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Figure 1: Proposed approach to reconstruct a dynamic scene from a single static 360° camera. Three type of elements are considered:
environment, object of interest and people. The environment, static, is reconstructed in an initialization step (section 3). The dynamics
elements, object of interest and people, are reconstructed in real-time with different 3D representation (section 4). Combining these static
and dynamic reconstructions, XR user can freely navigate in the 360° video.

Abstract
Nowadays, most volumetric tele-immersion systems are based on a multi-camera system to capture a dynamic 3D place. With
these acquisition devices, the development of a mobile tele-immersion system seems compromised, as a lot of equipment would
have to be moved. One promising way to achieve a mobile system would be to use a single 360° camera and develop ways
of reconstructing in 3D a dynamic scene in real time from a single point of view. Therefore, we propose an approach to
freely navigate into a 360° video captured with a static camera. The approach considers three types of elements in the scene,
the environment, the object of interest and the people, and relies on a different 3D representation for each type of element.
Distinguishing the scene elements enables a real-time method to be adopted, by reconstructing static elements once and using
fast-computable 3D representations for dynamic elements. As the method is real-time, we develop a streaming pipeline to enable
XR users to move live within the camera stream.

CCS Concepts
• Computing methodologies → Virtual reality; Reconstruction;

1. Introduction

Tele-immersion aims to immerse one or more people, at different
locations, in a new place either virtual or real [Ohl18]. While a vir-
tual place is completely modeled by computer, 3D reconstruction
methods along with acquisition devices must be used to virtualize
a real place. These acquisition devices, mostly based on several
cameras, are classified in two categories: outside-in and inside-
out [RTW20, LTT15]. In both systems, camera positions can be
approximated as belonging to a circle, but in the outside-in con-
figuration, the cameras face the center of the circle, while in the
inside-out configuration, the cameras face the outside of the cir-
cle. As noted in [RTW20], this difference implies that outside-in

devices are better suited for capturing objects, while inside-out de-
vices are better suited for capturing environments. Then, outside-in
devices offer the possibility to tele-immerse objects of interest of
the scene in 3D, such as human avatars [OERF∗16], but they are
generally not mobile because the cameras of the device must be
placed all around the room. On the other hand, inside-out devices
are easily transportable because they are composed of a single de-
vice such as a 360° camera, but they do not enable the complete
reconstruction of independent 3D elements. This disadvantage of
the 360° camera is detrimental for the creation of virtual reality
scenes because it implies that one cannot have a rendering of an
arbitrary point of view of the scene, making free navigation impos-
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Figure 2: Overview of our approach. Remote users connect to the
server to freely navigate in the streamed omnidirectional video.

sible. An interesting research problem is then to determine how to
create virtual reality scenes with free navigation from an inside-out
acquisition device.

In this paper, we propose an approach to create a tele-immersion
application based on a single static 360° camera for immersing
remote users live into a dynamic 3D reconstruction. The single-
camera setup provides an easy-to-use mobile tele-immersion sys-
tem without the need for preprocessing for use cases such as remote
learning, immersive meetings or remote assistance. To achieve this
goal, we developped a method to reconstruct a free-viewpoint vir-
tual environment from an omnidirectional stream, relying on the
assumption that the scene is composed of a static background and
dynamic foreground elements (Figure 1). In our context, the fore-
ground represents an object of interest, which is the central ele-
ment of the scene, with surrounding people. An overview of the
approach is shown Figure 2. Using parallax generation, registra-
tion techniques and video tracking, we achieve a representation
in which users can move freely around the camera position. The
strength of our approach is that the 3D representation is obtained in
real time and transmitted over the network with limited bandwidth,
enabling users to move around inside the 360° video in live.

