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ABSTRACT  

 

Liquid biopsy has emerged as a powerful tool for cancer early diagnosis, prognosis, 

and treatment monitoring across a wide range of cancer types. The non-invasive 

collection of blood markers enables real-time insights into the disease biology. Cell-

free circulating DNA (cfDNA) offers a potential window into various biological and 

genetic processes, especially circulating tumor DNA directly originated from tumor 

cells.  

Considering the attributes of cfDNA data, their inherent complexity, and the ease of 

collecting them over time, employing statistical modeling analyses appears necessary 

to extract relevant information. This review explores the diverse modeling approaches 

used to analyze cfDNA in oncology, emphasizing its role in oncology. After an overview 

of the current knowledge of cfDNA biology, the use of statistical analysis, machine 

learning, and non-linear mixed effects models is detailed for their application in clinical 

studies, both in processing cfDNA data at a particular time point and in capturing their 

temporal dynamics.  

Overall, this review provides a comprehensive overview of the diverse modeling 

approaches applied to cfDNA in oncology, with a focus on dynamic approaches. 

Keywords: cell-free DNA, circulating tumor DNA, fragmentomics, cancer, 

computational modeling, biomarker, early detection, prognosis, treatment monitoring 
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INTRODUCTION 

Cell-free DNA (cfDNA) consists of fragments of encapsulated DNA released in body 

fluids such as blood, urine or cerebrospinal fluid1 (Figure 1A), allowing easy access to  

the genetic background of hardly-reachable tissues. Originating from events like 

necrosis, apoptosis2 or lysis3, the understanding of cfDNA biology, particularly in 

oncology, is a current research focus. At bedside, applications are relevant for 

diagnosis, prognosis and treatment monitoring. They also allow for adapting and 

personalizing the therapeutic strategy. 

The interest in studying cfDNA lies is its ability to encapsulate and share biological and 

genetic information. Notably, circulating-tumor DNA (ctDNA), which is a part of cfDNA, 

comprises fragments originated from tumor cells (primary tumor, circulating tumor cells 

and micro- or macro-metastases) and may contain specific tumor aberrations4. 

Consequently, cfDNA analyses can offer insights into the disease biology, tumor 

genetic mutations and tumor growth.  

Furthermore, cfDNA offers the benefit of being collected through liquid biopsies5 

(Figure 1B), less invasive than tissue biopsies. This provides frequent biological 

markers enabling real-time monitoring of the disease. Additionally, cfDNA is 

representative of genetic information coming from all parts of the body, including 

primary or metastatic tumor sites. This feature can help for the detection of new sites 

and serve as a surrogate for tissue biopsies in case the primary site has not been 

identified. Furthermore, liquid biopsies provide the unique ability to capture intra-

tumoral genetic heterogeneity6. This intricate genetic landscape is often missed by 

tissue biopsies, which only sample a small portion of the tumor. Eventually, liquid 

biopsies offer the valuable advantage of detecting genetic and genomic adaptations 

during the treatment course.  

The sequencing and quantification of cfDNA over time generated extensive datasets, 

offering valuable insights into the biological dynamics between tumors and their 

microenvironment. These data include the detectability or level of aberrations in 

specific genes, fragment size profiles, ratio between short and long fragments, as well 

as the description of base pair patterns (Figure 1C). To manage these data, studies 

have turned to mathematical and computational modeling of cfDNA (CM-cfDNA), 

comprising statistical, machine learning (ML) and mechanistic modeling. The latter 
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refers to simplifying real-world physical and biological concepts throughout 

mathematical systems and computer programs. These approaches allow data mining, 

predictive modeling and in silico simulations that have become necessary as the data 

complexity continues to grow. Since the early 21st century, CM has played a role in 

understanding individual variability in drug responses, paving the way to personalized 

medicine. The emergence of CM-cfDNA around 2015, aligning with the increasing 

popularity of cfDNA, constituted 24% of tumoral cfDNA studies in 2022 and raised to 

28% in 2023 ((“modeling” OR “computational modeling” OR “machine learning” OR 

“survival analysis”) AND “tumoral cfDNA” / “tumoral cfDNA” PubMed search, 249/883 

entries in 2023). CM-cfDNA embraces three primary modeling approaches: survival 

analysis, investigating time-to-event data (such as progression); ML, which exhibits a 

substantial surge over the past two decades and contributed significantly to medical 

decision-making (e.g., diagnosis and prediction of treatment response); and 

mechanistic modeling, employing mathematical systems to describe interactions 

between tumors, drugs, and biological systems. 

Within the last eight years, CM-cfDNA has demonstrated efficacy in oncology for 

personalized early detection, cancer subtype classification, prognosis, treatment 

monitoring and prediction of response in multiple cancer types, including melanoma7, 

lung8, breast9 and colorectal10 cancers (Figure 1D). 
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BIOLOGY OF cfDNA AND ctDNA 

The history of cfDNA began with its discovery in 1948 by Mendel and Métais11, who 

first described the presence of nucleic acids in the blood. Later in 1977, it was observed 

that patients with various types of cancer exhibited elevated levels of cfDNA12. A dozen 

years later, Stroun et al. demonstrated the presence of cancer-derived DNA fragments 

in the blood of cancer patients, encouraging the exploration of new blood-borne 

markers but also in other body fluids13,14. 

As previously mentioned, the biology of cfDNA is not fully understood, although it 

appears that cfDNA may originate from apoptosis, necrosis, active secretion of 

exosomes15 or the hematopoietic system16. The half-life of cfDNA ranges from 15 

minutes to 2 hours17, allowing for a representative monitoring of the actual released 

amounts over time. Nevertheless, cfDNA quantities and genetic aberrations provide 

access to biological characteristics. 

