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Figure 1: We propose a new technique to generate well-dispersed samples on non-Euclidean domains (spherical, hyperbolic and projective
spaces) using an extension of the sliced optimal transport sampling. As an example, this allows us to sample probability measures on the
high-dimensional sphere (left). Using the uniformization theorem to conformally embed discrete manifolds to spherical or hyperbolic spaces,
we can also generate blue noise samples in a purely intrinsic manner (red samples on the flatten geometry that exhibits blue noise properties
when mapped back to a better embedding in R3 in blue). Finally, we also demonstrate that such an approach can be used to blue noise
sample unit quaternions (hence rotations) on the projective space of dimension 3 (right).

Abstract
In machine learning and computer graphics, a fundamental task is the approximation of a probability density function through
a well-dispersed collection of samples. Providing a formal metric for measuring the distance between probability measures on
general spaces, Optimal Transport (OT) emerges as a pivotal theoretical framework within this context. However, the associated
computational burden is prohibitive in most real-world scenarios. Leveraging the simple structure of OT in 1D, Sliced Optimal
Transport (SOT) has appeared as an efficient alternative to generate samples in Euclidean spaces. This paper pushes the
boundaries of SOT utilization in computational geometry problems by extending its application to sample densities residing on
more diverse mathematical domains, including the spherical space Sd , the hyperbolic plane Hd , and the real projective plane
Pd . Moreover, it ensures the quality of these samples by achieving a blue noise characteristic, regardless of the dimensionality
involved. The robustness of our approach is highlighted through its application to various geometry processing tasks, such as
the intrinsic blue noise sampling of meshes, as well as the sampling of directions and rotations. These applications collectively
underscore the efficacy of our methodology.

CCS Concepts
• Computing methodologies → Computer graphics;

1. Introduction1

In recent years, Optimal Transport has become a key mathematical2

framework for manipulating generalized probability density func-3

tions (e.g. [V∗09]). The most general way to describe the interest4

of OT is that it allows quantifying meaningfully how costly it is5

to move masses from a generalized probability density function6

to another one. This defines a natural notion of distance between7
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probability measures, the Wasserstein distance, allowing the design8

of displacement interpolations between measures or when dealing9

with more than two measures, the notion of Wasserstein barycenter.10

The high versatility of the framework and the numerous develop-11

ments of efficient numerical solvers make the OT become standard12

in many machine learning [HGK∗16, CFTR16, ACB17],computer13

vision, or computer graphics applications [DGBOD12, SRGB14,14

SdGP∗15,BRPP15,QCHC17,NG18,BC19,PBC∗20,SGSS22] (see15

[BD23] for a recent survey).16

Among computer graphics applications, OT has become a17

widely spread tool for point pattern design and Monte Carlo in-18

tegration [QCHC17, PBC∗20, SGSS22]. The main argument is19

that OT offers a mathematical framework to characterize well-20

distributed, or blue noise, samples in a domain leading to an ef-21

ficient Monte Carlo integration or signal reconstruction [SÖA∗19].22

This can be achieved by optimizing the samples positions such that23

the Wasserstein distance to the uniform measure in the domain is24

minimized. More recently, OT on non-Euclidean spaces has been25

developed in the machine learning context, as it allows efficiently26

processing of data for which a spherical or hyperbolic geometry27

is a natural representation space [BBC∗22, BCDC22]. In geom-28

etry processing, a spherical or hyperbolic embedding of geomet-29

rical objects can be at the core of many surface parametrization,30

texture mapping or shape matching problems [HAT∗00, GY03,31

GGS03, KSS06, CPS13, BCK18, SCBK20, GSC21]. The challenge32

addressed in this paper is the design of an OT driven sampling33

techniques on Riemannian manifolds with applications to computer34

graphics.35

Contributions. Relying on sliced optimal transport formulation36

for the sphere and the hyperbolic space formulated by Bonet et37

al. [BBC∗22, BCDC22], we propose a blue noise sampling strat-38

egy of probability measures on these non-Euclidean spaces. This39

is achieved by providing explicit formulas for the samples advec-40

tion steps and direction pooling in a Riemannian gradient descent41

approach. We then demonstrate the strength of the approach to effi-42

ciently sample meshes through the uniformization theorem allow-43

ing transforming the intrinsic blue noise sampling problem on the44

mesh, to a blue noise sampling problem in S2 or H2 depending on45

the mesh topology. We also highlight the interest of the approach46

through projective plane sampling that can be used to sample 3D47

rotations (by sampling quaternions in 4d), as well as various ge-48

ometric objects befined by projective equations (e.g. lines, direc-49

tions...).50

2. Background51

Optimal transport. Given two measures µ and ν, over some do-52

main Ω, and a function c(x,y) that dictates the cost of moving a53

particle from x to y in Ω, one can define the Optimal Transport54

problem from µ to ν as55

min
π∈Π(µ,ν)

∫
Ω

c(x,y)dπ(x,y) . (1)

where Π(µ,ν) is the set of couplings:56

{π ∈ P(Ω×Ω),∀A ⊂ Ω,π(A×Ω) = µ(A),π(Ω×A) = ν(A)} .

In most contexts, c(x,y) = dp(x,y) where d is a distance on57

Ω (e.g. [PC∗19]). In such cases we call the minimum cost the58

p−Wasserstein distance between µ and ν, W p
p (µ,ν). The interest59

of using measures is that its general enough to handle both discrete60

and continuous objects at the same time. Depending on the nature61

of the measures, discrete-to-discrete, semi-discrete, or continuous-62

to-continuous, a huge literature exists on numerical methods to ef-63

ficiently solve OT problems [PC∗19, FCG∗21].64

Sliced Optimal Transport. Among alternative numerical meth-65

ods, we are interested in fast approximation techniques that scale66

up with the size of the discrete problem and the dimension. First,67

we observe that the one-dimensional OT problem admits the fol-68

lowing closed form solution:69

W p
p (µ,ν) =

∫ 1

0
|F−1

µ (u)−F−1
ν (u)|pdu , (2)

where Fµ is the cumulative function of the 1D density µ, and F−1
µ70

its generalized inverse, or quantile function. For p = 1, one can71

derive the equivalent formula:72

W1(µ,ν) =
∫ 1

0
|Fµ(u)−Fν(u)|du . (3)

