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Abstract—We use nudging to increase the renewable energy
consumption of an energy community, extending previous work
focusing on individual households. We identify periods with
available excess production through load forecasting. We intro-
duce coordinators, which selectively notify the members of the
community about these periods, by thriving to match forecasted
excess with members consumption flexibility. The aim is to
maximise the community self-consumption rate. We evaluate the
efficiency of our pipelines on numerical simulations using semi-
real data, based on public consumption datasets. Results show
that our coordinators are superior to the naive strategy, notifying
all members about all green periods. Second, they prove efficient
with respect to the so called OMEGAlpes benchmark (a reference
approach using a Mixed Integer Linear Programming Solver
and knowing all the information for making an appropriate
use of the flexibility of the community members). Third, by
refining our coordinators based on additional information about
the members consumption, we show we can further improve the
self-consumption rate. Finally, we discuss the implications of our
results for real-world deployment.

Keywords—Renewable energy; Energy self-
consumption;Energy Coordination; Information Communication
Technologies; Nudges; System control; Energy system
optimization

I. INTRODUCTION

Among growing calls within many countries to make human
activities more environmentally friendly, special attention has
been given to the production of energy. Indeed, fossil fuels
driven production generates a lot of greenhouse gases ([1],
accessed on 27 October 2023). Hopes have been placed into
renewable energy sources which, albeit still not perfect from
an ecological standpoint, offer greener energy, at least in the
exploitation phase. Chief among these sources are solar and
wind production. On the other hand, the distance between
power production facilities, and points of consumption, entails
inefficiencies due to the dissipation of energy as it travels
through the distribution network [2]. Moreover, energy dis-
tribution infrastructure is very costly [3].

The concept of “renewable energy community”, introduced
by the European Union in 2018 [4], offers some answers to
these issues: these communities should use (as much as pos-
sible) energy produced locally, and from renewable sources.
A typical instance is a group of households using shared
solar panels facilities. The transposition into French law of
this directive gave rise to the concept of “autoconsommation
collective”, which translates as “collective self-consumption”
([5], accessed on 22 January 2024). A group of households
localised into some circle of prescribed radius (most often

2 kilometers), can associate to share the power generated
by some renewable energy source (most often solar, though
operations using hydraulic energy also exist) situated within
the circle. At each 30 minutes time step, energy produced
by the panels is contractually shared between the participants
of the operation. The amount of production given to each
participant is computed through an algorithm, agreed upon
by the members. Finally, energy demand not covered by the
panels, is provided by the standard distribution network. The
number of such active operations has grown steadily since
the first ones came to life in 2018, reaching 259 operations in
September 2023 ([6], accessed on 27 October 2023), gathering
3357 households, for a total power available of nearly 18 MW.

Key metrics measuring the extent to which members of
self-consumption operations are taking advantage of the solar
energy, are the self-consumption and self-production rates.
The former tells which amount of solar energy is used by
members, while the latter quantifies the proportion of their
energy consumption which is drawn from the solar panels
(by opposition to the regular network provided energy). To
maximise both, two cultural shifts are necessary, with respect
to habits linked with regular network provided energy. The
first one is taking into account the intermittence of production.
The second one is taking into account the consumption of the
other members of the operation. For instance, if everybody
is using high consumption appliances at the same time, solar
panels capacity may be outgrown, meaning regular energy will
have to be used as a fallback. Now, shifting one’s habits may
not be straightforward. Recommendation systems, advising the
members of these operations accordingly, may help in that
regard. In [7], the authors introduced such a system for the
case of a single household endowed with solar panels. Here,
we extend this work to the (much) more involved case of
renewable energy communities.

For a single household, what mattered was identifying
consumption favourable periods, so called “green periods”,
and notifying the household of these. In the case of an energy
community, a new module must be added, which computes
the information sent to each different household. Indeed,
sending the same information to all households may result
in outgrowing solar capacity, as discussed previously. We
indeed show in our numerical simulations that this strategy
is far from optimal. We therefore first construct these new
modules required by the context of the energy community,
which we call ”coordinators”. Then, we show their worth in
numerical simulations, using semi-real data, based on well-
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known consumption datasets. This validation is seen as a first
sanity check, before deploying our pipelines in real-world self-
consumption operations.

We start by presenting related works, and stating our con-
tributions, in Section II. Next, we introduce our model in Sec-
tion III, before introducing the coordinators in Section IV. We
then present our numerical simulations results in Section V.
Finally, we discuss our results, and their practical implications
for the real-world deployment of our pipelines, in Section VI.

II. BACKGROUND MATERIAL AND CONTRIBUTIONS

We first discuss related works (Section II-A), before making
our problem statement (Section II-B), and stating our contri-
butions (Section II-C).

A. Related Works

The potential of Energy Communities in helping using
greener, more local, energy, is great. However, fully taking
advantage of it is not entirely straightforward, and much work
has been devoted to maximising this potential. Some works
focus on single buildings, often linked to a microgrid. [8]
present a smart-home energy management system able to con-
duct fast optimization. [9] emphasize the need for quality load
forecasting of building consumption, in order to enable load
management, with the eventual aim of maximising collective
self-consumption. [10] optimize the energy savings of a smart
building linked to a battery, and connected to a microgrid,
by acting on the controllable loads of the building. Likewise,
[11] also optimize the exchanges of a building possessing a
battery with a microgrid, but also take into account energy
conversion possibilities. Other works apply directly to energy
communities. [12] assess the financial viability of an energy
community inspired by the French collective self-consumption
setting. [13] leverage high frequency consumption data ob-
tained by smart meters, to regulate the charging of electric
vehicles, and maximise the self-consumption of a 4 users
community. [14] study a demand-response scheme, where a
coordinator informs prosumers of the price they may get to
sell their excess production at specific times, and prosumers
submit bids in returns, depending on the way they are willing
to reschedule their consumptions. The coordinator then selects
the bids maximising the utility of the community. [15] study
a peer-to-peer energy sharing mechanism. Their results show
that no household would be worse-off when participating in
the scheme. Moreover, the self-consumption may increase, de-
pending on the storage facilities. [16] build an energy sharing
mechanism based on game theory, and validate its efficiency
on real world data. [17] analyze the self-consumption of a
community in the Spanish framework. They test different
scenarios, assessing in particular the impact of consumption
shifting on the performance. Fully automated control of mi-
crogrids is also an active area of research [18]. Finally, to help
conduct all these studies, free or open-source simulation tools
have been developed [19], [20]. They allow to test scenarios
quicker than by conducting real-world experiments.

