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ABSTRACT 

Liquid biopsy has emerged as a powerful tool for cancer early diagnosis, prognosis, 

and treatment monitoring across a wide range of cancer types. The ability to collect 

circulating cell-free DNA (cfDNA) from blood samples provides real-time insights into 

tumor biology, enabling its application in clinical practice for cancer screening, 

diagnosis, minimal residual disease assessment, and prediction and monitoring of 

treatment response and relapse.  

Given the increasing complexity, volume, and longitudinal nature of cfDNA data, there 

is a growing demand for advanced computational modeling (CM) approaches that can 

transform these data into clinically actionable insights. 

We report on the diverse CM approaches used to analyze cfDNA in oncology. After an 

overview of the current data derived from cfDNA, the use of CM is detailed for their 

application in clinical studies, both in processing cfDNA data at a particular time point 

and in capturing their temporal dynamics. We emphasize on approaches using 

machine learning and mechanistic modeling embedded within non-linear mixed effects 

statistical constructs. 

This review provides guidance to computational modelers, clinical researchers and 

healthcare practitioners in effectively utilizing cfDNA data to enhance research and 

improve patient care. 

 

 

Keywords: cell-free DNA; computational modeling; machine learning biomarker; 

diagnosis; prognosis; prediction of treatment response  
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INTRODUCTION 

Cell-free DNA (cfDNA) comprises encapsulated DNA fragments released into body 

fluids such as blood, urine or cerebrospinal fluid1 (Figure 1A), allowing easy access to  

the genetic background of hard-to-reach tissues. Originating from necrosis, apoptosis2, 

lysis3, active secretion of exosomes4 and the hematopoietic system5, cfDNA biology in 

oncology is a current research focus for diagnosis, prognosis, treatment monitoring, 

and therapy personalization. 

CfDNA includes circulating-tumor DNA (ctDNA), i.e. DNA fragments released by tumor 

cells (primary tumor, circulating tumor cells and metastases) containing specific 

genetic aberrations6. Consequently, cfDNA analyses can offer insights into disease 

biology, tumor mutations and growth with multiple advantages. First, collection of 

cfDNA can easily be performed from blood sampling (liquid biopsies, Figure 1B)7. 

These are less invasive than tissue biopsies and provide real-time disease monitoring, 

reinforced by the short half-life of cfDNA in the blood (15 minutes to 2 hours8).  CfDNA 

can also help detect new tumor sites and serves as a surrogate for tissue biopsies 

when the primary site is unidentified. Furthermore, ctDNA offers insights on both intra- 

and inter-tumoral genetic heterogeneity, otherwise difficult to access9.  

In the clinic, cfDNA can be applied for screening, diagnosis, detection of minimal 

residual disease and treatment monitoring. The cfDNA-based colorectal cancer 

screening test Epi proColon®10 has been approved by the Food and Drug 

Administration (FDA) in 2016 and  is recommended for adults at risk aged over 50 who 

are not completing the colorectal cancer screening. In 2022, the European Society for 

Medical Oncology (ESMO) Precision Medicine Working Group recommended ctDNA 

as an adjunctive diagnostic tool for several solid cancers (NSCLC, breast, gastric, 

…)11. In recent years, multiple clinical trials have been conducted using ctDNA to guide 

targeted therapy12,13. These hold the premise of transforming precision medicine. 

However, no cfDNA-based assay has yet reached sufficient level of maturity to be used 

in routine care.  

Sequencing and quantifying cfDNA over time generates extensive data. These include 

gene aberrations, fragment size profiles and base pair patterns (Figure 1C). To 

manage these data, studies have turned to mathematical and computational modeling 

of cfDNA (CM-cfDNA), comprising statistical, machine learning (ML) and mechanistic 
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modeling. The two first are interested in establishing associations and predictive 

models between cfDNA as input and outcome as output. The latter aims at integrating 

biological knowledge into mathematical models of the pharmaco-patho-physiological 

processes at stake, which not only provides predictive tools but also improves our 

understanding and allows to test mechanistic hypotheses and perform simulations of 

putative scenarii.  

CM-cfDNA emerged around 2015, aligned with the increasing popularity of cfDNA-

based studies. It constituted 24% of tumoral cfDNA studies in 2022, rising to 28% in 

2023 ((“modeling” OR “computational modeling” OR “machine learning” OR “survival 

analysis”) AND “tumoral cfDNA” / “tumoral cfDNA” PubMed search, 249/883 entries in 

2023). These methods, including survival analysis for time-to-event data, ML for 

predictive modeling, and mechanistic modeling for tumor-drug interactions, have 

proven effective in oncology for early detection, cancer subtype classification, 

prognosis, treatment monitoring, and prediction of response / relapse in cancers such 

as melanoma14, lung15, breast16 and colorectal17 cancers (Figure 1D). Specifically, 

despite its rare application, collecting cfDNA data over time, such as during treatment, 

and modeling it with mechanistic approaches enhanced the understanding of cfDNA 

biology and ensured robust, predictive outcomes. 
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CfDNA AND ctDNA DATA 

CfDNA collection, quantification, sequencing and storage 

CfDNA data collection involves blood collection followed by plasma extraction by 

centrifugation, storage, DNA extraction, quantification and sequencing (Figure 1B).  