 

CfDNA quantification and sequencing assays 

Initially, numerous studies have explored cfDNA genotyping to quantify fragments, 

detect specific tumor aberrations or discover new ones. These methods fall into two 

categories; targeted and non-targeted approaches18. Targeted approaches rely on a 

set of predefined genes, mainly associated to the patient’s pathology. They comprise 

digital droplet Polymerase Chain Reaction (PCR), Q-PCR, amplification-refractory 

mutation system, BEAMing-PCR, tagged-amplicon deep sequencing and cancer 

personalized profiling by deep-sequencing19. They present good sensitivity and better 

specificity than non-targeted approaches18. Non-target approaches assess the entire 

genome (array-comparative genomic hybridization, whole exome sequencing, whole 

genome sequencing). While these methods have the potential to identify new genetic 

aberrations through genome-wide screening, they require larger cfDNA amounts. 

These quantification and sequencing methodologies have enabled the extraction of 

relevant cfDNA characteristics under specific medical conditions.  

 

CfDNA concentration 
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For instance, the proportion of cfDNA coming from a single cancer depends on the 

tumor’s size. For a 100 grammes tumor (approximatively 3 x 1010 tumor cells), 3.3% of 

its DNA is released daily into the bloodstream20. The presence of metastases and 

circulating tumor cells also impacts on these quantities. In healthy individuals, cfDNA 

concentrations typically range from 0 to 100 ng/ml of blood, with an average of 30 

ng/ml, whereas the concentration of cfDNA in the blood of cancer patients varies from 

0 to 1,000 ng/ml, with an average of 180 ng/ml12. The cancer stage also impacts on 

the proportion of detected ctDNA within cfDNA, being approximately two times smaller 

in stage I patients compared to stage III patients21. 

However, elevated cfDNA levels, while not exclusive to cancer, can also result from 

conditions like pro-inflammatory or auto-immune diseases, cirrhosis, hepatitis22, or 

systemic lupus23. Furthermore, quantities of cfDNA may also be influenced by 

pregnancy. Studies have detected maternal and fetal cfDNA in the mother's blood, with 

a rapid decrease of cfDNA levels after birth (mean ~ 16.3 min)24. Lastly, intense 

physical activity may increase cfDNA amounts due to inflammation25. Consequently, 

the origin of cfDNA could introduce a potential bias in the results. 

 

CfDNA fragmentomics 

Another category of research, called fragmentomics, focuses on the study of the 

fragments of cfDNA. This notion has been introduced in 201526. The authors showed 

that fragment patterns differed across cancer patients and tissue of origin. Several 

studies have since investigated various fragmentation features, such as fragment 

sizes, end motifs, breakpoint motifs, jagged ends or nucleosome footprints (Figure 1C). 

First, it was revealed that fragment sizes are relative to the clinical condition of a 

patient. Healthy individuals typically exhibit cfDNA size distributions ranging from 130 

to 200 base pairs (bp), with a peak at 166 bp27. This phenomenon seems to be linked 

to the nucleosome footprint (nucleosome positions)28. This specific length corresponds 

to the DNA fragments wrapped around a nucleosome core (~147 bp) added to a linker 

fragment of ~20 bp29. These fragments appear to originate from a double process of 

apoptosis-induced proliferation and proliferation-induced apoptosis2. In contrast, 

longer fragments such as 10,000 bp fragments appear to originate from necrosis or 

phagocytosis of necrotic tumor cells by macrophages30, and are much less present in 

the plasma2. Additionally, cancer patients appear to have an enrichment in shorter 
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fragments (90-150 bp). Subsequently, focusing on these fragments could enhance the 

detection of ctDNA31.  

Second, some end motifs appear more frequently in healthy individuals, whereas 

cancer patients present distinct and more variable end motifs32, which can be relevant 

to find the tissue of origin. The proportion of jagged ends (uneven DNA extremities, 

Figure 1C) was found to vary between tumor and wild-type fragments. It appeared to 

increase in hepatocellular patients33 and decrease in bladder cancer patients34, 

compared with healthy individuals.  

Last, breakpoint motifs also vary between healthy individuals to cancer patients. The 

proportion of AATTGC motifs is larger in cancer patients, whereas the  GCAGTA, 

GCACTT and CTCAAA motifs proportions are smaller35. 

 

CfDNA mutations and ctDNA 

A large body of literature examined mutations that can be detected on cfDNA 

fragments using sequencing techniques. When these mutations are tumor specific, the 

afferent cfDNA is then considered as part of ctDNA. These studies historically 

preceded fragmentomics but examine data at a smaller scale, i.e. molecular alterations 

detected by sequencing techniques (Figure 1B-C). 

The detection of ctDNA quantities can be influenced by the primary tumor type. For 

instance, ctDNA is detected in most patients with metastatic bladder, colorectal, 

gastroesophageal or ovarian cancer21. Conversely, cancers such as prostate or thyroid 

cancers appear to have few or undetectable ctDNA21. Detectability can also vary 

depending on the investigated body fluid. In brain cancer, plasma ctDNA typically 

accounts for less than 1% of cfDNA due to the blood brain barrier. Therefore, 

cerebrospinal fluid or urine collection has proven effectiveness for identifying ctDNA36. 

The analyze of cfDNA has shown power to monitor, e.g., the mutation level of 

oncogene addicted cancers such as endothelial growth factor receptor (EGFR) or 

Kirsten rat sarcoma viral oncogene homologue (KRAS) positive lung cancers, in the 

adaptation of treatment lines. 

