Pest detection from a biology-informed inverse problem and pheromone sensors

Thibault Malou
in collaboration with: S. Labarthe, B. Laroche, K. Adamczyk, N. Parisey

30/11/2023
$\infty \times$ MaiAGE

- $1 / 3$ of crops destroyed by pest insects.
- Early detection, a challenge for an efficient action before infestation.
- Communication between the insects by means of species-specific pheromone.
- New innovative pheromone sensors under developpement.
- Sex pheromone

Targeted biocontrol strategy and prophylactic approaches.

Different mathematical problems

Direct problem

Knowing : the localization of the insects and environmental parameters, predict : the propagation of the pheromone.

Different mathematical problems

Direct problem

Knowing : the localization of the insects and environmental parameters, predict : the propagation of the pheromone.

Inverse problem

Knowing : the localization and the data of the sensors and environmental parameters, predict : the quantity of pheromone emitted by the insects, and thus the localization of the insects.

Different mathematical problems

Direct problem

Knowing : the localization of the insects and environmental parameters, predict : the propagation of the pheromone.

Inverse problem

Knowing : the localization and the data of the sensors and environmental parameters, predict : the quantity of pheromone emitted by the insects, and thus the localization of the insects.

Optimal design of experiments

Knowing : the environmental parameters, predict : the optimal placement of the sensor in order to reduce the uncertainty in the risk map.

Direct Problem

Environmental parameters :

- wind field $\vec{u}(x, y, t)$,
- diffusion tensor $\mathbf{K}(x, y, t)$,
- loss coefficient depending on the vegetation $\tau_{\text {loss }}(x, y)$.

State variable: pheromone concentration c.

2D model of the pheromone propagation [1]:

Quantity of pheromone emitted by the insects $s(x, y, t)$.

Figure: Uniform density of insects located in a circle with constant emission rate leading to $s^{\text {circ }}$, a constant quantity of pheromone over a circular support.

$$
\frac{\partial c}{\partial t}-\underbrace{\nabla \cdot(\mathbf{K} \nabla c)}_{\text {diffusion }}+\underbrace{\nabla \cdot(\vec{u} c)}_{\text {wind }}+\underbrace{\tau_{\text {loss }} c}_{\text {deposition }}=s
$$

Figure: Concentration $c\left(s^{c i r c}\right)$, solution of the pheromone propagation model with the circulare $s^{\text {circ. }}$.
[1] J. M. Stockie. The mathematics of atmospheric dispersion modeling, 2011.

Inverse problem

Observations $\mathrm{m}^{\text {obs }}$
Figure: Noisy synthetic observations $m^{o b s}$ generated from the target s_{t} (see dashed lines on the figure on the right), at a given time.

Control variable:

 quantity of pheromone emitted s.Optimisation problem [2] :

$$
\left\{\begin{array}{l}
\text { find } s_{a}(x, y, t) \text { such that } \\
s_{a}(x, y, t)=\arg \min _{s(x, y, t)}\left(j_{\text {obs }}(s)+j_{r e g}(s)\right)
\end{array}\right.
$$

with $j_{\text {obs }}(s)=\left\|m(c(s))-m^{o b s}\right\|_{2}^{2}$ and $j_{\text {reg }}$ a regularization term.

Prediction of the observed variable $m(c(s))$.

Optimal source terme s_{a} : quantity of pheromone emitted enabling the direct model to reproduice at best the observations $m^{o b s}$.

Figure: Optimal source term $s_{a} a^{x(m)}$ the target s_{t} (dashed line, constant over the circular support and used to generate $m^{o b s}$, see figure on the left) during a synthetic experiment.

Inverse problem: resolution method

Minimization problem solved using gradient descent method.
Requires the computation of the gradient of the cost function $\nabla j(s)$.
$<\nabla j(s), \delta s>=<\nabla j_{o b s}(s), \delta s>+<\nabla j_{\text {reg }}(s), \delta s>$

- Adjoint model [3] associated to the pheromone propagation model:

$$
\partial_{t} c^{*}+\nabla \cdot\left(\mathbf{K}^{T} \nabla c^{*}\right)+\nabla \cdot\left(\vec{u} c^{*}\right)-(\nabla \cdot \vec{u}) c^{*}-\tau_{\text {loss }} c^{*}=\left(\frac{d m}{d c}(c(s))\right)^{*} \cdot 2\left(m(c(s))-m^{o b s}\right)
$$

with the final condition $c^{*}(t=T)=0$.
Expression of the gradient: $\nabla j_{o b s}(s)=-c^{*}$
$\Rightarrow 1$ resolution of the direct model and 1 resolution of the adjoint model.

