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Abstract—The LOTUS project aims at improving maritime
surveillance. In this context, this position paper presents ongoing
contributions, including novel machine learning algorithms for
multi-agent systems to be applied to groups of underwater drones
involved in surveillance missions. It emphasises incorporating
human-machine teaming to bolster decision-making in maritime
scenarios. The expected outcomes of this project comprise the
robust control of groups of autonomous vehicles, adaptable to
environmental changes, as well as an effective reporting method.
Mission summaries will be delivered to human operators by
way of narratives about the relevant events detected thanks to
drones. The integration of this narrative construction powered
by machine learning will enhance the overall effectiveness of the
team, constituting a significant breakthrough.

I. INTRODUCTION

The maritime area is essential for a variety of activities.
Unfortunately, this environment is becoming more complex
and potential threats are emerging. To deal with the difficulties
of a crowded and contested underwater environment, new
advanced undersea surveillance capabilities are needed.

The LOTUS project leverages human-machine teaming to
enhance operators’ decision-making in a maritime environ-
ment. Starting from a collection of static distributed sensors,
our proposal is to use underwater unmanned vehicles (UUVs)
as a complementary mobile and distributed sensor network to
inspect a precise area of interest, typically in a littoral sector.
Although autonomous systems are particularly useful when
communication is impeded, skilled operators are still to be
involved to take decisions. Consequently, both the reliability
of a group of UUVs and the dialogue within and with this
group are at the core of the project.

Most recent scientific progress in autonomous systems has
concerned individual UUVs and has been based on advanced
machine learning techniques. Our project targets to extend
these approaches to multiple drones and to tackle the chal-
lenges associated with human-system interaction. To represent
UUVs, LOTUS proposes to use a multi-agent approach to
increase robustness, flexibility, and opportunistic functioning.

Multiple UUVs may also lead to a challenging collaborative
data processing. In this concern, our solution incorporates
considerations about reporting and representing.

The LOTUS project workflow is represented in Figure 1.
The first step of our approach is to design a resilient multi-
robot UUV system that faces disturbances in an underwater
environment (section II), as an extension of previous work
on a single UUV. Our objectives include the development
of advanced formation control and navigation algorithms for
coordinated and covert operations. The second step is to
detect, track and report using an original approach based on
an event recognition system (section III). The last step is
to design efficient interfaces that link the human operator
and autonomous agents in order to provide situation aware-
ness (section IV). This development will be integrated in
a dedicated simulated environment: LOTUSim (section V).
All of these steps are based on human-over-the-loop artificial
intelligence. A proposed use case scenario is described in
section VI.

II. ROBUST BIO-INSPIRED LEARNING-BASED CONTROL OF
GROUPS OF ROBOTS

In the domain of Uncrewed Underwater Vehicles (UUVs),
the successful execution of missions extends beyond the
simple adherence to user-defined objectives. The ability to nav-
igate unexpected events and challenges is a crucial aspect that
demands the evolution of existing methodologies. This part of
LOTUS builds upon prior work in Deep Reinforcement Learn-
ing (DRL) for UUV control, as established by [1] and [2], and
expands its scope to encompass multi-robot systems. The the-
oretical foundation of this research rests within the paradigm
of Multi-Agent Reinforcement Learning (MARL), where col-
laborative behaviours among multiple learning agents emerge
through interactions with their environment and each other. A
key feature of MARL is its integration of game theory, guiding
agents to maximise rewards while considering social metrics
such as cooperation and competition.



Fig. 1. LOTUS Project worflow

The overarching objective of this research is to refine rein-
forcement learning processes specifically tailored for pattern
formation and obstacle avoidance in a collective of UUVs, in
close alignment with the work presented in [3]. Our primary
focus is the introduction of innovative heuristics designed
to significantly accelerate the learning process. This novel
approach, known as Heuristically Accelerated Reinforcement
Learning (HARL) [4], [5], leverages biologically-inspired
heuristics derived from the collective behaviours observed in
groups of animals.

The heuristics used in HARL draw inspiration from the
study of animals living in groups, such as schools of fish,
flocks of birds, or herds of mammals. These collectives exhibit
remarkable behaviours that facilitate effective navigation, re-
source location, predator avoidance, and communication. Such
behaviours emerge from interactions and coordination among
individual animals, often occurring without central control or
explicit communication.

