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• 1/3 of crops destroyed by pest insects.

• Early detection, a challenge for an efficient action before infestation.

• Communication between the insects by means of species-specific pheromone.

• New innovative pheromone sensors under developpement.

Early detection of pest insects (before infestation).

↓

Targeted biocontrol strategy and prophylactic approaches.
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Different mathematical problems
Direct problem

Knowing : the localization of the insects and
environmental parameters,
predict : the propagation of the pheromone.

Knowing : the localization of the insects and environmental
parameters,
predict : the propagation of the pheromone.

Inverse problem

Knowing : the localization and the data of the sensors
and environmental parameters,
predict : the quantity of pheromone emitted by the
insects, and thus the localization of the insects.

Knowing : the localization and the data of the sensors and
environmental parameters,
predict : the quantity of pheromone emitted by the insects, and
thus the localization of the insects.

Optimal design of experiments

Knowing : the environmental parameters,
predict : the optimal placement of the sensor in order
to reduce the uncertainty in the risk map.
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Direct Problem

Environmental parameters :
- wind field u⃗(x , y , t),
- diffusion tensor K(x , y , t),
- loss coefficient depending on the

vegetation τloss(x , y).

Quantity of pheromone emitted by
the insects s(x , y , t).

Figure: Uniform
density of insects
located in a circle
with constant
emission rate leading
to scirc , a constant
quantity of
pheromone over a
circular support.

2D model of the pheromone propagation [1]:

∂c
∂t

− ∇ · (K∇c)︸ ︷︷ ︸
diffusion

+ ∇ · (u⃗c)︸ ︷︷ ︸
wind

+ τlossc︸︷︷︸
deposition

= s

Pheromone concentration c given a source term s.

Figure: Concentration c(scirc ), solution of the pheromone propagation model with
the circulare scirc .

State variable:
pheromone concentration c.

[1] J. M. Stockie. The mathematics of atmospheric dispersion modeling, 2011.
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Inverse problem

Observations mobs

Figure: Noisy
synthetic
observations
mobs generated
from the target
st (see dashed
lines on the
figure on the
right), at a
given time.

Sensors

Optimisation problem [2] :{
find sa(x , y , t) such that
sa(x , y , t) = arg min

s(x,y,t)

(
jobs(s) + jreg (s)

)
with jobs(s) = ∥m (c(s)) − mobs∥2

2
and jreg a regularization term.

Optimal source terme sa :
quantity of pheromone emitted
enabling the direct model to
reproduice at best the observations mobs .

Figure: Optimal source term sa and the target st (dashed line,
constant over the circular support and used to generate mobs , see
figure on the left) during a synthetic experiment.Prediction of the observed variable m(c(s)).

SensorsDirect model

Control variable:
quantity of pheromone emitted s.

[2] F. Bouttier et P. Courtier. Data assimilation concepts and methods, 2002.
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Inverse problem: resolution method

Minimization problem solved using gradient descent method.
Requires the computation of the gradient of the cost function ∇j(s).
< ∇j(s), δs >=< ∇jobs(s), δs > + < ∇jreg (s), δs >

• Adjoint model [3] associated to the pheromone propagation model:

∂tc∗ + ∇ · (KT ∇c∗) + ∇ · (u⃗c∗) − (∇.⃗u)c∗ − τlossc∗ =
(dm

dc
(c(s))

)∗
· 2
(

m (c(s)) − mobs
)

with the final condition c∗(t = T ) = 0.
Expression of the gradient: ∇jobs(s) = −c∗

⇒ 1 resolution of the direct model and 1 resolution of the adjoint model.

The gradient is the retro-propagation with
diffusion of the gap between the data and the
output of the direct model.

Figure: Optimal source term sa and the target st (dashed line, constant over
the circular support and used to generate mobs , see figure on the left) during
a synthetic experiment.