The gradient is the retro-propagation with diffusion of the gap between the data and the output of the direct model.

Figure: Optimal source term s_{a} and the target s_{t} (dashed line, constant over the circular support and used to generate $m^{o b s}$, see figure on the left) during a synthetic experiment.

Biology-informed regularization term

Knowing:
the pheromone propagation,
data of the pheromone sensors,
the biological behaviour of the insects,
estimer :
(a better) localization of the insects.

Biology-informed regularization term

Knowing:
the pheromone propagation,
data of the pheromone sensors,
the biological behaviour of the insects,
estimer :
(a better) localization of the insects.

Improving the inference by including biological information in the regularization term.

Biology-informed regularization term

Knowing:
the pheromone propagation, data of the pheromone sensors, the biological behaviour of the insects,
estimer :
(a better) localization of the insects.

Improving the inference by including biological information in the regularization term.

- $j_{r e g}(s)=\|\mathcal{M}(s)-\sigma\|_{L^{2}}^{2}$ with $\mathcal{M}(s)=\sigma$ a model describing biological information, e.g.:
- $\mathcal{M}(s)=\sigma$ given by a population dynamic model,
- Tikhonov regularization term [4] $\mathcal{M}(s)=s$ et $\sigma=s_{b}$ with s_{b} a background value of s based on biological information.

Biology-informed regularization term

Knowing:
the pheromone propagation, data of the pheromone sensors, the biological behaviour of the insects,
estimer :
(a better) localization of the insects.

Improving the inference by including biological information in the regularization term.

- $j_{r e g}(s)=\|\mathcal{M}(s)-\sigma\|_{L^{2}}^{2}$ with $\mathcal{M}(s)=\sigma$ a model describing biological information, e.g.:
$-\mathcal{M}(s)=\sigma$ given by a population dynamic model,
- Tikhonov regularization term [4] $\mathcal{M}(s)=s$ et $\sigma=s_{b}$ with s_{b} a background value of s based on biological information.
- LASSO regularization term [5] $j_{r e g}(s)=\|s\|_{L^{1}}$ to ensure sparsity.
[4] B. Kaltenbacher et al. Iterative regularization methods for nonlinear ill-posed problems, 2008.
[5] R. Tibshirani. Regression shrinkage and selection via LASSO, 1996.

Biology-informed regularization term

Knowing:
the pheromone propagation, data of the pheromone sensors, the biological behaviour of the insects,
estimer :
(a better) localization of the insects.

Improving the inference by including biological information in the regularization term.

- $j_{\text {reg }}(s)=\|\mathcal{M}(s)-\sigma\|_{L^{2}}^{2}$ with $\mathcal{M}(s)=\sigma$ a model describing biological information, e.g.:
- $\mathcal{M}(s)=\sigma$ given by a population dynamic model,
- Tikhonov regularization term [4] $\mathcal{M}(s)=s$ et $\sigma=s_{b}$ with s_{b} a background value of s based on biological information.
- LASSO regularization term [5] $j_{\text {reg }}(s)=\|s\|_{L^{1}}$ to ensure sparsity.
- Logarithmic barrier [6] $j_{\text {reg }}(s)=\int_{0}^{T} \int_{\Omega_{\text {exc }}}-\epsilon \log \left(\epsilon-s(x, y, t)^{2}\right) d x d y d t$ in order to exclude pheromone emission in the zones $\Omega_{\text {exc }}$.
[4] B. Kaltenbacher et al. Iterative regularization methods for nonlinear ill-posed problems, 2008.
[5] R. Tibshirani. Regression shrinkage and selection via LASSO, 1996.
[6] Y. Nesterov. Lectures on convex optimization, 2018.

