
HAL Id: hal-04481420
https://hal.science/hal-04481420v1

Submitted on 28 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

NeSy is alive and well: A LLM-driven symbolic
approach for better code comment data generation and

classification
Hanna Abi Akl

To cite this version:
Hanna Abi Akl. NeSy is alive and well: A LLM-driven symbolic approach for better code comment
data generation and classification. ESWC 2024 - Extended Semantic Web Conference, Albert Meroño
Peñuela; Anastasia Dimou; Raphaël Troncy; Olaf Hartig; Maribel Acosta; Mehwish Alam; Heiko
Paulheim; Joe Raad; Bruno Sartini, May 2024, Hersonissos, Greece. �hal-04481420�

https://hal.science/hal-04481420v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

NeSy is alive and well: A LLM-driven symbolic

approach for better code comment data

generation and classification

Hanna Abi Akl1,2*

1*Data ScienceTech Institute (DSTI), 4 Rue de la Collégiale, 75005,
Paris, France.

2Université Côte d’Azur, Inria, CNRS, I3S.

Corresponding author(s). E-mail(s): hanna.abi-akl@dsti.institute;

Abstract

We present a neuro-symbolic (NeSy) workflow combining a symbolic-based learn-
ing technique with a large language model (LLM) agent to generate synthetic
data for code comment classification in the C programming language. We also
show how generating controlled synthetic data using this workflow fixes some of
the notable weaknesses of LLM-based generation and increases the performance
of classical machine learning models on the code comment classification task. Our
best model, a Neural Network, achieves a Macro-F1 score of 91.412% with an
increase of 1.033% after data augmentation.

Keywords: Neuro-symbolic AI, Natural Language Processing, Machine Learning,
Large Language Models, Code Generation, Synthetic Data

1

Contents

1 Introduction 3

2 Related Work 4
2.1 Symbolic techniques and large language models 4
2.2 Synthetic data generation methods . 5

3 Methodology 5
3.1 Semantic rules . 5
3.2 Algorithm generation . 7
3.3 Script creation . 8

4 Experiments 11
4.1 Dataset description . 11

4.1.1 Baseline data . 12
4.1.2 Additional data . 12

4.2 System description . 12
4.2.1 Model choice . 12
4.2.2 Features . 12
4.2.3 Experimental setup . 12

5 Results 13

6 Conclusion 14

A Python script created by ChatGPT 15

2

1 Introduction

The era of Large Language Models (LLMs) has introduced agents capable of handling
different tasks and performing well on them in domains such as text, image and audio
[1]. A popular extension to the use of LLMs is in applying them to other data formats
often used by humans in their daily activities. One such data source is code which
circulates heavily and makes up a crucial block of technological projects [2].

The public availability of code-hosting repositories like GitHub on the web makes
code an accessible data source and a valuable input for LLMs to tackle code-related
challenges [2]. These tasks can range from identifying correct code to generating
entirely new source code [2]. This has made source code datasets an invaluable part
of the pre-training of modern LLM agents [2]. However, a persistent requirement and
problem for these models is that they are both data-hungry and resource-hungry [1].
This is tied to the question of scale that dictates that in order to keep performing well
on tasks and adapt to new tasks, LLMs have to be fed more data [1]. A consequence
of this demand is data scarcity, a pitfall for all LLM agents today. Data scarcity is
still an open problem that is becoming a pressing issue in the face of the advancement
and improvement of LLM technologies since it directly affects their greatest source
of power: data. Research is ongoing to actively tackle and solve the problem of data
scarcity [3–5] but, to our knowledge, no wide-scale solution exists as of yet at the time
of writing of this work.

