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Abstract

This article revisits the optimal growth with three distinct Rawlsian ap-

proaches: (1) the original Rawlsian criterion, popular in economic literature;

(2) the maximin with multiple discount factors, introduced by Chambers and

Echenique (2018); (3) the rank-dependent criterion, applied by Zuber and

Asheim (2012) to growth theory.

Finally, we develop a new approach based on a convex combination of the

most common criteria: Ramsey-Cass-Koopmans and Rawls.
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1 Introduction

Fundamental questions in economic growth theory are how to define a criterion

reconciling efficiency and equality, and how to compute the economy behavior under

this criterion.

The most popular utilitarian approach to growth theory is the Ramsey-Cass-

Koopmans criterion (hereinafter RCK). The main criticism addressed to this crite-

rion is the unequal treatment between close and distant future. In fact, given an

intertemporal utility stream, its value is computed weighting less the future genera-

tions. This leads to a situation where the current generation does not leave enough

resource to the future ones. In his seminal contribution, Ramsey (1928) considers

that discounting the welfare of future generations is ”ethically indefensible and arises

merely from the weakness of the imagination”.1

Rawls (1971) argues that, behind the ”veil of ignorance”, the economic agent

must adopt the criterion which maximizes the welfare of the least generation. How

the economy behaves under this criterion is an important question. Arrow (1973),

Calvo (1977) and Phelps and Riley (1978) address this issue in different contexts

such as constant productivity or uncertain technology and come to the pessimistic

conclusion that, if the economy starts with a low stock of capital, in order to preserve

intergenerational equality, any generation must remain at this poor level.

Ha-Huy (2022) extends themaximin criterion with multiple discounting in Cham-

bers and Echenique (2018) to defines a new Rawls-like criterion. He argues that,

behind the ”veil of ignorance”, the economic agent faces the ambiguity about the

appropriate discount factor to evaluate the intertemporal utility stream. In this case,

1See also Zuber and Asheim (2012) for a review.
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given an intertemporal utility stream (u0, u1, . . . ), the criterion becomes

inf
δ∈(0,1)

∞∑
t=0

(1− δ) δtut

Ha-Huy (2022) shows that, under this criterion, the economy behaves as under

the Rawlsian one.

Criteria preserving equality present another difficulty. Diamond (1965) and Basu

and Mitra (2003) proved that there is no function representing a criterion which

satisfies both Pareto2 and anonymity3 properties. In another words, it is difficult to

reconcile efficiency and equality.

The overtaking criterion by Gale (1967) seems to overcome this difficulty, since it

is both Paretian and anonimous. The future generations are not discounted. How-

ever, preferences represented by the overtaking criterion are not complete. Moreover,

when the economy starts with a low initial stock of capital, the criteria that don’t

discount the future, ask the first generations to sacrifice.4

Zuber and Asheim (2012) applies the rank-dependent method of social welfare

theory to growth theory. They interpret the discount factor as a way to avoid sac-

rifices of poor generations too harsh. The key idea is weighting more the worst

generations in the intertemporal evaluation. They first provide an axiomatic foun-

dation to this new criterion by applying the axioms introduced by Koopmans (1960,

1972), such as separability between present and future, stationarity and the Paretian

property, to the set of utility streams either increasing or rearrangeable as increasing

instead of to the whole set of streams. In this respect, the evaluation of a stream

2Increasing the welfare of one generation in keeping unchanged the others increases the evaluation

of intertemporal utility sequence.
3Permuting the utility level of different generations does not change the evaluation of the in-

tertemporal utility stream.
4Mirlees (1967) shows that the first generations’ saving rate may go up to more than 50%.
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(u0, u1, . . . ) can be reformulated as:

inf
π∈Π

∞∑
t=0

δtuπ(t)

where Π represents the set of all possible permutations of natural numbers N ≡

{0, 1, . . . } and δ ∈ (0, 1) is a discount factor.

Zuber and Asheim (2012) apply this criterion to growth theory and prove that, in

this case, the solution coincides with the optimal path of the Rawlsian criterion when

the productivity is low, and with the optimal path of the Ramsey-Cass-Koopmans

model when the productivity is high.5

An added value of our article is the global analysis of growth trajectories under

the Zuber and Asheim (2012) criterion.6 Starting with a capital stock below the

modified golden rule, the economy follows the same trajectory as in the RCK model:

the consumption increases over time and converges to the level of modified golden

rule. If the initial capital stock is between the modified golden rule and the golden

rule, then it remains constant forever and equal to its initial value. Finally, if the

initial capital stock is larger than the golden rule, then there are infinitely many

optimal paths, all converging to the golden rule.

An additional added value, is the definition of new criteria balancing efficiency

and equality. Alvarez-Cuadrado and Van Long (2009) in continuous time and Ha-

Huy and Nguyen (2022) in discrete time study a convex combination of RCK and

Ralwsian criteria.7 Both these contributions share the same idea: a Rawlsian cri-

5See Proposition 10 in Zuber and Asheim (2012).
6The golden rule capital stock maximizes the stationary consumption level. The modified golden

rule is the steady state under the utilitarian criterion in the RCK model.
7In a purpose of balancing close and distant futures, Chichilnisky (1996, 1997) proposes non-

dictatorship properties. These criteria have inspired many works thereafter. However, as pointed

out by Heal (1998), under the assumption non-dictatorship there is no optimal path in models with
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terion, stressing the equality between generations, tends to promote forever a state

of the economy with low capital. Could we weaken the equality degree to ensure

more future development? To this purpose, to what extent we have to sacrifice the

equality principle? These contributions prove that, starting with a low level of cap-

ital, the economy follows the RCK optimal path in the long run, while with a high

level, it converges to a RCK-like steady state which is a modified modified golden

rule corresponding to a higher discount factor.

In our paper, we also consider a convex combination of criteria RCK and Zuber

and Asheim (2012). If the initial capital stock is low, then the optimal path coincides

with the optimal RCK trajectory. Otherwise, the optimal path coincides with the

trajectory under the criterion in Ha-Huy (2022) and it converges to a higher steady

state.

The article is organized as follows. In Section 2, we present three Rawlsian

criteria and an equivalence result between the first two. Section 3 provides a global

analysis of trajectories under the criterion in Zuber and Asheim (2012) and a convex

combination of RCK and Zuber and Asheim (2012).

2 Three Rawlsian criteria

2.1 Fundamentals

Time is discrete: t = 0, 1, . . . At time t, given the stock of capital xt ≥ 0, the

production level is f (xt). The economic agent divides this output into consumption

renewable resources. A similar result holds in an optimal growth context (see Ayong Le Kama et al.

