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Abstract

We present the multi-band dual triply irreducible local expansion (D-TRILEX) approach
to interacting electronic systems and discuss its numerical implementation. This method
is designed for a self-consistent description of multi-orbital systems that can also have
several atoms in the unit cell. The current implementation of the D-TRILEX approach is
able to account for the frequency- and channel-dependent long-ranged electronic inter-
actions. We show that our method is accurate when applied to small multi-band systems
such as the Hubbard-Kanamori dimer. Calculations for the extended Hubbard, the two-
orbital Hubbard-Kanamori, and the bilayer Hubbard models are also discussed.
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1 Introduction

Understanding the effect of electronic correlations in materials is currently a very active topic
of research. Strong interaction between electrons is responsible for their non-trivial collective
behavior and for the formation of a variety of different states of matter, as for instance Mott
insulating [1, 2] and unconventional superconducting [3–5] phases. Usually, the low-energy
physics of materials with strong electronic correlations is determined by a subspace of elec-
tronic bands that lie near the Fermi energy. In several situations, this correlated subspace can
be effectively reduced to one band, which, for instance, is a standard approximation for cuprate
superconductors [3, 6–9]. However, in most of the cases an accurate description of realistic
materials with strong electronic correlations requires to take into account several bands that
originate from different orbitals and/or atoms in the unit cell. Prominent examples of materi-
als where the interplay of orbital degrees of freedom and strong correlations is believed to be
of crucial importance are vanadates [10–13], ruthenates [14–20], nikelates [21–27], and iron-
based superconductors [28–37]. Even in the case of cuprates the question whether an effective
three-band model should be used instead of a single-band one is still under debate [38–47].

The need in addressing strong electronic correlations in a multi-band framework sets
an outstanding challenge for theoretical material science. The state-of-the-art method for
predicting and describing properties of correlated materials is dynamical mean field theory
(DMFT) [48–50]. DMFT is particularly successful, because it allows for a non-perturbative de-
scription of local correlation effects by mapping the interacting system onto an effective local
impurity problem. However, this approach is not able to account for non-local correlations,
since it is based on the assumption of the locality of the electronic self-energy.

Two main routes have been proposed to go beyond the local picture provided by DMFT,
while still taking advantage of the non-perturbative description of local electronic correlations.
The first route consists in considering a finite cluster of lattice sites instead of a single-site
impurity problem, which allows for taking into account spatial correlation effects within the
cluster [50–56]. However, these methods are usually based on quantum Monte Carlo solvers
that often suffer from a fermionic sign problem in multi-orbital calculations [57], or on the
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exact diagonalization (ED) method [3,58], the complexity of which scales exponentially with
the number of orbitals and sites. As the result, in the multi-orbital case the cluster methods are
able to account for only short-range electronic correlations [59–62]. Diagrammatic extensions
of DMFT provide the second way of taking into account the non-local correlation effects [63].
The key idea of these approaches is to use the DMFT impurity problem as a reference system
for a diagrammatic expansion in order to describe the non-local electronic correlations in the
form of the most relevant Feynman diagrams.

Particular examples of such theories are the GW+DMFT [64–70], the dual fermion (DF)
[71–76], the dual boson (DB) [77–83], the dynamical vertex approximation (DΓA) [84–88],
the triply irreducible local expansion (TRILEX) [89–92], and the dual TRILEX (D-TRILEX) [20,
93–97] methods. Among them, DF, DB, and DΓA have the most sophisticated diagrammatic
structures that allow for a very accurate description of both, local and non-local correlation
effects [98]. At the same time, these methods generally suffer from high computational costs
that limit the application of these approaches in multi-band setups. For instance, the diagram-
matic expansion in DF, DB, and DΓA involves the exact local four-point vertex function of the
reference system. Evaluating this frequency-dependent object in a multi-band case is very ex-
pensive numerically, because it contains four external points that have independent frequency
and band indices. Additionally, using the four-point vertex in a diagrammatic expansion is fre-
quently hindered by the need of inverting the Bethe-Salpeter equation (BSE), which requires
large computational resources both in terms of time for the calculation and of memory con-
sumption for storing the full momentum and frequency dependent vertices. For this reason,
among the three methods only the DΓA [86–88] and the second-order DF [99] approaches
have been extended to the multi-band case so far.

On the contrary, GW+DMFT and TRILEX methods have a much simpler diagrammatic
structure compared to DF, DB, and DΓA, which makes the former very attractive for multi-band
calculations. Currently, GW+DMFT is intensively used in many realistic calculations [12, 64,
100–105]. However, among all non-local correlations this method considers only charge fluc-
tuations and thus neglects important magnetic effects. Furthermore, GW+DMFT does not take
into account vertex corrections that are crucial for an accurate description of magnetic, optical
and transport properties [20,105–113]. The TRILEX method partially cures these drawbacks
by considering both, the charge and magnetic fluctuations, and also by introducing vertex
corrections in the form of the local Hedin’s vertex [114] of the DMFT impurity problem. The
diagrammatic expansion based on the three-point vertices is still relatively simple, because it
does not require to invert the BSE in momentum and frequency space. This is a clear compu-
tational advantage over DF, DB, and DΓA. However, TRILEX is affected by a double-counting
(Fierz ambiguity [115–117]) problem when the charge and magnetic fluctuations are taken
into account simultaneously [92]. Additionally, vertex corrections in TRILEX are included in
diagrams in an asymmetric way. This diagrammatic structure leads to inconsistent results in a
strong-coupling limit [118] and does not have a correct symmetry in the orbital [20] space.

In order to resolve the aforementioned issues of GW+DMFT and TRILEX, the D-TRILEX ap-
proach was recently developed [93,94]. D-TRILEX has a very similar diagrammatic structure
to TRILEX. However, it was derived following a rather different route, namely as an approxi-
mation of the DB theory. For this reason, D-TRILEX has the same degree of internal consistency
as the DB approach. In particular, it treats both charge and magnetic fluctuations without fac-
ing the Fierz ambiguity issue, and also possesses a desired symmetry for the vertex corrections
that is missing in the original formulation of the TRILEX approach. Initially, the D-TRILEX
method was formulated and implemented in the single-orbital form [93]. In this context, it
retains a high degree of accuracy compared with its parental DB theory [94]. Specifically,
this approach captures both, the reduction of the critical value of the critical interaction for
the Mott transition with respect to the DMFT prediction [93] and the pseudogap formation
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in the Slater regime of a single-orbital Hubbard model [94]. Additionally, D-TRILEX correctly
reproduces the momentum differentiation in the electronic self-energy predicted by an exact
benchmark in a model relevant for cuprates [94]. These successes of the method achieved in
a single-orbital context made it desirable to extend the D-TRILEX approach to a multi-band
framework. An early attempt in this direction was the application of a simplified version of
the method to the study of magnetic fluctuations in a three-orbital model for perovskites [20].
The promising results obtained in that case motivated us to derive a general formulation of
the multi-band D-TRILEX theory and to develop a numerical implementation that does not
rely on a specific model. The introduced approach provides a consistent formulation of a dia-
grammatic expansion on the basis of an arbitrary interacting reference problem. In particular,
considering a finite cluster as the reference problem allows one to combine the diagrammatic
and cluster ways of taking into account the non-local correlation effects within the multi-band
D-TRILEX computational scheme.