To ensure adoption of these techniques by users, and active
participation in general to the energy community from users,

it is important to obtain high levels of users engagement.
Moreover, [21] emphasise the importance of a “human-in-
the-loop” approach to fully exploit the potential of smart
buildings. [22] develop a framework to associate users to
every stage of the development of a project. Enabling and
driving up engagement was at the core of the Trent basin
project in Nottingham, UK [23]. The authors also note that
the importance of user engagement is often underestimated.
User engagement and participation was an explicit intention
of the legislator, in the case of the European Union, when they
defined the energy communities framework [24], [25]. Key
inhibitors of user engagement are administrative complexity
and lack of time [26]. Indeed, it has been observed that retired
households are more likely to reduce their energy consumption
when given feedback than working age households, probably
because they have more time to devote to it [27]. Nudging,
which consists in suggesting behavioural changes in a non-
mandatory way [28], offers a promising way to help drive
user involvement [29]. It has been shown to be effective in
increasing solar energy adoption [30], or to help households
reduce their consumption during strained electricity generation
periods [31]. Finally, gamification may also represent an
interesting tool [32].

B. Problem Statement

We study a collective self-consumption operation, getting
energy from solar panels, and composed of residential house-
holds. The members of the operation may shift the con-
sumption of some of their appliances, if they think it may
improve their usage of solar energy. By collecting consumption
and weather data, we can forecast, with some relative preci-
sion, consumption favourable periods, called “green periods”.
These are the periods when the members of the operation
should consume energy. The issue we address is: how can
we efficiently distribute information about these favorable
consumption periods to the households within the operation,
in order to help them optimise their usage of solar energy?

C. Contributions

We conduct numerical simulations on a full simulator,
taking into account the response of households within the
collective self-consumption operation to nudges. The data
we feed our simulator with are semi-real data. We use the
well-known Iris [33] and IDEAL [34] energy datasets. Our
contributions are threefold.

1) First, we show numerically that sending individual infor-
mation to the members of the operation proves superior
to sending the same information to every household.

2) Second, we show numerically that our pipeline proves
efficient, with respect to some ideal benchmark, com-
puted with the OMEGAlpes model [19] (see Ap-
pendix A for an overview of the model).

3) Third, we assess numerically the efficiency of our
pipeline as a function of the information that members
of the operation are willing to share about their energy
usage.
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We focus our study on the human in the loop component
of consumption optimization, by opposition to automated load
control systems. We present a realistic and simple to follow
nudging framework, rather than some more involved, but also
more complex, optimization scheme, like demand-response
ones. Our work differs from that of [7], upon which we build,
by extending it from the case of an individual household, to
that of a collective self-consumption operation. In particular,
we show that individually taylored nudges prove superior to
the straightforward extension of the single household nudges
used in [7], which consists in sending the same nudge to
everybody (point 1. above). Finally, our work takes place in the
French setting, but could easily be applied to other countries
by taking into account the specifics of the realization of the
Renewable Energies Communities concept into those. Indeed,
the fundamentals of our work, sharing information about
expected excess production periods between the members of
the operation, will remain the same.

III. MODEL

We first describe globally our nudging pipeline in Sec-
tion III-A, before describing precisely each component in
Section III-B. For convenience, Table I compiles all the key
notations we use.

TABLE I
MAIN NOTATIONS

Notation Definition Meaning

ℓh,k(t) ℓh,k(t) ∈ R+ load profile of
appliance k of

household h at time t

lh,kt lh,kt ∈ R+ load of appliance k of
household h at time t

Λtbegin,tend 0 ≤ Λtbegin,tend ≤ 1 self-consumption rate
xh,p xh,p ∈ {0, 1} allocation variable,

between period p and
household h

ep ep ≥ 0 excess production in
green period p

mh
d mh ≥ 0 available shiftable

power of household h
for day d

m̂h
d mh ≥ 0 estimation of the

available shiftable
power of household h

for day d
αh,k αh,k ≥ 0 maximum power of

appliance k of
household h

fh,k 0 ≤ fh,k ≤ 1 frequency of usage of
appliance k of
household h

A. Nudging pipeline

On Figure 1O, we give an overview of our nudging pipeline.
The related notions are defined precisely below, so we just
give a brief description here. A collective self-consumption
operation gathers several houses. Each house possesses a smart
meter, and likewise for the solar panels, from which we
can collect consumption, and production, data. Weather APIs
provide us with accurate forecasts for the upcoming days. The

control part of the system has two modules. The “green period
finder” module (see Section III-B) uses the mentioned data to
identify green periods, when households are encouraged to
use their electrical appliances. The coordinator module, which
we introduce in this article, dispatches these green periods to
the different households, according to specific rules aiming
at maximising impact (Section IV). Finally, upon receiving
the nudge, the household people update their consumption
accordingly.

Fig. 1. Nudging pipeline

B. Collective Self-Consumption Operation

We introduce the main notions we use. Several, like that
of shiftable appliance, described in [7], are the same, or
straightfoward extensions, of the similar notion used in the
case of an individual household. In that case, we only give
some brief explanations here. We point the reader to [7] for
further details.

Collective Self-Consumption Operation. We consider a
collective self-consumption operation which gathers several
households, and solar panels. There is no battery, meaning
energy cannot be stored, and used at a later time. There is
no direct energy consumption, either (sometimes, a panel can
feed in priority an household, and only send excess production
to the other households; this is not the case here).