(2013)). Asheim and Ekeland (2016) and Figuières and Tidball (2012) try to find more satisfactory

solutions with alternative approaches.
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ct and capital investment for tomorrow, xt+1 ≥ 0. Given the consumption ct, the

utility level at time t is u (ct). We assume that the production function f is concave

and satisfies the Inada conditions: f ′ (0) = ∞ and f ′ (∞) < 1. The utility function

u is strictly increasing and strictly concave.

Let x0 > 0 be a given capital stock and Φ (x0) the set of feasible sequences

χ = (xt)
∞
t=0 with 0 ≤ xt+1 ≤ f (xt) for any t ≥ 0. Denote by Π the set of every

possible permutations of natural numbers N ≡ {{0, 1, . . .}}.

Let x̄ be the golden rule, maximizing the constant consumption f (x̄)−x̄, solution

to f ′ (x) = 1. Given the discount factor δ ∈ (0, 1), let x∗ be the modified golden rule,

the steady state of the RCK problem, solution to δf ′ (x) = 1.

The economic agent maximizes the intertemporal utility U (c0, c1, . . .) to smooth

her consumption over time. More precisely, given the initial capital stock x0, she

solves the following program:

v (x0) = maxU (c0, c1, . . .)

ct + xt+1 ≤ f (xt)

ct, xt+1 ≥ 0

for any t ≥ 0, given x0 > 0. The function v is called the value of the optimization

program.

(1) The criterion of Rawls (1971) focuses on the welfare of the worst genera-

tion. More precisely, given a consumption sequence (c0, c1, . . .), the evaluation of the

intertemporal utility stream is given by

U (c0, c1, . . .) = inf
t≥0

u (ct)

(2) Ha-Huy (2022) considers the alternative maximin criterion with multiple dis-

counting introduced by Chambers and Echenique (2018). Behind the Rawlsian ”veil
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of ignorance”, the economic agent does not know the right discount factor to apply

in order to evaluate the utility stream. In this respect, she is ambiguous.

The maximin approach leads to a second Rawlsian criterion:

U (c0, c1, . . .) = inf
δ∈(0,1)

∞∑
t=0

(1− δ) δtu (ct)

where the argument in the RHS is an arithmetic average with geometric weights

(1− δ) δt. The second Rawlsian criterion can be also reinterpreted as an application

of the first one to a population with heterogenous discounting δi ∈ (0, 1) and a

planner who maximizes the intertemporal utility of the worst agent as a welfare

function.

(3) In Zuber and Asheim (2012), the discount factor is necessary only to prevent

hard sacrifices of the worst generations. In this respect, they reconsider the rank-

dependent method well-known in social welfare literature from a dynamic perspective.

More precisely, they apply the axiomatic system elaborated by Koopmans (1960,

1972) to increasing utility streams or to streams that can be rearranged as increasing.

In doing so, they introduce a third Rawlsian criterion:

U (c0, c1, . . .) = inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
or, equivalently,

U (c0, c1, . . .) = inf
π∈Π

∞∑
t=0

δtu
(
cπ(t)

)
(1)

where Π represents the set of all permutations in the set of natural numbers N and

δ is a given discount factor in (0, 1). The third Rawlsian criterion weights more the

worst generations.

Preliminarily, we are interested in sufficient conditions ensuring that, for each

Rawlsian criterion, an optimal path exists.
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To keep things as simple as possible, we assume a set of sufficient conditions

provided by Le Van and Morhaim (2002), that is Hypothesis H1 to H6. Among them,

tail-insensitivity plays the key role by entailing the continuity of the intertemporal

utility function for the product topology and, hence, the continuity of the value

function in the initial capital stock. Under these assumptions, for each Rawlsian

criterion, an optimal capital accumulation path always exists.

2.2 The first two Rawlsian criteria

The first Rawlsian criterion is studied in a series of contributions, such as Arrow

(1970, 1973), Calvo (1977), Phelps and Riley (1978) among others. The second one

is applied in the same context of our model by Ha-Huy (2022).

(1) Let us present shortly the dynamic properties of the economy under the first

Rawlsian criterion.

(1.1) If 0 ≤ x0 ≤ x̄, then for any feasible path χ ∈ Φ (x0), we have

inf
t≥0

u (f (xt)− xt+1) ≤ u (f (x0)− x0)

The equality happens if and only if xt = x0 for every t ≥ 0. Then the optimal

sequence is (x0, x0, . . .).

(1.2) In the case x0 > x̄, we have

inf
t≥0

u (f (xt)− xt+1) ≤ u (f (x̄)− x̄) (2)

There is an infinite number of optimal sequences (x0, x1, . . . ) such that equality may

be obtained. They are all decreasing and converge to x̄.

(2) Under the second Rawlsian criterion, the optimal path has the same qualita-

tive properties.
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(2.1) If 0 ≤ x0 ≤ x̄, the unique optimal path is the initial condition forever:

(x0, x0, . . . ) (see Corollary 2.1 in Ha-Huy (2022)). The value function becomes

v (x0) = u (f (x0)− x0).

(2.2) If x0 > x̄, then any optimal path under the first Rawlsian criterion is also an

optimal path under the second one. Any optimal path is decreasing and converge to

x̄ (see Corollary 2.1 in Ha-Huy (2022)). The value function is v (x0) = u (f (x̄)− x̄).

We observe that, though these two criteria are different, they lead to the same

optimal path and the same value function. Starting from with a low capital stock,

the economy remains poor forever.

2.3 The third Rawlsian criterion

Focus on the third Rawlsian criterion (1). Consider the following optimization prob-

lem:

v (x0) = max
χ∈Φ(x0)

inf
π∈Π

∞∑
t=0

δtu
(
f
(
xπ(t)

)
− xπ(t)+1

)
The next lemma states some fundamental properties. If the consumption se-

quence is increasing, the third criterion and the utilitarian criterion (RCK) result in

the same evaluation with larger weights on poorer generations. In the general case,

the evaluation under the third criterion is bounded from above by the limit infimum

of the utility sequence, normalized by 1− δ.

Lemma 1. Consider a consumption sequence (c0, c1, . . . ).