In this work, we provide a detailed formulation of the D-TRILEX method in a multi-orbital
and multi-site framework. We start by deriving a general multi-band fermion-boson action in
Section 2. In Section 3, we show expressions for the self-energy and the polarization operator
in D-TRILEX approximation, and related them to physical quantities. Section 4 contains the
description of the computational workflow used in our implementation. There, we highlight
several snippets that improve the convergence. In Section 5 we discuss several applications
of our method that illustrate various capabilities of the developed multi-band D-TRILEX ap-
proach. Finally, Section 6 is devoted to conclusions.

2 Effective fermion-boson action in the multi-band framework

We start with a general action of a multi-band extended Hubbard model

S =−
∑

k,{l},
σσ′

c∗kσl

�

(iν+µ)δσσ′δl l ′ − ε
σσ′

k,l l ′

�

ckσ′ l ′ +
1
2

∑

q,{l},
{k},{σ}

U pp
l1 l2 l3 l4

c∗kσl1
c∗q−k,σ′ l2

cq−k′,σ′ l4
ck′σl3

+
1
2

∑

q,{l},
ς=d,m

V ςq, l1 l2, l3 l4
ρ
ς
−q, l1 l2

ρ
ς
q, l4 l3

+
∑

q,{l},
ϑ=s,t

V ϑq, l1 l2, l3 l4
ρ∗ϑq, l1 l2

ρϑq, l3 l4
. (1)

In this expression, c(∗)kσl is the Grassmann variable that describes the annihilation (creation)
of an electron with momentum k, fermionic Matsubara frequency ν, and spin projection
σ ∈ {↑,↓}. The label l numerates the orbital and the site within the unit cell. To simplify
notations, we use a combined index k ∈ {k,ν}. Summations over momenta and frequencies
are defined as:

∑

k

=
1
β

∑

ν

1
Nk

∑

k

, (2)

where β = T−1 is the inverse temperature and Nk is the number of k-points in the discretized
Brillouin zone (BZ). The single-particle part of the lattice action (first term in Eq. (1)) contains
the chemical potential µ and the single-particle Hamiltonian term εσσ

′

k,l l ′ that has the following

structure in the spin space: εσσ
′

k,l l ′ = εk,l l ′δσσ′ + i ~γk,l l ′ · ~σσσ′ . The diagonal part in the spin
space εk,l l ′ of this matrix contains the momentum- and orbital-space representation of the
hopping amplitudes between different lattice sites, and may also account for the effect of the
crystal field splitting (CFS) and of the external electric field. The non-diagonal contribution in
spin space ~γk,l l ′ describes the effect of the external magnetic field and the spin-orbit coupling
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(SOC), that is usually expressed in the Rashba form [119]. The latter corresponds to a Fourier
transform of the effective spin-dependent hopping amplitudes [120]. ~σ = {σx ,σ y ,σz} is a
vector of Pauli matrices.

The on-site Coulomb potential is written in the conventional (particle-particle) form

U pp
l1 l2 l3 l4

=

∫

drdr ′ψ∗l1(r)ψ
∗
l2
(r ′)V (r − r ′)ψl3

(r)ψl4
(r ′) , (3)

where V (r− r ′) is the screened Coulomb interaction andψl(r) are localized on-site basis func-
tions. The local interaction can also be rewritten in the particle-hole representation using the
following relation U ph

l1 l2 l3 l4
= U pp

l1 l4 l2 l3
(see Appendix B). The remaining part of the interaction

V r
q in Eq. (1) is written in the channel representation r ∈ {ς,ϑ}, where ς ∈ {d, m} denotes

charge (d) and magnetic (m ∈ {x , y, z}) channels, and ϑ ∈ {s, t} depicts singlet (s) and triplet
(t) channels. This interaction can have an arbitrary momentum q and bosonic Matsubara fre-
quencyω dependence as depicted by a combined index q ∈ {q,ω}. Usually, V r

q corresponds to
the non-local interaction. However, it may also contain the frequency-dependent part of the
local interaction that is not included in the Ul1 l2 l3 l4 term. Composite fermionic variables ρr

q, l1 l2
for the considered bosonic channels describe fluctuations of corresponding densities around
their average values ρr

q, l1 l2
= nr

q, l1 l2
−
¬

nr
q, l1 l2

¶

. The orbital-dependent charge and magnetic
densities can be introduced as follows

nd
q, l1 l2

=
∑

k,σ

c∗k+q,σl1
ckσl2

, ~nm
q, l1 l2

=
∑

k,{σ}

c∗k+q,σl1
~σσσ′ ckσ′ l2

. (4)

Densities for the particle-particle channel n(∗)ϑq, l1 l2
are defined in Appendix A.1.

In this work, the initial lattice problem (1) is addressed within the dual triply irreducible
local expansion (D-TRILEX) formalism [93, 94]. The D-TRILEX approach allows one to con-
struct a self-consistent diagrammatic expansion on the basis of a generic reference system. The
reference system is introduced to account for some (usually local or short-range) part of elec-
tronic correlations numerically exactly, and its particular form depends on the considered lat-
tice problem [76]. For instance, in DMFT-based calculations the reference system corresponds
to a single-impurity [48], several isolated impurities [121, 122], or a finite cluster [50–56]
problems. In the Hubbard-I approximation, the DMFT local impurity problem can be reduced
to an atomic problem [123–125]. It is also possible to build the D-TRILEX diagrammatic ex-
pansion on the basis of the impurity problem of the extended dynamical mean field theory
(EDMFT) [126–130] by introducing a bosonic hybridization function (see Appendix A.1). The
latter accounts for the effect of the non-local interaction on the local electronic correlations
and could play an important role when the non-local interactions are strong. Alternatively,
in the spirit of the cluster perturbation theory, one can consider a finite plaquette as a refer-
ence system [76,131]. The limit of an infinite plaquette as a reference system corresponds to
the exact solution of the problem. For this reason, we expect the accuracy of the D-TRILEX
method to improve with enlarging the cluster similarly to what has been shown for the TRILEX
approach [92]. Indeed, as the spatial size of the reference problem is increased, the range of
electronic correlations that are treated within the exactly-solved cluster reference problem is
also increased. Additionally, using a cluster reference system allows for the study of broken
symmetry phases. In this regard, instead of viewing the cluster methods and the multi-band
D-TRILEX theory as competing approaches, one could consider D-TRILEX as a method to im-
prove the cluster solution of the problem by diagrammatically adding long-range correlations
that are not captured by a finite cluster when the computational costs prevent a further in-
crease of the cluster’s size.