Household appliances. Each household possesses several
electrical appliances. Each appliance may be shiftable, mean-
ing that the household owners may shift usage during the day,
upon reception of some advice to do so, or not shiftable,
meaning the time of the usage is fixed, irrespective of any
advice received by the household. Every shiftable appliance
has a maximum shiftable delay: for instance, a washing-
machine usage cannot be shifted to a time slot more than
9 hours (Table II) from the original desired time slot. Let h
be an household, and k be one of its appliances. We assume,
to simplify things, that the load curve of k during usage is
always the same (for a washing machine, it means that only
one program is available, and that its length is not dependant
on the amount of clothes to wash, for instance). We call profile
of the appliance this load curve during usage, and write it ℓh,k.
It is therefore a nonnegative function with compact support.
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TABLE II
SHIFTABLE APPLIANCES MAXIMUM SHIFT DELAYS FOR THE IRIS AND

IDEAL DATASETS

Shiftable appliance Maximum shift delay

Washing machine and clothes dryer 540 min
Dish washer 540 min

Water heater for domestic hot water 600 min

Therefore, the load curve, for some week, of the kth appliance
of the household h writes, for t ≥ 0,

lh,kt =

umax(h,k)∑
u=1

ℓh,k (t− Th,k(u)) ,

were the u’s count the usages of the appliance during the week
(for instance, if the washing-machine is used three times, we
have umax(h,washing-machine) = 3), and Th,k(u) is the time
at which the appliance started to be used the uth time.

Solar production sharing between members. The pro-
duction of the solar panels is contractually1 shared between
the members, at each 30min time step, according to French
law. The scheme we use in our work is the commonly used
following one. Assume the solar panels produce 200 Wh
between 2pm and 2:30pm. Assume there are 3 households
within the operation, which consumed 100 Wh, 200 Wh and
0 Wh, respectively. Then, the first household receives 200
Wh ×100/(100 + 200 + 0) = 66.67 Wh, while the second
receives 200 Wh ×200/(100 + 200 + 0) = 133.33 Wh, and
the third receives 200 Wh ×0/(100 + 200 + 0) = 0 Wh.
If the amount of production is higher than the total demand
during the time-step, excess production is fed back to the
regular network. Note there is no battery in the operation,
therefore it cannot be stored, and crucially consumed later.
Therefore, the members of the operation have interest in first,
consuming energy when solar production is important, and
second, synchronising somewhat so as not to outgrow solar
production by consuming all at the same time.

Operation self-consumption rate. As in [7], we measure
the efficiency of solar energy usage with the self-consumption
rate [35], [36], of the operation (all our conclusions also apply
to the self-sufficiency rate, but we do not speak about it
to simplify the presentation). Compared to the same notion
for individual households, it is computed by summing the
consumption of every household, and the production of all
the solar panels. For t ≥ 0, write Lt the total consumption
of the operation at time t, that is Lt =

∑hmax

h=1

∑
k l

h,k
t

where, for every household h, the summation on k runs over
all appliances of household h. Write also Pt the total solar
production of the panels of the operation.

Definition 1 (Operation self-consumption rate). The self-
consumption rate of the operation between the dates tbegin and

1We say “contractually” by opposition to “physically”: the energy of the
panels is physically sent to the regular network, from which members draw
the energy they need. The self-consumption operation operates at the legal
level.

tend is the ratio of self-consumption to the total production:

Λtbegin,tend(L) =
tend∑

t=tbegin

min (Lt, Pt)

/ tend∑
t=tbegin

Pt.

Green periods, nudges. We use the same notions of green
periods, and nudges, as in [7], and we recall them here.

Definition 2 (Green period, nudge). A green period g is a 2
hours period. We write tbegin = tbegin(g) the beginning of the
period, and E = E(g) the amount of excess production in the
period. A nudge is a set of green periods.

The green periods are ranked according to the excess
production available: the higher it is, the better the period.

Identification of green periods through load forecasting.
We use the “combined controller” introduced in [7]. It is a
statistical algorithm, used to forecast excess production. It
averages the predicted excess (if any) over 2 hours periods,
and uses it as estimate of the excess available during the
green periods. We write e the forecast excess. The forecast is
performed at the operation level, meaning the excess predicted
is that of the operation as a whole. The algorithm outputs green
periods gp, for 1 ≤ p ≤ pmax. In all what follows, we assume
green periods are ranked by descending order, according to
their amount of excess production.

Model of human behaviour upon nudge reception. In all
the equations below, we only show the shiftable appliances, to
simplify the exposition (this does not change the overall rea-
soning). We use the same idealised model of human behaviour
as in [7]: when receiving a nudge, for every shiftable consump-
tion outside the periods, the household people try to shift it
to the first admissible green period. Namely, they discard all
periods which are further away from the original consumption
time than the maximum shiftable delay. Then, they rank the
green periods according to their predicted excess, and to the
closeness to the original consumption time. Then, they move
the consumption to the first green period in that ranking.
Write ∆h,k the maximum shiftable delay for appliance k of
household h. The load curve of an appliance shifted upon
reception of the green periods depends on the green periods
g1, . . . , gpmax

. Therefore, making this dependency explicit, it
writes, for t ≥ 0,

lh,kt (g1, . . . , gpmax
) =

umax(h,k)∑
u=1

ℓh,k
(
t− T ∗

h,k(u)
)
,

where the (potentially) shifted time T ∗
h,k(u) is the begin time

of the green period solution of argmax
1≤p≤pmax

E(gp)

|Th,k(u)− tbegin(gp)| ≤ ∆h,k, 1 ≤ p ≤ pmax,

if this period exists, and Th,k(u) else (in this case, the
appliance is not shifted).

IV. COORDINATORS

We first define coordinators (Section IV-A), then present the
optimization problem computing the best coordination (Sec-
tion IV-B). Then, we introduce the available shiftable power
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matching coordinator (Section IV-C), and its two practical
proxies (Section IV-D).

A. Definition

Once we have identified green periods, we need to notify
them to the households of the collective self-consumption
operation. We call coordinator the module responsible for
constructing the notifications: it decides which household it
notifies about which green periods.

Definition 3 (Coordinator). A coordinator computes alloca-
tion variables xh,p, for every household h, and every green
period p, where xh,p = 1 if green period p is sent to household
h, and 0 otherwise.

The simplest coordinator is the one which sends the best
green periods to all the households. We call it “uniform
coordinator”. Let us write τ ≥ 0 the maximum number of
green periods to send to each household.

Uniform coordinator. The uniform coordinator implements
the naive strategy, whereby every household is notified of the
same green periods. Therefore, we have

xh,p =

{
1, 1 ≤ h ≤ hmax, 1 ≤ p ≤ τ,

0, otherwise.

