′)!
n′!

, (n′′+l′′)!
n′′!

stem from the inductive bounds on the ã(n′, l′) , ã(n′′, l′′) .

The expression on the r.h.s. of (93) corresponds to the factorials appearing in the defini-

tion of B(n+2, l) . The sum over l′, l′′ then gives a factor of l+1 which is again smaller

than n+ 2 + l + 1 . The remaining part of the bound is established as for the third item

(83)-(87). �

We note that for ε′ sufficiently small, the assumptions (78) imply the assumptions

(36) of Proposition 4.1 for µ = 0 . So we may choose f2(µ) such that f2(0) satisfies (78)
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and (36) and such that f2(µ) satisfies (36) 14. By choosing appropriately the signs of

the ã(2, l) we can also verify the assumptions (45), sufficient for Proposition 4.2. As a

consequence of Propositions 4.1 and 4.2 and of Lemma 4.1, we have therefore proven

Theorem 1 For ε′ > 0 sufficiently small, the solutions of the mean field FEs corre-

sponding to the bounded action (66) obeying (78) verify the conditions of Proposition 4.1.

For appropriate choices of the ∂lµ f2(µ)|µ=0 they also verify Proposition 4.2. This implies

the existence of nontrivial asymptotically free solutions of bounded mean field action for

the scalar field mean field FEs. In fact we have proven that the bare mean field action for

the boundary conditions considered satisfies

∣
∣
∣L0(φ)

∣
∣
∣ ≤ ε

∑

n∈2N

n−5/4 ∀φ ∈ R , (94)

where ε > 0 from Lemma 4.1 has to be chosen sufficiently small.

4.5 The trivial solution

It has been proven by Fröhlich [9] and Aizenman [1] under mild assumptions that the

pure symmetric (one- and two-component) ϕ4
4-theory is interaction-free, i.e. (generalised)

Gaussian. These results apply to the continuum limit of lattice regularised ϕ4
4-theory

in dimension d > 4 ; in d = 4 under the additional assumption that the theory has

infinite wave function renormalisation. Quite recently it could be proven by Aizenman

and Duminil-Copin with the aid of multi-scale techniques [2] that the assumption on

infinite wave function renormalisation in d = 4 can be dropped. These proofs do not

require restrictions on the size of the ϕ4
4 coupling. We note that beyond four dimensions

it is also known that the critical behaviour of the theory is exactly described by the mean

field approximation [12, 9, 1]. The fact that the continuum limit is interaction-free, is

proven by showing that the truncated (i.e. connected) four-point function vanishes in

this limit. By inequalities due to Glimm, Jaffe [14] and to Newman [28], the vanishing of

the truncated four-point function implies the vanishing of the truncated higher n-point

functions as well. The triviality result seems quite robust and has also been confirmed by

a comprehensive analysis including numerical work [25].

The result we present in this section is much weaker than those from [9, 1, 2]. The

section is mainly intended to show that the present approach is coherent with the triviality

results inspite of the asymptotically free solutions presented in the previous sections. We

will show that weakly coupled pure ϕ4
4-theory is trivial in the mean-field limit, when

14Remember that ã(2, l) = ∂l
µ f2(µ)|µ=0 .
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treated with the continuous FEs. This result confirms the importance of irrelevant terms

proven in the previous section.

In the mean field approximation we cannot analyse the role of the wave function

renormalisation. Whereas the wave function renormalisation is important for the trivial-

ity issue, as mentioned above, there are indications from asymptotically free models which

can be constructed nonperturbatively, that for such models the wave function renormali-

sation is finite, and thus need not be included in the bare action. This remark applies in

particular to the 2d Gross-Neveu model where finiteness of the wave function renormali-

sation was shown in [11, 8]. The Gross-Neveu model is of similar diagrammatic structure

as ϕ4-theory, apart from the modifications due to Fermi-Dirac statistics.