2. Related Works

2.1. 360° based Tele-Immersion

To implement a mobile tele-immersion system, we propose to use a
single static omnidirectional camera. An existing proposition based
on a static omnidirectional camera is AVT [RTM∗20]. AVT is a
system in which a host user brings a traveler user into his envi-
ronment captured by a single static omnidirectional camera. The
traveler receives a stream of the video filmed by the camera in real-
time and can interact with the host. Because no additional 3D in-
formation is captured, the traveler is fixed to the camera position,
so there can only be one remote user at the same time. To enable
a remote user to move around the environment, some authors have

proposed to mount the omnidirectional camera on a mobile base,
as in VROOM [JZWR20] or Holobot [KKK∗23]. In this case, the
camera position is controlled by the remote user, who can choose its
position in the environment by physically moving the camera. The
problem with this approach is that it requires one omnidirectional
camera per remote user, which limits the number of participants. A
solution for bringing several remote users into the scene is to in-
troduce 3D in addition to video. [TLL∗19] proposed to combine an
omnidirectional video stream with a 3D reconstruction. A user can
switch from a real-time 360° stream recorded in first-person view
to a 3D reconstruction in which they can move freely. However,
they assume that the scene is static, which makes their system un-
usable if there are dynamic elements. In addition, the use of a single
moving camera does not allow for a fully dynamic scene (regions
not directly visible to the camera cannot be updated).

We propose a system inspired by AVT, based on static omnidi-
rectional camera, with the difference that we want to generate a
large motion parallax in real-time so that several remote users can
move freely in the environment.

2.2. Parallax Generation

Achieving a 6-DoF representation from a single static omnidirec-
tional camera is still a challenging problem. Most of the proposed
methods and representations aims to create 3-DoF+ experience for
producing head-motion parallax effects when viewing the 360°
video with a HMD, but not a full 6-DoF scene. The basic prin-
ciple for creating a 6-DoF experience from a single static cam-
era is to recover the geometry to render the scene at any arbitrary
point of view. An omnidirectional image being the projection of
the inner surface of a textured three-dimensional sphere seen with
a camera virtually placed at its center, the addition of geometry
enables to deform this sphere into a more complex shape closer
to reality. A commonly studied geometric representation added to
the omnidirectional image is the omnidirectional depth map. An
omnidirectional depth map is a grayscale image where one pixel
represents the distance from that particular point on the sphere
surface to the sphere center. The development of spherical net-
works, taking as input a 360° image, allows estimating the geom-
etry thanks to two types of approaches: direct estimation of the
depth map and layout estimation [dSPMLJ22]. The first type of
method estimates the depth map directly from the 360° image. The
authors proposed neural networks producing an omnidirectional
depth map, taking as input the equirectangular projection of the
image [ZKZD18, SSC21], a perspective images slicing of the 360°
image [RAYR22, LGY∗22] to exploit already existing monocular
depth estimation architecture, or both equirectangular and perspec-
tives projections [WYS∗20, JSZ∗21]. On the other hand, layout es-
timation methods recover the captured room layout which can be
seen as a simplified depth map approximating the floor, ceiling and
walls by planes. Many layout estimation methods are based on the
Manhattan hypothesis [SHSC19, YWP∗19, WYS∗21], which as-
sumes that the scene is a room with a flat floor, ceiling, and walls,
and that the walls intersect at right angles. The disadvantage of
these approaches is that they produce depth maps where objects
are flattened against walls, floors and ceilings, giving less realis-
tic virtual reality scenes. Alternative approaches have been pro-
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posed based on more complex inputs than just a 360° image to ex-
ploit the properties of multi-camera devices omnidirectional cam-
eras. [MJJK21] used a 4 fisheyes omnidirectional camera and pro-
posed to compute the depth map in real time with fisheye stereo. A
widely used input type is omnidirectional stereo (ODS) [PBEP01].
The ODS is a 360° left-right stereo pair that can be conveniently
obtained with a multi-camera device. In [LXLL19] a network is
proposed taking as input an ODS image and outputting the depth
map in real-time. With this additional geometric information, the
360° image is rendered by creating a mesh from its associated depth
map and projecting the image onto the mesh. However, this ren-
dering approach is not the most suitable when it comes to create
full 6-DoF scene. Indeed, an omnidirectional depth map only en-
codes a particular type of sphere deformations following a topol-
ogy named star [MS19]. Representing a scene with an omnidirec-
tional depth map will be acceptable if the scene can be viewed as
a single connected component without independent elements like a
simple empty room. If this is not the case, phantom surfaces will
appear between non-connected component, in particular between
foreground and background elements. Even if the presence of these
artifacts may not be disturbing for 6-DoF users [DDDP18], more
complex topologies may be modeled with layered representations.
A layered representation is a set of semi-transparent images of the
scene from the same point of view, with or without explicit geom-
etry [RTW20]. Because the layered representation contains infor-
mation about what is hidden behind the occlusions, it enables the
modeling of more complex topologies than a star domain. When
the geometry is modeled implicitly by the layer, such that if one
layer is in front of another, it implies that this layer is closer to
the camera, the representation corresponds to Multi-Plane Image
(MPI) [TS20, HWY22]. Some authors have adapted the MPI rep-
resentation to work with omnidirectional image. The Multi-Sphere
Image (MSI) is introduced in [ALG∗20]. The MSI representation
corresponds to a set of concentric semi-transparent spherical lay-
ers centered on the camera position. They rely on a neural net-
work inferring the MSI from a pair of ODS images in real-time.
Similarly, [WGD∗22] proposed Multi-Cylinder Image (MCI), a set
of cylindrical layers but computed from a single panoramic im-
age. Even if this representation enables a large motion parallax,
layer artifacts quickly appear when the user moves away from the
center of the MSI, making this representation impractical for tele-
immersion with free navigation. A strategy to achieve a better 6-
DoF with large motion is to explicitly model the geometry with a
depth map per layer, leading to the Layered Depth Image (LDI)
representation [SGHS98, SSKH20, KMA∗20]. Contrary to MPI,
the different layers do not implicitly represent depth information
but rather topological information: if two elements are on two dif-
ferent layers, then they are independent. A common approach is
to use a spherical LDI with two layers to model the foreground
and background elements [HASK17]. In [SKC∗19, MKK∗20] a 3
layers structure is proposed : a dynamic foreground layer, an ex-
trapolated layer for static background regions occluded by mov-
ing objects and an inpainted layer to fill-in regions occluded by
static objects. [LXM∗20] proposed Multi Depth Panorama (MDP)
a panoramic LDI with a arbitrary number of layers, thanks to a 3D
CNN predicting an MPI.