The Information Retrieval in Software Engineering (IRSE)1 at the Forum for Infor-
mation Retrieval Evaluation (FIRE)2 2023 shared task is one challenge that addresses
the problem of data scarcity. It sets out to measure the effects of leveraging LLMs
to generate new data and enrich a code comment dataset in the C programming lan-
guage starting from existing data scraped from real code repositories [6]. The shared
task also challenges participants to test the quality of their generated data by evaluat-
ing its impact on the performance of machine learning models in classifying whether a
comment is useful or not useful for the surrounding C code block [6]. In our previous
work, we proposed a starting solution for the data scarcity problem by showing that
prompting LLMs by examples and combining the generated data with existing syn-
thetic data generation techniques improves model performance on the code comment
classification task [7]. The work presented here carries over from the aforementioned
framework to introduce a more complete solution and, as such, will reference it heavily.

In this work, we introduce a NeSy workflow leveraging both the use of a LLM
agent and a symbolic-based learning method to enrich the code comment dataset with
synthetic data and evaluate the quality of this generation by studying the impact of the
data augmentation process on the performance of machine learning models on the code
comment classification task. The rest of the work is organized as follows. In section
2, we discuss some of the related work. In section 3, we present our methodology.
Section 4 describes our experimental framework. In section 5, we report our results
and discuss our findings. Finally, we conclude in section 6.

1https://sites.google.com/view/irse2023/home
2http://fire.irsi.res.in/fire/static/resources

3

2 Related Work

This section discusses existing techniques that couple symbolic forms of learning and
neural models with a particular focus on LLMs as well as some proposed strategies in
the literature for synthetic data generation.

2.1 Symbolic techniques and large language models

Research that aligns with the promise made by NeSy models in d’Avila Garcez and
Lamb, i.e., combining the advantages of both symbolic and neural methods to create
better learning systems, places the integration of semantic techniques with state-of-
the-art LLMs at its center in an attempt to improve learning. In their work, Núñez-
Molina et al. show how integrating a markov decision process with reinforcement
deep learning policies yields generations of planning problems that are both valid and
diverse for different domains. In similar fashion, Karth et al. apply symbolic constraints
to deep learning models in the world of games to generate new valid game tiles using
a minimal number of raw pixels. Their neuro-symbolic technique yields comparable
generations to real-world levels found in World of Warcraft3 and Super Mario4.

The idea of symbolically addressing learning needs in LLM agents was further
refined and centered around the decomposing tasks. In their work, Prasad et al. show
that decomposing planning tasks into sub-tasks helps LLM agents better respond and
successfully carry over complex tasks. They also use their method to create a new
decomposition dataset that helps LLMs learn complex tasks incrementally through
smaller sub-tasks [11]. Other existing works like Hou et al. explored the effects of intro-
ducing sets of clarifications to LLMs on their performance. Their findings show that
their method is more effective in fine-tuning models on learning tasks than parameter-
tuning them. Tarasov and Shridhar extended the use of decomposition to deal with
the problem of scale, breaking down a large task into smaller tasks and feeding them
to small models. They showed how tuning each model to handle a specific sub-task
and collecting their outputs improves the performance of a larger LLM taking them
as input [13].

Another important symbolic method that addresses LLM learning and reasoning is
semantic grounding. The work of Lyre investigates different pillars of semantic ground-
ing in LLMs and shows that these models have basic notions of these concepts. Turney
took the investigation further by leveraging LLMs to generate synonyms of concepts
using unigrams and bigrams and comparing their outputs to valid WordNet words.
Other research methods proposed similar semantic decomposition approaches by inte-
grating them into deep learning models coupled with different language structures like
graph decomposition [16], natural language decomposition into intents [17], prompt
decomposition [18], question-answering reformulation into a mixture of abstractive
and extractive prompts [19, 20] and SQL-based statement decomposition [21].