[3] J.-L. Lions. Optimal control of systems governed by partial differential equations, 1971.
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Biology-informed regularization term
Knowing:

the pheromone propagation,
data of the pheromone sensors,
the biological behaviour of the insects,

estimer :
(a better) localization of the insects.

Improving the inference by including biological information in the regularization term.

• jreg (s) = ∥M(s) − σ∥2
L2 with M(s) = σ a model describing biological information, e.g.:

− M(s) = σ given by a population dynamic model,
− Tikhonov regularization term [4] M(s) = s et σ = sb with sb a background value of s based

on biological information.

• LASSO regularization term [5] jreg (s) = ∥s∥L1 to ensure sparsity.

• Logarithmic barrier [6] jreg (s) =
∫ T

0

∫
Ωexc

−ϵ log(ϵ − s(x , y , t)2)dxdydt in order to exclude
pheromone emission in the zones Ωexc .

[4] B. Kaltenbacher et al. Iterative regularization methods for nonlinear ill-posed problems, 2008.

[5] R. Tibshirani. Regression shrinkage and selection via LASSO, 1996.

[6] Y. Nesterov. Lectures on convex optimization, 2018.
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Population dynamic-informed regularization term
Let p be the insects density, satisfying the population dynamic PDE [7] :

∂tp + ∇

(∑
i

Fi (p)

)
+
∑

i

Ri (p) = 0

with :
• Fd (p) = −σ∇p : motion of the individuals in a random direction,
• Fa(p) = v⃗i p : motion of the individuals in a given direction, e.g.

− toward the preferred habitat,
− v⃗i = −σqs∇p to model population pressure,
− v⃗i = χ∇c(s) to model attraction toward the source of pheromone (chemotaxis),

• Rl (p) = r
κ

p(κ − p) to model logistic growth,
• RAe(p) = r

κ+κ−
p(κ+ − p)(p − κ−) to model Allee effect,

• non-local terms, e.g. v⃗i = v⃗i (c(s)) with c(s) ≈ ggp ∗ s.

s = pq, with q the quantity of pheromone emitted per insect
⇒ ∂t( s

q ) + ∇
(∑

i Fi ( s
q )
)

+
∑

i Ri ( s
q ) = 0

and jreg (s) = ∥∂t( s
q ) + ∇

(∑
i Fi ( s

q )
)

+
∑

i Ri ( s
q )∥2

L2 .

[7] Murray. Mathematical biology: I. An introduction, 2002.
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Biology-informed regularization terms comparison

Figure: Optimal source term sa obtained with different biology-informed regularization terms and the target st (dashed line, constant over the circular
support and used to generate mobs ).
From left to right: without regularization (no reg), with a population dynamic-informed regularization term jreg (s) ∝ ∥∂t s∥2

2 (PD), with a LASSO
regularization term (LASSO), with the Tikhonov regularization term (T), with a combination of population dynamic-informed and LASSO regularization
terms (PD+LASSO) and with a combination of population dynamic-informed, LASSO and Tikhonov regularization terms (all reg).
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Biology-informed regularization terms comparison

• Total error RxMSEtot(t) =
√

1
|Ω|

∫
Ω(sa(X , t) − st(X , t))2dX ,

• error over the target support RxMSEsupp(t; s) =
√

1
|Ωsupp |

∫
Ωsupp

(sa(X , t) − st(X , t))2dX .

Figure: Root Mean Square Errors between the target st and the optimal source term sa over the whole domain and over st support (resp. RxMSEtot and
RxMSEsupp ) vs the time for three different regularization strategies: without regularization (no reg), with a population dynamic-informed regularization
term jreg (s) ∝ ∥∂t s∥2

2 (PD), with a LASSO regularization term (LASSO), with the Tikhonov regularization term (T) and with combinations of these
regularization terms.
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Mono-sensor adjoint state

Decomposition of the obervations into mono-sensor observations: m =
∑

i mi .
Mono-sensor adjoint state c∗

i related to the i th sensor, solution of the mono-sensor adjoint
model:

∂tc∗
i + ∇ · (KT ∇c∗

i ) + ∇(u⃗c∗
i ) − (∇.⃗u)c∗

i − τlossc∗
i =

(dmi
dc

(c(s))
)∗

· 2R−1
(

mi (c(s)) − mobs
i
)

with the final condition c∗
i (t = T ) = 0.