B. Optimal Green Periods Allocation Problem

However, the uniform strategy may be sub-optimal. Indeed,
notifying all households of the same green periods may result
in all households consuming energy at the same time, and
outgrowing available solar production. Therefore, we need
to optimize the way we allocate the green periods to the
households. Let us write x = {xh,p}1≤h≤hmax,1≤p≤pmax

.
When sending green periods computed through a coordinator
to a household, the shifted times now depend on x, so we write
them T ∗

h,k(u,x). Likewise, the shifted load curve of the kth

appliance of house h also depends on x, so we write it lh,k (x).
As a result, the shifted load of appliance k of household h
writes, for t ≥ 0,

lh,kt (x) =

umax(h,k)∑
u=1

ℓh,k
(
t− T ∗

h,k(u,x)
)
.

We want to find the set of xh,p’s maximising the self-
consumption rate of the operation. It amounts to solving the
optimisation problem:

argmax
x

W1∑
t=W0

min

(
hmax∑
h=1

∑
k

lh,kt (x) , Pt

)
,

xh,p ∈ {0, 1} , 1 ≤ h ≤ hmax, 1 ≤ p ≤ pmax,
pmax∑
p=1

xh,p ≤ τ, 1 ≤ h ≤ hmax,

where W0 is the beginning of the week, and W1 is the time
slot 11:30 pm on the last day of the week. The denominator
in Definition 1 do not appear above, as the total production
is fixed (modifying consumption times does not change pro-
duction), and the total consumption of the operation is also

fixed, as shifting consumption times does not change the total
consumption. The last constraint enforces the fact the number
of green periods is not too large. Of course, one may add
additional constraints to the optimisation problem, if needed.

Now, even for an omniscient oracle, knowing in advance the
consumption of every household, and knowing in advance, and
with perfect precision, the solar production, this optimisation
problem would be difficult. Indeed, it is non linear in x
(through the computation of the T ∗

h,k(u,x)’s, and through the
dependency of the shifted load curves to these shifted times),
and there are 2hmax pmax possible x. Moreover, to have an
omniscient oracle would imply that someone in the operation
would know in advance all consumption of the members of the
operation, as well as have access to perfect weather forecast.
Therefore, such an assumption is highly unrealistic. As a result
of these issues, we do not try to solve the optimisation problem
directly, but propose an heuristic to compute the allocation
variables xh,p, which leads to two different coordinators,
parameterised by the level of information they need. We
evaluate the effectiveness of these coordinators in numerical
simulations (see Section V).

C. Available Shiftable Power Matching Coordinator

Each green period is expected to have a certain amount
of excess production available for additional consumption.
Assume for instance a green period has 2000 Watts of excess
production. Ideally, we would like to notify either a household
which can shift 2000 Watts of consumption to this period,
or two households, each in capacity to shift 1000 Watts. For
each household, we call “available shiftable power” the power
which the people of the household are willing to shift. The idea
is then to match the green periods with a set of households,
the sum of the available shiftable power of which matches as
closely as possible the excess production in the period.

Definition 4 (Available shiftable power matching coordinator).
For each household h, for each day d, write mh

d its available
shiftable power. For each day d, let e1, . . . , epd,max

be the
forecast excess for the green periods of that day.

The available shiftable power coordinator takes as inputs
the mh

d ’s and the ep’s, and computes the allocation variables
xh,p’s solving the minimization problem:

argminx={xh,pd}h,pd

∑pd,max

pd=1

∣∣∣∑hmax

h=1 mh
dxh,pd

− epd

∣∣∣ ,
d = 1, . . . , 7,

∑pd,max

pd=1 xh,pd
≤ 1, 1 ≤ h ≤ hmax, d = 1, . . . , 7,

∑d=7
d=1

∑pd,max

pd=1 xh,pd
≤ 4.

For every detected green period, the coordinator determines
the combination of households, the sum of the available
shiftable power of which is closest to the excess production of
that specific green period. Then, this green period is allocated
to the households in the optimal combination. Two constraints
are enforced to prevent user fatigue or confusion. Firstly, each
household can receive notification of just one green period
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per day (first set of inequalities). Secondly, each household
can be notified of a maximum of four green periods per week
(second set of inequalities). As a result, the same green period
may be allocated to multiple participants. Nevertheless, an
individual participant can only receive one green period per
day and a maximum of four green periods per week. Finally,
the solutions of the problem may not be unique. In case
of equality, we proceed sequentially, and for each day, we
select the solution for the day which increases the number of
different households to have been allocated green periods. If
this is not enough to obtain one unique choice, we select at
random among the remaining choices.

Now, the available shiftable power is not known: indeed, we
do not know, for each green period, which consumption which
household would be willing to shift. As a result, we introduce
two proxies with which we estimate this available shiftable
power. Each way of estimating it depends on some additional
information which we need to collect from the members of the
operation. Obtaining finer information is more difficult than
obtaining simple information, but we can hope (and we show
in the numerical simulations) that it leads to better results.
The supplementary information could be acquired thanks to a
survey, for instance.

D. Available Shiftable Power Estimating Coordinators

Appliance Type Coordinator. The Appliance type coordi-
nator uses as proxy for the shiftable power of an household,
its maximum shiftable power, that is the sum of the maximum
power of all shiftable appliances in the household. For exam-
ple, if a household possesses both a washing machine and a
dishwasher, and household people are willing to potentially
shift their usage of these devices, the maximum shiftable
power would be the sum of the maximum power ratings of
the washing machine and the dishwasher. Formally, let αh,k

be the maximum power of appliance k of house h. Then, we
estimate the available shiftable power of house h by (the “d”
dependency drops, as the right-hand side is independent of d),

m̂h
d = m̂h =

kh
max∑
k=1

αh,k.

Appliance Frequency Coordinator. One drawback of the
appliance type coordinator is that the maximum shiftable
power of the house may not be a good proxy for the available
shiftable power. Assume you only use your washing machine
on mondays. Assume also that a green period is computed on
Saturday. Then, the appliance type coordinator uses the power
of your washing machine to compute the maximum shiftable
power of the household. However, you may not be willing
to shift your washing machine consumption by as much as 5
days, leading to suboptimal green periods allocation.