The transport plan is then simply given by associating the ith point73

of µ to the ith point of ν (see for example [PC∗19]) in the case when74

µ and ν are both discrete with the same number of atoms. The ob-75

tained result is the mapping that minimizes the cost to transport µ76

to ν. Hence, a very natural idea is to break a d dimensional OT77

problem into an infinity of 1 dimensional one. Such an approach78

is referred to as Sliced Optimal Transport since it amounts to pro-79

jecting the measures onto 1D slices [PKD05, RPDB11, BRPP15].80

Given a direction θ ∈ Sd−1 and the projection Pθ(x) := ⟨x,θ⟩ of81

any , for all x ∈ Rd , the sliced Wasserstein distance is defined as82

SW p
p (µ,ν) :=

∫
Sd−1

W p
p (P

θ
# µ,Pθ

# ν) dλ(θ) , (4)

where Pθ
# µ is the image measure of µ by the projection operator.83

The sliced approach receives a lot of attention in the literature as it84

is topologically equivalent to OT [NDC∗20] with bounded approx-85

imation of Wp [Bon13]. On the algorithmic side, the integral over86

Sd−1 is obtained used a Monte Carlo approach: we draw random87

directions uniformly on Sd−1 and accumulate 1d Wasserstein dis-88

tances. The computational advantage is that each 1d slice W p
p only89

requires to sort the points, leading to an overall computation cost in90

O(K · n(d + log(n))) time complexity if K denotes the number of91

slices used in the Monte Carlo estimation.92

Sliced Optimal Transport Sampling (SOTS). In the context of93

Monte Carlo sampling, Paulin et al. [PBC∗20] leveraged the Eu-94

clidean sliced optimal transport formulation to optimize a point95

set such that it better approximates a given target distribution, in96

the sense of the SW2 metric. In this Monte Carlo rendering setting,97

given a target measure ν in [0,1)d (uniform measure for blue noise98

sampling), the objective is to construct n samples {xi} ∈ [0,1)d
99

defining the discrete distribution µ = ∑
n
i=1 δxi , such that SW2(µ,ν)100

is minimized. One iteration of the sliced optimal transport sam-101

pling, SOTS for short, algorithm is the following, if µ = ∑
n
i=1 δxi102



B. Genest, N. Courty & D. Coeurjolly / Non-Euclidean Sliced Optimal Transport Sampling

and if ν is a continuous measure with closed form projection for-103

mula on a line (mainly the uniform measure over a ball or a square),104

we iterate:105

x(K+1)
i = x(K)

i +
γ

L

L

∑
l=1

(
Tl

(
Pθl (x(K)

i )
)
−Pθl

(
x(K)

i

))
, (5)