(1) If the sequence (c0, c1, . . . ) is non-decreasing, then

inf
π∈Π

∞∑
t=0

δtu
(
cπ(t)

)
=

∞∑
t=0

δtu (ct) (3)

(2) If, for some utility level w and any ε > 0, there exist infinitely many t such
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that u (ct) ≤ w + (1− δ) ε, then

inf
π∈Π

∞∑
t=0

δtu
(
cπ(t)

)
≤ w

1− δ

(3) If there exist infinitely many t such that u (ct) ≤ w + (1− δ) ε for any ε > 0

and there exists τ such u (cτ ) < w, then the inequality in part (2) becomes strict:

inf
π∈Π

∞∑
t=0

δtu
(
cπ(t)

)
<

w

1− δ

Using results in Lemma 1, we can prove the next proposition 1 describing the

optimal path under the third criterion. When the economy starts with a low capital

stock, x0 ≤ x∗, where x∗ is the solution to δf ′ (x) = 1 (modified golden rule), then it

follows the same path we obtain under the RCK criterion. When the economy starts

from an intermediate level, x∗ ≤ x0 ≤ x̄, then its capital level remains constant

forever. If the initial capital stock is large enough, x0 ≥ x̄, any solution is the same

we obtain under the first criterion, that is a decreasing sequence that converges to

the golden rule.

Proposition 1. (1) If x0 ≤ x∗, then the optimal path χ∗ is the solution under RCK

criterion. This is an increasing sequence converging to x∗. The value of this problem

is the same of the RCK program.

(2) If x∗ < x0 ≤ x̄, the optimal path is χ∗ = (x0, x0, . . .) and the value of (1) is

given by

v (x0) =
u (f (x0)− x0)

1− δ

(3) If x0 > x̄, there exists an infinite number of solutions, all converging to x,

and the value is given by

v (x0) =
u (f (x̄)− x̄)

1− δ
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3 The efficiency-equality balance

Any criterion treating all generations equally satisfies the anonymity property, en-

suring that the evaluation of an intertemporal utility stream does not change after a

permutation of welfare level of different generations. However, Diamond (1965) and

Basu and Mitra (2003) have shown that these criteria can not be represented by a

function satisfying also the Pareto property.

Alvarez-Cuadrado and Van Long (2009) in continuous time and Ha-Huy and

Nguyen (2022) in discrete time consider a convex combination of two criteria: RCK

and the first Rawls. In our notation, we have

U (c0, c1, . . . ) =
∞∑
t=0

(1− δ) δtu (ct) + a inf
t≥0

u (ct) (4)

Parameter a ≥ 0 represents the equality degree in this hybrid criterion. As limit

cases, if a = 0, we recover the standard RCK criterion and, if a converges to infinity,

we have the first Rawlsian one.

The key idea to solve the optimization problem under this criterion is the follow-

ing. If we renounce a little to intergenerational equality, we can accumulate more

capital and promote future development.

There exists an optimal sacrifice level of equality. The results about qualitative

properties of the optimal path can be divided into two parts.

(1) When the initial capital is low, x0 ≤ x∗, where x∗ is the modified golden rule,

then its stock slowly increases in the period of life of the first generations. However,

in the long run, the trajectory of the capital stock will approach and, from a critical

date on, coincides with the RCK optimal path.8 The equality parameter a in the

hybrid criterion reduces the distance in terms of utility between the best and the

8See Proposition 2.1 in Ha-Huy and Nguyen (2022).
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worst generations.

(2) The case x0 > x∗ is more complicated to handle. Two critical levels matter:

0 ≤ a1 ≤ a2 with a2 > 0.

(2.1) If 0 ≤ a ≤ a1, the equality part plays no role and the optimal path coincides

the one under RCK criterion (see Proposition 2.2, part (iii), in Ha-Huy and Nguyen

(2022)).

(2.2) When a1 < a < a2, the economy converges to modified golden rule as in the

RCK model, but with a larger discount factor δ̃ > δ (see Proposition 2.2, part (i), in

Ha-Huy and Nguyen (2022)).

(2.3) If a ≥ a2, the equality part fully dominates and we recover the optimal path

of the first Rawlsian criterion (see Proposition 2.2, part (ii), in Ha-Huy and Nguyen

(2022)).

We see that the equality degree a increases the welfare of generations living in a

far future with respect to their level under the standard utilitarian criterion. It is

easy to see that the criteria represented by (4) and

U (c0, c1, . . .) = (1− λ)
∞∑
t=0

(1− δ) δtu (ct) + λ inf
t≥0

u (ct)

with λ = a/ (1 + a) are equivalent.

Along similar lines, we define a new hybrid criterion which combines a standard

utilitarian part with an equality part, and we study the optimization problem under

the convex combination of RCK and Zuber and Asheim (2012). More precisely, we

introduce the following criterion:

U (c0, c1, . . .) = (1− λ)
∞∑
t=0

(1− δ) δtu (ct) + λ inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
where the parameter λ ∈ [0, 1] represents the equality degree in the new criterion.
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When λ = 0, we recover the standard RCK criterion, while, when λ = 1, the third

Rawlsian criterion, considered in subsection 2.3.

There are two cases.

(1) When the initial capital is low, x0 ≤ x∗, because of the high productivity,

the optimal path is the solution under the RCK criterion. Therefore, if the economy

starts with a low stock of capital, this criterion promotes the development differently

form the first Rawlsian one.

(2) When x0 > x∗, we prove that the optimal accumulation coincides with the cap-

ital path under the convex criterion applied in Ha-Huy and Nguyen (2022). Hence,

for a sufficiently large equality degree λ, the economy converges in the long run to

the modified golden rule as in the RCK model, but with a larger discount factor (the

reader is still referred to Proposition 2.2 in Ha-Huy and Nguyen (2022)).

These results are formalized and summarized in the next and last proposition.

Proposition 2. Let 0 < λ < 1.

(1) If the economy starts with 0 < x0 ≤ x∗, then the optimal path under the third

Rawlsian criterion coincides with the one under the RCK criterion.

(2) If the economy starts with x0 > x∗, then there are two critical values with

0 < λ1 < λ2 < 1 such that:

(2.1) If 0 < λ ≤ λ1, the equality part plays no role, and the optimal path is also

the one under the RCK criterion, converging to x∗.

(2.2) If λ1 < λ < λ2, then the optimal path is decreasing and converges to a

steady state corresponding to a discount rate δ̃ greater than δ.

(2.3) If λ ≥ λ2, then the capital accumulation follows the optimal path of the first

Rawlsian criterion.
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4 Conclusion

In this article, we have considered the behavior of the economy under different Rawl-

sian criteria and their convex combination with the popular utilitarian RCK criterion.

We find that, sacrificing the equality by reducing its degree in this convex combina-

tion, in the long run, can implement a better situation from a social point of view.