Blood EGFR mutations seem to match with tissue EGFR mutations, suggesting a 

transition from tissue sampling to liquid biopsy37. For example, anti-EGFR gefitinib has 

shown efficacy in blood EGFR-positive NSCLC patients in first line 37. Similarly, renal 
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cancer patients carrying at least one cfDNA TP53 mutation had shorter progression-

free survival38. In colorectal cancer, patients initially treated with an anti-EGFR 

antibody, the on-treatment monitoring of genetic alterations in, e.g., the KRAS or EGFR 

genes could reveal the emergence of resistance, enabling the early adaptation of 

treatment39. Finally, the detection of more than four KRAS mutant copies per milliliter 

in peripheral blood of pancreatic ductal adenocarcinoma has been linked with shorter 

PFS (HR=3.4 (1.2-09.7)) at pre- and post- resection, as well as in portal venous blood 

(HR=4.6 (1.6-13.3))40. 

All this genetic and biological variability, together with the data type diversity calls for 

the use of CM-cfDNA to develop new tools for personalized diagnosis, treatment setup 

and monitoring (Figure 1D). 
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CFDNA COMPUTATIONAL MODELING FOR DIAGNOSIS 

One of the primary goals of CM-cfDNA is to detect tumors before clinical symptoms. 

Some studies aimed to discern changes in cfDNA characteristics to discriminate 

pathological to healthy individuals (Table 1) or to distinguish between different tumor 

subtypes. Moreover, identification of the primary tumor site is a major challenge. In the 

plasma, ctDNA can originate from any body part, making specific ctDNA mutations 

essential for providing clues about the primary tumor location. Consequently, multiple 

studies conducted pan-cancer analyses. 

 

CtDNA-based machine learning 

Classical cfDNA studies primarily employ conventional statistical hypothesis testing to 

identify dependencies between cfDNA markers and categorical outcomes, such as 

diagnosis, or cancer type/subtype. Additionally, ML models (Figure 2A), especially 

supervised classification methods, have been increasingly employed in the last decade 

for early cancer detection41. These statistical analysis techniques enable learning from 

an initial patient dataset to predict diagnosis for new patients. 

Logistic regression (LR) models and predicts the probability of a binary data, seeking 

a linear relationship between the log-odds of the event occurring and variables. 

Support vector machines (SVM) (Figure 2A) aim to find the hyperplane that maximally 

separates individuals into two or more classes. Decision trees are a series of 

interconnected binary choices, enabling regression and classification. Random forests 

(RF) learn from multiple decision trees trained on different features subset. Finally, 

deep learning, a subset of machine learning based on neural networks is mostly used 

for complex features patterns and relationships and consists of interconnected artificial 

neurons that evaluate a weighted sum of inputs and pass the results to the next-layer 

neurons through a nonlinear activation function. 

ML models have enabled the differentiation between lung adenocarcinoma, lung 

squamous carcinoma and squamous cell lung cancer, leveraging copy number 

profiling of cfDNA42. This distinction was achieved comparing five classifiers: RF, SVM, 

LR with ridge, elastic-net (EN) or least absolute shrinkage and selection operator 

(LASSO) regularizations. Another study used SVM to select discriminative differentially 

methylated blocks for early lung cancer detection43, detecting 52–81% of the stages 



10 
 

IA to III patients, with a specificity (true negative rate) of 96% (95% confidence interval 

(CI) 93–98%).Liu et al.41 reviewed the most relevant and recent early detection ML-

based studies, noting four CM-cfDNA studies employing linear models, possibly with 

elastic-net (EN) or least absolute shrinkage and selection operator (LASSO) 

regularization. One identified elevated plasmatic cfDNA levels in oral cancer patients, 

compared to control subjects44. Three CM-cfDNA studies employed SVM, one 

investigating a significant mammalian DNA epigenetic modification (5-

hydroxymethylcytosine) for pancreatic ductal adenocarcinoma early detection45. Five 

studies used RF, including one exploring 5-hydroxymethylcytosine patterns to 

discriminate among seven cancer types, achieving 87.5% and 92% accuracy for two 

datasets46. Another one identified new biomarkers in the plasma cfDNA methylome 

profiling to diagnose and locate gastrointestinal cancers, resulting in an area under the 

curve of 0.96 ± 0.04 (mean ± standard deviation), 0.89 ± 0.06, 0.91 ±0.07 for 

hepatocellular carcinoma, colorectal cancer and pancreatic cancer respectively47. 

Deep learning has been less frequently used due to small sample size of these types 

of studies. Nevertheless, Liu et al.41 cited one study using it for early stage lung cancer 

detection48. They employed a convolutional neural network with two-dimensional grids 

representing the sequenced reads. Each column was representing a read and 

exclusively colored according to the row corresponding to its respective base (A, C, G, 

T, or N if unrecognized). The algorithm then detected base changes, such as deletions, 

mutations or insertions, focusing on distinguishing artifacts from genuine cancer 

mutations. 

Moser et al.49 cited over twenty diagnosis studies employing ML models or 

combinations of them. A common issue involves somatic mutations of non-cancerous 

origin, increasing the number of false positives. For instance, age can induce the 

development of somatic mutations during clonal hematopoiesis, resulting in misleading 

results. Chabon et al.50 developed a classification framework (5-nearest neighbor, 3-

nearest neighbor, naïve Bayes, LR and decision tree) to distinguish tumor from clonal 

hematopoiesis mutations and matched them with risk-matched controls. They 

demonstrated that clonal hematopoiesis mutations tended to occur in longer cfDNA 

fragments. 

Eventually, unsupervised learning (Figure 2A) has also been employed to classify 

individuals into cancer subtypes. Luo et al. used hierarchical clustering to distinguish 
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colorectal cancer patients from normal subjects according to methylation markers, and 

finally classify patients into two subgroups with different overall survival (OS)10. 

 

Fragmentomics-based machine learning 

Chen et al. used LR to differentiate hepatocellular carcinoma from liver cirrhosis and 

healthy controls using four cfDNA fragmentome features: genome-wide 5- 

hydroxymethylcytosine, nucleosome footprint, 5′ end motif and fragmentation profiles. 