Link between c∗ and c∗
i : c∗(s) =

∑
i c∗

i (s)

Let (sk)k∈N be the sequence of s given by the gradient-descent algorithm, the optimum sa can
be expressed as:

sa = s0 −
∑

k

αk∇j(sk)

= s0 −
∑

k

αk

(
∇jreg (sk) − c∗(sk)

)
= s0 −

∑
k

(
αk∇jreg (sk)

)
+
∑

i

∑
k

(
αkc∗

i (sk)
)

c∗
i : the contribution of a sensor to the gradient of the cost function, and thus to the decrease

of the cost function.
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Mono-sensor adjoint state

Figure: Comparaison of
c∗
i,tot =

∑
k

αk c∗
i (sk ), the total

contribution of each sensors to the minization
of j: without regularization (no reg), with a
population dynamic-informed regularization
term jreg (s) ∝ ∥∂t s∥2

2 (PD), with a
LASSO regularization term (LASSO), with the
Tikhonov regularization term (T) and with
combinations of these regularization terms.
On the top three rows: c∗

i,tot maps for the 3

sensors of higher ∥c∗
i,tot ∥∞ at the time

where ∥c∗
i,tot ∥∞ is reached.

On the bottom row: ∥c∗
i,tot ∥∞ for every

sensors, sorted from the higher to the lower
∥c∗

i,tot ∥∞
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Work in progress and to come

• Application to progressively more realistic test cases.

• Sensitivity analysis of the pheromone propagation model to uncertainty in the environmental
parameters.

• What is the optimal placement of the sensors to improve the inference of the quantity of
pheromone emitted? ⇒ Optimal design of experiment

• Metamodel (reduced order model) to solve the direct model and estimate the cost function
(and its gradient) in a limited computation time and/or with limited computation ressources.

• Application and evaluation of the performance of the inference to real data and in conditions
less and less controled.

• Continuous integration and development of the solvers and methods in a git repository.
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Work in progress: application to realistic test cases

Road

Urban

Forest

Bare soil

Summer crops

Colza

Winter cereals 1

Winter cereals 2

Winter cereals 3

Grassland

(a) Map with the land occupation data

(b) Wind rose of MétéoFrance (AROME model) data

Figure: Realistic test case (Loir-et-Cher, France) between the 16/11/2022 12:00 and the 17/11/2022 12:00



Work in progress: application to realistic test cases

(a) Map of the target support (in red) with
the landscape decomposition (in white lines
and red dashed lines for the colza field)

(b) Map of the pheromone concentration c(st ) at different time

Figure: Results of the pheromone propagation model for the realistic test case based on the fall armyworm behaviour



Work in progress: sensitivity analysis of the pheromone propagation model
to uncertainty in the environmental parameters

2D model of the pheromone propagation:

∂c
∂t

− ∇ · (K∇c)︸ ︷︷ ︸
diffusion

+ ∇ · (u⃗c)︸ ︷︷ ︸
wind

+ τlossc︸︷︷︸
deposition

= s

⇒ the estimate of c depends environmental parameters, especially on the wind velocity u⃗ and on
the loss coefficient τloss .

τloss depends on the landscape decomposition and on the soil occupation but the value τloss wrt
the vegetation are uncertainty.

u⃗ computed by large scale meteo model with large spatio-temporal sampling (≈ 1.3km and 1h)
⇒ the scales smaller are unresolved.

Analyse of the global sensitivity of c to uncertainty in the value of τloss wrt the vegetation and
in multi-scale structures of u⃗.
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