3https://worldofwarcraft.blizzard.com/en-us/
4https://mario.nintendo.com/

4

2.2 Synthetic data generation methods

The work of Lu et al. surveyed machine learning and deep learning models for syn-
thetic data generation on a variety of tasks, e.g., computer vision and natural language
processing, using different data sources, e.g., image and text, and in different domains,
e.g., healthcare. Their findings showed that architectures based on neural networks
and large language model technology are the most popular models for data generation
[22]. They also studied different data generation algorithms like artificial data labeling
and observed varying model performances depending on the task and the domain [22].
In their work, Bauer et al. surveyed 417 synthetically generated datasets and showed
Generative Adversarial Nets (GANs) to be the most prevalent synthetic data genera-
tion models and computer vision to be the most popular task domain of application.
They also highlighted the importance of having standardized datasets and metrics for
evaluating the quality of synthetically generate data [23]. Finally, Li et al. studied
the limitations of LLM-based synthetic data generation and highlighted the dangers
of uncontrolled data generation which negatively impacts model performance, most
notably on classification tasks.

3 Methodology

This section describes our NeSy methodology combining a LLM agent and a symbolic
framework to generate synthetic labeled code comment data. We chose ChatGPT 3.5
to implement our methods and experiments since it is freely accessible and usable
without prior configuration. We introduce a set of rules based on semantic decom-
position to prompt ChatGPT and create a neuro-symbolic workflow that teaches the
LLM the proper syntax of the C programming language for controlling the generation
of synthetic labeled code comment samples. The workflow is represented in Figure 1.

Figure 1 shows the implementation of the different phases of the workflow as well as
the roles of the user and the LLM agent. The representation of roles is important since
it demonstrates that the workflow leverages the capabilities of the LLM in favor of
the user who ultimately retains control over the data generation process. The different
steps of the workflow are explained in the following subsections.

3.1 Semantic rules

We turn to semantic decomposition, an algorithm that breaks down the meanings
of phrases or concepts into less complex concepts [25], to create a ruleset that helps
ChatGPT construct a valid code comment dataset. The advantage of this symbolic
method is twofold: to control the generation of valid data and ensure sufficient diversity
to enrich an existing dataset.

The rules themselves are renditions of the syntax of the C programming language
[26] and delimit the vocabulary as well as the constructs of the language. They start
at the atomic level by defining what a valid token in the language is and move to more
complex concepts like determining the construction of a valid line of code in C. Each
rule is written as a statement in natural language and is kept as simple and short as
possible. Figure 2 shows the 12 rules given as a prompt for ChatGPT to produce a
valid line of C code.

5

Fig. 1 High-level architecture of neuro-symbolic synthetic data generation workflow

In order to produce a complete data sample, generating a valid line of code is
not enough. Our dataset consists of code, comment and label data. For ChatGPT to
produce comments, we add 3 rules to define what a comment in C is as well as its
purpose. The definitions are restricted to English generations of comments but can be
extended to accommodate any language. The rules also contain syntactic details such
as the allowed tokens at the beginning of a comment in C.

Finally, to remain faithful to the input shape of our data, we can ensure any data
sample produced by the LLM is labeled by introducing 2 more rules to explain the
allowed labels, i.e., Useful and Not Useful, as well as how to classify a code comment
pair. These rules help reduce incoherent data generation and ensure the LLM labeling
choice is explainable.

The full ruleset is presented in Table 1.
Figure 3 shows an example of valid synthetic data generated by ChatGPT using

our full ruleset.

6

Fig. 2 Example of rule-based prompting using semantic decomposition

3.2 Algorithm generation

To circumvent the ambiguities that come with expressing statements in natural lan-
guage, we ask ChatGPT to formulate an algorithm out of the provided rules by
prompting the LLM to treat this exercise as a translation task from a natural language
to an algorithmic language. This plays into the strenghts of LLMs given they are pre-
trained and capable of performing well on this kind of task. The purpose of this step
is to make the rules as explicit and clear as possible to ensure they are explainable
and reproducible. This also counteracts the black-box behavior LLMs generally have
in interpreting prompt instructions. Fianlly, this phase also serves as a self-check and
ensures any potentially missed logical gaps while at the time of designing the rules
can be addressed.

7

Number Rule
1 The smallest individual unit of a program is called a token.
2 Tokens are either keywords, identifiers or variables.
3 A keyword must belong to the list: auto, double, int, struct,

break, else, long, switch, case, enum, register, typedef, char,
extern, return, union, const, float, short, unsigned, continue,
for, signed, void, default, goto, sizeof, volatile, do, if, static,
while.