This led to a 95.4% sensitivity and a 97.8% specificity in the test set51. Similarly, Duo 

et al. compared LR, deep learning and extreme gradient boosting to early detect lung 

adenocarcinoma, using the 6bp breakpoint motif, defined as « the 3bp extensions to 

both directions of the aligned cfDNA 5′ », achieving a 92.5% sensitivity and a 90.0% 

specificity in the external validation cohort35. Ma et al. compared five ML algorithms 

(generalized linear model, deep learning, RF, gradient and extreme gradient boosting), 

integrating fragment size ratio and distribution, end and breakpoint motif, and copy 

number variation52. They reached a 94.8% specificity and 98% sensitivity to distinguish 

healthy individuals from early-stage colorectal adenocarcinoma. 

An important and influential work has been performed by Cristiano et al.53. They 

employed the cfDNA integrity index, defined as the ratio of short fragments (100-150 

bp) to long fragments (150-200 bp), across 504 genome bins, to classify healthy 

individuals and cancer patients (with seven different pathologies). They highlighted 

distinct variations in fragment size profiles across different genome regions of cancer 

patients. The features were then integrated into a stochastic gradient tree boosting 

framework. Samples were split according to a 10-fold cross-validation repeated 10 

times, with features selected at each of the ten steps on the inner-fold training dataset. 

At each iteration, the model was estimated on the training dataset and evaluated on 

the test dataset. Predictions were made based on the average of predictions over the 

hundred steps. With a 95% specificity, they detected 80% of the cancer patients. 

Expanding the framework, they identified tumor tissue origin with 90% specificity, 61% 

accuracy and reaching 75% accuracy when looking at the top two predictions.  

Mathios et. al implemented a comparable ML approach based on similar fragmentation 

features for lung cancer detection and stage identification in high-risk symptomatic 

patients54. Initially, they reduced dimensionality of the fragmentation features by 

selecting principal components explaining 90% of the fragmentation variance. 
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Subsequently, they used a LASSO-penalized LR to assess the fragmentation 

components along with 39 chromosomal arms Z-scores (number of standard 

deviations from the mean of the mapped read fraction). With 10 replicates of a 5-fold 

cross-validation, they defined a score able to detect 94% of the cancer patients with 

80% specificity, in a population with 91% early-stage (I-II) cancer patients.  

Mouliere et al. also developed CM-cfDNA ML (RF and LR)31. They used the proportion 

of fragments in multiple size ranges, ratios of some of these proportions, and 10 bp 

periodicity oscillation amplitudes occurring before 150 bp to detect cancer patients, 

even for pathologies presenting weaker levels of ctDNA. They reached an area under 

the receiver operating characteristic curve (AUC) of 0.891 for cancers with low 

amounts of ctDNA (pancreatic, renal and glioma) with RF, having selected 4 features 

among 9.  

Unsupervised learning is less commonly encountered in the literature. Renaud et al. 

performed such analysis to detect the presence of cancer fragments in the overall 

cfDNA thanks to fragments lengths, measured by shallow whole genome 

sequencing55. The aim was to decompose the matrix of the fragment size profiles 

through the non-negative matrix factorization (NMF) method: 

𝑠𝑎𝑚𝑝𝑙𝑒!×# = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠!×$ × 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠$×#, 

where: 

- each row 𝑖 of 𝑠𝑎𝑚𝑝𝑙𝑒!×# represents a sample; each column 𝑗 represents a fragment 

size. One matrix cell indicates the relative fragments frequency with length represented 

in the column 𝑗, for the sample 𝑖. 

-	𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠$×# represents the signature matrix. Each row corresponds to a typical 

profile of fragment lengths, according to the source of the fragments. The 

hyperparameter 𝑘 is the number of sources used in the factorization and must be set. 

As an example, 𝑘 = 2 sources could represent typical healthy and cancer distributions 

of the fragment lengths. 

- 𝑤𝑒𝑖𝑔ℎ𝑡𝑠!×$ are the weights associated to each signature profile for each sample. 

They initially calibrated the number of sources to 𝑘 = 2 and inferred signatures by the 

NMF method. They found correlations between the weights and ctDNA ratios (variant 

allele fractions) (r = 0 .75). Eventually, NMF was applied to a cohort of healthy and 

pathological individuals with diverse cancer types53. The weights were integrated into 
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an SVM framework to detect cancer patients. By increasing the number of sources to 

30, they reached an AUC of 0.95. 

 

Mechanistic modeling for annual screening 

Using longitudinal data, Avanzini et al. developed a mechanistic model of ctDNA 

shedding during apoptosis linked to the tumor size evolution over time to determine 

the optimal screening time for early lung cancer detection56. They modeled the 

expected number of ctDNA haploid genomic equivalent (hGE) circulating in the 

bloodstream for a tumor with size 𝑀 as a Poisson-distributed random variable, with 

mean: 

𝐶 = 𝑀 ×
𝑑 × 𝑞%
𝜖 + 𝑟

 

where: 

- 𝑑 is the tumor death rate per day. 𝑑 = 𝑏 − 𝑟 where 𝑏 is the cell division rate per day 

and 𝑟 is the net tumor growth rate per day. 

- 𝑞% is the mean shedding rate of a cell death. On average, 𝑞% ≈ 0.1 hGE per cell death. 

- 𝜖 is the ctDNA elimination rate per day. 

Using mechanistic modeling and considering various sources of biological and 

technical errors, they could predict the expected tumor detection size. They 

demonstrated that ctDNA-based annual screening had a median detection size of 2.0 

to 2.3 cm of diameter, against 3.5 cm for usual annual screening, highlighting the 

optimal marker-frequency combination for cancer screening. 

Taken together, there has been in recent years a dwealth of studies and results related 

to CM-cfDNA-based early cancer detection, mainly focusing on cfDNA aberrations. 