We conclude by remarking that, if we replace the convex combination with a new

criterion as a strictly increasing function of the standard utilitarian value and the

equality value, the qualitative behavior of the economy does not change. However,

the shape of the function would affect the optimal degree of equality, that is the

efficient sacrifice in terms of equality.

5 Appendix

Proof of Lemma 1

(1) Let π∗ the permutation such that π∗ (t) = t for every t. Since this permutation

weights more the lower utility levels, equation (3) follows.

(2) Fix ε > 0. Denote by (tn)
∞
n=0 the subsequence of (m)∞m=0 such that u (ctn) ≤

w + (1− δ) ε. Since the sequence (c0, c1, . . . ) is bounded from above, we can fix N

sufficiently large such that for any π ∈ Π, we have
∑∞

t=N+1 δ
su

(
cπ(t)

)
< ε.

Consider a permutation π∗ such that π∗ (n) = tn for any n ∈ {0, 1, . . . , N}. We

have

inf
π∈Π

∞∑
t=0

δsu
(
cπ(t)

)
≤

∞∑
t=0

δsu
(
cπ∗(t)

)
=

N∑
t=0

δsu (ctn) +
∞∑

t=N+1

δsu
(
cπ∗(t)

)
≤ [w + (1− δ) ε]

N∑
t=0

δs + ε
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Let N converge to infinity. Then

inf
π∈Π

∞∑
t=0

δsu
(
cπ(t)

)
≤ w

1− δ
+ 2ε

and, since ε is arbitrary,

inf
π∈Π

∞∑
t=0

δsu
(
cπ(t)

)
≤ w

1− δ

(3) Choose a permutation π∗ such that π∗ (0) = τ , and π∗ (n) = tn for each

n ∈ {0, 1, . . . , N} where N is defined as in the proof of part (2). Then

inf
π∈Π

∞∑
t=0

δsu
(
cπ(t)

)
≤

∞∑
t=0

δsu
(
cπ∗(t)

)
= u (cτ ) +

N∑
t=1

δsu (ctn) +
∞∑

t=N+1

δtu
(
cπ∗(t)

)
≤ u (cτ ) + [w + (1− δ) ε]

N∑
t=1

δt + ε

Since the inequality is satisfied for any N large enough, we can let N converge to

infinity to obtain

inf
π∈Π

∞∑
t=0

δsu
(
cπ(t)

)
≤ u (cτ ) +

δw

1− δ
+ (1 + δ) ε

Since ε is arbitrary, recalling that u (cτ ) < w, we obtain the following inequality:

inf
π∈Π

∞∑
t=0

δsu
(
cπ(t)

)
≤ u (cτ ) +

δw

1− δ
<

w

1− δ

Proof of Proposition 1

For simplicity, with a notational misuse, let us denote

U (χ) ≡ inf
π∈Π

∞∑
t=0

δtu
(
f
(
xπ(t)

)
− xπ(t)+1

)
for any feasible sequence χ ∈ Φ (x0).
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(1) Let x0 ≤ x∗. Let χ be the optimal path of the program under the RCK

criterion. One of the well-known results in dynamic programming literature is that

the utility sequence (u (f (xt)− xt+1))
∞
t=0 is non-decreasing.9 Part (1) of Lemma 1

applies and the claim is proven.

(2) The most challenging case is x∗ < x0 ≤ x̄. We know that, since x0 ≤ x̄,

max
χ∈Φ(x0)

inf
t≥0

u (f (xt)− xt+1) = u (f (x0)− x0)

with unique solution χ∗ = (x0, x0, . . .).

Let χ∗ = (x∗t )
∞
t=0 be the optimal path of the initial problem maxχ∈Φ(x0) U (χ) with

χ∗ ̸= (x0, x0, . . .). Then the following inequality is satisfied:

inf
t≥0

u
(
f (x∗t )− x∗t+1

)
< u (f (x0)− x0) (5)

We observe that there are finitely many t such that u
(
f (x∗t )− x∗t+1

)
< u (f (x0)− x0)

(and, at least, one). Indeed, in the contrary case, with an infinite number of t satisfy-

ing this inequality, applying the part (3) of Lemma 1, we have U (χ∗) < u (f(x0)− x0)

a contradiction.

Let T the largest time index t such that u
(
f (x∗t )− x∗t+1

)
< u (f (x0)− x0).

For any t > T , u
(
f (x∗t )− x∗t+1

)
> u (f (x0)− x0). We observe that

inf
t>0

u
(
f
(
x∗T+t

)
− x∗T+t+1

)
> u (f (x0)− x0)

On the contrary, for any ε > 0, there are infinitely many t such that

u
(
f (x∗t )− x∗t+1

)
< u (f (x0)− x0) + ε

By part (3) of Lemma 1, we obtain U (χ∗) < u (f(x0)− x0) / (1− δ), a contradiction.

9The reader interested in the dynamic properties of the optimal path under the RCK criterion,

is referred to chapter 2, section 2.4.4, in Le Van and Dana (2002).
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Hence, inft>0 u
(
f
(
x∗T+t

)
− x∗T+t+1

)
> u (f (x0)− x0), which implies the existence

of a > 0 such that u
(
f (x∗t )− x∗t+1

)
> u (f (x0)− x0) + a for any t > T .

Observe that x∗T+1 ≥ x0. Indeed, assume the contrary, x∗T+1 < x0. Since

u
(
f
(
x∗T+1

)
− x∗T+2

)
> u (f (x0)− x0), this implies x∗T+2 < x0. By induction, for

every t > 0, x∗T+t < x0. By applying the part (3) of Lemma 1, we obtain U (χ∗) <

u (f (x0)− x0), a contradiction.

Fix an ε > 0 sufficiently small such that

u
(
f
(
x∗T+1 − ε

)
− x∗T+2

)
> u (f (x0)− x0) + a > u

(
f (x∗T )−

(
x∗T+1 − ε

))
Denote by Π̂ the subset of Π such that π−1 (T ) ≤ T and π−1 (T ) < π−1 (T + 1).

Let us prove that

inf
π∈Π

∞∑
t=0

δtu
(
f
(
x∗π(t)

)
− x∗π(t)+1

)
= inf

π∈Π̂

∞∑
t=0

δtu
(
f
(
x∗π(t)

)
− x∗π(t)+1

)
Indeed, take any π ∈ Π which does not satisfy one of the two conditions in the

definition of Π̂, that is: (a) π−1 (T ) > T or (b) π−1 (T ) ≥ π−1 (T + 1).

(a) First, consider the case π−1 (T ) > T . This means that the place T is now

occupied by an element which was in a strictly higher place before the permutation.