4 An identifier can only have alphanumeric characters(a-z , A-
Z , 0-9) and underscore().

5 The first character of an identifier can only contain
alphabet(a-z, A-Z) or underscore ().

6 Identifiers are case-sensitive in the C language. For example,
name and Name will be treated as two different identifiers.

7 Keywords are not allowed to be used as Identifiers.
8 No special characters, such as a semicolon, period, whites-

paces, slash, or comma are permitted to be used in or as
an Identifier. Example of valid identifiers: total, avg1, differ-
ence 1. Example of invalid identifiers: $myvar, x!y.

9 A variable has a data type (which can be one of the following:
char, int, float, double, void), a name and a value.

10 A variable should be declared and assigned a value. Example:
int marks = 10.

11 After creation and assignment, the value of a variable can be
changed.

12 A valid line of code is a collection of tokens that adhere to
the above rules.

13 Comments are plain simple text in English that can be added
to a line of code.

14 A comment explains various parts of the line of code, makes
it more readable and more understandable.

15 A comment either begins with // if it is a single-line comment
or is enclosed within /* and */ if it is a multi-line comment.

16 Comments can be either labeled Useful or Not Useful.
17 A comment is labeled Useful when it is informative and helps

clarify the line of code without being redundant, otherwise,
it is labeled Not Useful.

Table 1 Full ruleset derived from semantic decomposition

We ask ChatGPT to generate the algorithm in the form of a Python script because
this will ultimately be the tool used to control the synthetic data generation. This step
is detailed in the next subsection. Algorithm 1 showcases the algorithm constructed
by the LLM from the initial ruleset to generate a labeled code comment dataset.

3.3 Script creation

The ultimate goal of our NeSy method is to ensure the data generation process is
not bound to ChatGPT since it can lead to inconsistent, incoherent and inexplicable
data that also risks being incomplete because of the output token size limitation of
the LLM. To regain control of the data generation mechanism, the ideal solution is
to have a tool that bypasses the data generation limitations and pitfalls of LLMs and
place it in the hands of the user.

8

Fig. 3 Example of valid labeled code comment data samples generated by ChatGPT

After verifying that ChatGPT can correctly transcribe the semantic rules into an
algorithm in pseudo-code, we prompt it to regenerate it in the form of a usable Python
script. This generation is reported in Figure 4.

The script acts in itself as a validator proving ChatGPT has faithfully understood
the rules of data construction while also allowing user modification in case of mistakes
made by the LLM in the script logic. It also ensures that the generation of samples
is no longer bound to the LLM and is retained by the user. The reason for using
ChatGPT to generate the script is that it enables the user to take advantage of the
LLM’s pre-training on code data to quickly generate a script and save time and human
resources as opposed to manually creating the script from scratch.

In our case, the LLM generates a valid script in two attempts. On the first attempt,
the generated script is nearly faultless bar the fact that ChatGPT creates useful and

9

Algorithm 1 C code comment data generation
1:

Require: k ∈ {auto, double, int, struct, break, else, long, switch, case, enum, register,
typedef, char, extern, return, union, const, f loat, short, unsigned, continue, for,
signed, void, default, goto, sizeof, volatile, do, if, static, while}
t ∈ {char, int, f loat, double, void}
l ∈ {useful, notuseful}

Ensure: data ⇐ lines
2: i ⇐ 0
3: v ∈ [1, 10]
4: p ∈ [1, 5]
5: while m ≤ v do
6: e ∈ {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z, A,B,C,D,E, F,

G,H, I, J,K,L,M,N,O, P,Q,R, S, T, U, V,W,X, Y, Z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, }
7: identifier ⇐ e
8: end while
9: while n ≤ p do

10: f ∈ {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z, A,B,C,D,E, F,
G,H, I, J,K,L,M,N,O, P,Q,R, S, T, U, V,W,X, Y, Z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, }