Drug and medical regulatory organizations have begun to recommend the use of 

cfDNA. In 2020, the FoundationOne Liquid CDx test57, analyzing cfDNA-based genes, 

has been approved by the Food and Drug Administration. In 2022, the European 

Society for Medical Oncology Precision Medicine Working Group published an article 

warranting the use of ctDNA as an adjunctive diagnostic tool58.  

In summary, ML is increasingly integrated to find associations between fragments 

features and diagnosis outcomes such as cancer detection, stage or histological type. 

Fewer researchers modeled cfDNA kinetics by integrating biological mechanisms to 
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prove the effectiveness of these fragments as novel biological markers. Finally, 

limitations include the necessity to evaluate prospectively these methods on  

asymptomatic individuals at risk for cancer59, in order to generalize their applicability 

in real-world conditions and detect cancer before symptoms arise.  
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CFDNA COMPUTATIONAL MODELING FOR PROGNOSIS AND 

TREATMENT PREDICTION 

Many studies used CM-cfDNA to monitor tumor size and predict therapeutic responses 

(Table 2). Their aim was to identify new signatures enabling early treatment 

adjustments and preventing adverse events.  

Most of them relied on baseline markers (cfDNA/ctDNA concentration, ctDNA 

positivity, fragmentomics). These markers are typically assessed at one specific time, 

either following surgical resection to establish associations with time to relapse, or just 

before treatment initiation to determine correlations with imaging-evaluated treatment 

response. Sometimes, these studies also rely on biological markers collected at 

various time points, including at some or all treatment cycles. They provide longitudinal 

datasets including absolute values and/or relative changes from baseline data. These 

datasets enable comprehensive analysis of cfDNA dynamics, aiming to discover new 

patterns associated with time to relapse, disease progression, treatment response, or 

mortality. 

These studies first employed classical statistical analysis (e.g., survival analysis) to 

establish connections between cfDNA measurements and relapse or response to 

treatment. However, computational methodologies have evolved to ML, non-linear 

mixed effects models (NLME) and mechanistic modeling. 

 

Classical survival analysis 

Survival analysis (Figure 2B) analyzes the duration before a specific event, such as 

progression or death, and specifically accounts for censored data (unreached event). 

The main methods include Kaplan-Meier (KM) estimation and univariable 

/multivariable Cox proportional-hazards regression (CPHR).  

In the fragmentome field, Lapin et al. demonstrated an association of fragment sizes 

smaller than 147 bp and high cfDNA levels pre-treatment with shorter PFS and OS, 

using Kaplan-Meier estimation in advanced pancreatic cancer patients60. Multivariable 

CPHR demonstrated that cfDNA levels could predict PFS (Hazard Ratio (HR): 3.05, 

95% CI: 1.40-6.65) and OS (HR: 2.24, 95% CI: 1.09-4.59). 
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Moding et al.61 monitored ctDNA molecular residual disease in advanced non-small 

cell lung cancer (NSCLC) patients, collecting ctDNA immediately after chemoradiation 

therapy (CRT), later followed or not by consolidation with immune-checkpoint inhibition 

(ICI). A second ctDNA sample was collected early during ICI treatment for the 

immunotherapy-treated arm. Undetectable ctDNA before ICI treatment correlated with 

good prognosis, irrespective of ICI treatment. Detectable ctDNA early on ICI also 

correlated with a shorter progression-free survival (PFS). Analyzing ctDNA changes 

over time demonstrated that increased ctDNA levels were associated with worse 

prognosis compared to a decrease.  

Powles et al.62 performed CPHR to predict atezolizumab response in urothelial 

carcinoma. They collected plasma onset and early on treatment (first day of the first 

and third cycles). They revealed significant disease-free survival differences according 

to ctDNA changes over time. Patients with ctDNA clearance appeared to have three 

to four times lower relapse risks, according to univariable, stratified and multivariable 

CPHRs. 

 

Longitudinal dynamics modeling 

Few studies have explored dynamical CM-cfDNA (Figure 2C). One study developed 

of a mechanistic modeling of the joint ctDNA–tumor size evolution over time, to assess 

atezolizumab response in NSCLC and melanoma patients63. The authors used a bi-

exponential system to independently describe both the log10-transformed number of 

mutant molecules per mL and the sum of the longest diameters (SLD) of lesions, 

assessed by the RECIST 1.1 criteria. Parameters included the model-estimated value 

at the first time point, the growth rate and the decay rate. The estimated ctDNA growth 

rate showed high correlation with the estimated SLD growth rate. The final joint system 

is: 

𝑆𝐿𝐷(𝑡) = 𝑆𝐿𝐷&	G𝑒'$!".) + 𝑒$#".) − 1H 

𝑐𝑡𝐷𝑁𝐴(𝑡) = 𝑐𝑡𝐷𝑁𝐴&	G𝑒'*.$!".) + 𝑒$#.) − 1H, 

where: 

- 𝑆𝐿𝐷& and 𝑐𝑡𝐷𝑁𝐴& are the baseline values of 𝑆𝐿𝐷 and 𝑐𝑡𝐷𝑁𝐴 respectively. 

- 𝑘+, is the growth rate of the tumor size. 
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- 𝑘+, is the decay rate of the tumor size. 

- 𝑘+ is the decay rate of the ctDNA level. 

𝜁 is the coefficient linking the tumor size growth rate to the ctDNA growth rate. 

This system fitted well the ctDNA and tumor kinetics over time, even when negatively 

correlated (one increasing while the other decreasing). Thus, they highlighted the 

mechanistic link between tumor growth and ctDNA release for patients under ICI. 