As stated before the boundary conditions of pure ϕ4
4-theory appear to be natural when

aiming at a continuum description of Ising type lattice models. From the point of view

of the renormalisation group FEs, they rather correspond to a fine-tuned problem since

the infinite number of trajectories fn(µ) , n > 4 , are supposed to pass all through 0 at

the same value µ = 0 . In the full theory the boundary conditions even require that all

these trajectories pass through 0 at µ = 0 for all values of the momentum or position

arguments. It will turn out that enforcing these conditions tends to make grow higher

derivatives of the fn(µ) more rapidly with increasing n than in the case of the solutions

we have considered so far. In any case, since we want to argue that our considerations

grasp important aspects of scalar field theory, it is important to look at pure ϕ4
4-theory in

our context. It will turn out that we can construct the trivial solution quite explicitly for

all values of the renormalisation group parameter and sufficiently small bare coupling, so

that we are in agreement with the above cited results [9, 1, 2].

When starting with a bare action functional

L0(ϕ(x)) =

∫

d4x
(

c0,2 ϕ
2(x) + c0,4 ϕ

4(x)
)

, (95)

we obtain in the mean field limit from (95) using (11), (20) and (26),

f2(0) = α0 2 (2π)
4 c0,2 , f4(0) = 4 c (2π)4 c0,4 = 4 π2 c0,4 , fn(0) = 0 , n > 4 . (96)

As a consequence of the pure ϕ4
4 boundary conditions we have

Lemma 4.2 For smooth solutions fn(µ) of (28), (29) respecting the boundary conditions

(96)

we have ∂lµ fn(0) = 0 for n ≥ 6 and 0 ≤ l ≤
n

2
− 3 . (97)
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Proof. We proceed as usual by induction in N = n + 2l ∈ N , going up in l for fixed

N and starting at N = 6 . For N = 6 the assertion just corresponds to the boundary

condition

f6(0) = 0 .

For N > 6 and l = 0 the statement follows from (96). Then (29), derived l times at

µ = 0 , and solved for ∂l+1
µ fn(0) implies with the help of the induction hypothesis for

l < n
2
− 3

∂l+1
µ fn(0) = 0 ,

since all other terms appearing in (27) derived l times w.r.t. µ vanish by induction. We

note in particular that for the products

∂l1µ fn1(0) ∂
l2
µ fn2(0)

with l1 + l2 = l and n1 + n2 = n + 2 , the condition l < n
2
− 3 implies that either

l1 ≤
n1

2
− 3 or l2 ≤

n2

2
− 3 . �

As a consequence of Lemma 4.2 we can write smooth solutions verifying (96) as

fn(µ) = µ
n
2
−2 gn(µ) , n ≥ 4 , (98)

where the gn(µ) are smooth. The system (29) can then be rewritten as

µ2gn+2 =
1

n+ 1

∑

n1+n2=n+2
ni≥4

gn1 gn2

+ µ
1

n+ 1
gn

(

2 f2 + 1−
4

n

)

+
n− 4

n(n + 1)
gn +

2

n(n + 1)
µ∂µ gn , n ≥ 4 .

(99)

Expanding the gn and f2 in a (for the moment) formal Taylor series around µ = 0

gn(µ) =
∑

k≥0

gn,k µ
k , f2(µ) =

∑

k≥0

f2,k µ
k , (100)

we find for the coefficients from (28) and (29)

g4,k =
1

3

[

(k + 1) f2,k+1 − f2,k +
∑

0≤ν≤k

f2,ν f2,k−ν

]

, (101)

gn+2,k =
1

n+ 1

∑

n1+n2=n+2
ni≥4

∑

0≤ν≤k+2

gn1,ν gn2,k+2−ν +
2

n + 1

∑

0≤ν≤k+1

gn,ν f2,k+1−ν

+
1

n+ 1
gn,k+1

(

1−
4

n

)

+
n+ 2k

n(n+ 1)
gn,k+2 , n ≥ 4 .

(102)
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We can rewrite (101), (102) as

f2,k+1 =
1

k + 1

[

3 g4,k + f2,k −
∑

0≤ν≤k

f2,ν f2,k−ν

]

, (103)

gn,k+2 = −
n− 4

n+ 2k
gn,k+1 −

2n

n+ 2k

∑

0≤ν≤k+1

gn,ν f2,k+1−ν

−
n

n+ 2k

∑

n1+n2=n+2
ni≥4

∑

0≤ν≤k+2

gn1,ν gn2,k+2−ν +
n(n+ 1)

n+ 2k
gn+2,k .