The appliance frequency coordinator attempts to remedy
this by taking into account the frequency of usage of shiftable
appliances, in its evaluation of the available shiftable power. It
estimates the available shiftable power of a house by summing
the maximum power of each shiftable appliance, weighted
by the frequency at which the appliance is used during the
week. Write fh,k the weekly usage frequency of appliance

k in household h. If appliance k is activated every day of
the week, then fh,k = 7/7 = 1, and if it is not used at all
during the week, then fh,k = 0/7 = 0. As before, αh,k is the
maximum power consumption of appliance k in household h.
Define

m̂h
d = m̂h =

kh
max∑
k=1

αh,kfh,k.

Note that m̂h
d equals the value in the appliance type coordi-

nator when all fh,k’s equal 1, that is when all appliances are
used every day.

V. NUMERICAL SIMULATIONS

We first describe the set-up of our numerical simulations
(Section V-A). Then, we show coordinators are better than a
naive strategy (Section V-B), and are efficient with respect to
the OMEGAlpes reference (Section V-C). Finally, we compare
their performance based on the information available about
the consumption habits of the members of the operation
(Section V-D).

A. Numerical Simulations Set-up

We start by describing the datasets, real and synthetic,
we use. Each dataset is used to model one collective self-
consumption operation.

Real consumption datasets used. We use two real datasets.
The Iris dataset was collected as part of the REMODECE
(Residential Monitoring to Decrease Energy Consumption)
project [33]. The REMODECE project aims at reducing energy
consumption in residential buildings, in order to improve
energy sustainability. The Iris dataset contains the energy
consumption data of 98 European houses, during one year,
sampled at a 10 minutes rate.

The IDEAL household energy dataset [34] covers 255 UK
homes, for a duration of 23 months running up to June 2018.
It includes detailed electricity, gas, and sensor data. Sensor
readings encompass room conditions, boiler temperatures,
and detailed appliance usage for some homes. Survey data
adds occupant demographics, energy awareness, and building
characteristics. This dataset serves applications like energy
analysis, building modeling, and load monitoring research.
It can be found on the project datashare website, at the url
https://datashare.ed.ac.uk/handle/10283/3647?show=full.

Real consumption datasets preparation. We do the fol-
lowing preprocessing on both datasets.

1) Appliance Selection. We classify as ”shiftable” a subset
of the electrical appliances present in the dataset. We fix
the maximum shifting delay for these appliances to the
same values as [7] (see Table II).

2) Household Selection. We construct a collective self-
consumption operation by selecting a subset of the
houses available in the dataset, containing houses with
the most shiftable appliances. We detail in Appendix A
the houses selected, as well as the shiftable appliances
in them.

3) ”Shiftable” appliances addition. In our analysis, we
observed that the buildings in the Iris and IDEAL
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datasets exhibit limited energy flexibility, as indicated by
the ratio of total shiftable energy outside of solar hours
to total energy, detailed in Appendix A. To enhance
the flexibility potential, we augmented each building
in the IDEAL dataset with a water heater profile that
activates in the evening at random frequencies. Similarly,
for each building in the Iris dataset, we introduced an
electric vehicle charging profile with random activation
frequencies during the evening hours.

Synthetic consumption data preparation. We construct
synthetic operations Syn1 et Syn2 as follows. Again, choices
like the types of shiftable appliances in each house are
described in Appendix A.

1) Base, not shiftable, consumption pattern. We use
as base, not shiftable, consumption pattern, the fixed
consumption part of one house of the Iris dataset.

2) Number of households. We duplicate this profile a fixed
number of times, to obtain several houses.

3) Shiftable parts. We add different shiftable appliances
to each house. We then add different appliance us-
ages, randomly, to model in a realist way the different
consumption habits of the different households. For
instance, one household may use the washing machine
3 times in a week, and 0 time in another week.

Information needed by the coordinators. We extract the
additional information (maximum power, number of weekly
usages of appliances) required by the coordinators from the
datasets. In real-life, they could be obtained through surveys
of the members, for instance.

Solar energy production. To simulate solar energy produc-
tion, we use the same model that was used in [7]. This model
first computes a sunshine coefficient taking into account the
time of day, the month of year, and the amount of clouds.
A Markov Chain simulates the changes in cloud coverage.
Then, the solar production of the panels is estimated by
multiplying this coefficient, renormalised to (0, 1), by the
maximum capacity of the panels. The maximum capacity has
been manually set for each operation as follows: 130 kW for
Iris, 50 kW for IDEAL, and 26,6 kW for both Syn1 and Syn2.

Lower-bound benchmark. We use as lower-bound bench-
mark the case where there are no nudges, therefore no shift
in consumption. We call it “reference” in the plots.

Using OMEGAlpes as an upper-bound benchmark. To
get an upper-bound benchmark, we use the OMEGAlpes
modelling tool [19]. It is a linear optimisation energy systems
modelling tool, which computes the best possible shifting
of the consumption. Therefore, it computes ideal scenarios.
We describe the way OMEGalpes computes its solution in
Appendix A. However, it is not usable in real world situa-
tions, as it uses complete knowledge of the consumption, and
production, of the households, to compute its solution. More-
over, OMEGAlpes performs arbitrarily many and complex
consumption shifts. For instance, it can move several appliance
usages of an household to different periods, and perform many
such moves. That, together with the perfect knowledge of the
situation it has, makes its performances much better than those
of our algorithms.

We still use it as a benchmark, as it represents a sound,
well-defined, ideal solution. In what follows, we refer to this
version as Optimistic OMEGAlpes. However, we also use a
tweaked version, to provide a more realistic ideal case. We call
this version Realistic OMEGAlpes. To compute the Realistic
OMEGAlpes solution, for each household, we apply the four
best shifts performed by Optimistic OMEGAlpes. Therefore,
this tweaked version respects the bound in the number of green
periods by household our algorithms also respect, and is more
realistic in that regard.

Simulation. The simulations run over one month. Since
the production generation is stochastic, we perform 50 runs
for each setting. The simulations are executed in the compu-
tation server of G2ELAB (48 cores at 2.4GHz / 96 logical
processors – threads, 256 Go de mémoire, Nvidia RTX6000
GPU with 24 GB of memory). The OMEGAlpes optimization
is the computation intensive part, as the number of possible
shifts OMEGAlpes considers grows exponentially with the
number of households (because each candidate shift for each
household has to be considered with respect to all the other
candidates shifts of other houses).