To generate a 6-DoF scene, we propose a representation inspired

Figure 3: Static scene reconstruction. Information about the ob-
ject of interest (upper box) and about the people (lower box) are
required to remove foreground from the environment (middle box).

by a two-layers omnidirectional LDI, but instead of using a fore-
ground layer, foreground elements are modeled with registered 3D
models and billboards.

3. Static Scene Reconstruction

Since we want a system in which users can navigate freely in real
time, no existing approach is completely satisfying. To achieve this
goal, one solution is to reconstruct separately the different type of
elements that compose the scene. The first element is the environ-
ment, corresponding to the background of the input image. The en-
vironment is modeled by an omnidirectional image associated with
a depth map to add relief. To keep the interactive times, we as-
sume the environment is static, thus avoiding the reconstruction of
the depth map at each frame. The second element is the object of
interest, corresponding to the central element of the scene, for ex-
ample a machine to repair in a remote assistance scenario. The last
elements are the people co-located with the camera whose avatars
need to be represented. To initialize this scene, a static reconstruc-
tion is performed on the first frame of the video stream, consisting
in two main steps : registration of the object of interest and creation
of the environment. The static scene reconstruction is summarized
Figure 3.

3.1. Object of Interest Registration

The representation of the geometry of a scene by a depth map im-
plies that its topology is a star-domain [MS19]. Under this topol-
ogy, only one connected component is possible to model, which
makes the creation of a scene with independent 3D elements im-
possible. To solve this issue, our proposal consists of representing
the foreground elements with a 3D model, automatically aligned in
the 360° video.