(104)

Regularity of the system (99) at µ = 0 also implies for n ≥ 4

n− 4

n
gn,0 +

∑

n1+n2=n+2
ni≥4

gn1,0 gn2,0 = 0 , (105)

2

n
gn,1 +

n− 4

n
gn,1 + 2

∑

n1+n2=n+2
ni≥4

gn1,0 gn2,1 + gn,0

(

2f2,0 + 1−
4

n

)

= 0 . (106)

If we choose freely f2,0, g4,0 , equations (105), (106) fix all other gn,0, gn,1 . All terms f2,k

with k ≥ 1 and gn,k with k ≥ 2 are then determined through (103), (104).

Lemma 4.3 We consider smooth solutions fn(µ) of (28), (29) respecting the boundary

conditions (96) and assume that for µ = 0

|f2,0| ≤
ε

4
, 0 ≤ f4,0 = g4,0 ≤

ε

32
(107)

with 0 < ε ≤ 10−2 . Then

|f2,1| ≤
ε

2
, |g4,1| ≤

ε2

32
(108)

and for n ≥ 6

|gn,0| ≤
ε

n
2
−1

2n2
, |gn,1| ≤

ε
n
2
−1

n2
. (109)

The constants gn,0 are alternating in sign:

gn,0 = (−1)n/2 | gn,0 | . (110)

Proof. For f2,1 we find explicitly from (103)

f2,1 = 3 f4,0 − f2,0(f2,0 − 1) ≤
ε

2
.
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Similarly from (106)

g4,1 = 4 g4,0 f2,0 so that |g4,1| ≤
ε2

32
.

We then proceed as usual by induction in n , treating first gn,0 . For n ≥ 6 we find from

(105)

|gn,0| ≤
n

n− 4

1

4

∑

n1+n2=n+2
ni≥4

ε
n
2
−1

n2
1 (n+ 2− n1)2

≤
1

2

ε
n
2
−1

n2
.

For n ≥ 6 we also get from (106)

|gn,1| ≤
2n

n− 2

1

2

∑

n1+n2=n+2
ni≥4

ε
n
2
−1

n2
1 (n+ 2− n1)2

+
n

n− 2

ε
n
2
−1

2n2

(
ε2

2
+ 1−

4

n

)

≤
ε

n
2
−1

n2
.

The two previous bounds on the sums over n1 can be verified explicitly for n ≤ 10 . For

n ≥ 12 we use

∑

n1+n2=n+2
ni≥4, ni∈2N

1

n2
1 (n+ 2− n1)2

≤
1

16

∑

n1+n2=
n
2 +1

ni≥2, ni∈N

1

n2
1 (

n
2
+ 1− n1)2

≤
1

8

∑

n1≤
n
2 +1

n1≥3

4

n2
1 (n+ 2)2

+
1

8

4

4 (n− 2)2

≤
1

2(n+ 2)2
(ζ(2)−

5

4
)

︸ ︷︷ ︸

≤0.4

+
1

8 (n− 2)2
≤

1

5

1

(n+ 2)2
+

1

(n− 2)2
,

and
n

n− 2

(
1

5

1

(n + 2)2
+

1

8

1

(n− 2)2

)

≤
1

2n2
(1− ε2).

The statement on the signs follows from (105) by induction in n , using that g4,0 > 0 .

�

Lemma 4.4 Under the same assumptions as in Lemma 4.3 we have the bounds

|gn,k| ≤ 2k−2 εn/2−1

(

k +
n− 4

2

)

! , |f2,k| ≤ 2k ε |k − 1|! . (111)

36



Proof. We proceed by induction going up in N = n + k using (104). For gn,1, gn,0 and

f2,1, fn,0 we use the bounds from Lemma 4.3. We obtain from (104), (109) and (111)

| gn,k+2 | ≤ 2k ε
n
2
−1

[

n− 4

2(n+ 2k)

(

k + 1 +
n− 4

2

)

! +
ε n

n+ 2k

∑

0≤ν≤k+1

(

ν +
n− 4

2

)

! |k − ν|!

+
n

4(n+ 2k)

∑

n1+n2=n+2
ni≥4

∑

0≤ν≤k+2

(

ν +
n1 − 4

2

)

!
(

k + 2− ν +
n2 − 4

2

)

!