11: comment ⇐ f
12: end while
13: while i ≤ 5000 do
14: keyword ∈ {k, t}
15: value ∈ [0, 100]
16: line ⇐ keyword+ identifier + value
17: label ⇐ l
18: if label = useful then
19: purpose ∈ {declaration, initialization, calculation, function, definition,

usage, explanation}
20: variable ∈ {variable, value, data, result, parameter}
21: comment ⇐ purpose+ of + variable+ in+ line
22: else[label = notuseful]
23: comment ⇐ comment
24: end if
25: lines ⇐ line+ comment+ label
26: end while
27: data ⇐ lines

not useful comments using the same logic, i.e., by generating random strings as com-
ments. A follow-up prompt is needed to explain that useful comment creation shouldn’t
be aleatoric and should follow the definition of useful comments set by our rules. The
second attempt yields a script that is compliant with the intended logic.

Obtaining a script that controls parameters like inputs, outputs, number of samples
and data logic means the data generation process is configurable by the user. Once

10

Fig. 4 Python script generation by ChatGPT

the code for generating a correct labeled code comment sample is validated, a loop
allows us to generate any number of valid synthetic data samples.

The full script for generating synthetic data is shown in Appendix A. The code
for our NeSy workflow can be found in this repository5. The entire chat containing all
ChatGPT prompts and responses can be found here6.

4 Experiments

This section describes our experiments in terms of data, models and training process.

4.1 Dataset description

We consider two datasets for our experiments: a baseline dataset created in our prior
work [7] as a result of augmenting the original seed dataset of the IRSE 2023 shared
task by prompting ChatGPT with examples, and an additional synthetic dataset
generated from the Python script created by ChatGPT.

5https://github.com/HannaAbiAkl/NeSy-Code-Generation-Workflow
6https://chat.openai.com/share/0b5592f9-deac-402b-b0ef-a3ed4c7f06b7

11

4.1.1 Baseline data

The baseline data is described in Abi Akl. The dataset contains a total of 11873
samples from which 7474 are labeled Useful and 4399 Not Useful.

4.1.2 Additional data

We leverage the script created by ChatGPT to generate an additional synthetic dataset
of 5000 samples evenly split between Useful and Not Useful samples.

4.2 System description

This section introduces the methodology used in our experimental runs. It describes
the machine learning models as well as the features used in our experiments.

4.2.1 Model choice

We retain the model choice and configuration from Abi Akl: Random Forest (RF),
Voting Classifier (VC) and Neural Network (NN). The RF classifier is kept as a base-
line. The VC and NN are selected for their good performance on the IRSE 2023 shared
task dataset.

4.2.2 Features

Feature selection and engineering is retained from our work in Abi Akl. Each code
comment input string is transformed into a 768 dimensional vector of embedddings
using the st-codesearch-distilroberta-base7 sentence embeddings model [7].

4.2.3 Experimental setup

We divide the experiment in two phases. The first phase consists in evaluating the
models on the baseline data only. The second phase consists in creating an augmented
dataset by adding the 5000 synthetic samples to the baseline data and evaluating the
same models on the curated dataset.

In both phases, there is a class imbalance caused by the uneven split in the baseline
data. The Useful class is over-represented at 62.9%. To rectify this imbalance, we use
the SMOTE [27] technique to generate synthetic data and achieve a 50-50 percent
class distribution.

Next, we split the data using the scikit-learn Repeated Stratified K-Fold cross
validator8 with 10 folds and 3 allowed repetitions. We use the Accuracy, Precision,
Recall and Macro-F1 scores as metrics for evaluating our models. All experiments are
performed on a Dell G15 Special Edition 5521 hardware with 14 CPU cores, 32 GB
RAM and NVIDIA GeForce RTX 3070 Ti GPU.