where Tl is the transport plan associated with the solution of the106

continuous-to-discrete problem between Pθl
# ν and Pθl

# µ and γ > 0107

is a step size (see Fig.2-left). For the sake of simplicity, the Pθ(x)108

notation refers to the projection of the sample x onto the slice θ (i.e.109

Pθ
# µ = ∑i δPθ(xi)). Intuitively, we move each point in the direction110

of the slice proportionally to the distance to its projected 1d optimal111

mapping. In [PBC∗20], the authors have demonstrated the interest112

of such blue noise sampling in [0,1)d for Monte Carlo integration113

and Monte Carlo rendering. This paper extends this approach to114

non-Euclidean metric spaces.115

Non-Euclidean Sliced Wasserstein Distance. Bonet et al. ex-116

tend the SW distance to Spherical [BBC∗22] and Hyperbolic met-117

ric spaces [BCDC22], by replacing the Euclidean notions of lines118

and projections with the Riemannian equivalent of projection over119

geodesics. Namely, the spherical geodesics are great-circles of the120

sphere and geodesics passing through the origin of any hyperbolic121

model are valid replacements. With these constructions at hand,122

authors perform various machine learning tasks where the SW dis-123

tance is generally used as a data fitting loss or a meaningful metric124

to compare objects defined over such spaces.125

Blue Noise Mesh Sampling. Blue noise sampling of surfaces in126

R3 is one of our targeted applications. On Euclidean domains, a127

classical approach to construct well-spread samples in a domain128

consists in making sure that each pair of samples are separated by129

at least a given minimum distance. Dart throwing and its variations130

[Bri07] have naturally been extended to manifolds to achieve such131

Poisson disk sampling [CJW∗09, BWWM10, Yuk15, GYJZ15].132

Alternatively, Voronoi diagrams driven approaches [LWL∗09a,133

BSD09] and their restriction of discrete manifolds (triangular134

meshes in most cases), have been used to construct blue noise sam-135

ples [LWL∗09b, XHGL12, AGY∗17, XLC∗16]. While focusing on136

remeshing applications, Peyré and Cohen [PC06] have proposed137

an instrinsic sampling strategy that inserts samples one by one at138

the location maximizing the (geodesic) distance from the previ-139

ous samples (approach denoted farthest-point, FP, below). While140

being efficient from an FMM approximation of the geodesic dis-141

tance, this algorithm has a greedy approach and is not fit to sam-142

ple generic non uniform densities. Starting from an initial sam-143

pling and pairwise (geodesic) distances between samples, Qin et144

al. [QCHC17] optimized samples position so that the regularized145

optimal transport distance between the samples and the uniform146

measure on the manifold is minimized. Particle based systems can147

be designed by optimizing the sample distribution on a mesh to148

unformize the distances between neighboring samples in ambient149

space, while staying close to the surface thanks to a projection op-150

erator [TMN∗00, ZGW∗13, JZW∗15]. Samples could also be op-151

timized such that they capture the spectral content of the targeted152

surfaces [ÖAG10]. In most cases, for efficiency purposes, the sam-153

pling is performed in ambient space and later projected onto the154

manifold. While those techniques can be very efficient in terms of155

blue noise quality when the mesh embedding to R3 is ambient-156

compatible (no too-close sheets of meshes or large enough local157

shape diameter function [SSCO08], Euclidean unit balls is a good158

approximation of the geodesic ones. . . ), we propose an efficient159

purely intrinsic blue noise sampling that can deal with shapes with160

incorrect embedding (see Fig. 1).161

3. Sliced optimal transport sampling on constant curvature162

manifolds163

We first extend the SOTS approach defined on Euclidean domains,164

to the spherical and hyperbolic cases in arbitrary dimensions, re-165

spectively denote Sd and Hd (see Fig. 2).166

To define the SOTS in such non-Euclidean spaces, we first need167

to refine the notion of projection onto a straight line as the pro-168

jection of a set of samples onto geodesic slices for the targeted169

model (Sec. 3.1). Then we need to solve the matching 1d problem170

on the geodesic slice (Sec. 3.2). These key ingredients are mostly171

borrowed from Bonet et al. [BBC∗22, BCDC22] dedicated to the172

computation of SW on Sd and Hd . We extend these works with173

explicit formulas to perform the advection of the samples using174

group action principle (Sec. 3.3) and Exp and Log maps (Sec. 3.4).175

Finally, Section 3.5 completes the algorithm describing the exten-176

sion of the gradient descent of the SW2 energy. In Section 3.7, we177

describe a technical improvement of the advection step on batches178

using a geometric median instead of an average as usually used in179

SOTS. We summarize the generic algorithm in Alg. 1. Note that180

we consider a discrete target measure ν = ∑
m
i=1 δyi with a number181

of Diracs m that may be greater than n. This will be discussed in182

Section 3.6 to allow the sampling of non-uniform densities. Start-183

ing from line 5, we thus solve a balanced optimal transport problem184

as ν̃ is a random sampling of ν with exactly n Diracs.185

3.1. Geodesic slices and projections186

The first step is to find an equivalent to straight lines in the187

Euclidean space. The most natural choice is a geodesic passing188

through the origin of the model. In both Sd and Hd cases, such189

an object can be obtained by the intersection of a plane with the190

canonical embedding of each space in Rd+1.191

Spherical geometry. As proposed by Bonet et al. [BBC∗22], ran-192

dom slices are defined by the intersection of Sd by uniformly193

sampled Euclidean 2D planes in Rd+1 passing through the ori-194

gin. This is done by generating two (d + 1)−dimensional vectors195

with components in N (0,1), that we orthonormalize (by Gram-196

Schmidt or Givens rotations). We denote by θ = {e1,e2} the two197

vectors in Rd+1 generated by this process. Such basis of the plane198

allows defining the projection in Rd+1 onto the associated subspace199

span(e1,e2):200

Π
θ(x) = ⟨x,e1⟩e1 + ⟨x,e2⟩e2 . (6)

The projection onto the great circle = span(e1,e2)∩Sd becomes201

Pθ(x) :=
Π

θ(x)
∥Πθ(x)∥

. (7)
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µ
ν

θ

Pθ(x)

T (x)

R2 S2 H2

Figure 2: Sliced optimal transport sampling and notations: from left to right, on the Euclidean domain (zero curvature metric space), on the
spherical one (positive constant curvature metric space), and on the hyperbolic model (Lorentz’s model with only a part of the hyperboloid,
negative curvature metric space). We only illustrate the assignment and the associated advection for a single sample (yellow bars).

Algorithm 1: Non Euclidean Sliced Optimal Transport
Sampling – NESOTS

Data: The discrete target distribution ν = ∑
m
i=1 δyi , the number of

iterations K, the batch size L, the gradient descent step γ

Result: The discrete distribution µ(K) after K iterations.
1 µ(0) = SubSample(ν̃,n) ; // Init.
2 for j ∈ [[1,K]] do
3 parallel for l ∈ [[1,L]] do // Batch
4 ν̃ = SubSample(ν̃,n) ; // Sec. 3.6
5 θ = RandomSlice() ; // Sec. 3.1
6 ν̃θ = Pθ

(
ν̃l
)
; // Sec. 3.1

7 µθ = Pθ
(
µ( j)

)
; // Sec. 3.1

8 T = Solve1DOT(µθ,ν̃θ) ; // Sec. 3.2
9 for i ∈ [[1,n]] do

10 g = Γθ

(
Pθ

(
x( j)

i

)
,T

(
Pθ

(
x( j)

i

)))
; // Sec. 3.3

11 dl
i = Log

x( j)
i

(
g
(

x( j)
i

))
; // Sec. 3.4

12 end
13 end
14 parallel for i ∈ [[1,n]] do
15 di = GeoMed

(
{dl

i}L
)

; // Sec. 3.7

16 x( j+1)
i = Exp

x( j)
i

(γdi) ; // Sec. 3.5

17 end
18 end
19 return µ(K) = ∑

m
i=1 δ

x(K)
i

Hyperbolic geometry. The d−dimensional hyperbolic plane Hd

admits many isometric models (e.g. the Poincaré disk or the
Lorentz’s hyperboloid models) [Lee06]. For the sake of simplic-
ity of the associated formulas and numerical reasons, we will be
using the hyperboloid model, i.e., the upper sheet of the hyperbola

Hd := {x ∈ Rd+1,⟨x,x⟩L =−1} ,

where ⟨x,y⟩L := ∑
d
i=1 xiyi − xd+1yd+1 is the Lorentzian dot prod-202

uct. We denote by xO the origin of the hyperbola (red dot in Fig. 2),203

i.e., xO =
(
0, . . . ,0,1

)t . We follow Bonet et al. [BCDC22] by defin-204

ing the projection on the geodesic obtained as the intersection be-205

tween a 2D plane containing xO and the hyperboloid. The sampling206

of uniform slices is achieved by sampling uniformly the space or-207

thogonal to xO, i.e. d ∼ U(Sd ×{0}). We then have the projector208

Pθ(x) :=
Π

θ(x)√
−⟨Πθ(x),Πθ(x)⟩L

, (8)

where we denote by θ := {d,xO} the generator of the 2D slice in209

Hd .210

3.2. Solving the discrete 1D Wasserstein problem211

As we will need to evaluate the transport cost on projected sam-212

ples onto the sliced θ, we need to clarify the distances between two213

points in Sd or Hd , and the coordinate on their projection onto θ,214

denoted tθ(x), the signed geodesic distance to a given origin in θ .215

Spherical geometry On the d−dimensional unit sphere,216

geodesics are great circles (intersection of a 2-plane passing217

through the origin, and Sd). The geodesic distance between two218

points x,y ∈ Sd is simply the angle between the two vectors from219

the origin to the points220

dS(x,y) := arccos(⟨x,y⟩) . (9)

As projections lie on a circle, any origin on θ can be considered to221

define tθ. If θ = {e1,e2}, we use222

tθ(x) :=
π+ arctan2(⟨e2,x⟩,⟨e1,x⟩)

2π
. (10)

On Sd , the optimal transport problem needs to take into account223

the periodicity of the space, and its associated coordinate systems.224

Fortunately, it can be shown [DRG09] that the problem still boils225

down to a simple sorting of the samples coordinates tθ provided that226

the circle is identified to the Real line through an optimal cut. Find-227

ing the optimal cut can be formulated as a weighted median prob-228

lem, as detailed in Cabrelli et al. [CM98], and admits a O(n log(n))229

solution. For some µ, ν in Sd and x ∈ µ, the map T (Pθ(x)) denotes230

the optimal assignment on the slice θ of x to some y ∈ ν.231
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Hyperbolic geometry On Hd , the geodesic distance between two232

points is233

dH(x,y) := arccosh(−⟨x,y⟩L) . (11)

Since the slice is directed by d, we define the geodesic distance234

coordinate induced by d235

tθ(x) := sign(⟨x,d⟩)dH(xO,x) . (12)