This implies the existence of some T̃ > T such that π−1
(
T̃
)

≤ T because T is

finite. Recall that for every t > T , we have f (x∗t ) − x∗t+1 > f (x0) − x0. Hence

f
(
x∗
T̃

)
− x∗

T̃+1
> f (x0)− x0. Let T̂ ≡ min

{
T̃
}
.

Let T1 ≡ π−1 (T ) and T2 ≡ π−1
(
T̂
)
. Then, π (T1) = T and π (T2) = T̂ . Consider

an auxiliary permutation π̂ such that π̂ (t) = π (t) for any t ̸= T1, T2, π̂ (T1) = T̂ and

π̂ (T2) = T . We have π−1 (T ) = T1 = π̂−1
(
T̂
)
and, symmetrically, π−1

(
T̂
)
= T2 =

π̂−1 (T ).

Let us show that π̂ ∈ Π̂. Clearly, π̂−1 (T ) = π−1
(
T̂
)
≤ T .
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Moreover, if T̂ = T + 1, we have π̂−1 (T + 1) = π̂−1
(
T̂
)

= π−1 (T ) > T ≥

π−1
(
T̂
)
= π̂−1 (T ).

If T̂ > T + 1, we have π−1 (T + 1) > T , otherwise T + 1 < T̂ will be smallest

time index T̃ > T such that π−1
(
T̃
)

≤ T , a contradiction. Then π̂−1(T + 1) =

π−1(T + 1) > T ≥ π−1(T̂ ) = π̂−1 (T ).

In this case, we obtain

∞∑
t=0

δtu
(
f
(
x∗π̂(t)

)
− x∗π̂(t+1)

)
−

∞∑
t=0

δtu
(
f
(
x∗π(t)

)
− x∗π(t+1)

)
= δπ̂

−1(T )u
(
f (x∗T )− x∗T+1

)
+ δπ̂

−1(T̂)u
(
f
(
x∗
T̂

)
− x∗

T̂+1

)
− δπ

−1(T )u
(
f (x∗T )− x∗T+1

)
− δπ

−1(T̂)u
(
f
(
x∗
T̂

)
− x∗

T̂+1

)
= δπ

−1(T̂)u
(
f (x∗T )− x∗T+1

)
+ δπ

−1(T )u
(
f
(
x∗
T̂

)
− x∗

T̂+1

)
− δπ

−1(T )u
(
f (x∗T )− x∗T+1

)
− δπ

−1(T̂)u
(
f
(
x∗
T̂

)
− x∗

T̂+1

)
=

[
δπ

−1(T̂) − δπ
−1(T )

] [
u
(
f (x∗T )− x∗T+1

)
− u

(
f
(
x∗
T̂

)
− x∗

T̂+1

)]
< 0

since 0 < δ < 1, π−1
(
T̂
)
≤ T < π−1 (T ) and f (x∗T )− x∗T+1 < f

(
x∗
T̂

)
− x∗

T̂+1
.

(b) π−1 (T ) ≥ π−1 (T + 1) is equivalent to π−1 (T ) > π−1 (T + 1) because π−1 is

a permutation and, then, π−1 (T ) ̸= π−1 (T + 1).

The case π−1 (T ) > π−1 (T + 1) can be similarly treated.

Let T1 ≡ π−1 (T ) and T2 ≡ π−1 (T + 1). Consider an auxiliary permutation π̂

such that π̂ (t) = π (t) for any t ̸= T1, T2, π̂ (T1) = T + 1 and π̂ (T2) = T . We have

π−1 (T ) = T1 = π̂−1 (T + 1) and, symmetrically, π−1 (T + 1) = T2 = π̂−1 (T ).

Let us show that π̂ ∈ Π̂, that is π̂−1 (T ) < π̂−1 (T + 1) and π̂−1 (T ) ≤ T .

Clearly, π̂−1 (T ) = π−1 (T + 1) < π−1 (T ) = π̂−1 (T + 1).

(b.1) If π−1 (T ) ≤ T , we have π̂−1 (T ) = π−1 (T + 1) < π−1 (T ) ≤ T .
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Thus, if π−1 (T ) ≤ T , we have that π̂ ∈ Π̂. In this case, since

∞∑
t=0

δtu
(
f
(
x∗π̂(t)

)
− x∗π̂(t+1)

)
−

∞∑
t=0

δtu
(
f
(
x∗π(t)

)
− x∗π(t+1)

)
= δπ̂

−1(T )u
(
f (x∗T )− x∗T+1

)
+ δπ̂

−1(T+1)u
(
f
(
x∗T+1

)
− x∗T+2

)
− δπ

−1(T )u
(
f (x∗T )− x∗T+1

)
− δπ

−1(T+1)u
(
f
(
x∗T+1

)
− x∗T+2

)
= δπ

−1(T+1)u
(
f (x∗T )− x∗T+1

)
+ δπ

−1(T )u
(
f
(
x∗T+1

)
− x∗T+2

)
− δπ

−1(T )u
(
f (x∗T )− x∗T+1

)
− δπ

−1(T+1)u
(
f
(
x∗T+1

)
− x∗T+2

)
=

[
δπ

−1(T+1) − δπ
−1(T )

] [
u
(
f (x∗T )− x∗T+1

)
− u

(
f
(
x∗T+1

)
− x∗T+2

)]
< 0

(b.2) If π−1 (T ) > T , we recover the case (a).

Therefore, for any π /∈ Π̂, it is always possible to define an auxiliary permutation

π̂ ∈ Π̂ such that

∞∑
t=0

δtu(f(x∗π̂(t))− x∗π̂(t+1)) <
∞∑
t=0

δtu(f(x∗π(t))− x∗π(t+1)).

Hence

inf
π∈Π

∞∑
t=0

δtu(f(x∗π(t))− x∗π(t+1)) = inf
π∈Π̂

∞∑
t=0

δtu(f(x∗π(t))− x∗π(t+1))

Fix ε > 0 sufficiently small such that 0 < ε < x∗T+1, 0 < x∗T+2 < f
(
x∗T+1

)
− ε,

u
(
f (x∗T )−

(
x∗T+1 − ε

))
< u (f (x0)− x0) and

u (f (x0)− x0) + a < u
(
f
(
x∗T+1 − ε

)
− x∗T+2

)
Consider the sequence χ̂ ∈ Φ (x0) such that x̂t = x∗t for any t ̸= T + 1 and

x̂T+1 = x∗T+1 − ε. We have u (f (x̂T )− x̂T+1) < u (f (x̂T+1)− x̂T+2).