Metrics displayed. We display the self-consumption rate of
the collective self-consumption operations, under the different
configurations, averaged over all the runs done for these
simulations. In each table, for each column, we display in
bold the best metric.

B. The Appliance Frequency Coordinator is Better than the
Naive Strategy

TABLE III
MEAN SELF CONSUMPTION RATE, EFFICIENCY OF COORDINATORS

Green
Periods
Finder

Coordina-
tor

Syn1
Mean(%)

Iris
Mean(%)

IDEAL
Mean(%)

No No 64.19 67.05 69.41

Load Forecasting Uniform 72.65 73.88 77.84
App

Frequency
75.82 84.78 87.17

In Table III, we compare the mean self-consumption rates in
the reference case (no coordination), in the case with the Uni-
form coordinator, and in the case with the appliance frequency
coordinator, for the Syn1, Iris and IDEAL datasets. Both al-
gorithms (uniform and appliance frequency) enhance the self-
consumption rate with respect to the reference case, increas-
ing it from 64.19%, to 72.65% (uniform coordinator), or to
75.82% (appliance frequency coordinator), in the case of Syn1
for instance. We see that the appliance frequency coordinator
leads to better improvements in the self-consumption rate,
when compared to the uniform coordinator. This enhanced
performance is consistent across all the datasets, underscoring
the value and efficiency of utilizing the appliance frequency
coordinator to optimize self-consumption rates, compared to
the “naive” uniform strategy.

In Figure 2, in scenario (a), we show that the uniform
coordinator, which sends identical nudges to all households
within the collective self-consumption operation, leads to
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Fig. 2. Self-consumption rates obtained in the reference case, and when
forecasting green periods and using the uniform (a), and frequency (b),
coordinators. Production curves are in blue, and consumption curves are
in dark orchid (uniform coordinator) and dark orange (appliance frequency
coordinator).

issues where consumption outgrows excess production (as
indicated by the red circles in the figure for scenario (a).).
This happens due to all households shifting their shiftable
appliances usages to the same green periods. Moreover, excess
production remains (as indicated by the black circle in the
figure for scenario (a).). However, using the appliance fre-
quency coordinator (scenario (b)) successfully addresses these
issues: consumption outgrows excess production much less
than in scenario (a), and all the excess production available
is effectively used. This further emphasizes the efficiency of
the appliance frequency coordinator, with respect to the naive
strategy.

C. Efficiency of Coordinators

In Table IV, we compare the appliance frequency coor-
dinator performance to those of Optimistic, and Realistic,
OMEGAlpes. The simulations are conducted for the Syn1,
IDEAL and Iris datasets. The appliance frequency coordinator
achieves a 75.82% self-consumption rate for Syn1, 87.17%
for IDEAL, and about 84.78% for Iris. While our coordinator
has lesser performances than Optimistic OMEGAlpes, it still
realizes a significant portion of its performance. Moreover, our
coordinator performs comparably to the Realistic OMEGAlpes
version, which is much more realistic than the Optimistic one.
Specifically, for Syn1, our coordinator performance is very
close to the 77.23% performance of Realistic OMEGAlpes,
and likewise for IDEAL. In the case of Iris, the performance
of our coordinator is only 3 percentage points less than the
87.22% of Realistic OMEGAlpes. Therefore, the appliance
frequency coordinator proves efficient, with respect to the
OMEGAlpes upper-bounds.

TABLE IV
MEAN SELF CONSUMPTION RATE WITH VARIOUS DATASETS, FOR
OMEGALPES AND THE APPLIANCE FREQUENCY COORDINATOR

Green
Periods
Finder

Coordina-
tor

Syn1
Mean(%)

IDEAL :
Mean(%)

Iris
Mean(%)

No No 64.19 69.4 67.05
Load

Forecasting
App

Frequency
75.82 87.17 84.78

Realistic OMEGAlpes 77.23 87.94 87.22
Optimistic OMEGAlpes 91.18 96.83 96.89

D. The Impact of Available Information on Coordinator Per-
formance

TABLE V
MEAN SELF-CONSUMPTION RATE WITH VARIOUS COORDINATORS

Green
Periods
Finder

Coordina-
tor

Syn1 :
Mean(%)

IDEAL :
Mean(%)

Iris :
Mean(%)

Load Forecasting
Uniform 72.65 77.84 73.88

App Type 74.64 83.3 80.58
App

Frequency
75.82 87.17 84.78

In Table V, we compare the performances of the two
available power matching coordinators, in order to evaluate
the impact the information has on their performances. Recall
that the appliance frequency coordinator uses more detailed
information that the appliance type coordinator. The appliance
type coordinator outperforms the uniform coordinator, which
operates without any additional information. The improvement
in performance ranges from 2% (as observed in simulations
on syn1) to approximately 6% (as observed in simulations on
Iris). Furthermore, the appliance frequency coordinator shows
an additional increase in performance over the appliance type
coordinator from 1% (in syn1) to 4% (in the cases of Iris
and IDEAL). This shows the value of precise information in
enhancing the efficacy of power matching coordinators.

VI. CONCLUSION, DISCUSSION

In a simulated environment using semi-real data, we have
demonstrated the efficiency of our ICT nudging pipelines,
using available real-world information, in enhancing collec-
tive self-consumption rates in a collective self-consumption
operation. Our research has underscored the importance of
using coordinators to manage the notification of consumption
favourable periods to the members of the operation. Using
coordinators not only leads to greater improvements in self-
consumption when compared to scenarios without coordina-
tors, but also effectively addresses the excess consumption
issue that may arise when an uniform notification strategy
is applied. We have shown the performance of coordinators
increase with the amount of information they have about
user consumption habits. Overall, our study has shown the
efficiency of the coordinators, based on matching an estimation
of the available shiftable power, with the forecasted excess,
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in improving the self-consumption rate of a collective self-
consumption operation.