On Hd , the optimal assignment is simply obtained by sorting the236

projected samples on θ and mapping the first projected sample in237

Pθ
# µ to the first one in Pθ

# ν (with respect to tθ), similarly to the238

Euclidean case.239

3.3. Transitivity and group action240

In the Euclidean space, samples are advected by a simple trans-241

lation in the straight line direction by the distance tθ(x) −242

tθ(T (P
θ(x))). In spherical (Eq. (13)) and hyperbolic (Eq. (14)) do-243

mains, we rely on group actions. More precisely, we are interested244

in group actions that preserve the geodesics.245

Spherical Geometry The right group to act on the sphere is246

SO(d), i.e., the group of all d−dimensional rotations. One can build247

the rotation that maps a point x to a point y in Sd simply by building248

the 2D rotation in their common span, span({x,y}), i.e249 (
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

)
,

for some φ ∈ R. To make sure that the part of the vector orthogo-250

nal to span(x,y) is left unchanged and to avoid building the d × d251

matrix, we decompose any vector w in the orthonormal basis given252

as the result of the Gram-Schmidt algorithm applied to x and y.253

Leading to254

Γθ(x,y) : w → w⊥+x(cos(ϕ)wx − sin(ϕ)wy)

+ ỹ(sin(ϕ)wx + cos(ϕ)wy) , (13)

where ỹ = y−⟨x,y⟩x, wx = ⟨w,x⟩, wy = ⟨w, ỹ⟩, w⊥ is the compo-255

nent of w orthogonal to span({e1,e2}) and ϕ = dS(x,y). One can256

verify that we have Γθ(x,y)(x) = y. It is also possible to check that257

a rotation of ϕ degree along the slice θ applied to x will offset tθ(x)258

by ϕ (modulo 1). Hence, it is indeed a translation along the slice,259

which is the behavior we wanted to translate from the Euclidean260

setting.261

Hyperbolic Geometry As a direct analogy, translations along hy-262

perbolic slices are hyperbolic rotations, i.e., the elements of the263

Lorentz group SO0(d − 1,1) (standard rotations preserve the Eu-264

clidean scalar product whereas hyperbolic ones preserve ⟨·, ·⟩L,265

hence the hyperboloid). Computationally, it is very similar to the266

spherical case, we want to apply the following 2D rotation in the267

span(x,y):268 (
cosh(ϕ) sinh(ϕ)
sinh(ϕ) cosh(ϕ)

)
,

leading to the analogous decomposition along the right subspaces:269

Γθ(x,y) : w → w⊥+d(cosh(ϕ)wd + sinh(ϕ)w0)

+xO(sinh(ϕ)wd + cosh(ϕ)w0) , (14)

y = Expx(v)

x
T Mx v = Logx(y)

Figure 3: Exp and Log maps: on S2, the orange point is
the point obtained by iteratively going in the average of the
Logs xn+1 = Expxn

( γ

n ∑i Logxn
(yi)), which is equivalent to Fréchet

means, whereas the red one is obtained by going in the geometric
median of the directions xn+1 = Expxn

(γ GeoMed({Logxn
(yi)}i)).

where d =
Πx⊥0

(y−x)

∥Πx⊥0
(y−x)∥ , wd = ⟨w,d⟩, w0 = ⟨w,xO⟩, w⊥ is the com-270

ponent of w orthogonal to span(xO,d) and ϕ = dH(x,y). The only271

difference being that we decompose along xO and y− x instead of272

directly x and y (which gives the same span) to make sure that the273

points remain on the hyperboloid. We also have Γθ(x,y)(x) = y.274

3.4. Exp and Log Maps275

Beside group actions, Exp and Log maps are key ingredients in Rie-276

mannian geometry [Lee06] (see illustration Fig. 3). The Expx(v)277

map allows one to follow the geodesic γ, satisfying γ(0) = x and278

γ̇(0) = v ∈ T Mx, i.e., following the most natural path going from x279

with initial direction and velocity v from t = 0 to t = 1. Conversely,280

the Logx(y) ∈ T Mx map, the inverse of Expx, gives the direction281

(and velocity) to go from x to y, i.e. Expx(Logx(y)) = y. In Sd and282

Hd , Exp and Log maps admit closed form expressions.283

Spherical geometry. If ΠT Mx denotes the projections from Rd
284

onto the tangent space of Sd at v, we have285

Expx(v) = cos(∥v∥)x+ sin(∥v∥) v
∥v∥ , (15)

Logx(y) =
ΠT Mx(y−x)

∥ΠT Mx(y−x)∥d(x,y) , (16)

(see Alimisis et al.’s supplemental [ADVA21]).286

Hyperbolic geometry. In the Lorentz hyperbolic model, we have287

similar expressions (see e.g. Dai et al. [DWGJ21]):288

Expx(v) = cosh(||v||L)x+ sinh(||v||L)
v

||v||L
, (17)

Logx(y) =
arccosh(−⟨x,y⟩L)√

⟨x,y⟩2
L−1

(y+ ⟨x,y⟩Lx). (18)

3.5. Stochastic Riemannian gradient descent289

In Euclidean SOTS, when optimizing point sets for blue noise sam-290

pling, one can compute a descent direction of the SW energy for291
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each point by averaging each advection computed for a given num-292

ber of slices (batch size L in Alg. 1), hence recovering a mini-293

batch stochastic gradient descent. On non-Euclidean domains, the294

advected positions cannot be simply averaged. We propose to use a295

stochastic Riemannian gradient descent (SRGD) approach combin-296

ing the gradients obtained in each batch in the tangent plane of each297

sample [Bou23]. In standard SRGD this would be done by taking298

the average of the gradients299

di :=
1
L

L

∑
l=1

dl
i , (19)

but we instead use the geometric median, see 3.7. In our case, dl
i :=300

Logx( j)
i

(
g(x( j)

i )
)

, where, following the notations of Alg. 1, g is the301

map that advects the point x( j)
i in the θ direction following the 1D302

assignment obtained from the projection onto θ. Once the descent303

direction is computed for each sample, we advect the points using304

the Exp map by an, exponentially decaying, step size γ:305

x( j+1)
i = Expx( j)

i
(γ di) . (20)