The following equality is satisfied for ε > 0 sufficiently small:

inf
π∈Π

∞∑
t=0

δtu
(
f
(
x̂π(t)

)
− x̂π(t)+1

)
= inf

π∈Π̂

∞∑
t=0

δtu
(
f
(
x̂π(t)

)
− x̂π(t)+1

)
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Let φ
(
x∗T+1

)
≡ u

(
f (x∗T )− x∗T+1

)
and ψ

(
x∗T+1

)
≡ u

(
f
(
x∗T+1

)
− x∗T+2

)
, where

φ is strictly decreasing and strictly concave and ψ is strictly increasing and strictly

concave. By the definition of derivative,

φ
(
x∗T+1 − ε

)
− φ

(
x∗T+1

)
= φ′ (x∗T+1

)
(−ε)−R1 (ε)

ψ
(
x∗T+1 − ε

)
− ψ

(
x∗T+1

)
= ψ′ (x∗T+1

)
(−ε)−R2 (ε)

with Ri (ε) > 0 and limε→0 [Ri (ε) /ε] = 0 for i = 1, 2. Then,

u
(
f (x∗T )−

(
x∗T+1 − ε

))
− u

(
f (x∗T )− x∗T+1

)
= u′

(
f (x∗T )− x∗T+1

)
ε−R1 (ε)

u
(
f
(
x∗T+1 − ε

)
− x∗T+2

)
− u

(
f
(
x∗T+1

)
− x∗T+2

)
= u′

(
f
(
x∗T+1

)
− x∗T+2

)
f ′ (x∗T+1

)
(−ε)−R2 (ε)

We obtain

∞∑
t=0

δtu
(
f
(
x̂π(t)

)
− x̂π(t)+1

)
−

∞∑
t=0

δtu
(
f
(
x∗π(t)

)
− x∗π(t)+1

)
= δπ

−1(T )
[
u
(
f (x∗T )−

(
x∗T+1 − ε

))
− u

(
f (x∗T )− x∗T+1

)]
+δπ

−1(T+1)
[
u
(
f
(
x∗T+1 − ε

)
− x∗T+2

)
− u

(
f
(
x∗T+1

)
− x∗T+2

)]
= δπ

−1(T )
[
u′
(
f (x∗T )− x∗T+1

)
ε−R1 (ε)

]
+δπ

−1(T+1)
[
u′
(
f
(
x∗T+1

)
− x∗T+2

)
f ′ (x∗T+1

)
(−ε)−R2 (ε)

]
= δπ

−1(T )u′
(
f (x∗T )− x∗T+1

)
ε

−δπ−1(T+1)u′
(
f
(
x∗T+1

)
− x∗T+2

)
f ′ (x∗T+1

)
ε−R (ε)

with R (ε) ≡ δπ
−1(T )R1 (ε) + δπ

−1(T+1)R2 (ε).

Recall that, for any π ∈ Π̂, we have π−1 (T + 1) > π−1 (T ), then π−1 (T + 1) ≥
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π−1 (T ) + 1 and

∞∑
t=0

δtu
(
f
(
x̂π(t)

)
− x̂π(t)+1

)
−

∞∑
t=0

δtu
(
f
(
x∗π(t)

)
− x∗π(t)+1

)
≥ δπ

−1(T )u′
(
f (x∗T )− x∗T+1

)
ε

−δπ−1(T )+1u′
(
f
(
x∗T+1

)
− x∗T+2

)
f ′ (x∗T+1

)
ε−R (ε)

= εδπ
−1(T )

[
u′
(
f (x∗T )− x∗T+1

)
− δu′

(
f
(
x∗T+1

)
− x∗T+2

)
f ′ (x∗T+1

)]
−R (ε)

By definition of T , we have

u
(
f (x∗T )− x∗T+1

)
< u (f (x0)− x0) < u

(
f
(
x∗T+1

)
− x∗T+2

)
Since u is strictly increasing, we obtain f (x∗T ) − x∗T+1 < f

(
x∗T+1

)
− x∗T+2 and,

then, u′
(
f (x∗T )− x∗T+1

)
> u′

(
f
(
x∗T+1

)
− x∗T+2

)
. Therefore,

∞∑
t=0

δtu
(
f
(
x̂π(t)

)
− x̂π(t)+1

)
−

∞∑
t=0

δtu
(
f
(
x∗π(t)

)
− x∗π(t)+1

)
≥ ε

(
δπ

−1(T )
[
u′
(
f (x∗T )− x∗T+1

)
− δu′

(
f
(
x∗T+1

)
− x∗T+2

)
f ′ (x∗T+1

)]
− R (ε)

ε

)
≥ ε

(
δT

[
u′
(
f (x∗T )− x∗T+1

)
− δu′

(
f
(
x∗T+1

)
− x∗T+2

)
f ′ (x∗T+1

)]
− R (ε)

ε

)
Since x∗T+1 ≥ x0 and u′

(
f (x∗T )− x∗T+1

)
> u′

(
f
(
x∗T+1

)
− x∗T+2

)
, we have

1

ε

[
∞∑
t=0

δtu
(
f
(
x̂π(t)

)
− x̂π(t)+1

)
−

∞∑
t=0

δtu
(
f
(
x∗π(t)

)
− x∗π(t)+1

)]

≥ δTu′
(
f (x∗T )− x∗T+1

)
[1− δf ′ (x0)]−

R (ε)

ε

Let ε converge to zero, the RHS converges to a strictly positive value because

δf ′ (x0) < δf ′ (x∗) = 1. Moreover, for ε > 0 sufficiently small, the right-hand side is

strictly superior to δTu′
(
f (x∗T )− x∗T+1

)
[1− δf ′ (x0)] /2.
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Hence, if ε is sufficiently small, we obtain

∞∑
t=0

δtu
(
f
(
x̂π(t)

)
− x̂π(t)+1

)
>

∞∑
t=0

δtu
(
f
(
x∗π(t)

)
− x∗π(t)+1

)
+

1

2
εδTu′

(
f (x∗T )− x∗T+1

)
[1− δf ′ (x0)]

We observe that ε is independent on π ∈ Π̂. Thus, we have

inf
π∈Π

∞∑
t=0

δtu
(
f
(
x̂π(t)

)
− x̂π(t)+1

)
= inf

π∈Π̂

∞∑
t=0

δtu
(
f
(
x̂π(t)

)
− x̂π(t)+1

)
≥ inf

π∈Π̂

∞∑
t=0

δtu
(
f
(
x∗π(t)

)
− x∗π(t)+1

)
+

1

2
εδTu′

(
f (x∗T )− x∗T+1

)
[1− δf ′ (x0)]