Population dynamic-informed regularization term

Let p be the insects density, satisfying the population dynamic PDE [7] :

$$
\partial_{t} p+\nabla\left(\sum_{i} F_{i}(p)\right)+\sum_{i} R_{i}(p)=0
$$

Population dynamic-informed regularization term

Let p be the insects density, satisfying the population dynamic PDE [7] :

$$
\partial_{t} p+\nabla\left(\sum_{i} F_{i}(p)\right)+\sum_{i} R_{i}(p)=0
$$

with :

- $F_{d}(p)=-\sigma \nabla p$: motion of the individuals in a random direction,
- $F_{a}(p)=\vec{v}_{i} p$: motion of the individuals in a given direction, e.g.
- toward the preferred habitat,
$-\vec{v}_{i}=-\sigma_{q s} \nabla p$ to model population pressure,
$-\vec{v}_{i}=\chi \nabla c(s)$ to model attraction toward the source of pheromone (chemotaxis),
- $R_{l}(p)=\frac{r}{\kappa} p(\kappa-p)$ to model logistic growth,
- $R_{A e}(p)=\frac{r}{\kappa_{+} \kappa_{-}} p\left(\kappa_{+}-p\right)\left(p-\kappa_{-}\right)$to model Allee effect,
- non-local terms, e.g. $\vec{v}_{i}=\vec{v}_{i}(c(s))$ with $c(s) \approx g_{g p} * s$.

Population dynamic-informed regularization term

Let p be the insects density, satisfying the population dynamic PDE [7] :

$$
\partial_{t} p+\nabla\left(\sum_{i} F_{i}(p)\right)+\sum_{i} R_{i}(p)=0
$$

with :

- $F_{d}(p)=-\sigma \nabla p$: motion of the individuals in a random direction,
- $F_{a}(p)=\vec{v}_{i} p$: motion of the individuals in a given direction, e.g.
- toward the preferred habitat,
- $\vec{v}_{i}=-\sigma_{q s} \nabla p$ to model population pressure,
$-\vec{v}_{i}=\chi \nabla c(s)$ to model attraction toward the source of pheromone (chemotaxis),
- $R_{l}(p)=\frac{r}{\kappa} p(\kappa-p)$ to model logistic growth,
- $R_{A e}(p)=\frac{r}{\kappa_{+} \kappa_{-}} p\left(\kappa_{+}-p\right)\left(p-\kappa_{-}\right)$to model Allee effect,
- non-local terms, e.g. $\vec{v}_{i}=\vec{v}_{i}(c(s))$ with $c(s) \approx g_{g p} * s$.
$s=p q$, with q the quantity of pheromone emitted per insect
$\Rightarrow \partial_{t}\left(\frac{s}{q}\right)+\nabla\left(\sum_{i} F_{i}\left(\frac{s}{q}\right)\right)+\sum_{i} R_{i}\left(\frac{s}{q}\right)=0$
and $j_{\text {reg }}(s)=\left\|\partial_{t}\left(\frac{s}{q}\right)+\nabla\left(\sum_{i} F_{i}\left(\frac{s}{q}\right)\right)+\sum_{i} R_{i}\left(\frac{s}{q}\right)\right\|_{L^{2}}^{2}$.

Biology-informed regularization terms comparison

Figure: Optimal source term s_{a} obtained with different biology-informed regularization terms and the target s_{t} (dashed line, constant over the circular support and used to generate $m^{o b s}$).
From left to right: without regularization (no reg), with a population dynamic-informed regularization term jreg $(s) \propto\left\|\partial_{t} s\right\|_{2}^{2}$ (PD), with a LASSO regularization term (LASSO), with the Tikhonov regularization term (T), with a combination of population dynamic-informed and LASSO regularization terms (PD+LASSO) and with a combination of population dynamic-informed, LASSO and Tikhonov regularization terms (all reg).

Biology-informed regularization terms comparison

- Total error $R \times M S E_{\text {tot }}(t)=\sqrt{\frac{1}{|\Omega|} \int_{\Omega}\left(s_{a}(X, t)-s_{t}(X, t)\right)^{2} d X}$,
- error over the target support $R \times M S E_{\text {supp }}(t ; s)=\sqrt{\frac{1}{\left|\Omega_{\text {supp }}\right|} \int_{\Omega_{\text {supp }}}\left(s_{a}(X, t)-s_{t}(X, t)\right)^{2} d X}$.

Figure: Root Mean Square Errors between the target s_{t} and the optimal source term s_{a} over the whole domain and over s_{t} support (resp. $R \times M S E_{t o t}$ and $R \times M S E_{\text {supp }}$) vs the time for three different regularization strategies: without regularization (no reg), with a population dynamic-informed regularization term $j_{r e g}(s) \propto\left\|\partial_{t} s\right\|_{2}^{2}(P D)$, with a LASSO regularization term (LASSO), with the Tikhonov regularization term (T) and with combinations of these regularization terms.