Note that in the Euclidean setting, this boils down to the original306

SOTS algorithms [BRPP15] for blue noise sampling in [0,1)d . As a307

first experiment, Figure 4 compares the blue noise characteristics of308

the uniform sampling of using NESOTS and classical point patterns309

on S2 [PSC∗15].310

3.6. Non-uniform densities311

When dealing with continuous non-uniform measures φ using a312

sliced approach (e.g. importance sampling Monte Carlo rendering,313

image stippling), we would first need to have a closed-form formu-314

lation of the Radon transform of the target measure of φ along the315

slice θ, as discussed Paulin et al. [PBC∗20] for the uniform measure316

in [0,1)d . To overcome such issue, Salaün et al. [SGSS22] have317

used a binning strategy of the target points across n adaptive bins318

that follow the target distribution. We further simplify this approach319

on Sd and Hd using an empirical approximation of φ from a discrete320

measure ν with a large number of samples m (see Fig. 5). The key321

idea of Alg. 1 is to start from ν with m ≫ n, and to uniformly pick n322

samples from ν at each slice (line 5). As long as ν ∼ φ, this does not323

affect the minimization of the SW energy, while allowing a lot of324

flexibility with respect to the applications (see below) and keeping325

a balanced n-to-n 1d optimal transport problem to solve.326

3.7. Geometric median327

In our experiments, we observe that when targeting non-uniform328

measures, artifacts may appear during the gradient descent (e.g.329

alignment of samples as illustrated in Fig. 5-c). Some approaches330

handle this fact with a more robust advection computation, such as331

Salaün et al. [SGSS22] but they all require a non-negligible compu-332

tational overhead, proportional to the input size (for example taking333

m = kn). To overcome this problem without adding limited extra334

computations, instead of taking the mean of the descent directions,335

we compute their geometric median. The idea arose from the anal-336

ogy between the arbitrary bad batches that occurs with poor quality337
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Figure 4: Blue noise on the sphere. On S2, we evaluate the blue
noise property of our sampling (2048 samples). Our result as to
be compared to a uniform sampling, a stratified sampling using a
healpix spherical structure [PSC∗15], a Poisson disk sampling, a
spherical Fibonacci sequence [KISS15], and a Lloyd’s relaxation
approach (Centroidal Voronoi Tesselation, CVT) [LWL∗09b], and
a geodesic farthest point greedy strategy [PC06] (FP) . The graph
corresponds to the angular power spectra of the spherical har-
monic transform of the point sets (except for spherical Fibonacci
whose regular patterns make the spectral analysis less relevant) .
As discussed in Pilleboue et al. [PSC∗15], our sampler exhibits
correct blue noise property with low energy for low frequencies, a
peak at the average distance between samples and a plateau with
few oscillations for higher frequencies.

subsamples ν̃
l and malignant voters in voting systems, see [EM-338

FGH23]. The geometric median can be computed very efficiently,339

in practice using the Weiszfeld algorithm [Wei37], see Appendix 8.340

3.8. Real projective plane sampling341

A slight modification of the NESOTS algorithm on the sphere al-342

lows sampling any density defined on the real projective plane Pd
343

in the same blue noise way. Such sampling might have great use344

in graphics applications since many geometric objects are defined345

up to signs (such as directing vectors of lines or plane normals).346

Applications are detailed in section 6.347

4. Intrinsic discrete manifold sampling348

As a first application, we demonstrate the interest of the non-349

Euclidean sliced optimal transport approach for intrinsic sampling350
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(a) (b)

(c) (d)

Figure 5: Non-uniform measure sampling: given a non-uniform
probability measure φ in S2 (a), we first construct a discrete mea-
sure ν ∼ φ with a large number of samples, 2048 samples here
(b). Figures (c) and (d) are the output of the NESOTS algorithm
for 2048 samples (L = 32, K = 300), when averaging the direc-
tions during the advection (c), or using the geometric median (d).
While both distributions approximate the density, the latter pro-
vides a more stable result without sample alignment artifacts.

of meshes in R3. Given a (closed) mesh M, the core idea is to con-351

struct an injective map ψ from M to S2 or H2, to apply NESOTS on352

these domains to sample the image of the uniform measure U(M)353

on the mesh by ψ and to pull back the samples onto M with ψ
−1.354

Fig. 6 gives an illustration of this general pipeline.355

For surfaces in Rd , ψ can be built as a conformal map through356

the uniformization theorem [Abi81]. For short, any Riemannian357

surface of genus g admits a constant Gaussian curvature metric:358

spherical metric if g = 0 (Sd−1, positive constant curvature space),359

a flat metric f g = 1 (Rd−1, zero-curvature space) and an hyper-360

bolic metric for g ≥ 2 (Hd−1, negative curvature space). In the dis-361

crete setting, M and M′ are discrete conformal equivalent if the362

edge lengths li j and l′i j are such that l′i j = exp(ui+u j)/2 li j , for some363

conformal factors {ui} ∈ R on vertices [SSP08, BPS15, GLSW18,364

SCBK20]. In the following, we specifically target the g = 0 and365

g ≥ 2 cases.366

Note that in our pipeline, we do not explicitly require the map to367

be conformal. Any injective map between the mesh and the target368

space could be considered. We focus here on conformal maps as369

theoretical guarantees of existence and efficient algorithms to com-370

pute them exist. In Fig. 7, we illustrate that comparable blue noise371

sampling can be obtained non-conformal maps.372

In the next section, we describe the sampling algorithm on the373

sphere, also illustrated in Fig. 6. Section 4.2 focuses on high genus374

surfaces using an iterated local hyperbolic embedding. Our sam-375

ples minimize the sliced transport energy to the target measure with376

respect to the ground metric of the embedded space (Sd or Hd), not377

the intrinsic metric of M. Yet, from the regularity of the conformal378

maps we observe that blue noise characteristics are preserved when379

pulled back from the embedded space to M (see Sec. 4.3).380

4.1. Global spherical embedding381

The construction of the mapping ψ through the uniformization the-382

orem depends on the genus g of M. For the sake of simplicity,383

we start with the spherical case i.e., g = 0. By the uniformization384

theorem, a conformal map exists from M to S2. Here, we take ad-385

vantage of the robust tools provided by Gillespie et al. [GSC21] to386

construct a bijective conformal map ψ : M→ S2, allowing a global387

optimization.388

Algorithm 2: Intrinsic Spherical blue noise surface sam-
pling

Data: M, ν, m, n, K, L and γ (see Alg. 1)
1 MG = BuildMapping(M,S2) ;
2 νG = sampleMeshFaces(MG,ν,m) ;
3 µ̃G = SubSample(νG,n) ;
4 µG = NESOTS(µ̃G,νG,K,L,γ) ; // Alg. 1
5 µ = MapToMesh(µG,M,MG) ; // Alg. 5
6 return µ

The global spherical sampling algorithm (Alg. 2) can thus be389

sketched as follows. For a mesh M homeomorphic to the sphere,390

we first construct ψ and the global mesh layout MG on S2. We then391

construct the target density νG by uniformly sampling M with a392

large number of samples m (importance sampling of the triangles393

from the face areas), and projecting the samples onto MG. Note394

that νG is not uniform on the sphere since it captures the distortion395

induced by ψ. Finally, we use the NESOTS algorithm to compute396

the sliced optimal transport sampling µG and pullback this measure397

onto the input mesh as described in Sec. 4.3.398

4.2. Local hyperbolic embedding399

If M has higher genus, a conformal map exists from M to H2.400

Conformal coefficients can be obtained using the hyperbolic Dis-401

crete Yamabe Flow formulation [Luo04, BPS15]. Please refer to402

Section 4.3 for numerical details. The Yamabe flow allows us to403

compute the per vertex conformal factors {ui}, and then the asso-404

ciated (hyperbilic) edge length l′i j of the embedded mesh MG onto405

H2. From the updated metric, one can embed MG onto the hyper-406

boloid of the Lorentz model (see Fig 6) using a greedy approach:407

starting from a initial vertex V0 set to the origin xO, triangles are408

layed down onto H2 in a greedy breadth first strategy process fol-409

lowing Schmidt et al.’s approach [SCBK20]. If we continue the410

BFS visiting the triangles several times, this process reveals that411

the mapping from M to H2 is periodic and the conformal map pave412

the entire hyperbolic plane. This prevents us from duplicating the413

global approach as described in Section 4.1 since the image of the414
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NESOTS
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NESOTS