As has been mentioned in Introduction, the D-TRILEX method was originally developed
for a single-band case. In order to extend this formalism to multi-band systems, we follow

5

https://scipost.org
https://scipost.org/SciPostPhys.13.2.036


SciPost Phys. 13, 036 (2022)

the derivation presented in Refs. [93, 94] and introduce an effective partially bosonized dual
action written in terms of fermion f and boson b variables (see Appendix A.1 for details)

S f b =−
∑

k,{l}

∑

σσ′

f ∗kσl

�

G̃−1
k

�σσ′

l l ′ fkσ′ l ′ −
1
2

∑

q,{l}

∑

ςς′

bς−q, l1 l2

�

W̃−1
q

�ςς′

l1 l2, l3 l4
bς
′

q, l4 l3

−
∑

q,{l}

∑

ϑϑ′

b∗ϑq, l1 l2

�

W̃−1
q

�ϑϑ′

l1 l2, l3 l4
bϑ
′

q, l3 l4
+F [ f , b] . (5)

It is important to emphasize that this action describes only those correlation effects that are
not taken into account by the reference problem. The bare dual fermionic Green’s function
has the following form

G̃ σ1σ2
k, l1 l2

=
∑

{l ′},{σ′}

B
σ1σ

′
1

ν, l1 l ′1

�

�

(εk −∆ν)
−1 − gν

�−1�σ
′
1σ
′
2

l ′1 l ′2
B
σ′2σ2

ν, l ′2 l2
, (6)

where ∆σσ
′

ν, l l ′ and gσσ
′

ν, l l ′ = −〈cνσl c
∗
νσ′ l ′〉 are respectively the fermionic hybridization and the

Green’s function of the reference system. In this expression, the scaling factors Bσσ
′

ν, l l ′ appear
as a consequence of a certain freedom in the Hubbard-Stratonovich transformation of the
initial action (1) and can be chosen arbitrarily (see Appendix A.1). In the original formulation
of the D-TRILEX theory [93, 94] and other dual methods [71–73, 77–80, 82, 83] the choice
Bσσ

′

ν, l l ′ = gσσ
′

ν, l l ′ ensures that the interaction of the effective dual action corresponds to vertex
functions of the reference system. However, working with these vertices is not very convenient,
because they have a numerical noise at large frequencies and also delta-functions appearing
in the imaginary-time space [83]. To avoid these problems, in the multi-orbital D-TRILEX
implementation we exclude these scaling factors by setting Bσσ

′

ν, l l ′ = δl l ′δσσ′ . This simplifies
the expression (6) for the bare dual fermionic Green’s function to

G̃ σσ
′

k, l l ′ =
�

�

(εk −∆ν)
−1 − gν

�−1�σσ
′

l l ′
. (7)

Note that within the convention chosen here, the dimension of the dual Green’s function (7)
does not correspond to [1/Energy] dimension of a physical Green’s function.

The bosonic propagator (renormalized interaction) of the partially bosonized dual ac-
tion (5) is the following (see Appendix A.1)

W̃ r r ′
q, l1 l2, l3 l4

=W r r ′
q, l1 l2, l3 l4

− ūr
l1 l2, l3 l4

δr r ′ . (8)

Here, ūςl1 l2, l3 l4
= 1

2 Uςl1 l2, l3 l4
and ūϑl1 l2, l3 l4

= Uϑl1 l2, l3 l4
are the corrections that prevent the double

counting of the interaction between different channels (see Appendix B). The renormalized
interaction W r r ′

q of extended DMFT [126–130] can be obtained from the corresponding Dyson
equation

�

W−1
q

�r r ′

l1 l2, l3 l4
=
h
�

U r + V r
q

�−1i

l1 l2, l3 l4
δr r ′ −Π

imp r r ′

ω, l1 l2, l3 l4
, (9)

that involves the polarization operator Πimp r r ′

ω, l1 l2, l3 l4
of the reference (impurity) problem and the

bare interaction in the channel representation (see Appendix B)

Ud
l1 l2 l3 l4

=
1
2

�

2U ph
l1 l2 l3 l4

− U ph
l1 l3 l2 l4

�

=
1
2

�

2U pp
l1 l4 l2 l3

− U pp
l1 l4 l3 l2

�

, (10)

Um
l1 l2 l3 l4

= −
1
2

U ph
l1 l3 l2 l4

= −
1
2

U pp
l1 l4 l3 l2

, (11)

U s
l1 l2 l3 l4

=
1
2

�

U ph
l1 l3 l4 l2

+ U ph
l1 l4 l3 l2

�

=
1
2

�

U pp
l1 l2 l3 l4

+ U pp
l1 l2 l4 l3

�

, (12)

U t
l1 l2 l3 l4

=
1
2

�

U ph
l1 l3 l4 l2

− U ph
l1 l4 l3 l2

�

=
1
2

�

U pp
l1 l2 l3 l4

− U pp
l1 l2 l4 l3

�

. (13)
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The interacting term of the effective action (5) (see Appendix A.1)

F[ f , b] =
∑

q,{k}

∑

{ν},{σ}

∑

{l},ς/ϑ

�

Λ
σσ′ς
νω, l1, l2, l3 l4

f ∗kσl1
fk+q,σ′,l2

bςq, l4 l3

+
1
2

�

Λσσ
′ϑ

νω, l1, l2, l3 l4
f ∗kσl1

f ∗q−k,σ′,l2
bϑq, l3 l4

+Λ∗σσ
′ϑ

νω, l1, l2, l3 l4
b∗ϑq, l3 l4

fq−k,σ′,l2
fkσl1

�

�

(14)

contains only the momentum-independent three-point interaction vertex function Λ(∗)νω of the
reference system. The explicit expression of Λ(∗)νω can be found in Eqs. (51)–(53). The four-
point (fermion-fermion) vertex function (92) is eliminated from the theory by using a partially
bosonized approximation for the interaction [93,94,132–134].

3 D-TRILEX approach

The introduced effective fermion-boson action (5) allows for the calculation of observable
quantities by using diagrammatic techniques. This goal can be achieved either by performing
approximated diagrammatic expansions or by applying exact numerical methods such as the
diagrammatic Monte Carlo (DiagMC) scheme [94]. In this section, we discuss the simplest di-
agrammatic approximation, namely the D-TRILEX method, that represents a feasible approach
for actual calculations in the multi-band case. From here on, we neglect the non-local fluc-
tuations in the particle-particle (ϑ) channel due to their small contribution to the D-TRILEX
diagrammatic structure [94].

3.1 Diagrammatic expansion in the dual space

To be consistent with applications discussed in Section 5, in the main text of the paper we
restrict ourselves to a paramagnetic regime and do not consider the spin-orbit coupling. A
general (spin-dependent) form of the D-TRILEX equations is shown in Appendix A.3. In the
paramagnetic case all single-particle quantities are diagonal in the spin space and do not
depend on the spin projection. For instance, the bare dual Green’s function (7) becomes
G̃ σσ′k, l l ′ = G̃k, l l ′ δσσ′ . Consequently, the two-particle quantities are diagonal in the channel in-

dices, as for example holds true for the bare bosonic propagator (8) W̃ςς′

q = W̃ς
q δςς′ . One can

also introduce spin-independent three-point vertex functions for the charge Λd
νω = Λ

↑↑d
νω and

magnetic Λm=x ,y,z
νω = Λ↑↑zνω channels (see e.g. Refs. [83, 94]). The dressed Green’s function G̃k

and the renormalized interaction W̃ ς
q of the effective partially bosonized dual problem (5) can

be found via Dyson equations
�

G̃−1
k

�

l l ′ =
�

G̃−1
k

�

l l ′ − Σ̃k,l l ′ , (15)
h
�

W̃ ς
q

�−1i

l1 l2, l3 l4
=
h
�

W̃ς
q

�−1i

l1 l2, l3 l4
− Π̃ςq, l1 l2, l3 l4

. (16)

The dual self-energy Σ̃ in the D-TRILEX approximation consists of the tadpole and GW -like
diagrams Σ̃k = Σ̃TP

k + Σ̃
GW
k . The explicit expressions for these contributions are

�

Σ̃TP
ν

�

l1 l7
= 2

∑

k′,{l}

�

Λd
ν,ω=0

�

l1,l7, l3 l4

�

W̃d
q=0

�

l3 l4, l5 l6

�

Λd
ν′,ω=0

�

l8,l2, l6 l5

�

G̃k′
�

l2 l8
, (17)

�

Σ̃GW
k

�

l1 l7
= −

∑

q,{l},ς

�

Λςνω
�

l1,l2, l3 l4

�

G̃k+q

�

l2 l8

�

W̃ ς
q

�

l3 l4, l5 l6

�

Λ
ς
ν+ω,−ω

�

l8,l7, l6 l5
. (18)
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Figure 1: Diagrammatic representation for the dual self-energy Σ̃ (left) and the dual
polarization operator Π̃ (right). The two processes contributing to Σ̃ are expressed
mathematically in Eqs. (17) and (18). The expression for Π̃ is explicitly written in
Eq. (19). Wavy lines represent dual bosonic propagators and straight lines depict dual
Green’s function, as explicitly indicated in the Figure. Triangles represent three-point
vertex functions Λςνω. Numbers correspond to band indices. The bosonic end of the
triangle can be identified by the fact that it carries two band indices.