[ZLM∗22] proposed an algorithm to align a 3D model on an
equirectangular image, based on the analysis of the silhouette.
However, their method is not generic and a detector needs to be
trained to segment the element of interest in the video. We propose
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Figure 4: Object registration. Perspectives images of the 360° im-
age and the 3D model are compared to find the best match. Given
the pair that maximizes the match, the pose of the camera is esti-
mated and the position of the 3D model is derived.

to use a marker based and model based approach based on super-
point [DMR18] and superglue [SDMR20] to find the alignment of
a textured object in a equirectangular image. The algorithm is sum-
marized Figure 4. Estimating the position of the object is equivalent
to solving a camera localization problem using Perspective-n-Point
(PnP). First, two perspective cameras C360 and Cmodel must be de-
termined, the first covering the object of interest in the 360 image
and the second covering the same elements of the 3D model as
C360. Note that the approach supposes only one instance of the ob-
ject of interest is present in the scene. N perspective images in the
360° image are sampled, and M images are rendered around the
3D model. The superpoint-superglue is run on the N ×M pairs of
images, and the pair that maximizes the matches is kept with their
camera positions. Superglue is used as it was more robust to tex-
ture alteration between the rendering of the 3D model and the 360°
image than other methods in our experiments To get the 3D points,
the 2D markers produced by superpoint-superglue from the ren-
dered image are projected onto the 3D model by ray-tracing. The
PnP problem is solved using RANSAC between the 2D points from
C360 and the 3D points. The PnP algorithm is initialized with the
position of Cmodel and the intrinsic parameters are set to K360. The
resulting camera C∗

model is the camera that covers the model in the
same way as C360 covers the object of interest. Lastly, the model is
positioned by computing the relative translation and rotation [R, t]
from C∗

model to C360. The model is then translated by t and rotated
around C360 by R.

3.2. Environment Creation

The environment is a particular 3D object that defines the limits
of the scene in which the user navigates. Omnidirectional images
are suitable for modeling the environment, but in our case the im-
age also contains foreground elements. Therefore, the first step to
create the environment is to remove the foreground elements, the

Figure 5: Omnidirectional depth estimation. The input equirect-
angular image is decomposed into perspective images. Monocular
depth estimation is performed on each perspective image. The re-
sulting depth maps are projected back onto an equirectangular im-
age.

object of interest and the people, from the 360° image. A solution
is to obtain a mask of these elements and use an inpainting algo-
rithm. With the registration of the 3D model, a segmentation of the
object of interest in the equirectangular image is easily available.
To get a mask of the people, an object detection method was used.
Detecting objects in omnidirectional image is studied [YQC∗18]
but [Fas19] observed that YOLO detector is robust to equirectan-
gular distortions if the elements are not near to either the poles or
to the boundaries. With a static camera properly aligned, humans
in the equirectangular image respect this constraint. Then, YOLO
was used to generate the people masks. Given the first frame of
the video with these masks, the foreground elements were removed
with the inpainting algorithm. The most convincing results were
obtained with LaMa [SLM∗22].

To add the geometry, an omnidirectional depth map was asso-
ciated to the inpainted image. The depth map was computed by
decomposing the omnidirectional image into a set of perspective
images to exploit the existing perspective monocular depth esti-
mation network. The existing depth estimation methods did not
produce depth maps of a suitable quality for virtual reality, the
depths were not detailed enough with too many artifacts. To address
these issues, a similar approach to the 360MonoDepth [RAYR22]
was adopted, but the perspective sampling, depth estimation model,
and depth fusion methods were modified. In particular, Midas
[RLHK20] was replaced by ZoeDepth [BBW∗23], a monocular
perspective depth estimation model that predicts metric depth in-
stead of inverse relative depth. Consistency between different per-
spectives and depth fusion are greatly improved, as problems of
scale between different depth maps are avoided.

The proposed algorithm is illustrated Figure 5. First, overlap-
ping tangent perspective images were extracted in a dense man-
ner to cover the entirety of the sphere. We use gnomonic projec-
tion [LGY∗22] to project 60, 15 and 15 images at latitudes of 0°,
+75° and -75° respectively. The field of view is the same for all im-
ages and is set to 90° to maximize coverage and reduce distortion.
In the second step, ZoeDepth was run on all images and the depth
maps were projected into a global equirectangular depth map using
the inverse gnomonic transformation. Overlapping depth values are
averaged across all the depth maps. Since every pixel is covered by
multiple images, the resulting equirectangular depth map is con-
sistent with low distortions and artifacts. One of the advantages of
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Figure 6: Dynamic scene reconstruction. The object of interest (up-
per box) and the people (lower box) are intialized with information
from the static scene reconstruction.

this algorithm is that it seems sufficiently robust to make coherent
depth estimation in inpainted regions. The background image with
the corresponding depth map are transmitted to the clients at the
initialization to render the environment.