ℍ2

ψ−→ ψ
−1

−→

ψi

ψ
−1
i

Figure 6: Overall pipeline of our intrinsic discrete manifold sampling: starting from an input shape, we conformally embed the discrete
structure onto either S2 for 0-genus surfaces, or local patches to H2 for higher genus one. Then, the NESOTS (Alg. 1) is used (globally or
locally) to blue noise sample the embedded structure targeting a measure taking into account the metric distortion.

Figure 7: Sampling using a non-conformal spherical mapping:
first, we recall the NESOTS samplings using CEPS conformal maps
(first row). In green, we have updated the mapping using some
Laplacian smoothing steps on the sphere, resulting comparable
sampling (second row).

uniform measure U(M) by a periodic function is not integrable415

anymore, and hence the Optimal Transport framework cannot be416

used since it is only defined for probability measures.417

To overcome this problem we restrict the embedding to patches418

of the mesh (see Fig. 6 and Alg. 3): starting from a global Yam-419

abe Flow that is solved only once, we iterate over a local layout420

construction with an associated low distortion map ψi, and use NE-421

SOTS on this compact subset of H2. In this process, the choice422

of the first vertex of the layout matters since the distortion will be423

very low in a neighborhood of V0 (mapped to xO), and will grow424

exponentially with the distance to it. Hence, using the embedding425

for H2 in R3, the main idea of the local algorithm is to construct a426

local layout until the (Euclidean) distance to the origin xO,in the z427

direction, exceeds a certain threshold ε. As we will ignore triangles428

far from the origin, we only build low distortion mappings. Note429

that the size of the patch for which the distortion is low depends430

on the quality of the mesh (triangle aspect), and on the curvature431

around V0. The choice of ε allows controlling the scale of the op-432

timization, giving a tradeoff between the sliced energy quality and433

speed (smaller patches leads to faster iterations). The effect of ε is434

evaluated in Fig. 9.435

When a sample is displaced outside of the patch layout on H2,436

we just ignore the displacement (similarly to [PBC∗20] when sam-437

pling [0,1)d or the d-Ball). To make sure that all the points are438

optimized as equally as possible, we just keep track of the num-439

ber of times a given vertex M has been used as the origin v0 of440

a patch and iterate on the local patch construction starting by the441

least embedded vertex (the priority queue in Alg. 3). Note that the442

local layout construction is extremely fast (linear complexity in the443

number of triangles of the patch).444

In Fig. 8, we demonstrate the interest of the intrinsic sampling445

on high genus meshes. When the embedding is ambient-compatible446

(first row), we observe a slightly better sample distribution using447

our approach than FP and Poisson Disk sampling. In contrast, the448

CVT based approach produces a very high quality point pattern.449

Although, when the embedding is defective, our purely intrinsic450

approach led to an almost identical point pattern (in red) when451

mapped back to a better embedding (in blue) (b), whereas both452
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(a) (b) (c) (d) (e) ( f )
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Figure 8: Intrinsic blue noise sampling of manifolds: Given the fertility shape with two different Euclidean embeddings (a). The
flattened one is obtained through a physical simulation such that the two embeddings are intrinsically isometric. We illustrate the sampling of
the meshes with red dots using our approach (b), the intrinsic farthest point approach (FP) [PC06] (c), the Poisson disk sampling in ambient
space (d), and the CVT sampling [LWL∗09b] (e). The blue dots correspond to the sampling on the flat embedding that are mapped to the
unflattened one. First, we observe that our purely intrinsic approach leads to similar point sets in blue and red in (c). Best point patterns
are obtained using CVT when the embedding is correct in R3, i.e. no thin layers ((d)−top). However, for both Poisson disk and CVT, the
sampling of the flat embedding leads to defective point patterns (holes in blue samples in (d) and (e)). In ( f ), we present pair correlation
functions for each sampler (both on the flat and top row meshes).

Algorithm 3: Intrinsic local hyperbolic blue noise surface
sampling

Data: M, ν on M, n, N , K, L, γ, G = H2 (see Alg. 1)
1 {ui} = YamabeFlow(M) ;
2 νG = sampleMeshFaces(MG,ν,m) ;
3 for i ∈ [[1,N]] do
4 vert = PopVertexVisitPriorityQueue();
5 (Vi,Fi) = ComputeLocalHyperbolicLayout({ui},vert,ε) ;
6 UpdateVertexVisitPriorityQueue(Vi);
7 µi = ComputeRestrictionToLayout(µ,Fi);
8 νi = ComputeRestrictionToLayout(ν,Fi);
9 µG = NESOTS(µi,νi,K,L,γ) ; // Alg. 1

10 µ = MapToMesh(µG,M,MG) ; // Alg. 5

11 end
12 return µ

Poisson disk and CVT have critical voids and clusters due to bad453

assignments. To quantify this finding, we have computed the pair454

correlation function (pcf) [IPSS08] the exact geodesic distance on455

the manifold between each pair of samples [MMP87]. In Euclidean456

domains, pcf and radial mean power spectra capture similar point457

pattern characteristics [SÖA∗19]. In Fig. 8-( f ), we observe similar458

blue noise distribution (a peek at some characteristic distance and459

no too-close samples). We also observe that on the flat and non-460

flat meshes, our approach leads to similar pcfs. The pcfs CVT and461

Poisson disk are highly degraded on the flat geometries. In Fig. 10462

we present sampling examples of non-uniform target measures on463

meshes. Additional sampling results are given in Fig. 13.464
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Figure 9: NESOTS convergence results: we illustrate the con-
vergence of Alg. 3 using N = 500 iterations (K = 500and
L = 32) for 2048 samples, as a function of the ε param-
eter. If ε is too small, local patches are small which im-
plies short timing but low quality blue noise point pattern (as
quantified by the SW distance to the uniform measure). As
ε increases, the blue noise quality is improved, but each it-
eration is longer. For ε ∈ {1.01,1.1,1.2,1.4,1.8,2.6}, the av-
erage number of µi samples in each patch is respectively
{3.31,14.76,29.97,61.86,124.92,242.82}. Sampled meshes cor-
respond to the final step of ε ∈ {1.1,1.4,2.6} respectively.
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(a) (b) (c) (d)

Figure 10: Non-uniform target density examples on meshes: given an input probability density function, a smooth one (a) on the fertil-
ity shape (genus−4 manifold, AIM@shape) and mean curvature driven one in (c) (gryroid surface, genus−32 manifold), our approach is
able to generate blue noise samples µ approximating the density (2048 samples for (b) and 4096 samples for (d)). In (d) we also illustrate
the sampling of the gyroid targeting the uniform density for comparison.