7https://huggingface.co/flax-sentence-embeddings/st-codesearch-distilroberta-base
8https://scikit-learn.org/stable/modules/generated/sklearn.model selection.RepeatedStratifiedKFold.html

12

5 Results

Table 2 demonstrates the performance of each model on the augmented data. On the
majority of the scoring metrics, the Neural Network outclasses the Random Forest
and the Voting Classifier models. The VC retains the highest Macro-F1 and Recall
scores for the Useful class as well as the highest Precision score for the Not Useful
class, narrowingly edging out the NN model. This is consistent with the results of
prior work and suggests the synthetic data did not skew the model behaviors or cause
any drift in their predictions [7].

We also note that the data augmentation process results in an increase in all scores
for all models, marking the importance of valid synthetic data and its impact on
different machine learning models for the code comment classification task.

The results of Table 3 are consistent with these findings. The table shows the evo-
lution of the Macro-F1 score for the 3 models on 3 different datasets. The Seed dataset
is the original data proposed by the IRSE 2023 shared task organizers and augmented
by SMOTE in Abi Akl. The Baseline data is the ChatGPT-augmented dataset using
prompting by examples and augmented by SMOTE [7]. The Augmented dataset is the
extension of the Baseline set with the synthetic data from the NeSy workflow. The first
main takeaway from the table is that both neural (i.e., prompting by examples) and
symbolic (i.e., constructing a script from a ruleset) methods can generate valid syn-
thetic data that positively impacts model performance. This is apparent through the
increasing Macro-F1 scores for all models despite being based on different algorithms
and architectures.

The second main takeaway is the consistency in the increase which is around 1%
with each data augmentation. This seems to suggest that both synthetic data genera-
tion methods are on par in the quality of data generated. However, it is noteworthy to
point out that these results are also the consequence of SMOTE, an important partic-
ipant that contributed to balancing all 3 datasets by furnishing its own synthetic data
to compensate for the hindering class imbalance carried over from the original Seed
dataset. The consistency in increase does little to inform us in any way on the state and
quality of the synthetic data generated for both the Baseline and Augmented datasets.
In the neural generation method, ChatGPT tries to imitate the given examples, and
the result is a very small set of data lacking diversity and containing many inconsisten-
cies such as duplicate examples [7]. The 421 samples that have been retained for our
experiments are what’s left of an original set of 1000 samples that had been manually
pruned to remove inconsistent, redundant and incomplete examples [7]. In addition,
the prompt asked for a balanced set of examples labeled Useful and Not Useful to
avoid falling again in the trap of class imbalance, which ChatGPT failed to provide
as seen in the description of the final Baseline dataset in section 4.1.1.

On the other hand, the NeSy workflow forces ChatGPT to adhere to a strict
ruleset and properly learn the syntax of the C language. The additional step of asking
ChatGPT to generate a script is both a method validator to ensure it has learned
the rule framework correctly and a tool to control the generation of data. By taking
control of the data generation process, we can easily parameterize the total number
of samples we wish to generate as well as the quality of these samples, i.e., equally
distributed between Useful and Not Useful labels. In our experiments, we tested for

13

1000 and 5000 balanced samples. Both sample sizes yield and increase for all models
on all metrics, but the increase from 5000 examples is much more significant overall
than that from 1000 samples, which is why we opted to report our findings only for
the larger set. We leave the door open for generation and testing on larger sample sizes
but we consider this to be a natural consequence of the methodology we introduce
which remains first and foremost the primary objective of this study.

Table 2 Model performance comparison on the augmented data

Useful Not Useful

Model Macro-F1 Precision Recall Accuracy Macro-F1 Precision Recall

RF 88.922 87.186 90.746 88.691 88.448 90.359 86.636
VC 91.468 90.970 91.984 91.418 91.367 91.900 90.853
NN 91.412 92.017 90.829 91.466 91.518 90.954 92.103

Table 3 Model Macro-F1 performance increase comparison on seed, baseline and augmented data

Useful Not Useful

Model Seed Baseline Augmented Increase1 Seed Baseline Augmented Increase1

RF 84.727 85.587 88.922 1.038 84.168 85.168 88.448 1.038
VC 88.133 88.539 91.468 1.033 88.111 88.578 91.367 1.031
NN 88.401 88.489 91.412 1.033 88.664 88.856 91.518 1.029

Note: The values in bold indicate the best Macro-F1 scores per class per model between the Seed,
Baseline and Augmented datasets.