The polarization operator Π̃ of the D-TRILEX approach is following
�

Π̃ςq

�

l1 l2, l7 l8
= 2

∑

k,{l}

�

Λ
ς
ν+ω,−ω

�

l4,l3, l2 l1

�

G̃k

�

l3 l5

�

G̃k+q

�

l6 l4

�

Λςνω
�

l5,l6, l7 l8
. (19)

Note that the D-TRILEX diagrams (17)-(19) represent the leading contribution to the self-
energy and the polarization operator of the partially bosonized dual action (5) in both the
weak and the strong coupling limits independently from the dimensionality of the problem.
Indeed, at weak coupling the D-TRILEX diagrammatic expansion is a perturbative expansion in
terms of the renormalised interaction (8). On the other hand, in the strong coupling limit the
small parameter of the diagrammatic expansion is the bare dual Green’s function (7), which
is purely non-local. The diagrams for Σ̃ and Π̃ are also shown in Fig. 1. These expressions
illustrate that in the D-TRILEX approach the single- and two-particle quantities are treated
self-consistently, which allows one to account for the effect of collective electronic fluctuations
onto the electronic spectral function and vice versa [94–97].

3.2 Relation between physical and dual quantities

The D-TRILEX diagrammatic expansion introduced in Section 3.1 is performed in the dual
space (5) that describes electronic correlations beyond the ones of the reference system. This
formulation of the theory allows one to avoid double-counting of correlation effect that are
already taken into account by the reference problem. The single- and two-particle quantities
for the initial lattice problem (1) can be obtained from the dual quantities using the following
exact relations (see Appendix A.2). The most convenient relation for the practical calculation
of the lattice Green’s function Gk,l l ′ involves the dual self-energy Σ̃

�

G−1
k

�

l l ′ =
�

�

gν + Σ̃k

�−1�

l l ′
+∆ν,l l ′ − εk,l l ′ . (20)

An alternative way to get Gk,l l ′ requires calculating the lattice self-energy

Σk,l l ′ = Σ
imp
ν,l l ′ +

∑

l1

Σ̃k,l l1

�

�

1+ gν · Σ̃k

�−1�

l1 l ′
. (21)

The lattice Green’s function can then be obtained from the standard Dyson equation for the
initial lattice action (1)

�

G−1
k

�

l l ′ = (iν+µ)δl l ′ − εk,l l ′ −Σk,l l ′ . (22)
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Calculating Gk,l l ′ be means of Eq. (20) has an advantage, because this expression does not

involve the self-energy of the reference problem Σimp
ν,l l ′ . The latter is not a correlation func-

tion and is usually calculated by inverting the corresponding Dyson equation for the Green’s
function gν,l l ′ of the reference problem

Σ
imp
ν,l l ′ = (iν+µ)δl l ′ −∆ν,l l ′ −

�

g−1
ν

�

l l ′ . (23)

Consequently, Σimp
ν,l l ′ obtained in this way contains big numerical noise at large frequencies ν.

This problem can be cured by employing improved estimator methods that consist in comput-
ing higher-order correlation functions [135–137]. However, in multi-band calculations this
procedure is numerically expensive. For this reason, it is preferable to compute the lattice
Green’s function using Eq. (20), and the lattice self-energy (21) separately.

Contrary to the self-energy, the polarization operator of the reference system Πimpς
ω is not

strongly affected by noise at large frequencies, because it has the same dimension as the sus-
ceptibility of the reference system χ

ς
ω, l1 l2, l3 l4

= −〈ρς
ω, l2 l1

ρ
ς
−ω, l3 l4

〉. Indeed, the polarization
operator is defined through the corresponding Dyson equation as

�

�

Πimpς
ω

�−1�

l1 l2, l3 l4
=
�

�

χςω
�−1�

l1 l2, l3 l4
+ Uςl1 l2, l3 l4

. (24)

For this reason, the lattice susceptibility X ςq is convenient to obtain directly from the Dyson
equation (see Appendix A.2)

h
�

X ςq
�−1i

l1 l2, l3 l4
=
h
�

Πςq

�−1i

l1 l2, l3 l4
−
�

Uς + V ςq
�

l1 l2, l3 l4
, (25)

that involves the polarization operator of the lattice problem

Π
ς
q, l1 l2, l3 l4

= Πimpς
ω, l1 l2, l3 l4

+
∑

l ′,l ′′
Π̃
ς
q, l1 l2, l ′ l ′′

h
�

1+ ūς · Π̃ςq
�−1i

l ′ l ′′, l3 l4
. (26)

Importantly, as shown in Appendix A.2, the divergence in the lattice susceptibility X ςq occurs
at the same time as in the renormalized interaction W̃ ς

q that enters the self-energy (18). This
allows the D-TRILEX approach to capture the formation of the pseudogap in the electronic
spectral function in the paramagnetic regime in the vicinity of a symmetry broken phase in the
system [95,97].

Finally, the polarization operator in the D-TRILEX approach (19) has the same structure as
the exchange interaction J ς between charge and/or magnetic densities derived in Refs. [132–
134] in the many-body framework. This fact allows for a direct calculation of the exchange
interaction within the D-TRILEX scheme using the following relation

J ς
q, l1 l2, l3 l4

=
∑

{l ′}

�

�

Πimpς
ω

�−1�

l1 l2, l ′1 l ′2

�

Π̃ςq

�

l ′1 l ′2, l ′3 l ′4

�

�

Πimpς
ω

�−1�

l ′3 l ′4, l3 l4
. (27)

This quantity is computed at the first iteration of the D-TRILEX self-consistent cycle, because in-
stead of the dressed dual Green’s functions G̃ the dual polarization operator (19) in the expres-
sion for the exchange interaction contains the bare dual Green’s functions G̃ (see Ref. [134]).
Note that in Eq. (27) the inverse of the polarization operator of the reference problem appears
to the left and right of the dual polarization operator due to a different definition of the vertex
function used in Refs. [132–134].