4. Dynamic Scene Reconstruction

To have a complete 3D scene reconstruction, dynamic elements
must be added to the static representation of the scene. Dynamic
elements must be tracked and positioned in the scene to achieve
live reconstruction. The live constraint has guided us towards rep-
resentations that can be obtained fast. The first step in the dynamic
reconstruction is to animate the object of interest by enhancing it
with a digital twin. The second step is to create a billboard for each
person in the video to represent their avatar. The dynamic scene
reconstruction is illustrated Figure 6.

4.1. Object of Interest Updating

Because the described registration algorithm is too long to run in
real-time, it can not be used at each frame for dynamic object. A
solution may be to track in 6-DoF the dynamic object of interest
along the video, but this approach relies on heavy computations.
Our proposition to avoid tracking is to animate the object of in-
terest by enhancing the 3D model with a digital twin. The digital
twin captures the kinematics of the real object of interest and sends
them to the user, changing the pose of the 3D model in real time.
For example, if the object of interest is a cobot, the joints articular
positions and velocities are transmitted to animate the 3D model
along the video.

An issue is that users may easily notice a 3D model is integrated
in the scene since it may lack of photorealism (simple texture, no
lighting model, ...). To have a coherent rendering of the model, the
current frame of the video is used to texture the object of interest.
The pixels of the video aligned on the 3D model are projected on it
and update a global texture of the object of interest. As the object
of interest moves, thanks to the digital twin, new regions initially
occulted become visible, the global texture of the 3D model is then
updated. If a region is never seen by the camera, the corresponding
pixels in the global texture is set to a default color.

4.2. Human Avatars

Reconstruction of a 3D avatar from a single point of view with-
out geometric information is an ambiguous problem. To our best
knowledge, only Monoport [LOX∗20] proposes to create a 3D hu-
man avatar in real-time from a single RGB stream. Their algo-
rithm can recover regions of the avatar that are not directly seen
by the camera, but is based on PIFu [SHN∗19] which is prone to
reconstruction errors that may degrade the user sense of presence.
Our proposal is to represent people with billboards, 2D plans po-
sitioned in 3D space on which videos are projected. Experiments
have shown this representation was more comfortable for users than
a noisy reconstruction [DMC∗22], or equivalent to a 3D avatar if
the user remained facing to the billboard [CKL∗20]. Using bill-
boards with the background depth map is equivalent to using a
layered depth image with a flat depth map for the foreground. We
chose to not calculate a depth map on the foreground because we
assume that adding relief to the billboard is marginal for avatar re-
alism. The goal of our pipeline is then to generate flat billboards of
dynamic elements only from the omnidirectional video stream. The
use of billboards enables the generation of 3D representations of
objects in the video generically (the representation can be created
for any objects as long as they can be detected at initialization) and
in real time. No particular human keypoints needs to be tracked,
a 360° video segmentation is enough to cut out a person from the
video and insert the corresponding billboard in the 3D space.

The first step is to perform the video segmentation of the whole
equirectangular video to isolate people from other elements. The
advantages of processing the whole equirectangular image is that
with the video segmentation all the human billboards are created in
one pass, instead of segmenting individual patches for each person.
The video segmentation is initialized with the resulting mask of
the human detection performed in the static scene reconstruction.
The video segmentation deform these masks throughout the video
to fit the boundaries of the tracked elements. Since video segmen-
tation can be time-consuming, the mask updating in our pipeline is
done on a reduced resolution frame to be processed in real time.
After being predicted on the reduced image, the mask is rescaled
to the original image resolution with bicubic interpolation. To pass
from the equirectangular mask to a perspective image centered on
the tracked person, a gnomonic projection is performed for each
tracked person on the frame of the video. The parameters of an in-
dividual projection are simply retrieved thanks to a bounding box
containing the mask. The center of projection (λ,φ) and the field of
view f are then computed with the following equations :

λ = 2π(
xbb
w

− 1
2
)

φ = π(
ybb
h

− 1
2
)

f = max(2π
wbb
w

,π
hbb
h

)

where (xbb,ybb) is the center of the bounding box of the mask
and (wbb,hbb) is the size of the bounding box. The projection is
applied by using the same field of view horizontally and vertically,
resulting in a square perspective image. Therefore, f is the maxi-
mum between the horizontal field of view fh and the vertical field
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of view fv. Before performing the gnomonic projection, the input
equirectangular image is masked using the predicted person seg-
mentation, and the pixels outside the mask are replaced by a default
color.