Janssen et al. employed NLME (Figure 2C) for ctDNA biomarkers analysis to predict 

early treatment responses64. They used a NLME model to describe the dynamics of 

EGFR mutations in ctDNA from NSCLC patients treated with erlotinib or gefitinib. In 

this model, the concentration of three mutations was modeled by a zero-order growth 

model, chosen between baseline, turnover and first-order growth models. The first 

model described both L858R or exon19del (driver) mutations concentrations, while the 

second one described T790M mutation concentrations. The equation writes: 

𝑑𝑦
𝑑𝑡

= 𝑘-! − 𝑘./) . 𝑦(𝑡). 𝑅(𝑡) (1) 

where 𝑅(𝑡) = 𝑒'0) for driver mutations, and 𝑅(𝑡) = 𝑒'0.1()) for the T790M mutation 

concentration. Here: 

- 𝑦(𝑡) is the change in either L858R or exon19del over time. 

- 𝑘-! represents the zero-order increase in mutations concentrations. 

- 𝑘./) represents the drug-driven decrease in mutations concentrations. 

- 𝑅(𝑡) accounts for the time-dependent resistance development where 𝜆 is the 

progression rate. 

Another parameter was estimated to consider the baseline mutations concentration, 

unavailable in this study. The growth model was fitted to observed concentrations to 

identify each parameter. Subsequently, the predicted time-course of mutations 

concentrations were compared to the observed ones, revealing that a zero-order 

increase and a first-order elimination model (equation 1) best approximated the actual 

concentrations. 

These predicted ctDNA values were integrated into parametric survival models to 

predict PFS. Among exponential, Weibull and Gompertz hazard models, Weibull was 

found to be the more efficient. Considering all the predictors of disease progression at 



18 
 

random timepoints post-treatment initiation, including relative changes from baseline 

and absolute values of the three mutations concentrations, only the relative change in 

driver mutations was statistically significant for stratifying responders and non-

responders (p = 0.001, likelihood-ratio test). This significance was validated using 

stratified KM curves. Consequently, patients with a predicted relative change from 

baseline greater than zero (median value) experienced a shorter disease progression.  

Prior to this study, Khan et al. sought to model the carcinoembryonic antigen dynamics, 

which is proportional to the total number of tumor cells65, to assess cetuximab 

response in colorectal cancer patients. They used the following equation for the tumor 

burden: 

𝑁(𝑡) = 𝑛4e'5$6 + 𝑛7𝑒0%) , 

where the cells number 𝑁(𝑡) is divided into a population of treatment sensitive cells 𝑛4, 

dying under treatment at rate 𝜆4, and a population of treatment resistant cells 𝑛7, 

growing at rate 𝜆7. 

CfDNA mutant frequencies was modeled using a single exponential growth model. 

Rates were estimated for each patient with at least three time points. The cfDNA model 

well described the real dynamics (𝑅8 = 0.979).	Particularly, the cfDNA relapse rate was 

shown to be correlated with the tumor one. By comparing relapse rates with RECIST 

v1.1 criteria, the model could precisely predict the time to relapse. 

Fragmentomics data are emerging as prognosis markers but remain underused for 

treatment monitoring. Some studies have investigated the cfDNA integrity index 

variations in breast cancer during neoadjuvant or adjuvant chemotherapy. Only two 

studies were found searching for “fragmentomics” AND “chemotherapy” on PubMed, 

and only one searching for “fragmentomics” AND “immune-checkpoint inhibitors” (no 

results for “fragmentomics” AND “immunotherapy”). The latter investigated cfDNA 

fragmentation profiles in lung carcinoma and diffuse B cell carcinoma patients66. They 

calculated an « expression inference from cfDNA-sequencing » score, based on a 

statistic of expression levels changes of genes before ICI-treatment and after ~ 4 

weeks. This score allowed to identify both patients with durable clinical benefit of ICI 

and shorter PFS (HR: 11.38, Wald test: p = 0.006). They also developed a mechanistic 

model of the nucleosome accessibility at transcription start sites regions. The model 

established a connection between this accessibility and fragmentation profiles and 
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expression levels. The model was used to perform simulations and explore the 

parameters influencing the detection of a specific gene expression within cfDNA. 

 

Longitudinal ML modeling 

ML leverages longitudinal data by merging the features from each time point, 

comprising absolute and relative changes over time and integrating them into ML 

models to classify patients as either responders or non-responders, employing 

supervised or semi-supervised classification methods. 

Assaf et al.67  conducted such a study with 466 NSCLC patients. They developed a 

ML framework to predict immunotherapy response using longitudinal ctDNA data. 

CtDNA was collected at baseline (before treatment) and at day 1 of cycle 2 (C2D1), 

and cycle 3 (C3D1). The models integrated 19 ctDNA levels metrics and 59 relative 

ctDNA changes from baseline. Three models were compared: only baseline features, 

baseline + C2D1 and baseline + C2D1 + C3D1. The latter was selected for OS 

prediction, as it exhibited the highest C-index. Then, the ctDNA features were 

combined with baseline clinical features, including ECOG status, metastases count, 

age group, sex, smoking history, PD-L1 status, and the sum of lesion diameters. 

Baseline and C2D1 tumor size was also considered. They employed an Elastic Net 

(EN) approach with leave-one-out cross-validation (LOOCV) conducted through a 10-

nested cross-validation process. Features were retained if they were selected in over 

50% of cross-validation iterations and if the gain metric was positive according to the 

next-door analysis. This analysis involves fitting the same model after removing one 

predictor and comparing the error rate to the one of the full model. Consequently, the 

feature set was ultimately reduced to five features, including the global cfDNA 

concentration at C3D1. The final model categorized patients into three groups: high 

risk (progressive disease), intermediate risk (stable disease) and low risk (responders), 

and KM curves demonstrated significant risk stratification in both training and testing 

datasets. 