> inf
π∈Π̂

∞∑
t=0

δtu
(
f
(
x∗π(t)

)
− x∗π(t)+1

)
= inf

π∈Π

∞∑
t=0

δtu
(
f
(
x∗π(t)

)
− x∗π(t)+1

)
a contradiction. Hence, the unique optimal path is χ = (x0, x0, . . .) and

max
χ∈Φ(x0)

inf
π∈Π

∞∑
t=0

δtu
(
f
(
xπ(t)

)
− xπ(t)+1

)
=
u (f (x0)− x0)

1− δ

(3) According to (2), for any t, infs≥0 u (f (xt+s)− xt+s+1) ≤ u (f (x̄)− x̄).10

Hence, for any ε > 0, there exists a subsequence (tn)
∞
n=0 such that

u (f (xtn)− xtn+1) ≤ u (f (x̄)− x̄) + ε

Applying the part (2) of Lemma 1, we obtain

U (χ) ≤ u (f (x̄)− x̄)

1− δ
(6)

for every χ ∈ ϕ (x0).

10See Proposition A.2, part (ii), in Ha-Huy and Nguyen (2022).
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In the proof of Proposition A.2, part (ii), Ha-Huy and Nguyen (2022) show that

there are infinitely many optimal paths χ = (x0, x1, . . . ) such that

inf
t≥0

u (f (xt)− xt+1) = u (f (x̄)− x̄)

Let χ be one of this paths. We have

U (χ) ≡ inf
π∈Π

∞∑
t=0

δtu
(
f
(
xπ(t)

)
− xπ(t)+1

)
≥

∞∑
t=0

δt inf
t≥0

u (f (xt)− xt+1)

≥
∞∑
t=0

δtu (f (x̄)− x̄) =
u (f (x̄)− x̄)

1− δ

According to (6), we obtain U (χ) = u (f (x̄)− x̄) / (1− δ). Thus, every optimal

path are decreasing and converges to x̄.

Proof of Proposition 2

To simplify the presentation, RZA will denote the convex combination between

the RCK criterion and the third Rawlsian criterion introduced by Zuber and Asheim

(2012).

(1) Focus on the case 0 < x0 ≤ x∗. Let (x∗t )
∞
t=0 be the optimal path under the

RCK criterion. This sequence is increasing and converges to the modified golden rule

x∗, solution to δf ′ (x) = 1 (Proposition 2.4.4 in Le Van and Dana (2002)).

Moreover, the corresponding consumption sequence c∗t = f(x∗t )−x∗t+1 is increasing

and converges to c∗ = f(x∗)− x∗ (see the Euler equation in Proposition 2.4.4 in Le

Van and Dana (2002)). This implies:

inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
c∗π(t)

)
=

∞∑
t=0

(1− δ) δtu (c∗t )

Hence, for every feasible sequence (xt)
∞
t=0 with the corresponding consumption
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sequence ct = f (xt)− xt+1, we have

(1− λ)
∞∑
t=0

(1− δ) δtu (c∗t ) + λ inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
c∗π(t)

)
= (1− λ)

∞∑
t=0

(1− δ) δtu (c∗t ) + λ

∞∑
t=0

(1− δ) δtu (c∗t )

≥ (1− λ)
∞∑
t=0

(1− δ) δtu (ct) + λ

∞∑
t=0

(1− δ) δtu (ct)

≥ (1− λ)
∞∑
t=0

(1− δ) δtu (ct) + λ inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
Therefore, the optimal path under the RCK criterion is also the optimal path

under the RZA one.

(2) Now, consider the nontrivial case: x0 > x∗. We will prove that the optimal

path coincides with the one in Ha-Huy and Nguyen (2022).

Let (xt)
∞
t=0 be the optimal path and ct = f(xt) − xt+1. First, we will prove that

xt > x∗ for any t ≥ 0.

Assume the contrary, that is the existence of T such that xT ≤ x∗. It is known

that there exists some t ≥ T such that ct ≤ f (xT )−xT ≤ f (x∗)−x∗ = c∗. Moreover,

there are only finitely many t such that ct < c∗ = f (x∗)− x∗. Indeed, by part (2) of

Lemma 1, the existence of infinitely many t such that ct < c∗ implies

inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
≤ u (c∗)

Recall that (x∗t )
∞
t=0 is the optimal capital path under the RCK criterion. Moreover,

since x0 > x∗ (see Proposition 2.4.4 in Le Van and Dana (2002)), the corresponding
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consumption sequence (c∗t )
∞
t=0 is decreasing and converges to c∗. We obtain:

(1− λ)
∞∑
t=0

(1− δ) δtu (c∗t ) + λ inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
c∗π(t)

)
≥ (1− λ)

∞∑
t=0

(1− δ) δtu (c∗t ) + λu (c∗)

> (1− λ)
∞∑
t=0

(1− δ) δtu (ct) + λ inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
a contradiction with the hypothesis that (xt)

∞
t=0 is the optimal path under the RZA

criterion.

We have proven that there is a finite number of t such that ct < c∗. Let T be the

bigger period satisfying this inequality. Therefore, xT+1 ≥ x∗. Indeed, if xT+1 < x∗,

following the same argument we used to solve the optimization problem under the

Rawls criterion (see inequality (5), we obtain:

inf
t>0

u (f (xT+t)− xT+t+1) < u (c∗)

This implies the existence of t > 0 such that cT+t < c∗, a contradiction with the

definition of T .

Fix any ε such that 0 < ε < xT+1 and 0 < xT+2 < f (xT+1)−ε. Define the capital

25



sequence (x̂t)
∞
t=0 such that x̂t = xt for any t ̸= T + 1 and x̂T+1 = xT+1 − ε. Hence,

∞∑
t=0

δtu (ĉt)−
∞∑
t=0

δtu (ct)

= δTu (ĉT ) + δT+1u (ĉT+1)− δTu (cT )− δT+1u (cT+1)

≥ δTu′ (ĉT ) (ĉT − cT ) + δT+1u′ (ĉT+1) (ĉT+1 − cT+1)

= δTu′ (ĉT ) (f (xT )− (xT+1 − ε)− [f (xT )− xT+1])

+δT+1u′ (ĉT+1) [f (xT+1 − ε)− xT+2 − f (xT+1) + xT+2]

≥ δTu′ (ĉT ) ε− δT+1u′ (ĉT+1) f
′ (xT+1 − ε) ε

= εδT [u′ (ĉT )− δu′ (ĉT+1) f
′ (xT+1 − ε)] (7)

because of the concavity of f and u. We obtain:

1

εδT

[
∞∑
t=0

δtu (ĉt)−
∞∑
t=0

δtu (ct)

]
≥ u′ (ĉT )− δu′ (ĉT+1) f

′ (xT+1 − ε)

Since u′ (cT ) > u′ (cT+1) and δf ′ (xT+1) ≤ δf ′ (x∗) = 1, for ε small enough, the

RHS is strictly positive and, thus,

lim
ε→0

1

ε

[
∞∑
t=0

δtu (ĉt)−
∞∑
t=0

δtu (ct)

]
> 0

Then, for ε sufficiently small,
∑∞

t=0 δ
tu (ĉt) >

∑∞
t=0 δ

tu (ct).