We stress that the obtained relations between the dual and the lattice quantities are valid
for any form of the self-energy and the polarization operator of the partially bosonized dual ac-
tion (5). Focusing on the D-TRILEX approach, it accounts for the leading diagrammatic contri-
butions in both the weak and the strong coupling limits, as previously mentioned. Specifically,
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Figure 2: Workflow of the D-TRILEX method. The input consists in the parameters
of the electronic lattice problem (Init.1-2 in the main text). The red box indicates
the solution of the reference impurity problem (Init.3), that in some case has to be
updated until self-consistency is reached (for instance in DMFT, EDMFT and cluster
DMFT). The blue box contains the operations performed in the dual space, i.e. the
calculation of the bare dual propagators (Init.4) and the self-consistency cycle on
the dual quantities (St.2). The output consists in the Green’s function, self-energy,
susceptibility and polarization operator of the lattice problem, obtained by applying
the exact relations between lattice and dual quantities (St.3).

the D-TRILEX polarization operator (19) becomes the leading contribution (the second-order
in terms of the dual Green’s functions) to the susceptibility (apart from the impurity polariza-
tion operator) in the strong coupling limit. More elaborate contributions have at least four
dual Green’s functions in their structure, so they can be disregarded and D-TRILEX becomes
accurate in the regime close to the atomic limit also at the two-particle level. As an additional
confirmation of this fact, the expression in Eq. (27) gives the correct result for the exchange
interaction ∼ t2/U in the atomic limit [132]. For the sake of completeness, we note that the
D-TRILEX solution based on the DMFT reference problem is exact for arbitrary interaction
strength in the limit of infinite dimensions at the single-particle level, but not at the two par-
ticle level, because it uses the partially bosonized approximation (see Appendix B) instead of
the exact four-point vertex function. However, based on the results presented in the current
and previous works [94], we stress that there is no correlation between the exactness of the
theory in the limit of infinite dimensions and the accuracy of the theory in finite dimensions.

4 Computational workflow

In this section, we offer a detailed description of the current implementation (available upon
reasonable request from the corresponding authors). We also put some emphasis in the discus-
sion of the main issues faced when performing actual calculations.

4.1 Structure of the calculation

The computational workflow is divided into several parts, as shown in Fig 2. The first step
(St.1) consists in solving the reference system, e.g. the DMFT impurity problem. This pro-
duces the inputs necessary for the initialization of the diagrammatic part of the calculation.
Hence, the inner steps are denoted with (Init.). The second step (St.2) takes care of the self-
consistent dressing of the dual Green’s function G̃ and the renormalized interaction W̃ . The
inner steps (I.) of the self-consistent diagrammatic iteration are highlighted below. After the
dressed dual quantities are determined, the single- and two-particle quantities for the initial
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(lattice) problem are evaluated at the third step (St.3). The computational workflow has the
following form:

(St.1) Input initialization:

(Init.1) Specify the single-particle term εk,l l ′ , the interactions U pp/ph
l1 l2 l3 l4

and V ςq, l1 l2, l3 l4
, and

the temperature T that enter the initial action (1).

(Init.2) Define the chemical potential µ and the hybridization function ∆ν,l l ′ .

(Init.3) Solve the reference system and get the corresponding Green’s function gν,l l ′ , the
susceptibility χς

ω, l1 l2, l3 l4
, and the vertex function Λς

νω, l1,l2, l3 l4
.

(Init.4) Compute the bare fermionic G̃k,l l ′ and bosonic W̃ς
q, l1 l2, l3 l4

propagators of the effec-
tive partially bosonized dual action (5) according to Eqs. (7) and (8), respectively.

(St.2) Self-consistent calculation of D-TRILEX diagrams:

(I.1) Compute the dual polarization operator Π̃ using Eq. (19).

At the first iteration only: Compute the exchange interaction J ς
q, l1 l2, l3 l4

via Eq. (27).

(I.2) Compute the dual renormalized interaction W̃ using Eq. (16).

(I.3) Compute the diagrams Σ̃TP (17) and Σ̃GW (18) for the dual self-energy.

(I.4) Compute the dressed dual Green’s function G̃ using Eq. (15).

(I.5) If the desired accuracy δ for the self-consistent condition is reached, go to (St.3).
Otherwise go back to (I.1).

(St.3) Evaluation of lattice quantities:

Compute the dressed Green’s function Gk,l l ′ (20), the self-energy Σk,l l ′ (21), the
susceptibility X ςq, l1 l2, l3 l4

(25), and the polarization operator Πςq, l1 l2, l3 l4
(26) for the

lattice problem (1). From these quantities determine the orbital-resolved average
density 〈nl〉 (99) and the average energy 〈E〉 of the system (100) and (101). If one
aims at the specific density 〈n〉, it is possible to update the chemical potential µ
and go back to the beginning of the outer loop. In that case, go to (St.1 of Init.2)
and fix the new µ and update the hybridization function ∆ν,l l ′ if needed.

4.2 Details of the calculation

The complexity of the diagrammatic part of the D-TRILEX calculation is estimated as

O (NνNω) O

 

N2
imp ×

Nimp
∑

i=1

N8
li

!

O (Nk log Nk) , (28)

where Nν (ω) is the number of fermionic (bosonic) Matsubara frequencies, Nimp is the number
of impurities in the reference system, Nli is the number of orbitals for the i-th impurity and Nk
is the total number of k-points. In this context, Nimp is the number of independent impurities
in the unit cell of the reference problem. Note that the case of Nimp > 1 corresponds to a
collection of impurities, as explained in Ref. [122], and not to a cluster of Nimp sites. If the
impurities are all identical, then the reference system reduces to a single site impurity problem.
If some of them are different, it is sufficient to solve an impurity problem only for the non-
equivalent ones. In the multi-impurity case, fluctuations between the impurities are taken
into account diagrammatically in the framework of D-TRILEX approach. On the other hand,
a cluster reference system corresponds to a multi-orbital problem with Nimp = 1. In this case,
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Nl is the total number of orbitals and sites of the considered cluster. The separation between
orbitals and sites that we introduce is useful to reduce the computational complexity when
addressing problems with several atoms in the unit cells.

The scaling as a function of k-points is determined from the fact that we utilise the fast-
Fourier transform (FFT) algorithm for computing convolutions in momentum space. This
shows that the multi-impurity calculation has a quadratic scaling with respect to the num-
ber of impurities. In our current implementation, the local Coulomb matrix is considered as a
non-sparse matrix within each site subspace, hence the scaling to the 8th power in the number
of orbitals. However, before running the actual calculations, we introduced a check to assess
which components of the vertices are zero. These components are automatically skipped in or-
der to avoid unnecessary calculations and to automatically take advantage of a possible sparsity
of the Coulomb matrix, effectively reducing the complexity (28) in most cases. The summa-
tion over frequencies and band indices can be efficiently parallelized both in a shared-memory
framework (as done in the current implementation) and in an message-passing interface (MPI)
framework.

To measure the accuracy at the n-th iteration of the self-consistent cycle, we use the relative
Frobenius norm of the Green’s function F = ||G̃n − G̃n−1||/||G̃n−1|| as a metric, where ||...|| is the
square root of the squared sum over all the components of the array. If F is smaller than some
predefined accuracy value δ, the self-consistent cycle stops. The cycle stops also if a specified
maximum number of iterations is reached. The stability of the bosonic Dyson equation (16)
can be problematic in regimes of parameters, where one or more of the eigenvalues of the
quantity Π̃ · W̃ become equal or larger than 1. In particular, this happens when the system is
close to a phase transition or if the correlation length in some channel of instability exceeds a
critical value. This issue appears in similar forms in other diagrammatic extensions of DMFT
(see, e.g., Ref. [138]). In one- and two-dimensional systems, where Mermin-Wagner theorem
forbids the breaking of continuous symmetries [139], the issue can be mitigated by imposing
that the eigenvalues λi of the Π̃ · W̃ matrix in the orbital space for a physical meaningful
solution are always smaller than 1. In our implementation, we check whether any eigenvalue
λi ≥ 1 (i ∈ {k, ς}). If this happens, the eigenvalue can be rescaled as described in Ref. [138]
in order to improve convergence.