Note: The Increase is measured between the Baseline and the Augmented datasets.
1Values are in percentage.

6 Conclusion

In this work, we introduce a symbolic method of synthetic data generation using
semantic decomposition. We show how we can combine this method with LLMs to
create a neuro-symbolic workflow for controlled synthetic data generation to tackle
the code comment classification challenge. Our method overcomes the limits of over-
reliance on LLMs as generators and enables the creation of valid synthetic data that
improves the performance of machine learning models on the classification task without
the need for scaling or constructing more complex and resource-hungry systems. Future
work will include more tests on larger data samples generated through this workflow,
possible extensions to other domains and data sources and experimentation with the
possibility of integrating other forms of symbolic knowledge to our framework.

Acknowledgements. We would like to thank the organizers of the IRSE 2023
shared task for laying the groundwork for our research.

14

Appendix A Python script created by ChatGPT

Listing 1 Python script created by ChatGPT to generate synthetic labeled code comment data in C

import random

import csv

List of keywords in the C language

keywords = [’auto’, ’double’, ’int’, ’struct’, ’break’, ’else’, ’long’,

’switch’, ’case’, ’enum’, ’register’, ’typedef’,

’char’, ’extern’, ’return’, ’union’, ’const’, ’float’, ’short’,

’unsigned’, ’continue’, ’for’, ’signed’,

’void’, ’default’, ’goto’, ’sizeof’, ’volatile’, ’do’, ’if’,

’static’, ’while’]

List of data types for variables

data_types = [’char’, ’int’, ’float’, ’double’, ’void’]

List of labels for comments

comment_labels = [’Useful’, ’Not Useful’]

Function to generate a random valid identifier

def generate_identifier():

first_char =

random.choice(’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_’)

rest_chars =

’’.join(random.choices(’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_’,

k=random.randint(0, 10)))

return first_char + rest_chars

Function to generate a random valid line of code

def generate_line_of_code():

keyword_or_data_type = random.choice(keywords + data_types)

identifier = generate_identifier()

value = random.choice([’’, f’ = {random.randint(0, 100)}’])

return f’{keyword_or_data_type} {identifier}{value};’

Function to generate a random comment

def generate_comment():

level_of_detail = random.choice([’’, ’ // ’ + ’

’.join(generate_identifier() for _ in range(random.randint(1, 5)))])

return random.choice([’’, ’/* ’ + generate_identifier() + ’ */’]) +

level_of_detail

Function to generate a useful comment for a given line of code

def generate_useful_comment(line_of_code):

purpose_keywords = [’Declaration’, ’Initialization’, ’Calculation’,

’Function’, ’Definition’, ’Usage’, ’Explanation’]

variable_keywords = [’Variable’, ’Value’, ’Data’, ’Result’, ’Parameter’]

15

purpose = random.choice(purpose_keywords)

variable = random.choice(variable_keywords)

return f’// {purpose} of {variable} in the line of code:\n//

{line_of_code}’

Function to generate a random label for a comment

def generate_comment_label():

return random.choice(comment_labels)

Generate 5000 lines of code, comments, and labels

data = []

for _ in range(5000):

line_of_code = generate_line_of_code()

comment = generate_comment()

label = generate_comment_label()

Ensure the comment is useful if labeled as Useful

if label == ’Useful’:

comment = generate_useful_comment(line_of_code)

data.append((line_of_code, comment, label))

Function to write data to a CSV file

def write_to_csv(file_path, data):

with open(file_path, mode=’w’, newline=’’) as csv_file:

fieldnames = [’Line of Code’, ’Comment’, ’Class’]

writer = csv.DictWriter(csv_file, fieldnames=fieldnames)

writer.writeheader()

for row in data:

writer.writerow({’Line of Code’: row[0], ’Comment’: row[1],

’Class’: row[2]})