Research has explored cfDNA molecular diagnostics for quantifying fragments and 

detecting tumor aberrations, using targeted and non-targeted approaches18. Targeted 

approaches focus on predefined genes related to the patient’s pathology. They 

comprise digital droplet Polymerase Chain Reaction (PCR), quantitative-PCR, 

amplification-refractory mutation system, BEAMing-PCR, tagged-amplicon deep 

sequencing and cancer personalized profiling by deep-sequencing19, offering good 

sensitivity and better specificity than non-targeted approaches18. Non-targeted 

approaches assess the entire genome (array-comparative genomic hybridization, 

whole genome sequencing). They can identify new aberrations through genome-wide 

screening but require larger cfDNA amounts.  

Emerging database platforms (FinaleDB20, CFEA21) provide comprehensive cfDNA 

datasets from various studies and clinical conditions. 

CfDNA features 

Concentration is the most easily accessible cfDNA-based feature. It fluctuates with 

tumor size, number of metastases and presence of circulating tumor cells22. In healthy 

individuals, cfDNA concentrations range from 0 to 100 ng/ml, averaging 30 ng/ml, while 

in cancer patients, it ranges from 0 to 1,000 ng/ml, averaging 180 ng/ml23. Cancer 

stage also affects ctDNA proportion within cfDNA, being two times smaller in stage I 

than in stage III patients24. However, elevated cfDNA levels can also result from pro-

inflammatory or auto-immune diseases, cirrhosis, hepatitis25, systemic lupus26, 

pregnancy27, or intense physical activity28, introducing potential biases. 

Further, research has investigated fragmentation features such as fragment sizes, end 

and breakpoint motifs, jagged ends and nucleosome footprints (Figure 1C), grouped 

together under the term fragmentomics, introduced in 201529. Short fragments (~166 

bp) arise from apoptosis2, whereas longer fragments (~10,000 bp) appear to originate 

from necrosis30, much less present in the plasma2. Additionally, shorter fragments (90-

150 bp) were observed in cancer patients. Subsequently, focusing on these fragments 

could enhance ctDNA detection31. Finally, cancer patients present distinct and more 
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variable end motifs32, different proportions of jagged ends (uneven DNA extremities, 

Figure 1C)33,34, and various breakpoint motifs35. 

Finally, a large body of literature has examined mutations detectable in cfDNA. When 

these mutations are tumor-specific, the afferent cfDNA is considered as ctDNA (Figure 

1B-C). CtDNA can monitor the mutation level of oncogene-addicted cancers like 

endothelial growth factor receptor- (EGFR) or Kirsten rat sarcoma viral oncogene 

homologue- (KRAS) positive lung cancers, allowing treatment adaptation36–38. Blood 

EGFR mutations appear to match tissue EGFR mutations, reinforcing liquid biopsy as 

a surrogate of tissue biopsy36. 

This genetic and biological variability, together with the data type diversity calls for the 

use of CM-cfDNA to develop new tools for personalized diagnosis, treatment setup 

and monitoring (Figure 1D). 
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CM-CFDNA FOR DIAGNOSIS 

A major use of CM-cfDNA is to detect tumors before clinical symptoms by discerning 

changes in cfDNA characteristics to discriminate pathological to healthy individuals or 

to distinguish between different tumor subtypes. Moreover, identification of the primary 

tumor site can be a major challenge. ctDNA specific mutations can help pinpointing the 

primary tumor location. Consequently, multiple studies conducted pan-cancer 

analyses. 

ML for ctDNA-based diagnosis  

Supervised classification methods (Figure 2A, see supplement for details) have been 

increasingly employed in the last decade for early cancer detection39. These statistical 

analysis techniques enable learning from an initial patient dataset to predict diagnosis 

for new patients. Table 1 summarizes a list of ML-ctDNA studies for diagnosis. 

ML models have enabled the differentiation between lung cancer histologies 

leveraging copy number profiling of cfDNA40. Various classifiers were compared: RF, 

SVM, LR with ridge, elastic-net (EN) or least absolute shrinkage and selection operator 

(LASSO) regularizations. The ridge-penalized LR outperformed the other ones with a 

mean area under the receiver operating characteristic curve (AUC) of 0.936. Another 

study used SVM to select discriminative differentially methylated blocks for early lung 

cancer detection41, achieving a sensitivity (true positive rate) of 52-64-77–81% for 

stages IA-IB-II-III patients, respectively, for a fixed specificity (true negative rate) of 

96% (95% confidence interval (CI) 93–98%). Liu et al.39 reviewed the most relevant 

and recent ML studies for early detection and noted four ML-cfDNA studies employing 

linear models, possibly with EN or LASSO regularization. Three other ML-cfDNA 

studies employed SVM, one investigating 5-hydroxymethylcytosine density for 

pancreatic ductal adenocarcinoma early detection42. Five studies used RF, including 

one exploring 5-hydroxymethylcytosine patterns to discriminate among seven cancer 

types, achieving 87.5% and 92% accuracy for two datasets43. Another identified new 

biomarkers from the cfDNA methylome in the plasma, able to diagnose and locate 

gastrointestinal cancers with an AUC of 0.96 ± 0.04 (mean ± standard deviation), 0.89 

± 0.06, 0.91 ± 0.07 for hepatocellular carcinoma, colorectal cancer and pancreatic 

cancer respectively44. 
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Deep learning has been less frequently used due to small sample size of these types 

of studies. One study employed a convolutional neural network for early stage lung 

cancer detection45, using two-dimensional grids representing the sequenced reads. 