Several strategies can be used to improve the stability of the self-consistent procedure in
the general case. The first strategy is implemented when updating the D-TRILEX self-energy.
The updated dual self-energy at the n-th iteration is computed as Σ̃n = (1− ξ)Σ̃n−1 + ξΣ̃ for
ξ ∈ (0, 1), where Σ̃n−1 is the value of the dual self-energy computed at the previous (n− 1)
iteration, and Σ̃ is computed using the propagators G̃n−1 and W̃n−1 obtained at the previous
iteration. This procedure was shown to improve stability in GW -like theories [140]. A similar
mixing scheme can be applied to the dual polarization. To the same aim, we also introduce
multiplicative factors for the dual self-energy and the dual polarization at the first iteration. Of
course, no rescaling is expected to work in the presence of the symmetry breaking due to a true
phase transition. The latter case should be addressed using a suitable cluster or multi-impurity
reference problem.

It is worth mentioning that the efficiency of the whole scheme is strongly affected by the
computational cost of the impurity solver. In our tests, the time needed to solve the impurity
problem and to obtain the required correlation functions of the reference system using contin-
uous time quantum Monte Carlo solvers [141–144] always exceeds the computational cost for
the diagrammatic part of the calculation, even by several orders of magnitude. For example,
a single iteration of the self-consistent diagrammatic cycle for a two-orbital case discussed in
Section 5.3 takes only few minutes.
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5 Application to relevant physical systems

In this section, we apply the above described D-TRILEX approach to several model systems
to illustrate various capabilities of the method. We take the impurity problem of DMFT as a
reference system for these particular calculations. The DMFT results are obtained using the
w2dynamics package [145]. It should be noted, that this choice for the reference system is
not always optimal (see e.g. Ref. [94]), in particular in the case of a dimer [99]. On the
other hand, this choice allows one to consistently investigate the effect of non-local collective
electronic fluctuations that are taken into account beyond the local DMFT approximation.

In the following, we consider model systems, where the on-site Coulomb interaction term
in the Hamiltonian is parametrized in the Kanamori form [146,147] as:

HU = U
∑

l

nl↑nl↓ +
∑

l 6=l ′

�

U ′nl↑nl ′↓ +
1
2
(U ′ − J)

∑

σ

nlσnl ′σ − Jc†
l↑cl↓c

†
l ′↓cl ′↑ + Jc†

l↑c
†
l↓cl ′↓cl ′↑

�

.

(29)

Here, c(†)lσ is the annihilation (creation) operator for an electron at the orbital l with the spin

projection σ ∈ {↑,↓}. nlσ = c†
lσclσ is the local spin-dependent density. In the notation of

Eq. (1), the non-zero components of the Kanamori interaction are

U pp
ll l l
= U intraorbital density-density ,

U pp
ll ′ l l ′ = U ′ interorbital density-density ,

U pp
ll ′ l ′ l = J pair hopping ,

U pp
ll l ′ l ′ = J spin flip . (30)

We also fix U ′ = U − 2J to ensure rotational invariance [147]. In the single-orbital case, the
on-site Coulomb interaction reduces to a Hubbard form given by the first term in Eq. (30).

This section is organized as follows. In Section 5.1 we discuss the performance of the
D-TRILEX approach in application to the Hubbard-Kanamori dimer system, for which the
exact numerical solution can be obtained using the exact diagonalization (ED) method. In
Section 5.2 we study the effect of the non-local interaction V d

q for the case of the extended
Hubbard model on a square lattice. The obtained D-TRILEX result is compared to the one of
the dual boson diagrammatic Monte Carlo (DiagMC@DB) approach [83]. In Section 5.3 we
analyze electronic correlations in the framework of a two-orbital Hubbard-Kanamori model on
a square lattice. Finally, in Section 5.4 we show the results for a bilayer square lattice Hubbard
model as a particular example of a multi-impurity calculation.

5.1 Hubbard-Kanamori dimer as a benchmark system

The first case-study we discuss is a two-site model, also known as dimer. Due to a small size
of this system, the exact solution for the dimer problem for small number of orbitals can be
achieved by ED. This makes the dimer an ideal platform to benchmark various approximate
methods. To test our multi-orbital D-TRILEX implementation, we consider a particular case of
a Hubbard-Kanamori dimer, where each of the two identical sites has two degenerate orbitals.
The single-particle part of the corresponding Hamiltonian reads:

H0 = −t
∑

l,σ

∑

j 6= j′
c†

jσl c j′σl . (31)

The single-particle Hamiltonian (31) can be diagonalized in the site-space. After that, the
dimer problem can be effectively considered as a periodic system with the dispersion

εk,l l ′ = −2t cos(k)δl l ′ , (32)
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Figure 3: Panels (a) and (b) respectively show the real and the imaginary parts of
the Green’s function for the Hubbard-Kanamori dimer calculated for the frequency
ν0 = π/β at momenta k= 0 (solid line) and k= π (dashed line). The panel (c)
shows the average energy of the system. Panels (d) and (e) respectively show the
real and the imaginary parts of the self-energy Σ for the frequency ν0 = π/β . The
local component is denoted by a think line, while the non-local component is repre-
sented by a dashed line. Non-local components are identically zero for DMFT, but
are displayed for consistency. Results obtained using D-TRILEX (red), DMFT (blue),
and ED (black) methods for different values of the Hund’s coupling J . Model param-
eters for these calculations are t = 0.2, U = 0.5, β = 10, and µ= 0.75, and are equal
across all panels.

defined for Nk = 2 points in momentum space that correspond to k= 0 (symmetric solution)
and k= π (anti-symmetric solution). Based on this consideration, we can apply our multi-
band D-TRILEX method, that is designed for solving periodic lattice models, to this benchmark
system. The interacting part is considered in the Kanamori form (29) discussed above.

We chose the single-site two-orbital impurity problem of DMFT as the reference system
for the D-TRILEX calculation. Since interorbital hoping processes are not taken into account,
different orbitals do not hybridize. For the case of degenerate orbitals considered here it im-
plies that the Green’s function is diagonal in the orbital space and has identical components
for both orbitals (Gl l ′ = Gδl l ′). To compare the D-TRILEX result with the exact solution for
the dimer problem we perform ED calculations using the pomerol package [148]. The total
number of degrees of freedom for the two-orbital Hubbard-Kanamori dimer for the ED cal-
culation is 2Nl Nimp = 8 and the total number of states is Ntot = 28 = 256. This makes the ED
calculation numerically inexpensive.