The incorporation of biologically-inspired heuristics serves
the purpose of significantly reducing the exploration space
and guiding agents toward more promising actions. These
heuristics are applied in various ways, including initialising
the agent’s policy with a heuristic policy, shaping the reward
function to provide guidance, or biasing the agent’s exploration
toward heuristic-driven actions. The overarching goal is to
develop highly efficient and adaptable algorithms capable of
handling intricate tasks that require coordination, collabora-
tion, and decentralised decision-making within a group of
UUVs.

This research framework within the domain of MARL, cou-
pled with the application of HARL techniques, holds promise
for advancing the collective performance of UUVs. The inte-
gration of biologically-inspired heuristics offers a compelling
avenue for achieving efficient and adaptable algorithms, paving
the way for advancements in autonomous multi-agent systems.
As we delve deeper into this exploration, our findings may
contribute not only to the field of underwater robotics but
also to broader applications involving decentralised decision-
making and coordination among autonomous agents. In sub-
sequent sections, we will dig into the specific methodologies,
experiments, and results that constitute the backbone of this
research endeavour.

III. NARRATIVES FOR MULTI-ROBOT EVENT
RECOGNITION

The ability to find unexpected events or objects underwater
is strongly linked to the corresponding ability to report about
these events and, therefore, build an understandable and co-
herent discourse towards the mission human supervisor. The
swarm should send situational awareness and status updates
to the operator, and the operator sends high-level control
input to the swarm [6]. The reporting function has been quite
largely covered when managing a dialogue with one agent
only, but remains a true scientific challenge when dealing
with as many points of view and interlocutors as a swarm can
generate. Indeed, during complex missions executed by groups
of autonomous agents, drones go through multiple events that
are logged in their memory devices. Due to the large amount of
data generated in these missions, it is virtually impossible for
an operator to keep track of every event and its consequences
in real time, even when high-speed communication between
the operator and the drones is available (which is hardly
the case). To efficiently monitor such campaigns, it is also
essential to understand the operational requirements, from
continuous updates during the mission to final reporting post-
operation. This task requires a diverse range of skills and
knowledge that are hard (if not impossible) to obtain by
current deep learning methods, whose main contribution relies
on finding complex patterns, given large data sets. Instead,
an intelligent autonomous system capable of dealing with
campaigns monitoring and report generation should also take
into account the expert knowledge. Approaches based on
knowledge representation will allow operators to get explain-
able outputs, in contrast to many commonly used machine
learning algorithms [7].

The preliminary results outlined in our previous work [8]
encompassed several of these challenges, including the extrac-
tion of high-level events from continuous data, the efficient
communication and interaction with operators, and leveraging
expert knowledge to aid in accurate event identification and
operator interaction. Therefore, we propose an extension of the
work reported in [8] including the following novel aspects:

1) An extension of the event recognition system proposed
in [9] towards recognising joint actions in multiagent



systems. This extended system will have the following
contributions with respect to state-of-the-art systems:

• The use of a high-level formalism to identify se-
quences of events, classified by deep learning meth-
ods;

• The development of a distributed version of an
event-recognition system, whereby the computation
will be shared by the various agents in the mission;

• The fusion of the knowledge obtained by the mul-
tiple agents into a single (consistent) description
of the events, actions and tasks observed. We may
here consider using pseudo-formalisms commonly
described in narratology such as Bremond’s ”Logic
of Narrative Possibilities” [10], making the trans-
lation into natural language more accessible to the
common human user.

2) Experiments on using the system developed in the pre-
vious item for generating compact mission descriptions
from the data obtained by simulated multi-maritime
vessel tasks;

3) The efficient translation of the compact mission de-
scriptions obtained into narratives expressed in natural
language.

IV. IMMERSIVE NARRATIVE VISUALISATION FOR
UNDERSTANDING AUTONOMOUS MARITIME VESSELS

The expected complexity of multiple and nevertheless co-
herent missions/data will be addressed through immersive
information spaces with which users will interact. The swarms
may be composed of a large number of UUVs and com-
munication links can be unreliable, requiring the human
operator to understand a significant amount of information
when communication links are re-established. This challenge
is compounded by the fact that:

1) unexpected events may have occurred that must be
reported and,

2) that the information is highly spatial in nature. These
compounding factors create situations that place opera-
tors under high cognitive load.

Narrative visualisation combines narrative techniques and
information visualisation to communicate a consistent and
coherent view of information that is based on the user’s mental
model of the situation being explained. Applying narrative
visualisation to an autonomous system maritime use-case
can address the challenge of communicating decisive events
from swarm information. Furthermore, the spatial nature of
maritime data is ideally suited to immersive visualisation
and analytics, leveraging the perceptual affordances of virtual
reality (VR) to accurately represent spatial relationships [11].
The combination of narrative visualisation and immersive
analytics, i.e. immersive narrative visualisation, can provide
seamless mission-report summaries to human operator.