Similar to the previous study but in a smaller cohort of 94 NSCLC patients treated with 

atezolizumab or docetaxel, Zou et al. applied LOOCV LASSO-penalized regression, 

linking ctDNA metrics (collected at baseline, C2D1 and C3D1) to OS68. The model 

highlighted the C3D1 median number of mutant molecules per mL as the most 

important predictor for OS. 
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CONCLUSION 

Recent studies have delved into the use of cfDNA as an innovative biological marker 

for cancer detection and treatment monitoring in the last years. Most of these studies 

focused on early detection and demonstrated sufficient level of evidence to prompt 

regulators to recommend cfDNA as a complementary diagnostic tool57,58. There is, 

however, a pressing need for standardizing ctDNA detection and cfDNA quantification 

methods. Furthermore, over the past two years, approximately one in four studies 

employed CM-cfDNA as a support for precision medicine. While the majority 

concentrated on classical survival and classification analyses, there is a growing need 

to model biological mechanisms over time to improve precision, which has been 

addressed by only few studies. 

To enhance the reliability of findings and assess the methods' reproducibility, it is also 

crucial to conduct studies on larger datasets, with validation on external cohorts. 

Currently, most assays train and test their models on data from symptomatic or 

diagnosed patients, or even high stage patients. Additional studies that specifically 

target and validate markers on data from asymptomatic individuals are warranted.  

In contrast to its use for diagnosis, CM-cfDNA for patient prognosis and treatment 

monitoring is less common. Nevertheless, it is particularly well suited for such 

purposes. Specifically, mechanistic modeling parameterized on experimental data 

facilitates the better understanding of biological mechanisms behind cfDNA release in 

body fluids. Combining mechanistic modeling with ML methods and survival analysis 

(mechanistic learning69) holds the premise to develop genuinely informative biologico-

computational markers and associated predictive tools.  

Most research efforts have focused on ctDNA analysis, targeting mutations of a 

specific cancer and requiring a proper understanding of pathology-associated genetic 

aberrations. But ctDNA is only detectable in less than 80%70 of the cancer patients, 

making it worthwhile to further explore the use of alternative cfDNA characteristics, 

such as global concentration, methylation, fragment size profiles and end motifs, in the 

quest for pan-cancer biomarkers. 

To this regard, optimizing data acquisition, improving data relevance, and diversifying 

data types will be the first keys to finally better adapt and improve CM-cfDNA. 
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FIGURE LEGENDS 

Figure 1: Cell-free DNA data: a new biological tool for on oncology 

A. Cell-free DNA (cfDNA) are fragments of encapsulated data released in the human 

body fluids, such as blood, urine, cerebrospinal liquid. Some of these fragments are 

originated from tumoral cells, which can be primary, metastatic or circulating tumor 

cells. Plasmatic cfDNA is the most analyzed because of its ease of collection. 

B. After the blood collection, cfDNA is extracted and amplified, usually by Polymerase 

Chain Reaction (PCR) methods. Fragments are then sequenced by various methods, 

targeted ones (which target specific genes) and non-targeted approaches (sequencing 

the whole genome) to provide information at smaller case of the molecular alterations. 

C. PCR and sequencing processes yield diverse cfDNA data. a) Global concentration 

is the first main quantitative feature describing cfDNA. b) Fragmentomics study a wide 

range of data, focusing on the fragment sizes and patterns. It provides a profile of 

fragment size distribution, enabling the extraction of quantities of fragments of various 

sizes. The sequencing of the fragments also provides nucleotide base patterns from 

end motifs, jagged ends, and breakpoint motifs. Additionally, fragmentomics work on 

nucleosome footprints and cfDNA integrity index (cfDI), calculated as the ratio between 

short and long fragments at a same locus. c) At a smaller case, ctDNA mutations are 

predominantly analyzed, using features such as ctDNA positivity (number of mutations 

detected greater than 𝑥 mutations), ctDNA concentration (copies number per milliliter), 

or variant allele frequency.  

D) These cfDNA data are incorporated into computational modeling frameworks to 

identify associations with clinical outcomes. This enables the establishment of cfDNA 

as new biological marker in cancer research, serving for diagnosis, prognosis, and 

prediction. 

 

Figure 2: Cell-free DNA data: a new biological tool for oncology 

A) i) To early diagnose, evaluate the cancer type or stage, make prognosis or predict 

response to treatment, studies compute machine learning methods. CfDNA data are 

collected at different moments of the cancer progression according to the outcome to 

predict. Data can be collected over time, but they are not considered as time-

dependent during modeling. Machine learning methods can be divided into two major 
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groups: ii) the unsupervised learning and iii) the supervised learning models. ii) First 

ones are built to discriminate 𝑘 groups within the complete set of individuals or reduce 

dimensionality of the features space. The idea is to find individuals that are closed into 

the space of features. A typical unsupervised learning method is the hierarchical 

clustering, which build a hierarchy of individuals groups. Another one is the non-

negative matrix factorization, which decomposed a matrix of non-negative elements 

into two matrices, for example by factorizing a matrix of cfDNA size profiles into a 

coefficient’s matrix and a matrix of size profile signatures. iii) Supervised learning 

methods learn outcome’s individuals on a train set to then predict outcomes of a new 

cohort of patients. Most common supervised algorithms in cfDNA modeling are the 

logistic regression, support vector machines (SVM), decision trees and random forest. 

Neural networks are used mostly in the case of complex patterns and relationships 

between features. 

B) i) Classical survival modeling gathers technical tools that enable the modeling of a 

duration until the occurrence of an event. Progression and death are the main events 

modeled in the medical domain. Thus, individuals may be censored as the event never 

occur during the study’s time, due to the track loss of the patient, or the end of follow-

up by the study. In those cases, the event of progression or death is not observed: 

patients are referred to as censored.  

ii) A usual nonparametric estimation is the Kaplan-Meier one, which allows to visualize 

and check hypothesis about the ability of a variable to discriminate long to short 

survival. 

iii) The Cox proportional-hazard regression is a widely used method for the analyze of 

censored time data in survival modeling. This method assumes that the effect of 

predictor variables on the hazard rate remains constant over time. Cox regression 

helps to identify significant features as machine learning regressions do, estimate the 

hazard ratios, which indicate the proportional changes in the hazard for one unit 

change in a predictor variable. Additionally, it may generate survival curves (survival 

probability over time for different levels of the feature). 