The algorithm then detected base changes, such as deletions, mutations or insertions, 

focusing on distinguishing artifacts from genuine cancer mutations. After training on 3 

patient genomes, they achieved a sensitivity of 0.903 for a specificity of 0.94 for 

detection and distinguishment of specific lung cancer mutation patterns and systemic 

sequencing artifacts. 

Moser et al.46 cited over twenty diagnosis studies employing ML, noting that somatic 

mutations of non-cancerous origin can increase false positives. For instance, age-

related clonal hematopoiesis can produce misleading results. To address this, Chabon 

et al.47 developed an ensemble classifier composed of 5-nearest neighbor, 3-nearest 

neighbor, naïve Bayes, LR and decision tree. They linearly combined the scores from 

these classifiers to distinguish tumor from clonal hematopoiesis mutations, finding the 

latter in longer cfDNA fragments. 

Among supervised learning methods, none seems to significantly outperform the other 

ones. Simple linear models as well as non-linear methods can achieve high accuracy 

scores, depending on the dataset, target outcome or cancer. Linear models are the 

most used methods and have the benefit of simplicity and interpretability. On the other 

hand, random forests often provide better diagnostic performances. 

Eventually, unsupervised learning (Figure 2A) has also been employed for cancer 

subtypes classification, although less frequently. For example, Luo et al. used 

hierarchical clustering to distinguish colorectal cancer patients from normal subjects 

according to methylation markers, and also identified patient subgroups with different 

overall survival (OS)17. 

ML for fragmentomics 

Studies began integrating DNA fragmentation patterns, which may also reflect 

biological characteristics of the tumor. Chen et al. used LR to differentiate 

hepatocellular carcinoma from liver cirrhosis and healthy controls using four cfDNA 

fragmentome features (genome-wide 5-hydroxymethylcytosine, nucleosome 

footprint, 5′ end motif and fragmentation profiles), achieving 95.4% sensitivity and 

97.8% specificity in the test set48. Guo et al. compared LR, deep learning and extreme 

gradient boosting to detect stage I lung adenocarcinoma, using the 6bp breakpoint 
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motif (defined as « the 3bp extensions to both directions of the aligned cfDNA 5′ »), 

achieving 92.5% sensitivity and 90.0% specificity in the external validation cohort35, 

outperforming early diagnosis from ctDNA mutations. Ma et al. compared five ML 

algorithms (generalized linear model, deep learning, RF, gradient and extreme 

gradient boosting), integrating fragment size ratio and distribution, end and breakpoint 

motif, and copy number variation49. They reached impressive scores of 94.8% 

specificity and 98% sensitivity to distinguish healthy individuals from early-stage 

colorectal adenocarcinoma. 

An important and influential work has been performed by Cristiano et al. to classify 

healthy individuals and cancer patients (from seven different pathologies)50. They 

employed the cfDNA integrity index, defined as the ratio of short (100-150 bp) to long 

fragments (150-200 bp), across 504 genome bins. They highlighted distinct size 

variations across different genome regions of cancer patients. They integrated these 

features into a stochastic gradient tree boosting framework, splitting samples 

according to a 10-fold cross-validation repeated 10 times, with feature selection at 

each of the ten steps on the inner-fold training dataset. With a 95% specificity, they 

detected 80% of the cancer patients. Expanding the framework, they identified tumor 

tissue origin with 90% specificity and 61% accuracy, reaching 75% accuracy for the 

top two predictions.  

Mathios et. al implemented a comparable ML approach based on similar fragmentation 

features for lung cancer detection and staging in high-risk symptomatic subjects51. 

They reduced the features' dimensionality by selecting principal components 

explaining 90% of the fragmentation variance. Subsequently, they used a LASSO-

penalized LR to assess the fragmentation features. With 10 replicates of a 5-fold cross-

validation, they defined a score able to detect 94% of the cancer patients with an 80% 

specificity, in a population with 91% early-stage (I-II) cancer patients.  

Mouliere et al. developed CM-cfDNA ML (RF and LR) to detect cancer, using 

proportion of fragments in multiple size ranges, their ratios, and 10 bp periodicity 

amplitudes occurring before 150 bp31. They reached an AUC of 0.891 for cancers with 

low ctDNA amounts (pancreatic, renal and glioma) with RF, with four fragmentation 

features, selected as the best feature set in LR and RF among nine.  

Renaud et al. used unsupervised learning to detect cancer fragments in cfDNA via 

fragments lengths measured by shallow whole genome sequencing52. They 
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decomposed the fragment size profiles matrix using a novel non-negative matrix 

factorization (NMF): 

𝑠𝑎𝑚𝑝𝑙𝑒𝑛×𝑚 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑛×𝑘 × 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠𝑘×𝑚 , 

with 𝑘 the number of "sources", to be set (e.g., 𝑘 = 2 for healthy and cancer 

distributions of the fragment lengths). Integrating the weights into an SVM framework 

allowed to detect cancer patients with an AUC of 0.95 for 𝑘 = 30. 