4.3. Implementation details and complexity465

First of all, for the hyperbolic case, discrete conformal coefficients466

{ui} are obtained by minimizing a convex energy, whose gradient467

and Hessian are given in [BPS15]. We thus apply a Newton de-468

scent approach with backtracking to ensure convergence. On the469

models presented in this paper, timings are detailed in Table 1. In470

the spherical case, we rely on the CEPS code provided by Gille-471

spie et al. [GSC21] to explicitly construct the spherical embedding.472

Once obtained, Alg. 2 is a direct application of Alg. 1 with the same473

computational cost.474

For the analysis of the local hyperbolic optimization (Alg. 3), we475

experimentally observe that the number of samples µi and νi on the476

layout grows linearly with ε. If Cε denotes the average computation477

cost per slice and per patch, using a batch size L, K steps per patch478

and N global iterations, we obtain a O(N ·K · L ·Cε) complexity.479

Note that unless specified otherwise, we have used N = 500,K =480

10,ε = 1.5 and L = 32 for all experiments. Although performances481

were not our primary concern, typical timings are given in Table 1.482

Please refer to Appendix 8 for a discussion on the computational483

cost overhead when using the geometric median instead of simply484

averaging directions in Alg. 1.485

Once samples are optimized in, either globally for S2, or lo-486

cally for H2, we need an efficient way to retrieve the face of the487

mesh a given sample falls in (and the barycentric coordinates of488

that sample in the face). For that purpose, we exploit the convex-489

ity of the domains: we first construct a BVH of the spherical or490

hyperbolic layout triangles and get the face id by shooting a ray491

through the origin (0,0,0) and the sample (see Alg. 5 in Appendix492

A). Finally, in the hyperbolic case, to avoid having to map all the493

m points of ν̃ on each layout, for each slice, we only map the494

n points that are subsampled from ν̃. Source code is available at495

https://github.com/baptiste-genest/NESOTS.496

Shape Credits |V | |F| g Yamabe
Flow

NESOTS

spot [CPS13] 2930 5856 0 n.a. 17.48
duck deriv. of K. Crane 29999 60006 3 10.67 27.73
fertility AIM@Shape 8192 16396 4 3.02 15.13
macaca [WAA∗05] 3494 7000 4 1.36 11,12
gyroid Thingi10k #111246 22115 44354 32 30.37 1.94

Table 1: Timings. Mesh statistics and typical timings (in seconds)
for the g ≥ 2 shapes using the parameters presented in Sec. 4.3
(AMD Ryzen 5000-H, 16 cores).

5. Real projective plane Pd sampling497

Many objects generated by vectors are defined regardless of their498

length or sign. For instance, the orthographic projection of a 3d499

shape in the direction d is the same for all λd,∀λ ̸= 0. The space500

where collinear vectors are identified is called the Projective Plane501

Pd . One idea might be to project the points on the sphere, which502

will successfully identify the vectors equivalent up to a positive503

scale λ > 0 but not up to a sign. Hence, trying to generate a "uni-504

form" set of lines with any blue noise sampler on the sphere does505

not output satisfactory results as the points are not optimized to506

take into account this equivalence relationship. A simple modifica-507

tion of Alg. 1 described in Alg. 4, allows us to successfully extend508

the blue noise generation of points, in any dimension on Pd follow-509

ing any density on the sphere satisfying f (x) = f (−x) for x ∈ Sd .510

To the best of our knowledge, this is new.511

Lines and Hyperplanes sampling. As already stated, lines, char-512

acterized by their unit vector, can be generated uniformly on Pd
513

using Alg. 4 (see Fig. 5 for a 3d blue noise line sampling in P2). By514

taking the orthogonal complement of such lines, we can similarly515

obtain a blue noise sampling of (d −1)−hyperplanes.516

Affine line and hyperplane sampling. Note than even affine517

spaces can be sampled by Alg. 4. For instance, an affine line can518

https://github.com/baptiste-genest/NESOTS


B. Genest, N. Courty & D. Coeurjolly / Non-Euclidean Sliced Optimal Transport Sampling

Figure 11: Projective plane P2 sampling: red points are sampled
with Alg. 4, light blue points are the opposites of the red ones. Sim-
ilarly, blue and yellow points are given by a spherical Fibonacci
[KISS15]. Points obtained by Alg. 4 have better blue noise charac-
teristics when considered with their opposites. To illustrate its use,
we display at the bottom row the lines generated by the points.

described by its Cartesian equation, i.e. in dimension 2519

ax+by+ c = 0, (21)

but notice that, ∀k ̸= 0, if x and y are solutions of (21), then520

kax+ kby+ kc = 0. Hence each affine space of dimension d can521

be represented in the projective plane Pd by its Cartesian coeffi-522

cients (here (a,b,c)t ). See Fig. 12 for a 2d affine line sampling523

experiment.524

Rotation Sampling by Unit Quaternion sampling. A unit525

quaternion q can act on a vector as a rotation526

x 7→ q−1x̃q ,

where x̃ is the imaginary quaternion with x as vector part. Since527

q appears twice in the product, q and −q gives the same rotation.528

Hence one can use Alg. 4 on P3 to uniformize a set of unit quater-529

nions (represented as unit 4 dimensional unit vectors). Previous ap-530

proaches such as Alexa’s technique [Ale22], provides good sam-531

pling on the 3-Sphere but does not directly tackle the sign equiv-532

alence problem, which leads to imperfect rotation sampling . The533

results of the rotation sampling process is displayed in Fig. 1-(right)534

where each shape is rotated by a rotation generated by Alg. 4.535

6. Limitations and future Work536

Our approach extends the blue noise sampling of any probability537

measure through the sliced optimal transport energy, originally de-538

signed for Euclidean domains, to Riemannian manifolds: the spher-539

ical space Sd , the hyperbolic space Hd , and the projective one Pd .540

In a nutshell, from explicit advection and direction averaging steps541

Figure 12: Affine lines sampling: from the mapping of lines co-
efficients to P2, we generate 64 blue noise affine lines following a
non-uniform density (top row) using either a white noise sampling
(left column) or Alg. 4. When mapped back to R2, our sampling
exhibits blue noise characteristics in R2 with respect to the met-
ric induced by the Cartesian mapping (second row). Note that here
only segments are displayed for the sake of clarity but they are ac-
tual lines of R2.