C) i) Longitudinal data may be modelled as time-dependent data, to follow the evolution 

of cfDNA kinetics during treatment. ii) Mechanistic modeling integrates biological 

hypothesis and fundamental principles, known to induce the observed kinetics, into a 

dynamic system. The models are then parameterized on experimental data thanks to 
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non-linear mixed effect models, which allows a better understanding of the biological 

mechanisms and the validation of hypothesis. 
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TABLES  

Table 1: Summary of cfDNA computational modeling studies for early diagnosis, 

organ, stage and histological classification 

Source Cancer Modeling Marker Purpose 

46 Pancancer RF 

ctDNA 

aberrations 

Cancer type 

classification 

71 Colorectal LASSO – LR 

Early diagnosis 

72 

NSCLC 

Linear regression 

50 
5nn – 3nn naïve Bayes – LR 

– Decision tree 

48 Lung CNN 

45 Pancreas RF – SVM – EN LR Stage classification 

42 NSCLC LASSO – Ridge – EN LR 
Histological 

classification 

44 Oral LR 
cfDNA 

quantification 
Early diagnosis 

56 Lung Mechanistic modeling 

cfDNA 

concentration / 

ctDNA 

mutations 

Early diagnosis 

54 Lung PCA – LR 

Fragmentome Early diagnosis 

31 Pancancer RF – LR 

51 
Hepatocellular 

carcinoma 
LR 

35 
Lung 

adenocarcinoma 

LR – deep learning, gradient 

and extreme gradient 

boosting 
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NSCLC: non-small cell lung cancer; SCLC: small cell lung cancer; RF: random forest; 

LASSO: least absolute shrinkage and selection operator; LR: logistic regression; 𝑋-nn: 

𝑋 nearest neighbors; CNN: convolutional neural network; SVM: support vector 

machine; EN: elastic-net; PCA: principal component analysis; ctDNA: circulating 

tumoral DNA; cfDNA: cell-free DNA. 

Table 2: Summary of cfDNA modeling assays for treatment monitoring 

Source Cancer Treatment Modeling Marker 
Baseline / 

Longitudinal 

76 NSCLC 

(Durvalumab ± 

tremelimumab) + 

platinum-based 

chemotherapy 

CPH 

ctDNA 

aberrations 
Baseline 

53 Pancancer 
Anti-EGFR or anti-

ERBB2 
KM 

77 
Hepatocellular 

carcinoma 

Atezolizumab + 

bevacizumab 

KM – CPH 

8 NSCLC 
Atezolizumab or 

docetaxel 

78 Pancancer ICI 

79 Colorectal 
Surgery or 

chemotherapy 

52 
Colorectal 

adenocarcinoma 

Generalized linear model, 

deep learning, RF, extreme 

gradient boosting 

53 Pancancer Gradient-tree boosting 

Early diagnosis and 

cancer type 

classification 

73 

Colorectal 

LASSO LR 

Methylome 

Early diagnosis 10 Hierarchical clustering 

43 Lung SVM 

74 SCLC PCA Histological 

classification 47 Gastrointestinal RF 
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80 Melanoma 

(Pembrolizumab or 

nivolumab) ± 

ipilimumab 

KM – CPH – LR 

7 Melanoma Ipilimumab 
Descriptive 

statistics 

Longitudinal 

81 Pancancer ICI KM 

61, 82, 

83, 84 
NSCLC / / /  

KM – CPH 

62 
Urothelial 

carcinoma 
Atezolizumab 

85 Melanoma 
Nivolumab ± 

ipilimumab 

86 Pancancer 
Durvalumab ± 

tremelimumab 

87 NSCLC ICI 

KM – CPH – 

Bayesian probit 

model 

88 Pancancer Pembrolizumab KM – CPH – LR 

63 
NSCLC / 

Melanoma 
ICI ± cobimetinib NLME 

68 NSCLC 
Atezolizumab or 

docetaxel 

LASSO linear 

model 

64 NSCLC Erlotinib / gefitinib 

Mechanistic 

modeling / 

NLME 

65 
Colorectal 

cancer 
Cetuximab 

Mechanistic 

modeling 

67 NSCLC 

(Atezolizumab	± 

bevacizumab) + 

carboplatin + 

paclitaxel 

EN linear 

regression 

cfDNA 

concentration 

/ ctDNA 

mutations 

38 Renal 

(Ipilimumab + 

nivolumab) or anti-

VEGFR-TKIs 

KM – CPH – LR 
cfDNA 

concentration 
Baseline 
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89 NSCLC 

TKI or 

pembrolizumab-CT 

or CT 

KM – CPH Longitudinal 

66 

Lung 

adenocarcino

ma & B cell 

carcinoma 

PD-(L)1 ICI 

KM – CPH – LR 

Mechanistic 

modeling 

Fragmentomi

cs 
Longitudinal 

NSCLC: non-small cell lung cancer: CPH: Cox proportional hazards (model); KM: 

Kaplan-Meier (estimation); LR: logistic regression; NLME: nonlinear mixed effects 

(model): ctDNA: circulating tumoral DNA; cfDNA: cell-free DNA; ICI: immune 

checkpoint inhibitors; EGFR: epidermal growth factor receptor; ERBB2: erythroblastic 

oncogene B 2; VEGFR: vascular EGFR; TKI: tyrosine kinase inhibitors. 
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