While ctDNA genomics provide information about tumor gene mutations, 

fragmentomics offers insight into the architecture of DNA molecules and the non-

random patterns of fragmentation. Currently, depending on the cancer type and stage, 

neither fragmentomics nor ctDNA aberrations have been identified as the best feature 

for early diagnosis. However, fragmentomics, augmented with ML, is beginning to 

show better prediction in early stages35 compared to ctDNA analysis. Ultimately, 

combination of both approaches may offer the most accurate prediction, providing two 

complementary sources of information about the tumor48,50 

Mechanistic modeling for annual screening 

Using longitudinal data, Avanzini et al. developed a mechanistic model of ctDNA 

shedding during apoptosis linked to the tumor size evolution, in order to determine the 

optimal screening frequency for early lung cancer detection53. They modeled the 

expected number of ctDNA haploid genomic equivalent (hGE) circulating in the 

bloodstream for a tumor with size 𝑀 as a Poisson-distributed random variable, with an 

expectation depending on mechanistic parameters (tumo cells growth and death rates, 

mean shedding rate of a cell death and ctDNA elimination rate). It was found from 

simulations that ctDNA-based annual screening would yield a median detection size 

of 2.0 to 2.3 cm of diameter, against 3.5 cm for the standard annual screening based 

on imaging.  
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CM-CFDNA FOR PROGNOSIS AND PREDICTION OF RESPONSE TO 

TREATMENT 

Multiple studies used CM-cfDNA to monitor tumor size and predict therapeutic 

responses, grouped in Table 2. They aimed to identify signatures enabling early 

treatment adjustments and prevention of adverse events.  

Most of them relied on baseline markers (cfDNA/ctDNA concentration, ctDNA 

detection, fragmentomics), either post-surgery to correlate with relapse, or before 

treatment initiation to predict treatment response. Some studies also collected 

biological markers at multiple time points throughout treatment, providing longitudinal 

datasets including absolute values and relative changes from baseline data. These 

datasets enabled analysis of cfDNA dynamics to identify patterns related to time to 

relapse, progression, treatment response, or mortality. 

Initially, classical statistical methods such as survival analysis (Figure 2B, supplement) 

were used to connect cfDNA measurements to treatment outcomes, before 

computational methodologies were introduced by the use of ML, non-linear mixed 

effects models (NLME) and mechanistic modeling. 

ML-cfDNA from baseline data 

Yang et al. classified breast cancer patients into responders and non-responders to 

neoadjuvant chemotherapy using hierarchical clustering based on the coverage depth 

near transcription start sites in cfDNA54. On the other side, Panagopoulou et al. 

compared supervised learning methods to classify breast cancer patients according to 

fragmentome and methylation patterns55. SVM more effectively classified patients into 

progressive disease, partial response, and stable disease groups (AUC: 0.74, 95% CI: 

0.622-0.937), while logistic regression based only on cfDNA concentration was 

sufficient to distinguish responders from non-responders to chemotherapy (AUC 

0.803, 95% CI 0.606, 1.000). 

Longitudinal ML modeling 

ML is able to leverage longitudinal data by pooling the cfDNA features from multiple 

time points using, e.g., absolute or relative changes over time. These can serve as 

inputs to classify patients as responders or non-responders using supervised or semi-

supervised methods. 
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Assaf et al.56  analyzed 466 NSCLC patients, developing n ML framework to predict 

immunotherapy response using longitudinal ctDNA data collected at baseline and days 

1 of cycle 2 (C2D1) and cycle 3 (C3D1). They integrated 19 ctDNA metrics at each 

timepoint and 59 relative ctDNA changes of these metrics from baseline into three 

models: baseline, baseline + C2D1, and baseline + C2D1 + C3D1. The latter exhibited 

the highest C-index for OS prediction. Then, they combined ctDNA features with 

clinical features. Using an EN approach with leave-one-out cross-validation (LOOCV) 

through a 10-folds nested cross-validation process, they retained features selected in 

over 50% of iterations with a positive gain metric, according to the next-door analysis57. 

This process selected five relevant variables, including global cfDNA concentration at 

C3D1 (HR: 1.48, 95% CI: 1.06-2.07). The final model categorized patients into high 

(progressive disease), intermediate (stable disease) and low (responders) risk 

patients, and demonstrated significant risk stratification in both train and test datasets 

for OS. In the test set high-risk patients showed shorter OS (median 7.3 months) than 

low- and intermediate-risk patients (median 25.2 months) (HR: 3.28, 95% CI: 2.2-4.9, 

p < 0.001). 

Ding et al.58 outperformed the previous results by increasing the C-index by 9.8% and 

16.2% to predict OS and PFS respectively, using functional principal component 

analysis59, an unsupervised learning method, to extract new features from ctDNA 

trajectories, and selecting high-importance features by random forest. This method 

allowed to capture and use the entire kinetics rather than only five snapshot time 

points. 

In a smaller cohort of 94 NSCLC patients treated with atezolizumab or docetaxel, Zou 

et al. applied LOOCV LASSO-penalized regression, linking ctDNA metrics (collected 

at baseline, C2D1 and C3D1) to OS60. They highlighted the C3D1 median number of 

mutant molecules per mL as the key OS predictor. 