Algorithm 4: Real Projective Plane Sampling Pd

Data: ν = ∑
m
i=1 δyi , K, L, and γ (see Alg. 1).

Result: µ(K)

1 µ(0) = subSample(ν,2n)
2 for j ∈ [[1,K]] do
3 parallel for l ∈ [[1,L]] do // Batch
4 ν̃ = subSample(ν̃,2n) ; // Sec. 3.6
5 θ = RandomSlice() ; // Sec. 3.1
6 ν̃θ = Pθ

(
ν̃l
)
; // Sec. 3.1

7 µθ = Pθ
(
µ( j)

)
∪−Pθ

(
µ( j)

)
; // Sec. 3.1

8 T = Solve1DOT(µθ,ν̃θ) ; // Sec. 3.2
9 for i ∈ [[1,2n]] do

10 g = Γθ

(
Pθ

(
x( j)

i

)
,T

(
Pθ

(
x( j)

i

)))
; // Sec. 3.3

11 dl
i = Log

x( j)
i

(
g
(

x( j)
i

))
; // Sec. 3.4

12 end
13 end
14 parallel for i ∈ [[1,n]] do
15 di = GeoMed

(
{dl

i}L ∪{−dl
i+n}L

)
; // Sec. 3.7

16 x( j+1)
i = Exp

x( j)
i

(γdi) ; // Sec. 3.5

17 end
18 end
19 return µ(K) = ∑

m
i=1 δ

x(K)
i
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on these spaces, we present a gradient descent strategy that opti-542

mizes a point set minimizing the sliced Wasserstein energy.543

First of all, concerning the generic NESOTS approach, there are544

many opportunities for performance improvements. We are con-545

vinced that many variance reduction techniques could be borrowed546

from Monte Carlo rendering approach to speed up the sliced strat-547

egy (e.g. importance sampling of the θ directions, control variates548

using a proxy for the SW energy).549

Thanks to the uniformization theorem, we demonstrated the in-550

terest of the approach for intrinsic blue noise sampling of discrete551

surfaces. Although we may not compete with existing extremely552

fast restricted Voronoi based techniques when the mesh has a good553

embedding, we advocate that the purely intrinsic nature of our con-554

struction is of interest. An important limitation is the robustness555

of the global conformal map in the spherical case that may impact556

the sampling when high distortion occurs. In the hyperbolic case,557

our local construction mitigates this by controlling potential distor-558

tion issues (the ε parameter) but we are convinced that improve-559

ments exist, e.g. using implicit intrinsic remeshing as in Gillespie560

et al. [GSC21]. On the geometric side, we only focused g = 0 and561

g ≥ 2 surfaces leaving the flat metric space case aside. For g = 1,562

cut-and-open strategies must be designed that we avoid in spher-563

ical and hyperbolic domains. In this paper, we also focus on the564

sample generation, leaving the use cases of the point set as future565

work (e.g. decal placement, function reconstruction, remeshing).566

For remeshing, the convexity of567

the S2 and H2 could be further ex-568

ploited to reconstruct a mesh: on569

the S2 the convex hull of the op-570

timized samples leads to a trivial571

(manifold) surface reconstruction572

(see inset). The hyperbolic case is573

more complicated as holes could574

be embedded in a compact subset575

of H2 for which the global convex576

hull topology does not make sense. We believe that a local combi-577

natorial construction from the convex hull using a small ε could be578

investigated.579

Finally, we have only scratched the use of blue noise sampling580

in the projective space Pd for computer graphics applications. For581

instance, Monte Carlo-like line and segment sample estimators may582

lead to drastic reductions of variance in rendering for some effects583

such as soft shadows or defocusing blur [SMJ17]. We believe that584

affine line sampling approaches as illustrated in Fig. 12 would be585

of great interest in this context.586
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Appendix A: Additional algorithms592

The objective of Alg. 5 is to find the face a point is lying on, and to593

compute the correspondence between its position on the face em-594

bedded in R3 and on the layout in S2 (resp H2) through barycentric595

coordinates. Even if we theoretically should use spherical (resp.596

hyperbolic) barycentric coordinates, we observe that the Euclidean597

barycentric coordinates make a good enough quality proxy while598

avoiding computing transcendental functions at each mapping. For599

high performances, the face retrieval can be done leveraging the600

convexity of S2 and H2 through a ray shooting approach (rays start-601

ing from the domain origin to the sample to locate), with a BVH of602

the faces. In our implementation, we used the library [PG23]. In

Algorithm 5: Mapping measures between two meshes
Data: µG ,M and MG

1 BVH = BuildBVH(MG) ;
2 for i ∈ [[1,n]] do
3 F̃ = BVH.intersect(MG,xO,xG

i ) ;
4 bi = ComputeBarycentricCoordinates(MG,xG

i , F̃) ;
5 F = FindCorrespondingFace(F̃ ,M) ;
6 xi = PositionFromBarycentricCoordinates(M,bi,F) ;
7 end
8 return µ

603

Alg. 6, we detail the Weiszfeld’s algorithm we use for the geomet-604

ric median computation using an iterative least squares approach.605

Note that, as stated in Section 3.7, Weiszfeld’s algorithm is used606

to combine the gradients (in Rn) during the Riemannian stochastic607

gradient descent. Theoretically, without the τ term, this algorithm

Algorithm 6: Weiszfeld’s geometric median algorithm
[Wei37]

Data: The samples {xi}L ∈ Rd , a stability parameter τ ∈ R
1 y = 0 ;
2 j = 2τ ;
3 while j > τ do
4 d = 0 ;
5 w = 0 ;
6 ỹ = 0;
7 for i ∈ [[0,L]] do
8 d = τ+∥y−xi∥2 ;
9 w += d ;

10 ỹ += xi
d ;

11 end
12 ỹ /= w ;
13 j = ∥y−next∥2 ;
14 y = ỹ ;
15 end
16 return y

608

does not converge if y0 = xi for some i. In practice, with τ > 0, we609

do not observe convergence issues (interested readers may refer to610

Cohen et al. [CLM∗16] for a review of standard algorithms). While611

geometric median is an essential element to guarantee quality of612

the result for highly non-uniform density functions, a slight com-613

putational overhead exists when compared to the geometric mean.614

On the fertility mesh with standard parameters (see Sec 4.3),615

the optimization part of the Alg. 3 takes 12.38s with the mean and616

13.33s with the geometric median (L = 32 and τ = 10−7 for all617

experiments).618
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Figure 13: Intrinsic discrete manifold sampling: additional sampling results with 2048 samples for g = 0 and g ≥ 2 surfaces.
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