Mono-sensor adjoint state

Decomposition of the obervations into mono-sensor observations: $m=\sum_{i} m_{i}$.
Mono-sensor adjoint state c_{i}^{*} related to the $i^{\text {th }}$ sensor, solution of the mono-sensor adjoint model:

$$
\partial_{t} c_{i}^{*}+\nabla \cdot\left(\mathbf{K}^{T} \nabla c_{i}^{*}\right)+\nabla\left(\vec{u} c_{i}^{*}\right)-(\nabla \cdot \vec{u}) c_{i}^{*}-\tau_{\text {loss }} c_{i}^{*}=\left(\frac{d m_{i}}{d c}(c(s))\right)^{*} \cdot 2 \mathbf{R}^{-1}\left(m_{i}(c(s))-m_{i}^{\text {obs }}\right)
$$

with the final condition $c_{i}^{*}(t=T)=0$.
Link between c^{*} and $c_{i}^{*}: c^{*}(s)=\sum_{i} c_{i}^{*}(s)$

Mono-sensor adjoint state

Mono-sensor adjoint state c_{i}^{*} related to the $i^{t h}$ sensor, solution of the mono-sensor adjoint model: $\partial_{t} c_{i}^{*}+\nabla \cdot\left(\mathbf{K}^{T} \nabla c_{i}^{*}\right)+\nabla\left(\vec{u} c_{i}^{*}\right)-(\nabla \cdot \vec{u}) c_{i}^{*}-\tau_{\text {loss }} c_{i}^{*}=\left(\frac{d m_{i}}{d c}(c(s))\right)^{*} \cdot 2 \mathbf{R}^{-1}\left(m_{i}(c(s))-m_{i}^{\text {obs }}\right)$ with the final condition $c_{i}^{*}(t=T)=0$.
Link between c^{*} and $c_{i}^{*}: c^{*}(s)=\sum_{i} c_{i}^{*}(s)$
Let $\left(s_{k}\right)_{k \in \mathbb{N}}$ be the sequence of s given by the gradient-descent algorithm, the optimum s_{a} can be expressed as:

$$
s_{a}=s_{0}-\sum_{k} \alpha_{k} \nabla j\left(s_{k}\right)
$$

Mono-sensor adjoint state

Mono-sensor adjoint state c_{i}^{*} related to the $i^{t h}$ sensor, solution of the mono-sensor adjoint model: $\partial_{t} c_{i}^{*}+\nabla \cdot\left(\mathbf{K}^{T} \nabla c_{i}^{*}\right)+\nabla\left(\vec{u} c_{i}^{*}\right)-(\nabla \cdot \vec{u}) c_{i}^{*}-\tau_{\text {loss }} c_{i}^{*}=\left(\frac{d m_{i}}{d c}(c(s))\right)^{*} \cdot 2 \mathbf{R}^{-1}\left(m_{i}(c(s))-m_{i}^{\text {obs }}\right)$ with the final condition $c_{i}^{*}(t=T)=0$.
Link between c^{*} and $c_{i}^{*}: c^{*}(s)=\sum_{i} c_{i}^{*}(s)$
Let $\left(s_{k}\right)_{k \in \mathbb{N}}$ be the sequence of s given by the gradient-descent algorithm, the optimum s_{a} can be expressed as:

$$
\begin{aligned}
s_{a} & =s_{0}-\sum_{k} \alpha_{k} \nabla j\left(s_{k}\right) \\
& =s_{0}-\sum_{k} \alpha_{k}\left(\nabla j_{r e g}\left(s_{k}\right)-c^{*}\left(s_{k}\right)\right)
\end{aligned}
$$