First, we focus on the effect of the Hund’s exchange coupling J . To this aim we perform
calculations for different values of J fixing other model parameters to t = 0.2, U = 0.5, β = 10,
and µ= 0.75. A very similar set of model parameters for a single-orbital dimer problem was
recently used in Ref. [99] to benchmark another diagrammatic extension of DMFT. In Fig.3,
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we show the real (Re G, left panel) and imaginary (Im G, middle panel) parts of the Green’s
function produced by D-TRILEX (red), DMFT (blue), and ED (black) methods. We find that the
D-TRILEX result for the Re G lies on top of the exact solution in the whole range of values for
the Hund’s coupling considered here. DMFT is also rather accurate in calculating the real part
of the Green’s function, but the discrepancy between the DMFT and ED results is noticeable.
The D-TRILEX solution for Im G is very close to the one provided by ED, while the DMFT
result becomes substantially different from the exact solution, especially for small values of
J . A very good agreement between D-TRILEX and ED methods is also confirmed by analyzing
the result for the average energy 〈E〉 (right panel in Fig. 3). The average energy for ED is
obtained as 〈E〉ED =

∑

i(Ei − µ)e−β(Ei−µ) where the index i runs over the eigenstates of the
system. The average energy in D-TRILEX is calculated using Eq. (103). The DMFT energy
〈E〉DMFT has been computed using the same formula (103) by setting Σ̃= 0 and Π̃= 0. We
show that the mismatch in D-TRILEX and ED results for the energy is 1.1% (δE = 0.034) at
J = 0 and decreases as J increases. The largest difference between DMFT and ED results is
found at J = 0.1 and amounts to 3.7% (δE = 0.134), which is approximately four times larger
than the one of the D-TRILEX approach. Nevertheless, we observe that in this case DMFT
is surprisingly close to the exact result. The reason is that for the considered set of model
parameters the system lies very far away from half-filling, hence the non-local fluctuations
between the two sites of the dimer are suppressed. This fact can be confirmed by looking at
the self-energyΣ shown in panels (d) and (e) of Fig. 3. The local contribution to the self-energy
2Σlocal = Σ(k= 0) +Σ(k= π) is dominant and is in a very good agreement among all three
methods. The non-local part 2Σnon−local = Σ(k= 0)−Σ(k= π), which is completely missing
in DMFT, is relatively small and is also well reproduced by D-TRILEX approach.

At half-filling, DMFT ceases to be a good approximation. To illustrate that D-TRILEX is
able to improve and even to cure a wrong behavior of the DMFT result, we perform calcula-
tions for t = 0.5 and β = 10 for different values of the Hubbard interaction U for a fixed ratio
U/J = 4. The chemical potential is set to µ= (3U − 5J)/2 in order to ensure half-filling [149].
Panel (a) of Fig. 4 shows the imaginary part of the local Green’s function as a function of the
Matsubara frequency. The result is obtained in a weak (U = 0.5, dots) and strong coupling
(U = 2.0, triangles) regimes of the interaction. At U = 0.5, the D-TRILEX result coincides
with the exact solution in the whole frequency range. The DMFT result is also very accurate
and only slightly deviates from the ED solution at lowest frequencies. This situation changes
completely at U = 2.0, where the exact Im G provided by ED is strongly reduced at low fre-
quencies. Remarkably, DMFT does not capture this change and predicts approximately the
same result for the Im G for both values of the interaction. Instead, the D-TRILEX solution lies
very close to exact result and reproduces the correct behavior of the Im G. To confirm this fact,
we compute the normalized difference from the ED result for D-TRILEX and DMFT as

δ [Im G(νn)] = Im [G(νn)− GED(νn)]/Im GED(νn) . (33)

The corresponding result obtained for three different frequencies as a function of U is shown
is the panel (b) of Fig. 4. We find that the normalized difference for DMFT is relatively large
and drastically increases upon increasing the interaction strength. At U = 2.0, the Im G(ν)
calculated at the zeroth and the first Matsubara frequency using DMFT is respectively almost
two and 1.5 times larger than the exact result. On the contrary, the Im G(ν) of D-TRILEX lies
very close to the ED result. Indeed, the normalized difference for D-TRILEX calculated for the
first and the fifth frequency does not exceed 2%. The difference for D-TRILEX calculated for
the zeroth frequency becomes larger than 2% at U > 1.5 and reaches the maximum value of
7.6% at U = 2.0. We find that the DMFT result strongly deviates from the considered bench-
mark at moderate and large values of U . By looking at the real part of the self-energy ReΣ
(panels (c) and (d) in Fig. 4), we can immediately understand the origin of the large mismatch
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Figure 4: (a) Imaginary part of the local Green’s function Im G(νn) calculated as a
function of the Mastubara frequency index n for two values of the interaction U = 0.5
(dashed lines) and U = 2.0 (solid lines). The result is obtained at half-filling for
t = 0.5, β = 10, and J = U/4 using the D-TRILEX (red), the DMFT (blue), and the
ED (black) methods. (b) Normalized difference δ [ImG(νn)] (33) with respect to the
ED solution calculated for D-TRILEX (red), the DMFT (blue) methods as a function
of U . The result is obtained for three difference Matsubara frequencies with indices
n= 0 (empty circles), n= 1 (pluses), and n= 5 (crosses). (c) Real part of the self-
energy Σ as a function of the interaction U at the first Matsubara frequency ν0. (d)
Real part of the self-energy Σ(νn) as a function of the Matsubara index obtained
at U = 1. In panels (c) and (d), the local and non-local parts are shown and the
chemical potential µ is subtracted from the local part.

between ED and DMFT. As a matter of fact, the real part of the self-energy at moderate to large
U is dominated by the non-local contributions (dashed lines), which are completely missing in
DMFT, while local contributions (solid lines) are approximately zero. D-TRILEX does not ex-
actly reproduce all the contributions to the non-local self-energy, as they correspond to roughly
25% of the value of self-energy at U = 1. However, it follows the same trend as the ED result
and this ensures the correct behavior of the Green’s function as U is increased. We do not
show the imaginary part of the self-energy, since it is at least an order of magnitude smaller
than the real part in the whole range of parameters considered here.

In addition to single-particle quantities we calculate the charge and spin susceptibilities
defined as X ch/sp = −

∑

l l ′ X
d/m
lll ′ l ′ . Fig. 5 shows the corresponding results for the static suscepti-

bilities X ch/sp(q,ω= 0) obtained at the q= π point. The susceptibilities at the q= 0 point are
very small in the whole range of considered parameters and are not shown here. In the left
panel of Fig. 5, we illustrate the results for the half-filled Hubbard-Kanamori dimer considered
above. We find that the susceptibilities of the D-TRILEX approach are in a very good agreement
with the exact ED solution in the whole range of local interaction strength 0.25≤ U ≤ 2. In
the right panel, we demonstrate the dependence of the static charge and spin susceptibilities
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Figure 5: Spin (full lines) and charge (dashed lines) static (ω= 0) susceptibility X
obtained at the q= π point for the half-filled system with model parameters t = 0.5,
J = U/4, and β = 10. The left panel shows the result as a function of the local
interaction strengths U in the absence of the non-local interaction (V = 0). The right
panel illustrates the susceptibility as a function of V calculated for the fixed value of
the local interaction U = 1.

on the value of the non-local interaction V d between electronic densities on neighboring sites
〈i, j〉 (1). More explicitly, we consider the non-local interaction in the form

V d

2

∑

l l ′,i 6= j

ρd
i,l lρ

d
j,l ′ l ′ . (34)

To simplify notations, in the following the superscript “d” for the non-local interaction is omit-
ted. We find that in the presence of the non-local interaction the susceptibilities obtained
using ED and D-TRILEX methods are nearly identical up to V = 0.3. Above that threshold, the
D-TRILEX susceptibility starts to deviate from the exact ED result. At V > 0.3 the D-TRILEX
spin susceptibility continues to decrease almost linearly with increasing the value of V , while
the exact result shows a stronger non-linear damping. This trend continues also above V = 0.5,
where the difference between the D-TRILEX result and the exact result continues to increase.
This behavior can be explained by the fact that the strong non-local interaction favors either
full or zero occupancy of a lattice site. This charge density wave instability strongly suppresses
magnetic fluctuations. In this regime the D-TRILEX calculations break down, because they are
performed on the basis of the DMFT impurity problem, which does not incorporate any effect
of the non-local interaction. The inclusion of the bosonic hybridization function in the spirit
of EDMFT could improve the result, because in this case some contributions of the non-local
interaction would be taken into account in the impurity problem via the bosonic hybridization.