Let ΠT be the set of permutations π such that π−1 (T ) < π−1 (T + 1). Since

cT < c∗ ≤ cT+1, we obtain:

inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
= inf

π∈ΠT

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
Now, fix any permutation π ∈ ΠT with π−1 (T ) < π−1 (T + 1). Applying similar
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arguments as in (7), we obtain:

∞∑
t=0

(1− δ) δtu
(
ĉπ(t)

)
−

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
= δπ

−1(T )u (ĉT ) + δπ
−1(T+1)u (ĉT+1)− δπ

−1(T )u (cT )− δπ
−1(T+1)u (cT+1)

= δπ
−1(T )

(
[u (ĉT )− u (cT )] + δπ

−1(T+1)−π−1(T ) [u (ĉT+1)− u (cT+1)]
)

≥ εδπ
−1(T )

[
u′ (ĉT )− δπ

−1(T+1)−π−1(T )u′ (ĉT+1) f
′ (xT+1 − ε)

]
≥ εδπ

−1(T ) [u′ (ĉT )− δu′ (ĉT+1) f
′ (xT+1 − ε)]

with x̂T+1 = xT+1 − ε.

Therefore, for any π ∈ ΠT ,

∞∑
t=0

(1− δ) δtu
(
ĉπ(t)

)
≥

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
+ εδπ

−1(T ) [u′ (ĉT )− δu′ (ĉT+1) f
′ (xT+1 − ε)]

≥
∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
for ε small enough. Then, for ε small enough, for any π ∈ ΠT ,

inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
ĉπ(t)

)
= inf

π∈ΠT

∞∑
t=0

(1− δ) δtu
(
ĉπ(t)

)
≥ inf

π∈ΠT

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
≥ inf

π∈Π

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
Therefore, for ε > 0 sufficiently small, we have

(1− λ)
∞∑
t=0

(1− δ) δtu (ĉt) + λ inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
ĉπ(t)

)
> (1− λ)

∞∑
t=0

(1− δ) δtu (ct) + λ inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
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a contradiction.

This contradiction comes from the hypothesis that there exists t such that xt ≤ x∗.

Hence xt > x∗ for any t ≥ 0.

Let us prove that ct ≥ ct+1 for any t ≥ 0. Assume the existence of some T

such that cT < cT+1. Fix ε > 0 such that 0 < ε < xT+1 and f(xT ) − xT+1 + ε <

f(xT+1 − ε) − xT+2. Consider the sequence (x̂t)
∞
t=0 as in the first part of point (2)

of the current proof. Using the same arguments and considering that xT+1 > x∗

implies δf ′ (xT+1) < 1, we can prove that the sequence (xt)
∞
t=0 is not optimal, a

contradiction.

This contradiction comes from the hypothesis there exists T such that cT < cT+1.

Hence, the sequence (ct)
∞
t=0 is non-increasing: ct ≥ ct+1 for any t ≥ 0. Since the

utility function u is strictly increasing, we have limt→∞ u (ct) = inft≥0 u (ct).

Hence, for every ε > 0, there exists an infinite number t such that u (ct) <

inft≥0 u (ct) + ε. Applying part (2) of Lemma 1, we obtain

inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
≤ inf

t≥0
u (ct)

Clearly,

inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
≥ inf

π∈Π

∞∑
t=0

(1− δ) δt inf
t≥0

u (ct) = inf
t≥0

u (ct)

and, thus,

inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
= inf

t≥0
u (ct)

Hence, we have

(1− λ)
∞∑
t=0

(1− δ) δtu (ct) + λ inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
= (1− λ)

∞∑
t=0

(1− δ) δtu (ct) + λ inf
t≥0

u (ct)
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Consider the sequence (x̄t)
∞
t=0 which is the optimal path under the hybrid cri-

terion presented in section 2 of Ha-Huy and Nguyen (2022), and the corresponding

consumption sequence (c̄t)
∞
t=0. We have

(1− λ)
∞∑
t=0

(1− δ) δtu (ct) + λ inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
= (1− λ)

∞∑
t=0

(1− δ) δtu (ct) + λ inf
t≥0

u (ct)

≤ (1− λ)
∞∑
t=0

(1− δ) δtu (c̄t) + λ inf
t≥0

u (c̄t)

≤ (1− λ)
∞∑
t=0

(1− δ) δtu (c̄t) + λ inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
c̄π(t)

)
≤ (1− λ)

∞∑
t=0

(1− δ) δtu (ct) + λ inf
π∈Π

∞∑
t=0

(1− δ) δtu
(
cπ(t)

)
Hence, all these inequalities hold with equality and, finally, the two sequences

(xt)
∞
t=0 and (x̄t)

∞
t=0 coincide.

In Ha-Huy and Nguyen (2022), the authors proved that the optimal path under

the criterion that is the combination between RCK and the first Rawlsian is non-

increasing when x0 ≥ x∗. Therefore, this path coincides with the optimal path under

the mixed criterion presented in Ha-Huy and Nguyen (2022), with a = λ/ (1− λ).

For x0 ≥ x∗, in Ha-Huy and Nguyen (2022), the optimal path can be described

as follows:

(2.1) If 0 ≤ a ≤ a1, the equality part plays no role and the optimal path coincides

the optimal path of the RCK criterion.

(2.2) When a1 < a < a2, the economy converges to the modified golden rule as in

the RCK model, but with a larger discount factor δ̃ > δ.

(2.3) If a ≥ a2, the equality part fully dominates and we recover the optimal path

of the first Rawlsian criterion.
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Let λ1 ≡ a1/ (1 + a1) and λ2 ≡ a2/ (1 + a2), we have 0 ≤ λ1 ≤ λ2 ≤ 1 with

a2 > 0. Moreover, λ ≤ λ1 if and only if a ≤ a1 and λ ≥ λ2 if and only if a ≥ a2.

Hence, we obtain the results using Proposition 2.2 in Ha-Huy and Nguyen (2022).
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