Mono-sensor adjoint state

Mono-sensor adjoint state c_{i}^{*} related to the $i^{t h}$ sensor, solution of the mono-sensor adjoint model:
$\partial_{t} c_{i}^{*}+\nabla \cdot\left(\mathbf{K}^{T} \nabla c_{i}^{*}\right)+\nabla\left(\vec{u} c_{i}^{*}\right)-(\nabla \cdot \vec{u}) c_{i}^{*}-\tau_{\text {loss }} c_{i}^{*}=\left(\frac{d m_{i}}{d c}(c(s))\right)^{*} \cdot 2 \mathbf{R}^{-1}\left(m_{i}(c(s))-m_{i}^{\text {obs }}\right)$
with the final condition $c_{i}^{*}(t=T)=0$.
Link between c^{*} and $c_{i}^{*}: c^{*}(s)=\sum_{i} c_{i}^{*}(s)$
Let $\left(s_{k}\right)_{k \in \mathbb{N}}$ be the sequence of s given by the gradient-descent algorithm, the optimum s_{a} can be expressed as:

$$
\begin{aligned}
s_{a} & =s_{0}-\sum_{k} \alpha_{k} \nabla j\left(s_{k}\right) \\
& =s_{0}-\sum_{k} \alpha_{k}\left(\nabla j_{r e g}\left(s_{k}\right)-c^{*}\left(s_{k}\right)\right) \\
& =s_{0}-\sum_{k}\left(\alpha_{k} \nabla j_{r e g}\left(s_{k}\right)\right)+\sum_{i} \sum_{k}\left(\alpha_{k} c_{i}^{*}\left(s_{k}\right)\right)
\end{aligned}
$$

c_{i}^{*} : the contribution of a sensor to the gradient of the cost function, and thus to the decrease of the cost function.

Mono-sensor adjoint state

Figure: Comparaison of $c_{i, \text { tot }}^{*}=\sum_{k} \alpha_{k} c_{i}^{*}\left(s_{k}\right)$, the total contribution of each sensors to the minization of j : without regularization (no reg), with a population dynamic-informed regularization term jreg $(s) \propto\left\|\partial_{t} s\right\|_{2}^{2}$ (PD), with a LASSO regularization term (LASSO), with the Tikhonov regularization term (T) and with combinations of these regularization terms. On the top three rows: $c_{i, \text { tot }}^{*}$ maps for the 3 sensors of higher $\left\|c_{i, \text { tot }}^{*}\right\| \infty$ at the time where $\left\|c_{i, \text { tot }}^{*}\right\| \infty$ is reached.
On the bottom row: $\left\|c_{i, \text { tot }}^{*}\right\| \infty$ for every sensors, sorted from the higher to the lower $\left\|c_{i, \text { tot }}^{*}\right\| \infty$

Work in progress and to come

- Application to progressively more realistic test cases.
- Sensitivity analysis of the pheromone propagation model to uncertainty in the environmental parameters.
- What is the optimal placement of the sensors to improve the inference of the quantity of pheromone emitted? \Rightarrow Optimal design of experiment
- Metamodel (reduced order model) to solve the direct model and estimate the cost function (and its gradient) in a limited computation time and/or with limited computation ressources.
- Application and evaluation of the performance of the inference to real data and in conditions less and less controled.
- Continuous integration and development of the solvers and methods in a git repository.

Work in progress: application to realistic test cases

(b) Wind rose of MétéoFrance (AROME model) data

Figure: Realistic test case (Loir-et-Cher, France) between the 16/11/2022 12:00 and the 17/11/2022 12:00

Work in progress: application to realistic test cases

(a) Map of the target support (in red) with the landscape decomposition (in white lines and red dashed lines for the colza field)

(b) Map of the pheromone concentration $c\left(s_{t}\right)$ at different time

Figure: Results of the pheromone propagation model for the realistic test case based on the fall armyworm behaviour

Work in progress: sensitivity analysis of the pheromone propagation model to uncertainty in the environmental parameters

2D model of the pheromone propagation:

$$
\frac{\partial c}{\partial t}-\underbrace{\nabla \cdot(\mathbf{K} \nabla c)}_{\text {diffusion }}+\underbrace{\nabla \cdot(\vec{u} c)}_{\text {wind }}+\underbrace{\tau_{\text {loss } c}}_{\text {deposition }}=s
$$

\Rightarrow the estimate of c depends environmental parameters, especially on the wind velocity \vec{u} and on the loss coefficient $\tau_{\text {loss }}$.
$\tau_{\text {loss }}$ depends on the landscape decomposition and on the soil occupation but the value $\tau_{\text {loss }}$ wrt the vegetation are uncertainty.
\vec{u} computed by large scale meteo model with large spatio-temporal sampling ($\approx 1.3 \mathrm{~km}$ and 1 h) \Rightarrow the scales smaller are unresolved.

Analyse of the global sensitivity of c to uncertainty in the value of $\tau_{\text {loss }}$ wrt the vegetation and in multi-scale structures of \vec{u}.