The work will be undertaken in two stages. In the first stage,
techniques for visually communicating historical simulated
swarm data will be developed and evaluated, supporting a

scenario of explanation in post-action review. Through in-
teraction, the user will distinguish different levels of detail
for each agent in the zone, causal relationships amongst the
events, and explanations about the anomaly. The second stage
will explore techniques to support real-time scenarios where
the explanation may evolve over time, and decisive events
occur while using the system. A novel cognitive model will
be developed that considers physiological sensors in the VR
headsets (e.g. eye-tracking) and presents relevant narratives to
the operator’s current task. Through embodied interaction in
the immersive environment, the user will be able to explore the
situation and intervene with automated assistance about the ac-
tion to be triggered. The techniques developed throughout this
research will be validated through controlled user studies that
will compare users’ cognitive load and situational awareness
between the new methods developed and current approaches
[12].

V. PLATFORM: LOTUSIM

The tasks described in section VI will be executed in a
dedicated simulated environment: LOTUSim. The simulation
platform should gather each component required for providing
remote undersea surveillance, permitting strategic experimen-
tation of algorithms produced with a batch of operational
scenarios for mission planning and conduct.

LOTUSim will be developed as an operational simulator.
The simulation will integrate the physical conditions of an un-
derwater environment as input data, leveraging data collected
from sensors in a multi-agent setting. New sensor deployment
strategies that benefit from a multi-agent approach (robust,
flexible, decentralised), assessing different kinds of sensors
combination given different metrics for improving surveillance
(e.g: event detected and classified, usability investigation,
operationality). The platform will allow to establish com-
munication protocol between a static and a mobile network
composed of drones, events will be detected and explained
to the operator (sense-making). These events should support
the decision using an immersive interface for visualisation.
Multi-robot coordination and cooperation are at the core of
our multi-agent system research and development in robotics
and algorithmics. The simulator is configurable with different
data and scenarios, allowing for future mission autonomy
and scheduling once experimented. This digital environment
permits experimentation with a batch of scenarios for mission
planning and conduct, ensuring flexibility in this collaborative
sensing. It should be done at reduced costs and risks, while
being the only way of training models based on machine
learning, especially reinforcement learning aiming at drone
robustness, that requires a number of iterations that only
simulation can provide. As a digital twin approach, the sim-
ulation provides a proof-of-concept (POC) for autonomous
sensor processing of a distributed sensor networks mounted
on drones.

From a technical point of view, a good simulator should sup-
port different types of vehicles, sensors, and environments with
accurate representation of hydrodynamic/hydrostatic forces



[13]. In addition, to simulate mutli-robots, simulator should
considers to integrate multi-agent system and support large
worlds [14]. Lastly, the capacity to display realistic rendering
is a great option [13], [14]. Studies [13], [14] presented
comprehensive comparison of existing simulators. Figures 2
and 3 offers an extended comparison, using the same criteria.

Simulators for marine robotics can be divided into two cate-
gories [13]: surface vehicles and underwater vehicles. Popular
surface simulators include USVSim [15] where the focus is to
model environmental factors such as waves, wind and water
currents. While UWSim [16] and UUV Simulator [17] are
the two most widely used options for underwater simulation.
Plankton1 is an extension of UUV Simulator for ROS2 [18].
An alternative is the Stonefish Library [19] which supports
standard sensors and has a better approximation of hydrody-
namic forces. The simulator supports advanced rendering of
underwater scenes. LRAUV is the first simulator that allow
multi-robot marine missions [14]. Last but not least, Liquid AI
is an open source simulator using ROS2; as a Data Distribution
Service (DDS) middleware communication for third party
applications, easy to use system with a publisher/subscriber
system. Gazebo plugins system is used to integrate complex
environmental simulator (xdyn2, asv wave sim3). Realistic
rendering could be done in Unity, including visualization of
wave and weather (sky, clouds and rain). Liquid AI is the first
tool aiming at simulate both underwater and surface vehicules,
plus environmental conditions for multi-robot marine missions
using multi-agent approach (Figure 3). For all these reasons,
LOTUSim will be based on Liquid AI.