The last step to render a person as a billboard is to get their pose
in the 3D space. Since our billboards are world-aligned (always
facing the center of the scene), only the position and the scale are
needed. The center of the billboard (x,y,z) and the scale s are esti-
mated with the following formulas :

x = ρsinφcosλ

y = ρ tan
fv
2

z = ρsinφsinλ

s = ρ tan
f
2

where ρ is the distance between the billboard and the camera.
This distance is computed with the formula proposed by [ML-
PALC21]. The formula assumes that the object whose distance is
being estimated touches the ground, the floor is flat, and the camera
height is known, assumptions valid in our case. To apply this for-
mula, we suppose the contact point between a person and the floor
is the pixel of the equirectangular mask with the lowest value in or-
dinate. Video billboards with calculated parameters are streamed to
clients to render people in the environment. The billboards are ren-
dered as a 3D object with chroma keying to make the background
transparent.

5. Technical Evaluation

The goal of the evaluation is to search for a configuration usable for
practical tasks of the system, meaning interactive times and great
visual quality. To ensure that our system is able of interactive times,
the frame rates were measured according to the resolution of the
video and the number of people tracked. An important factor for
the final rendering is the quality of the people contouring, the qual-
ity of the video segmentation was also evaluated according to the
resolution of the video and the distance to the camera.

For the implementation, we used YOLOv8 to detect the people
in the first frame of the omnidirectional video. We used XMem
[CS22] to segment the video, which we modified to take as input
an image of reduced resolution to speeding up the segmentation,
and output a mask of the initial resolution with a bicubic interpo-
lation. We also used CuPy to perform all possible image computa-
tion on GPU. The computations were performed on a server with
a NVIDIA GeForce RTX 3090 GPU. The clients, connected to the
server, render the scene in real-time using Unity.

5.1. Real-Time Evaluation

To check if the dynamic elements can be rendered in real time,
the duration of the entire billboard generation pipeline was mea-
sured, from the video segmentation to determining the 3D posi-
tion. Three video input resolution were tested, low (400 × 200),

Table 1: Average frame rates based on equirectangular input reso-
lution and number of tracked people.

Resolution Frame rate

Low (400×200) 1 person 38.4 fps
2 people 23.9 fps
3 people 17.6 fps

Medium (800×400) 1 person 30.5 fps
2 people 18.9 fps
3 people 13.8 fps

High (1600×800) 1 person 11.2 fps
2 people 7.8 fps
3 people 5.9 fps

medium (800×400) and high (1600×800) to determine the max-
imum achievable resolution in real time. The change in resolution
have no effect on the image quality but affect the quality of the per-
son contouring. Also, one to three people were tracked to determine
if the system is fast enough to process several people. The resulting
frame rates are provided in Table 1.

From these results, we observe that the system interactivity is
suitable only in low resolution and medium with a single person.
The additional cost when tracking several people is mostly due to
the fact the billboards positioning in the 3D space is performed se-
quentially for each individual person. Efforts to implement paral-
lelization could result in reducing the frame rates when the number
of people is higher than 1. Also, no effect of the tested output bill-
board resolution, from low-resolution to high-resolution, have been
observed on the frame rate.

To ensure the proposed representation can be streamed over the
network, we also evaluate the used bandwidth of our approach.
Most of the scene elements were sent to a client on the local
network, the environment was transmitted in HTTP, the billboard
videos in RTSP and other useful information in UDP. The single-
person billboard video resolution was 800×800 pixels and if more
than one person was present in the scene, their billboard images
were stacked into a larger common image to use only one RTSP
stream. For comparison, the original 360° video used to generate
the scene was also streamed using RTSP with an equirectangular
projection of resolution 2048× 1024 pixels. We found the band-
width usage of our approach was close to the 360° video except at
the start where our approach receives a larger amount of data to ob-
tain the static 3D reconstruction. The observed latency was around
1.5 seconds, which seems acceptable for interaction between lo-
cal and remote people. These results confirm our assumption that
our approach enables a live free navigation with a network usage
equivalent to videoconferencing.