We identify two key limitations of our results, inherited
from the previous work [7]. The first limitation comes from
the fact the model of human behaviour we use is idealised:
each member does all they can to respond to green periods.
However, in real-world situations, individuals may exhibit
varying behaviors when receiving nudges. Therefore, future
research endeavors should focus on estimating user compli-
ance rates when receiving nudges and devising strategies to
enhance this compliance rate. The second limitation relates to
our load forecasting model, specifically concerning the energy
and weather forecasting modules. We employed a simple
energy forecasting module, which may need enhancements to
be used in real-world simulations. Fortunately, the literature
offers numerous advanced models that we can be considered
for this purpose, especially ensemble models. These models
aggregate forecasts from multiple sources, constructing a more
reliable prediction than relying on single models on their own.
However, even state-of-the-art weather forecasts can exhibit
inaccuracies, especially when predicting several days ahead.
Prediction errors in energy usage and weather conditions
can potentially result in incorrect information regarding green
periods. Such inaccuracies may lead to suboptimal consump-
tion shifts by users and could discourage their continued
engagement with the project.

We would also like to note that the coordinator that yields
the highest improvement in self-consumption rates may not
always be the optimal choice. Indeed, we should take into
account user comfort, which may be at odds with providing
all the information our more involved coordinators require.
Collecting the information about the maximal power of the
shiftable appliances of users may require a yearly survey
(provided they do not change appliances more often), and
likewise for collecting information about the frequency at
which they use their shiftable appliances. In addition, if the
information submitted by the user does not match their actual
behavior, it will reduce the performance of the coordinator. For
example, a customer may say they use their washing machine
twice a week, but in fact, use it a different number of times
every week. As a result, the appliances frequency coordinator
will use wrong inputs for its computations, resulting in a drop
in advice quality. Efforts should be paid to making the sending
of information from users as seamless as possible. Moreover,
users will be all the more likely to actively participate in the
project and provide the information required for its optimal
functioning, if they see clear benefits in doing so. We also tried
a coordinator which used information about the exact days
of the week the households intended to use their appliances
on, but performance did not increase significantly with respect
to the appliance frequency coordinator (therefore, we do not
present the results in our simulations part). On the other hand,
collecting such detailed information represents a very high cost
for the users. This shows that usage frequency data is already
very informative, as far as making efficient coordinators is
concerned. In addition, notifying users of too many green
periods may give them the feeling of being overwhelmed,
making it challenging for them to respond effectively to the

nudges. This is why we considered notifying users of a most 4
green periods per week. Overall, a well-balanced approach that
considers both energy efficiency and user comfort is crucial
when selecting the most suitable coordinator for a collective
self-consumption system.

We plan to advance our research by implementing and test-
ing our nudging pipelines in real-world scenarios. However,
evaluating their impact in real-life testing poses a significant
challenge, as we lack reference data for comparison. There-
fore, determining how to effectively assess the impact of our
nudges will require specific work. We think of two possible
approaches. One approach is to identify a similar collective
self-consumption group that does not receive nudges, serving
as a control group. By comparing the consumption patterns
and outcomes of the group receiving nudges with those of
the control group, we can assess the impact of the nudges
program. Another method involves comparing the consump-
tion data of individual households before and after they start
receiving nudges. This allows us to evaluate whether there are
notable changes in consumption behavior when households
are exposed to the nudge program. Additionally, gathering
feedback and conducting surveys with users who have experi-
enced the nudge program can offer qualitative insights into its
perceived effectiveness and any behavioral changes they may
have noticed. Incorporating these evaluation methods can help
us establish a robust framework for assessing the real-world
impact of our nudging system, despite the absence of reference
data.
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APPENDIX

We use the same optimization tool used in [7] and defined
in [19], OMEGAples (Optimization ModEls Generation As
Linear Programs for Energy System), a simulation platform
developed by the Grenoble Electrical Engineering Laboratory
(G2ELab). A brief description is provided in our prior work.
In this section, we focus on describing the differences required
to apply the model to a collective self-consumption system.

A. Self-consumption system modeling

In Figure 3, we present a diagram illustrating the
OMEGalpes model implemented for a collective self-
consumption system of three households. This system en-
compasses both fixed and variable energy units: fixed energy
units, like solar panel production units, remain impervious to
changes in people’s energy consumption behavior and are non-
shiftable within individual households.

The variable energy units within our model encompass
energy imported from the grid, energy exported to the grid,
and the consumption of each shiftable appliance. The shiftable
energy component is subject to fluctuations, which impact the
energy imported and exported to the grid accordingly. All
these energy units are interconnected to an electric node. The
energy equations corresponding to this interconnected system
are formulated as depicted below. The equation variables are
defined in Table VI.

Energy balance equation. Equation (1) below depicts the
energy balance of household k within the collective self-
consumption system. As illustrated in Figure 3, we regard each
household as an electric node, and we designate the incoming
flux as the total power of household P k

house(t).

Nt∑
i=0

(
P k
house(t)− P k

shift(t)− P k
notshift(t)

)
δt = 0. (1)

The sum of the total power of all households represents the
total power of the collective self-consumption system, denoted
as P k

csc(t).

Pcsc(t) =

Nk∑
k=0

P k
house(t).

With the previous equation, we can derive the energy
balance equation for the collective self-consumption system,

Einput − Eoutut = 0,

where


Einput =

∑Nt

i=0 (Pimp(t)Uimp(t) + Ppv(t)) δt

Eoutput =
∑Nt

i=0 (Pexp(t)Uexp(t) + Pcsc(t)) δt.

In electrical systems, the energy balance equation dictates
that the net energy flow across any node should be zero. This
implies that the total energy entering the node must equal the
total energy exiting the node.

Constraints equations.

TABLE VI
ENERGY EQUATIONS VARIABLES AND THEIR MEANING.

Symbol Description

t

The time period of optimization,
denoted by t ∈ [Bt, Et], is defined
as starting from Bt, the beginning
of optimization, and ending at Et,

the completion of optimization.

k

The indexing variable for
households within the collective

self-consumption system.

δt

The change in time depends on the
frequency/sample rate of the

energy profile.

Nk

The size of the collective
self-consumption system, which is
the number of households within
the collective self-consumption.

Pimp/Pexp

Power imported from the electric
grid / Power exported from the

electric grid.

Uimp/Uexp

Network import / export status. It
is a binary variable, a value of 1
indicates that the import from the
grid is active, while a value of 0
indicates that the import/export

from the grid is inactive.