VI. USE CASE

The proposed scenario is related to Mine Counter Measures
(MCM). UUVs have been demonstrated to be particularly
effective at detecting mines buried under, sitting on, or sus-
pended above the seabed. Side scan or synthetic aperture sonar
is one particular modality for detecting Mine Like Objects
(MLOs) by flying the vehicle above the seabed, however the
swath coverage from a single vehicle can be quite narrow,
spanning a few metres to a few 10’s of metres, depending on
the vehicle’s height above the seabed. Since the scan resolution
is inversely proportional to the vehicle’s height above the
seabed, it is preferable to fly the vehicle at a fixed height
to achieve a uniform swath. While a single vehicle can cover
a large area by flying the vehicle along a raster scan across
the area, considerable speed up and coverage assurance can
be gained by flying multiple vehicles in parallel formation
to acquire multiple overlapping swaths. Machine learning
techniques can be then be used on-line or via post-processing
to identify MLOs and report back their locations to an operator
or other vehicles. Recent developments in autonomous MCM
are exploring the use of hybrid teams of vehicles including
scanning sonar equipped torpedo shaped vehicles to scout
ahead scanning for possible MLOs followed by hovering type

1https://github.com/Liquid-ai/Plankton
2https://github.com/sirehna/xdyn
3https://github.com/srmainwaring/asv wave sim

vehicles equipped with different sensing modalities, such as
cameras or forward looking sonars, that are then tasked to
inspect the potential MLOs close up and confirm the identity
of the target.

This hybrid vehicle team forms the basis of the proposed
scenario (Figure 4). The deployment of a fleet of autonomous
and collaborative underwater agents capable of autonomously
assigning tasks to vehicles and sharing the workload re-
quires the implementation of a distributed architecture and
multi-agent decision algorithms. This distributed intelligence
requires the specification of precise mission objectives that
allow the formulation of a multi-robot task allocation problem
(MRTA) with the following specificities:

1) Communication constraints/challenges between agents
(underwater context) - acoustic communication band-
width is severely limited, this is especially challenging
for teams of vehicles with a distributed MRTA;

2) Mission hazards (deviation from the initial plan, e.g.
detection of cross-currents or opposing currents) that
must be managed in real time;

3) Robustness to failure of individual vehicles/sensors -
this involves dynamic reallocation of tasks based on
availability and proximity;

4) Energy constraints - a critical priority of the fleet is to
ensure the safety of the vehicles, in this case ensuring
that they have enough energy to complete the mission
and return back. Task allocation must prioritise energy
conservation and allow for vehicles to be swapped in
anout of the fleet based on energe reserves.

The resolution of the MRTA results in a global mission plan
that must be executed by each agent, monitored (detection of
deviations), and, if necessary, repaired.

VII. CONCLUSION

The LOTUS should provide a complete coherent task chain
allowing persistent monitoring of an area, the automated nar-
rativisation (mission reporting), embedding the multiple actors
and their roles, and a new kind of interactive and immersive
framework dedicated to visual support of the interpretations of
the story narratives. This chain will be tested using a dedicated
simulation environment that will incorporate a multi-agent
framework with AI algorithms for underwater surveillance
to Gazebo and ROS2 with extensions to Unity and Unreal
engines. Through simulation, our fleet of drones is required
to demonstrate precise behavior at specific moments, even
when faced with unforeseen circumstances. They will possess
the ability to persist with the mission, undeterred by adverse
environmental or operational conditions. Additionally, these
simulations aim to generate valuable data that contributes to
the analysis, reporting, and representation of a complex multi-
agent system. The outcomes of this work will have to be tested
in real-life conditions. The accuracy of LOTUSim should then
simplify the transfer.

https://github.com/Liquid-ai/Plankton
https://github.com/sirehna/xdyn
https://github.com/srmainwaring/asv_wave_sim


Fig. 2. Feature comparison of popular simulators used for marine robotics, as an extension of the table proposed in [13]

Simulator Underwater Surface Multi agent Realistic Large ROS2
Hydrodynamic Hydrodynamic Rendering Worlds

UUV ✓ ✗ ✓ ✗ gazebo ✗ ✗ ROS1
DAVE ✓ ✗ ✓ ✗ gazebo ✓ ✗ ROS1
StoneFish ✓ ✗ ✗ ✓ bullet ✗ ✗ ROS1
LRAUV ✓ ✗ ✓ ✗ gazebo (new) ✓ ✓
LiquidAI ✓ ✓ ✓ ✓ Unity ✓ ✓

Fig. 3. Feature comparison of popular simulators used for marine robotics, as an extension of the table proposed in [14]

Fig. 4. Mine counter measure overview
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