Specify the file path

csv_file_path = ’test.csv’

Write data to the CSV file

write_to_csv(csv_file_path, data)

print(’Data has been generated and saved to {csv_file_path}’)

References

[1] Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B.,
Zhang, J., Dong, Z., et al.: A survey of large language models. arXiv preprint
arXiv:2303.18223 (2023)

[2] Zheng, Z., Ning, K., Wang, Y., Zhang, J., Zheng, D., Ye, M., Chen, J.: A survey

16

of large language models for code: Evolution, benchmarking, and future trends.
arXiv preprint arXiv:2311.10372 (2023)

[3] Gholami, S., Omar, M.: Does synthetic data make large language models more
efficient? arXiv preprint arXiv:2310.07830 (2023)

[4] Muennighoff, N., Rush, A., Barak, B., Le Scao, T., Tazi, N., Piktus, A., Pyysalo,
S., Wolf, T., Raffel, C.A.: Scaling data-constrained language models. Advances in
Neural Information Processing Systems 36 (2024)

[5] Van, H.: Mitigating data scarcity for large language models. arXiv preprint
arXiv:2302.01806 (2023)

[6] Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das,
P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview
of the information retrieval in software engineering track at fire 2023. arXiv
preprint arXiv:2311.03374 (2023)

[7] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE
(Forum for Information Retrieval Evaluation) 2023 (2023)

[8] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012
(2020)

[9] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-
symbolic method for learning to generate planning problems. arXiv preprint
arXiv:2301.10280 (2023)

[10] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map gener-
ation with vq-vae and wfc. In: Proceedings of the 16th International Conference
on the Foundations of Digital Games, pp. 1–6 (2021)

[11] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot,
T.: Adapt: As-needed decomposition and planning with language models. arXiv
preprint arXiv:2311.05772 (2023)

[12] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncer-
tainty for large language models through input clarification ensembling. arXiv
preprint arXiv:2311.08718 (2023)

[13] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact
language models. arXiv preprint arXiv:2402.01812 (2024)

[14] Lyre, H.: ” understanding ai”: Semantic grounding in large language models.
arXiv preprint arXiv:2402.10992 (2024)

[15] Turney, P.D.: Semantic composition and decomposition: From recognition to
generation. arXiv preprint arXiv:1405.7908 (2014)

17

[16] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decompo-
sition improves learning of large language models on ehr data. arXiv preprint
arXiv:2212.06040 (2022)

[17] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural
language decomposition and interpretation of complex utterances. arXiv preprint
arXiv:2305.08677 (2023)

[18] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet,
O., Zhou, D.: Compositional semantic parsing with large language models. arXiv
preprint arXiv:2209.15003 (2022)

[19] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all
we need? arXiv preprint arXiv:2205.12538 (2022)

[20] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing
using large language models. arXiv preprint arXiv:2212.10815 (2022)

[21] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot
compositional semantic parsing with sequential prompts and zero-shot models.
arXiv preprint arXiv:2205.07381 (2022)

[22] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning
for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023)

[23] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard,
K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey.
arXiv preprint arXiv:2401.02524 (2024)

[24] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large lan-
guage models for text classification: Potential and limitations. arXiv preprint
arXiv:2310.07849 (2023)

[25] Riemer, N.: The Routledge Handbook of Semantics, (2015)

[26] Klemens, B.: 21st Century C: C Tips from the New School, (2014)

[27] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research 16,
321–357 (2002)

18

	Introduction
	Related Work
	Symbolic techniques and large language models
	Synthetic data generation methods

	Methodology
	Semantic rules
	Algorithm generation
	Script creation

	Experiments
	Dataset description
	Baseline data
	Additional data

	System description
	Model choice
	Features
	Experimental setup

	Results
	Conclusion
	Acknowledgements

	Python script created by ChatGPT