Longitudinal mechanistic modeling 

Few studies have explored the dynamics CM-cfDNA (Figure 2C). Ribba et al. 

developed a mechanistic modeling of the joint ctDNA–tumor size evolution over time 

in order to assess atezolizumab response in NSCLC and melanoma patients61. They 

used a bi-exponential system to describe both the log10-transformed number of mutant 

molecules per mL and the sum of the longest diameters (SLD) of target lesions. A 

coefficient linking the tumor size decay rate to the ctDNA growth rate was assumed. 



13 
 

This system was able to accurately describe ctDNA and tumor kinetics over time, even 

when negatively correlated (one increasing while the other decreasing), highlighting 

the biological link between tumor growth and ctDNA release for immune-checkpoint 

inhibition (ICI)-treated patients. The parameters were estimated by a population 

approach, using NLME and Bayesian estimation for individual parameter estimation. 

The estimated ctDNA growth rate showed a high correlation with the estimated SLD 

growth rate. 

Janssen et al. analyzed ctDNA biomarkers' kinetics to early predict resistance to 

targeted therapy in NSCLC patients 62. They developed a NLME model (Figure 2C) to 

describe the dynamics of EGFR mutations in ctDNA, using a zero-order growth model, 

i.e.: 

𝑑𝑦

𝑑𝑡
= 𝑘𝑖𝑛 − 𝑘𝑜𝑢𝑡. 𝑦(𝑡). 𝑅(𝑡) (1) 

where 𝑦(𝑡) is the change in either L858R or exon19del over time and 𝑅(𝑡) = 𝑒−𝜆𝑡 for 

driver mutations, and 𝑅(𝑡) = 𝑒−𝜆.𝑦(𝑡) for the T790M mutation concentration. The model 

was able to correctly approximate the actual concentrations. Integrating the modeled 

ctDNA values into survival models for PFS revealed that the relative change in driver 

mutations concentration was the only predictor statistically significant for stratifying 

responders and non-responders (p = 0.001, likelihood-ratio test). 

Prior to this study, Khan et al. sought to model carcinoembryonic antigen dynamics, 

which is proportional to the total number of tumor cells63, and to correlate it with ctDNA 

dynamics, to assess cetuximab response in colorectal cancer patients. They used a 

biexponential model for tumor dynamics, while cfDNA mutant frequencies were 

modeled using a single exponential growth model. The cfDNA model described well 

the actual dynamics (𝑅2 = 0.979) and demonstrated a correlation between the cfDNA 

relapse rate and the carcinoembryonic antigen one. It was found that these tow 

parameters were able to predict the time to relapse. Recently, Li et al. proposed a 

stochastic birth-death process of tumor cells under targeted therapy, chemotherapy or 

radiotherapy, shedding ctDNA under varying probabilities, to simulate randomized 

patient cohorts.64 From this modeling, they defined new ctDNA biomarkers of 

response, offering good prediction of response during a 48-hour and two weeks time-

period after initiation of treatment for target therapy/chemotherapy and radiotherapy 

respectively, outperforming the existing ctDNA biomarkers. 
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Eventually, Esfahani et al. published the only study found to investigate fragmentomics 

through mechanistic modeling, using cfDNA fragmentation profiles in lung carcinoma 

and diffuse B cell carcinoma patients65. They particularly modeled the nucleosome 

positions on 2000-bp fragments containing transcription start site and the potential 

accessible sites for cut during fragmentation. The associated size profiles were then 

simulated. This modeling allowed to explore the parameters influencing gene 

expression detection within cfDNA, helping for the finding of specific tumor genes. 
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DISCUSSION 

In recent years, several studies have explored CM-cfDNA as an innovative biomarker 

for cancer diagnosis and treatment monitoring. CM-cfDNA has become essential for 

managing this emerging data. In the past two years, approximately one in four studies 

has employed CM-cfDNA to support precision medicine in oncology, including ML. 

Early approaches involved simple linear models to link cfDNA characteristics with 

cancer presence, type, or stage. More advanced methods, including decision tree-

based models and deep learning, were later employed to capture complex 

relationships. To handle a larger number of cfDNA characteristics than patients, 

penalized linear models or RF approaches were employed for feature selection. The 

integration of longitudinal data into ML has gained momentum for cancer screening 

and treatment monitoring. However, the lack of biological interpretability in complex 

models brings interest to extend CM-cfDNA to mechanistic modeling. 

Research has highlighted the potential of ctDNA tests for screening, reaching a 

maturity level sufficient to be FDA66- or ESMO11-approved for several solid cancers 

(NSCLC, breast, gastric, …). As they can cost a lot and has not been enough validated 

in large population, they are however not yet widely used in routine. In addition, several 

were calibrated on symptomatic, diagnosed or high-stage patients. Therefore, further 

prospective evaluations targeting and validating markers in asymptomatic individuals 

at risk for cancer67 or in early-stage patients are necessary for clinical applicability. 