+
n(n+ 1) ε

4(n+ 2k)

(

k +
n− 2

2

)

!

]

(112)

≤ 2k ε
n
2
−1
(

k + 2 +
n− 4

2

)

!

[

n− 4

2n

2

n
+

2 ε n

n

2

n
+

n

4n

n

2

2

n
+
n(n+ 1) ε

4n

2

n

]

≤ 2k ε
n
2
−1
(

k + 2 +
n− 4

2

)

! .

(113)

We used
∑

0≤ν≤n−a

(n− ν)! ν! ≤ 2n! for a ∈ N , a ≤ n ,

and

∑

0≤ν≤k

(a+ ν)! (b+ k − ν)! ≤
∑

0≤ν≤k

(A+ ν)! (A+ k − ν)! with A = sup(a, b) , a, b ∈ N .

For n = 2 the bound follows from (103) and Lemma 4.3. �

We note that the bounds we derived are not sufficient to prove convergence of the

Taylor expansion around µ = 0 , in contrast to the bounds (37). So (100) still stand as

formal power series. We think the factorial behaviour of the bounds is not far from optimal

and trace the large size of the derivatives back to the particular boundary conditions. We

now show that there exist smooth solutions corresponding to the formal power series

(100).

Proposition 4.4 There exist smooth solutions fn(µ) of (28), (29) respecting the bound-

ary conditions (96). They vanish in the limit µmax = ln 1
α0

→ ∞ .

Proof. We study two-point functions f2(µ) of the form

f2(µ) =
∑

n≥1

bn
xn−1
n

1 + xnn
, where xn = nµ and |bn| < 1 . (114)
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This ansatz is the most important ingredient in our construction of the trivial solution. If

it is well-defined, then all the fn(µ) and thus all the gn(µ) are determined as functions

of f2(µ) , as follows from (28), (29). Expanding as in (100)

f2(µ) =
∑

k≥0

f2,k µ
k ,

we find for the Taylor coefficients

f2,k = (k + 1)k
k+1∑

ρ=1

b{k+1
ρ

} (−1)ρ−1 (
1

ρ
) k . (115)

Here we set b0 := 0 , and for integers n , m

{
n

m
} :=

{
n
m

, if n
m

∈ N

0 , otherwise
. (116)

We have in particular

f2,0 = b1 , f2,1 = 2 b2 − b1 . (117)

Choosing f2,0 and f4,0 such that the assumptions of Lemma 4.3 are fulfilled, Lemma 4.4

implies for smooth solutions of (28), (29) respecting the boundary conditions (96)

∣
∣
∣ f2,k

∣
∣
∣ ≤ 2k ε |k − 1|! .

We then claim that the coefficients bn in (114) obey the bounds

|bn| ≤ 4 (
3

4
)n ε . (118)

The claim is easily verified for b1 to b3 using Lemmata 4.3 and 4.4. For n ≥ 3 we

obtain inductively from (115) :

| bn+1 | ≤ 2n
(n− 1)!

(n+ 1)n
ε +

n+1∑

ρ=2

∣
∣
∣ b{n+1

ρ
}

∣
∣
∣ (

1

ρ
)n

≤

(

2n
(n− 1)!

(n+ 1)n
+ 4

n+1∑

ρ=2

(
3

4
)

n+1
ρ (

1

ρ
)n

)

ε ≤ 3 (
3

4
)n ε

(119)

using that for n ≥ 3

2n
(n− 1)!

(n + 1)n
≤ inf

(
1

4
, (
3

4
)n
)

and
n+1∑

ρ=2

(
3

4
)

n+1
ρ (

1

ρ
)n ≤

n+1∑

ρ=2

(
1

ρ
)n ≤ ζ(n)− 1 ≤ 21−n .
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The bound (118) implies absolute convergence of the series in (114), uniformly in µ so

that f2(µ) is smooth and well-defined for 0 ≤ µ ≤ ln 1
α0

. The free choice of f2,0 and

f4,0 fixes b1 and b2 . All bn , n ≥ 3 , are uniquely determined by (103), (104) and (105)

as a consequence of the boundary conditions (96) and the smoothness condition.