5.2. Billboard Quality Evaluation

This experiment aims to determine the evolution of the quality of
the contouring of the people depending on the distance to the cam-
era to provide information on the good practices with this system.
We hypothesize that the higher is the resolution, the higher is the
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Figure 7: Quality of a person contour depending on the distance
to the camera and the input resolution.

quality of the contouring, and that the quality of the contouring de-
creases when the distance to the camera increases.

To evaluate the contouring quality, we first shot some videos with
a person at different distances from the camera (1 m, 1.5 m, 2 m and
2.5 m). This person performs a number of different poses that are
the same in all the videos. In these videos, some key frames were
selected and used to manually create reference masks. These refer-
ence masks, used as ground truth, were obtained with an interactive
segmentation tool [SPK22] by selecting the person on the equirect-
angular image. Then, the video segmentation was performed on the
videos, taking as input the low, medium and high resolutions. The
result of the video segmentation with the different resolutions at
these key frames were saved and compared to the reference masks
using the Jaccard index (Intersection over Union). The average of
the Jaccard indexes of the key frames for each distance is computed
to obtain the graph Figure 7. Based on these results, we observe that
the contouring quality degrades as the distance from the camera in-
creases, thus confirming our hypothesis. Note that the values of
the Jaccard indexes are high because the image has a resolution of
2048×1024 while the segmentation of the person occupies only a
small part of this image. However, the metric seems to indicate that
the medium and high resolutions have roughly the same contour
quality while that of the low resolution is well below. This observa-
tion suggests that a medium resolution can be used for performance
reasons (Table 1) without loss of quality. We also notice, from the
resulting mask, that all resolutions tend to lose track of arms and
hands after 1.5 m, which can be detrimental to non-verbal commu-
nication. Experimenting with users to assess the impact of billboard
quality on subjective metrics would be interesting.

From these experiments, we can conclude that to have an inter-
active use of our system with a pleasant billboard representation,
the best configuration is to use a medium resolution (able to reach
real time performances) with a single person positioned between 1
m and 1.5 m from the camera.

6. Limitations and Openings

Today the system is limited and potential improvements are iden-
tified. Because the technologies we use are designed to work on
perspective image, our system shows limitations when spherical
properties of equirectangular images needs to be exploited. For ex-
ample, a person going from the left border of the image to the right
(or vice versa) may not be properly tracked. The lack of 3D for the
avatar will be an issue if the user is not facing the on-site user. A so-
lution can be to use 4D reconstruction to build the avatar along the
video Another issue is to propagate the texture of the aligned 3D
model from visible area to occluded area to have a fully textured
by the 360° image. Solving this issue would help to transparently
integrate the 3D model to the picture and let the user freely moves
around the object of interest without discomfort. Finally, using lay-
ered approaches to create a mesh from a single depth map without
stretched surfaces will be beneficial to create more realistic back-
ground.

7. Conclusion

We presented an approach to capture a 3D scene in real time, from
a single static omnidirectional camera, in which users can move.
The approach considers three different types of elements (environ-
ment, object of interest and people) and proposes a different 3D
representation for each of these elements. The static environment
is reconstructed from a 360° image on which foreground elements
are removed, combined with a depth map. The object of interest is
obtained by aligning a 3D model, known beforehand, on the 360°
video and animating it with a digital twin. Finally, people are rep-
resented by billboards, positioned in the 3D space.

This proposition is an interesting technical foundation for a mo-
bile tele-immersion system because of the mobility of the acqui-
sition device and the used bandwidth for streaming, comparable
to 2D video. For the moment, the system lacks interaction between
on-site and remote people, or between different remote people. The
perspective would be to integrate remote people avatars into the 3D
reconstruction, so that different users are aware of each other pres-
ence. Future user evaluations will be conducted to review the suit-
ability of the approach for concrete tasks implied in collaborative
tele-immersion.
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