Ppv

Power generated by the solar
energy unit.

Pshift/Pnonshift

Power of the shiftable/not-shiftable
part of the total consumption.

Ushift

Shiftable consumption status. It is
a binary variable, a value of 1

indicates that the shiftable
consumption is active, while a

value of 0 indicates that there is no
shiftable consumption.

Stpshift

The shiftable consumption start-up
is represented by a binary variable.
It equals 1 only when the shiftable

consumption starts, i.e., when
Ushift changes from 0 to 1.

Eshift

Total shiftable consumption.

lspp

List of power profiles to shift.
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Fig. 3. OMEGalpes model for a Collective Self-Consumption System

To ensure the simultaneous import and export of energy
from the grid is avoided, we employ binary values, denoted
as Uimp and Uexport, which indicate the activation status of
importing and exporting energy, respectively. Consequently,
the sum of Uimp and Uexport is constrained to always be equal
to 1:

Uimp(t) + Uexp(t) = 1, Uimp andUexp integers,
0 ≤ Uimp(t), Uexp(t) ≤ 1.

The total shiftable energy of household k within the collec-
tive self-consumption system should remain constant.

δt

Nt∑
i=0

P k
shift(t) = Ek

shiftt∈[Bt,Et]
.

The total energy of a system should remain constant regard-
less of where the shiftable consumption is allocated within the
system.

δt

Nt∑
i=0

Nk∑
k=0

P k
shift(t) =

Nk∑
k=0

Ek
shiftt∈[Bt,Et]

.

The following equation represents the constraint for detecting
the start-up of shiftable consumption. The start-up is defined
as a binary value, which equals 1 only when the shiftable
consumption starts.

Uk
shift(t+ 1)− Uk

shift(t) ≤ Stpkshift(t+ 1).

Uk
shift(t+ 1)− Uk

shift(t) + 1

2
≥ Stpkshift(t+ 1).

Equation (2) guarantees that the sequence of shiftable
consumption for household k is moved in a sound way during
the optimization process. In practical terms, if a device, such
as a washing machine, operates from 8:00 pm to 9:30 pm, the
“block” of time it represents will be shifted as a single unit. It
will not be fragmented into several smaller sub-blocks, such
as one-hour or 30-minute segments.

P k
shift(t) ≥ lkspp Stp

k
shift(t− size(lkspp)),

t ∈ [size(lkspp),−1]. (2)

Objective equation.

min

Nt∑
i=0

Pexp(t)Uexp(t) δt = min (Ein − Ecsc) δt,

where


Ein =

∑Nt

i=0 (Pimp(t)Uimp(t) + Ppv(t)) δt

Ecsc =
∑Nk

k=0 P
k
shift(t)−

∑Nk

k=0 P
k
notshift(t) δt.

The objective of the optimization model is to maximize the
self-consumption rate in the self-consumption system, which
is equivalent to minimizing the energy exported to the grid.

B. Information on the Collective Self-Consumption System
Used in Our Study.

We describe here how we construct the collective self-
consumption datasets we use in our numerical simulations.
These are the synthetic datasets Syn1 (Table IX) and the
datasets from real public data, Iris (Table VIII) and IDEAL
(Table VII). We present the households contained in each
collective self-consumption dataset, and the shiftable appli-
ances available in each household. Additionally, we present
the total energy flexibility during the simulation period for
each collective self-consumption dataset

Finally, the periods we use in our simulations are the
following:

• Syn1: September 8, 2019, to October 13, 2019;
• Iris: July 26, 2020, to July 28, 2020;
• IDEAL: December 31, 2017, to February 01, 2019.

TABLE VII
SHIFTABLE APPLIANCE TYPES IN EACH HOUSE WITHIN THE COLLECTIVE
SELF-CONSUMPTION SYSTEM IDEAL AND TOTAL ENERGY FLEXIBILITY

OF IDEAL DURING SIMULATION PERIODS

List of
Household

Washing
Machine

Dish
Washer

Water
Heater

The Ratio
of Total
Shiftable
Energy

Outside of
Solar

Hours to
Total

Energy

household 01 ✓ ✓ ×

1.3%

household 02 ✓ ✓ ×
household 03 ✓ × ×
household 04 ✓ × ×
household 05 ✓ ✓ ×
household 06 ✓ ✓ ×
household 07 × ✓ ×
household 08 ✓ × ×
household 09 ✓ × ×
household 10 ✓ × ×
household 11 ✓ × ×
household 12 ✓ × ×
household 13 ✓ ✓ ×
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TABLE VIII
SHIFTABLE APPLIANCE TYPES IN EACH HOUSE WITHIN THE COLLECTIVE
SELF-CONSUMPTION SYSTEM IRIS AND TOTAL ENERGY FLEXIBILITY OF

IRIS DURING SIMULATION PERIODS

List of
Household

Washing
Machine

Dish
Washer

Water
Heater

The Ratio
of Total
Shiftable
Energy

Outside of
Solar

Hours to
Total

Energy

household 01 ✓ ✓ ×

5%

household 02 ✓ × ✓
household 03 ✓ ✓ ✓
household 04 ✓ ✓ ✓
household 05 ✓ ✓ ×
household 06 ✓ ✓ ×
household 07 ✓ ✓ ✓
household 08 ✓ ✓ ✓
household 09 ✓ ✓ ✓
household 10 ✓ ✓ ✓

TABLE IX
SHIFTABLE APPLIANCE TYPES IN EACH HOUSE WITHIN THE COLLECTIVE

SELF-CONSUMPTION SYSTEM SYN1 AND TOTAL ENERGY FLEXIBILITY
OF SYN1 DURING SIMULATION PERIODS

List of
Household

Washing
Machine

Dish
Washer

Water
Heater

The Ratio
of Total
Shiftable
Energy

Outside of
Solar

Hours to
Total

Energy

household 01 ✓ ✓ ✓

20%

household 02 ✓ ✓ ✓
household 03 ✓ ✓ ×
household 04 ✓ ✓ ×
household 05 ✓ × ×
household 06 ✓ × ×
household 07 ✓ × ✓
household 08 ✓ ✓ ×
household 09 ✓ × ✓
household 10 ✓ ✓ ✓
household 11 ✓ ✓ ×
household 12 ✓ ✓ ✓