Uniform absolute convergence in [0,∞) of the series (114) and its derivatives

∑

n≥1

bn ∂
l
µ

xn−1
n

1 + xnn

and the fact that

lim
µ→∞

∂lµ
xn−1
n

1 + xnn
= 0

imply

lim
µ→∞

∂lµ f2(µ) = 0 ∀l ≥ 0 . (120)

The functions ∂lµ fn(µ) for n ≥ 4 are determined by ∂lµ f2(µ) through (28), (29). Pro-

ceeding by induction in n ≥ 4 one finds straightforwardly

• The solutions fn(µ) are smooth bounded functions of µ .

• Together will all their derivatives they have vanishing limits for µ→ ∞ :

lim
µ→∞

∂lµ fn(µ) = 0 . (121)

�

We collect the previous findings in the following

Theorem 2 Triviality of weakly coupled mean field pure ϕ4
4-theory :

We consider smooth solutions of the mean field flow equations fn ∈ C∞[0, µmax] . For the

boundary conditions (96), setting

0 ≤ c0,4 ≤
ε

27 π2
, |c0,2| ≤ Λ2

0

ε

27 π4
, ε = 10−2 ,

these solutions vanish in the UV limit µmax = ln 1
α0

→ ∞ , i.e. on removing the UV

cutoff Λ−2
0 = α0 → 0 .

Proof. We have seen in Proposition 4.4 that there exist solutions with the required

properties. For given boundary conditions these solutions are unique since the difference

of two given systems of solutions satisfies a system of linear FEs with vanishing boundary

conditions.

�
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In contrast with the solutions considered in the previous sections the solutions respecting

the pure ϕ4
4 boundary conditions cannot be shown to be, and probably are not, analytic

in a strip of finite width around [0, µmax] . The obstruction is closely related to the result

of Lemma 4.2 which says that the derivatives fn have to vanish in increasing order with

n at µ = 0 .

We note that the value of ε in Theorem 2 is certainly not optimal and can easily be

improved. More ambitiously one may also try to reach values of ε exceeding 1 .

We close this section with three general remarks:

• The Landau pole

In perturbative field theory the triviality of pure ϕ4
4-theory reflects itself in the diver-

gence of the energy dependent coupling when going to high energies. As discussed in

section 4.2, this means that when we fix the physical coupling g(λ) , λ = µmax − µ,

at low energies, λ = 0 in our setting, via

g := g(0) := f2(µmax) , (122)

then

g(λ) := f2(µmax − µ)

diverges at a finite value of µ , unless we let g(0) → 0 which implies triviality.

This is indeed the case for the solution we found. If we truncate for simplicity the

expression (114) at lowest order setting

f2(µ) = a1
1

1 + µ
(123)

we get

g(λ) =
g(0)

1 − β g(0) λ
with β =

1

a1
.

The Landau pole is situated at λL = 1
β g(0)

. In physical perturbation theory one

normally chooses f4(µmax) to define g(0) , but this does not change the reasoning

since f2 and f4 can be expressed in terms of each other and behave in a similar way

for large µ . Nor do the conclusions change when taking the full expression (114)

instead of (123) since all entries in the absolutely convergent series in (114) behave

similarly for µ → ∞ . Since the perturbative truncations get out of control, way

before the Landau divergence occurs, perturbation theory does not allow to make

hard statements about triviality.
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• Perturbation theory

The solutions we considered in the previous sections are not perturbative, which is

reflected by the fact that the bounds from Propositions 4.1, 4.3 and from section

4.4 do not involve a power proportional to n of the small parameters δ or ε . For

the trivial solution, the perturbative behaviour w.r.t. the bare coupling is revealed

by the factor of εn/2−1 apppearing in the bounds of Lemma 4.4. It should also

be possible and would be interesting to reexpress the formal power series in ε

as a formal power series in the renormalized coupling g (122) and to show that

the coefficients of these series are termwise finite for µmax → ∞ . This would

correspond to a perturbative renormalizability proof for mean field ϕ4
4-theory. Our

nonperturbative proof implies finiteness and even triviality for µmax → ∞ , but we

did not analyse the expansion in powers of g .

• Relation to the triviality theorems

A more explicit analysis of the trivial solutions studied here should also allow for

comparison with the mean field solutions of the Ising model, and with the properties

of the correlation functions studied in [9, 1, 2], on taking the mean field limit.
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