Another major limitation of ctDNA-based assays is the need of standardized protocols 

for data collection across institutions and companies, crucial for ensuring reliable 

results and reproducibility. Except for quantitative-PCR10, which is ready for routine 

care, most of the experimental methods have only been limited to clinical research. To 

integrate them in clinical practice, these methods require to be standardized and 

rigorously compared to other molecular techniques68. In addition, harmonization issues 

within and between institutions can affect reproducibility for clinical use69. While cfDNA 

is easy to collect, pre-analytical variables like tube type, agitation, pre-centrifugation 

delay and temperature, centrifugation steps, sample storage, quantification and 

sequencing methods, can impact data precision70. The US National Cancer Institute 

recently published guidelines based on literature evidence and validated by a panel of 

international experts to standardize processing practices69. Additionally, high-
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throughput next-generation sequencing is costly and time-consuming71, prompting 

new methodologies to simplify techniques.  

One such interesting approach is the cfDNA fragmentomics field, which also exploits 

that ctDNA is detectable in less than 80% of cancer patients72. Specifically, analyzing 

the size distribution of cfDNA fragments seems particularly interesting 50. It can be 

performed at low cost, by combining hydrodynamic and electrokinetic actuation73, only 

needs 10 L of blood and does not require to extract cfDNA from plasma. Wider, 

fragmentomics is still relatively new and remains underused, especially for treatment 

monitoring. Only two studies were found searching for “fragmentomics” AND 

“chemotherapy” on PubMed. Additionally, only two studies were found searching for 

“fragmentomics” AND (“immune-checkpoint inhibitors” OR “immunotherapy”).  

CM-cfDNA has shown promising results in advancing precision medicine in oncology. 

Recent studies have compared various ML models, including ensemble methods50 to 

enhance predictive performance. Techniques like cross-validation have further 

demonstrated the robustness of these predictive signatures. However, there is no 

consensus on a single ML method that is universally well-suited for clinical application, 

making it necessary to explore different ML methods for each feature-outcome 

combination. A major challenge remains the lack of interpretability in complex ML 

frameworks, which can obscure the underlying biological rationale. Two opposite 

approaches can be undertaken to address this: use simple linear models that offer 

better interpretability, or turn to mechanistic modeling, parameterized with 

experimental data and able to leverage biochemical knowledge underlying cfDNA 

release. For nonlinear ML, the use of SHapley Additive Values is increasingly popular 

for explainability74. In addition, ML studies mainly focused on maximizing specificity 

first to avoid false positive, leading to high false-negative results11. Mutated ctDNA is 

also less prevalent in early-stage cancers. Thus, integrating ctDNA information with 

additional biological or multi-omics data may enhance detection sensitivity75. 

Despite these advancements, no CM-cfDNA-based test has yet been approved for 

clinical practice. For successful integration of these CM-cfDNA methods into routine, 

several steps are necessary in addition to the previous: rigorously software 

development and training, certification as medical devices, and ultimately validation in 

prospective randomized trials 76. Clinicians also need to be trained to correctly interpret 

CM tools and predictions.  
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Currently, most research on cfDNA in clinical oncology has focused on survival and 

classification learning, with limited application of biologically-based mechanistic 

models that leverage longitudinal data effectively. Future research should expand 

cfDNA analyses by incorporating mathematical models that leverage the processes of 

cfDNA release and interactions across tumors, their microenvironment, and circulating 

materials (including the immune system). Achieving this will require enhanced 

collaboration among clinicians, biologists, computational scientists, and 

mathematicians. 

Finally, combining mechanistic modeling with ML and survival analysis (mechanistic 

learning77) holds promise for developing highly informative biologico-computational 

markers and predictive tools. This approach not only offers a clearer understanding of 

the biological mechanisms but also complements the predictive power of ML with 

deeper insights into the biology of cfDNA in oncology. 
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FIGURES  

 

Figure 1: Cell-free DNA data: a new biological tool for on oncology 

A. Cell-free DNA (cfDNA) are fragments of encapsulated data released in the human 

body fluids, such as blood, urine, cerebrospinal liquid. Some of these fragments are 

originated from tumoral cells, which can be primary, metastatic or circulating tumor 

cells. Plasmatic cfDNA is the most analyzed because of its ease of collection. 

B. After the blood collection, cfDNA is extracted and amplified, usually by Polymerase 

Chain Reaction (PCR) methods. Fragments are then sequenced by various methods, 
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targeted ones (which target specific genes) and non-targeted approaches (sequencing 

the whole genome) to provide information at smaller case of the molecular alterations. 

C. PCR and sequencing processes yield diverse cfDNA data. a) Global concentration 

is the first main quantitative feature describing cfDNA. b) Fragmentomics study a wide 

range of data, focusing on the fragment sizes and patterns. It provides a profile of 

fragment size distribution, enabling the extraction of quantities of fragments of various 

sizes. The sequencing of the fragments also provides nucleotide base patterns from 

end motifs, jagged ends, and breakpoint motifs. Additionally, fragmentomics work on 

nucleosome footprints and cfDNA integrity index (cfDI), calculated as the ratio between 

short and long fragments at a same locus. c) At a smaller case, ctDNA mutations are 

predominantly analyzed, using features such as ctDNA positivity (number of mutations 

detected greater than 𝑥 mutations), ctDNA concentration (copies number per milliliter), 

or variant allele frequency.  

D) These cfDNA data are incorporated into computational modeling frameworks to 

identify associations with clinical outcomes. This enables the establishment of cfDNA 

as new biological marker in cancer research, serving for diagnosis, prognosis, and 

prediction. 
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Figure 2: Cell-free DNA data: a new biological tool for oncology 

A) i) To early diagnose, evaluate the cancer type or stage, make prognosis or predict 

response to treatment, studies compute machine learning methods. CfDNA data are 

collected at different moments of the cancer progression according to the outcome to 

predict. Data can be collected over time, but they are not considered as time-

dependent during modeling. Machine learning methods can be divided into two major 

groups: ii) the unsupervised learning and iii) the supervised learning models. ii) First 

ones are built to discriminate 𝑘 groups within the complete set of individuals or reduce 

dimensionality of the features space. The idea is to find individuals that are closed into 

the space of features. A typical unsupervised learning method is the hierarchical 

clustering, which build a hierarchy of individuals groups. Another one is the non-

negative matrix factorization, which decomposed a matrix of non-negative elements 

into two matrices, for example by factorizing a matrix of cfDNA size profiles into a 

coefficient’s matrix and a matrix of size profile signatures. iii) Supervised learning 

methods learn outcome’s individuals on a train set to then predict outcomes of a new 

cohort of patients. Most common supervised algorithms in cfDNA modeling are the 

logistic regression, support vector machines (SVM), decision trees and random forest. 
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Neural networks are used mostly in the case of complex patterns and relationships 

between features. 

B) i) Classical survival modeling gathers technical tools that enable the modeling of a 

duration until the occurrence of an event. Progression and death are the main events 

modeled in the medical domain. Thus, individuals may be censored as the event never 

occur during the study’s time, due to the track loss of the patient, or the end of follow-

up by the study. In those cases, the event of progression or death is not observed: 

patients are referred to as censored.  

ii) A usual nonparametric estimation is the Kaplan-Meier one, which allows to visualize 

and check hypothesis about the ability of a variable to discriminate long to short 

survival. 

iii) The Cox proportional-hazard regression is a widely used method for the analyze of 

censored time data in survival modeling. This method assumes that the effect of 

predictor variables on the hazard rate remains constant over time. Cox regression 

helps to identify significant features as machine learning regressions do, estimate the 

hazard ratios, which indicate the proportional changes in the hazard for one unit 

change in a predictor variable. Additionally, it may generate survival curves (survival 

probability over time for different levels of the feature). 

C) i) Longitudinal data may be modelled as time-dependent data, to follow the evolution 

of cfDNA kinetics during treatment. ii) Mechanistic modeling integrates biological 

hypothesis and fundamental principles, known to induce the observed kinetics, into a 

dynamic system. The models are then parameterized on experimental data thanks to 

non-linear mixed effect models, which allows a better understanding of the biological 

mechanisms and the validation of hypothesis. 
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TABLES  

Table 1: Summary of cfDNA computational modeling studies for early diagnosis, 

organ, stage and histological classification 

Source Cancer Modeling Marker Purpose 

43 Pancancer RF 

ctDNA 

aberrations 

Cancer type 

classification 

78 Colorectal LASSO – LR 

Early diagnosis 

79 

NSCLC 

Linear regression 

47 
5nn – 3nn naïve Bayes – LR 

– Decision tree 

45 Lung CNN 

42 Pancreas RF – SVM – EN LR Stage classification 

40 NSCLC LASSO – Ridge – EN LR 
Histological 

classification 

80 Oral LR 
cfDNA 

quantification 
Early diagnosis 

53 Lung Mechanistic modeling 

cfDNA 

concentration / 

ctDNA 

mutations 

Early diagnosis 

51 Lung PCA – LR 

Fragmentome Early diagnosis 

31 Pancancer RF – LR 

48 
Hepatocellular 

carcinoma 
LR 

35 
Lung 

adenocarcinoma 

LR – deep learning, gradient 

and extreme gradient 

boosting 
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NSCLC: non-small cell lung cancer; SCLC: small cell lung cancer; RF: random forest; 

LASSO: least absolute shrinkage and selection operator; LR: logistic regression; 𝑋-nn: 

𝑋 nearest neighbors; CNN: convolutional neural network; SVM: support vector 

machine; EN: elastic-net; PCA: principal component analysis; ctDNA: circulating 

tumoral DNA; cfDNA: cell-free DNA. 

Table 2: Summary of cfDNA modeling assays for treatment monitoring 

Source Cancer Treatment Modeling Marker 
Baseline / 

Longitudinal 

83 NSCLC 

(Durvalumab ± 

tremelimumab) + 

platinum-based 

chemotherapy 

CPH 

ctDNA 

aberrations 
Baseline 

50 Pancancer 
Anti-EGFR or anti-

ERBB2 
KM 

84 
Hepatocellular 

carcinoma 

Atezolizumab + 

bevacizumab 

KM – CPH 

15 NSCLC 
Atezolizumab or 

docetaxel 

85 Pancancer ICI 

86 Colorectal 
Surgery or 

chemotherapy 

49 
Colorectal 

adenocarcinoma 

Generalized linear model, 

deep learning, RF, extreme 

gradient boosting 

50 Pancancer Gradient-tree boosting 

Early diagnosis and 

cancer type 

classification 

81 

Colorectal 

LASSO LR 

Methylome 

Early diagnosis 17 Hierarchical clustering 

41 Lung SVM 

82 SCLC PCA Histological 

classification 44 Gastrointestinal RF 
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87 Melanoma 

(Pembrolizumab or 

nivolumab) ± 

ipilimumab 

KM – CPH – LR 

14 Melanoma Ipilimumab 
Descriptive 

statistics 

Longitudinal 

88 Pancancer ICI KM 

89, 90, 

91, 92 
NSCLC / / /  

KM – CPH 

13 
Urothelial 

carcinoma 
Atezolizumab 

93 Melanoma 
Nivolumab ± 

ipilimumab 

94 Pancancer 
Durvalumab ± 

tremelimumab 

95 NSCLC ICI 

KM – CPH – 

Bayesian probit 

model 

96 Pancancer Pembrolizumab KM – CPH – LR 

61 
NSCLC / 

Melanoma 
ICI ± cobimetinib NLME 

60 NSCLC 
Atezolizumab or 

docetaxel 

LASSO linear 

model 

62 NSCLC Erlotinib / gefitinib 

Mechanistic 

modeling / 

NLME 

63 
Colorectal 

cancer 
Cetuximab 

Mechanistic 

modeling 

56 NSCLC 

(Atezolizumab ± 

bevacizumab) + 

carboplatin + 

paclitaxel 

EN linear 

regression 

cfDNA 

concentration 

/ ctDNA 

mutations 

37 Renal 

(Ipilimumab + 

nivolumab) or anti-

VEGFR-TKIs 

KM – CPH – LR 
cfDNA 

concentration 
Baseline 
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97 NSCLC 

TKI or 

pembrolizumab-CT 

or CT 

KM – CPH Longitudinal 

65 

Lung 

adenocarcino

ma & B cell 

carcinoma 

PD-(L)1 ICI 

KM – CPH – LR 

Mechanistic 

modeling 

Fragmentomi

cs 
Longitudinal 

NSCLC: non-small cell lung cancer: CPH: Cox proportional hazards (model); KM: 

Kaplan-Meier (estimation); LR: logistic regression; NLME: nonlinear mixed effects 

(model): ctDNA: circulating tumoral DNA; cfDNA: cell-free DNA; ICI: immune 

checkpoint inhibitors; EGFR: epidermal growth factor receptor; ERBB2: erythroblastic 

oncogene B 2; VEGFR: vascular EGFR; TKI: tyrosine kinase inhibitors. 
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SUPPLEMENT 

SUPERVISED MACHINE LEARNING (ML) ALGORITHMS 

ML encompasses multiple approaches, from linear models to highly nonlinear ones 

(Figure 2A) 98. Logistic regression (LR) predicts the probability of a binary outcome, 

seeking a linear relationship between the log-odds of an event and variables. Support 

vector machines (SVM) find the hyperplane that maximally separates individuals into 

classes. Decision trees are nonlinear methods that create a series of interconnected 

binary choices, enabling regression and classification. Random forests (RF) are an 

example of ensemble methods that use multiple decision trees trained on different 

features' and patients' subsets99. A second example is XGBoost100, which constructs 

a new tree at each iteration to anticipate the prediction errors and integrates 

regularization to avoid overfitting. The final prediction is the combination of each tree’s 

prediction. Finally, deep learning, a subset of ML involving large neural networks, is 

suited for complex features patterns and relationships. It consists of interconnected 

artificial neurons evaluating a weighted sum of inputs and passing the results to the 

next-layer neurons through nonlinear activation functions. 

CLASSICAL SURVIVAL ANALYSIS 

Survival analysis (Figure 2B) models time-to-event data, such as progression or death, 

and specifically accounts for censored data (unreached event). The main methods 

include univariable/multivariable Cox proportional-hazards regression (CPHR)101. 

In the fragmentome field, Lapin et al. demonstrated, using multivariable CPHR  in 

advanced pancreatic cancer, that higher cfDNA levels were associated with smaller 

PFS (Hazard Ratio (HR): 3.05, 95% CI: 1.40-6.65) and OS (HR: 2.24, 95% CI: 1.09-

4.59), independently from clinical variables, carbohydrate antigen and cfDNA fragment 

size102. 

Moding et al.89 monitored ctDNA molecular residual disease in advanced NSCLC 

patients, collecting ctDNA immediately after chemoradiation therapy (CRT). A second 

ctDNA sample was collected early during immune-checkpoint inhibition (ICI) treatment 

for the immunotherapy-treated arm. Undetectable ctDNA before ICI treatment 

correlated with good prognosis, irrespective of ICI treatment. Detectable ctDNA early 

during ICI therapy also correlated with shorter PFS. Analyzing ctDNA changes over 
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time demonstrated that increased ctDNA concentration were associated with worse 

prognosis compared with decreased levels.  

Powles et al.13 used CPHR to study atezolizumab response in urothelial carcinoma, 

collecting plasma at baseline and early on treatment (first day of the first and third 

cycles). They found significant disease-free survival differences according to ctDNA 

changes over time. Patients with ctDNA clearance had three to four times lower 

relapse risks, according to univariable, stratified and multivariable CPHRs. 
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