These findings show that D-TRILEX improves the DMFT results in all considered regimes.
Additionally, D-TRILEX reproduces the trends observed in ED calculations in all the cases, even
when DMFT fails. This fact suggests that for the considered system the difference between
DMFT and ED mostly stems from non-local correlations that have the form accounted for in the
D-TRILEX diagrams. These results are particularly remarkable taking into account that DMFT
approximation is not very accurate in low dimensions, hence the DMFT impurity problem is
probably not an optimal reference system for a diagrammatic expansion in this case.

5.2 Extended Hubbard model on a square lattice

Previous works on D-TRILEX [93–95] suggest that the method is able to account for the effect
of the non-local interactions. However, no thorough benchmarking of the results for the ex-
tended Hubbard model has been performed so far. For this reason, in this work we investigate
the performance of D-TRILEX in the case of a single-orbital extended Hubbard model on a
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Figure 6: Real (top row) and imaginary (bottom row) parts of the lattice self-energy
for the half-filled single-band extended Hubbard model on a square lattice. The result
is obtained for U = 2.0 (left column), U = 4.0 (middle column), and U = 6.0 (right
column) for three different values of the nearest-neighbor interaction V = 0.0 (light
red), V = U/8 (dark red), and V = U/4 (purple). The D-TRILEX result is depicted
by dots. The DiagMC@DB data is taken from Ref. [83] and is represented by solid
lines with the width that corresponds to the estimated stochastic error.

square lattice with the local U and the nearest-neighbor V d interactions between electronic
densities (1). To simplify notations, in the following the superscript “d” for the non-local
interaction is again omitted. The single-particle dispersion for this model for the case of a
nearest-neighbor hopping amplitude reads

εk = −2t
�

cos kx + cos ky

�

. (35)

Similarly, the momentum-space representation for the non-local interaction is

Vq = 2V
�

cos qx + cos qy

�

. (36)

We set the value of the nearest-neighbor hopping to t = 1, so that the half-bandwidth is
D = 4t = 4. To benchmark our results, we compare the lattice self-energy Σ calculated using
D-TRILEX approach with the result of the dual boson diagrammatic Monte Carlo
(DiagMC@DB) method presented in Ref. [83]. DiagMC@DB allows for the exact solution
of an effective dual boson action (55), where the renormalized interaction is truncated at the
two-particle level (50). Note that the dual boson action is derived within the exact analytical
transformation of the initial lattice problem (1) (see Appendix A.1). In addition, diagram-
matic Monte Carlo methods applied to dual theories show a very good agreement with the
exact results [75,94] and the results of the cluster methods [150,151].

We perform calculations at half-filling for different strengths of the Hubbard interaction
U = 2, U = 4, and U = 6. For each value of U we consider three different values of the nearest-
neighbor Coulomb interaction V = 0, V = U/8, and V = U/4. As in Ref. [83], for U = 2 and
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Figure 7: Static charge (red panels) and spin (blue panels) susceptibilities
X ch/sp(q,ω= 0) in the Brillouin zone. Calculations are performed for the half-filled
single-band extended Hubbard model on a square lattice for U = 4 and β = 4. The
value of the non-local interaction V is indicated above each panel.

U = 4 the temperature is set to T = 0.25, for U = 6 to T = 0.50. The obtained results for the
lattice self-energy are shown in Fig. 6. We find that for the smallest value of the Hubbard in-
teraction U = 2 the agreement between the two methods is almost perfect. A slight difference
appears only in the imaginary part of the self-energy in the vicinity of the X = (π, 0) point for
V = 0.25 and near the Γ = (0,0) point for V = 0.5. When the interaction reaches the value
of the half-bandwidth U = 4, the real part of the D-TRILEX self-energy remains very close to
the DiagMC@DB result for all values of V considered here. On the other hand, we observe
a constant shift in the imaginary part of the self-energy that increases with the strength of
the non-local interaction V . A constant but smaller shift was also observed between DF and
DiagMC@DF results [75, 94], hence it does not seem to be a feature of only the D-TRILEX
method. Finally, at U = 6.0 we observe that D-TRILEX does not agree with DiagMC@DB as
accurately as for smaller values of the interaction. In the real part, the difference between
the two methods is not very large and appears to be independent on the value of V . On the
contrary, the imaginary part of the self-energy displays a rather large mismatch already at
V = 0, and the agreement seems to become worse as V increases. This result comes as no
surprise and agrees with the findings of Refs. [75,83,94] that the ladder-like dual approxima-
tions become less accurate in the regime of strong magnetic fluctuations. The reason is that
magnetic fluctuations become strongly non-linear close to a magnetic instability (see, e.g.,
Ref. [152]). This non-linear behavior originates from the mutual interplay between different
bosonic modes as well as from an anharmonic fluctuation of the single mode itself. The de-
scription of these effects requires to consider much more complex diagrammatic structures that
account for vertical (transverse) insertions of momentum- and frequency-dependent bosonic
fluctuations, which are present in the DiagMC@DB approach but are not considered in ladder-
like dual approximations including the D-TRILEX approach. However, despite the quantitative
disagreement, at U = 6.0 D-TRILEX qualitatively captures the correct momentum dependence
of the self-energy, which is completely missing in DMFT.

In addition to single-particle quantities, D-TRILEX also provides two-particle quantities,
namely the susceptibility and the polarization operator of the lattice problem. These quan-
tities are calculated as momentum- and frequency-dependent functions, which allows one to
get the information about the full energy spectrum of the charge and spin excitations in the
system. In Fig. 7, we show the static (ω= 0) charge and spin susceptibilities X ch/sp = −X d/m

in the Brillouin zone (BZ) computed for the same model at U = 4, T = 0.25, and different val-
ues of the non-local interaction V = 1.0 and V = 1.25. Both, charge and spin susceptibilities
display a maximum value at the M = (π,π) point of the BZ, which signals that correspond-
ing order parameters tend to have a checkerboard configuration on a square lattice. From
the physical point of view, this means that in this parameter range the system has a tendency
towards the charge density wave (CDW) and the antiferromagnetic (AFM) orderings. The
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enormous increase in the value of the charge susceptibility indicates that the system is very
close to the CDW transition point, that corresponds to a divergence of the charge susceptibility.
On the contrary, the spin susceptibility does not change significantly, and its value is slightly
reduced upon increasing V . This reduction is expectable, since in this particular case the spin
fluctuations are screened by strong charge fluctuations.

It is commonly believed that in strongly-correlated systems the non-local interactions have
to be treated in the framework of the extended DMFT by introducing a bosonic hybridization
function in the impurity problem [126–130]. However, the diagrammatic expansion in dual
theories can be performed for of an arbitrary reference system. In particular, the results of
this section demonstrate that the D-TRILEX approach can accurately treat the non-local inter-
actions on the basis of the DMFT impurity problem. The latter does not contain the bosonic
hybridization function and thus is easier to solve numerically. In addition, in D-TRILEX the
non-local collective electronic fluctuations are not restricted in the range, which is a big advan-
tage over cluster extensions of DMFT. Moreover, the D-TRILEX method is able to capture the
interplay between the collective electronic fluctuations in different channels through the self-
consistent procedure that involves single-particle quantities. As a matter of fact, the bosonic
propagators from all channels contribute to the self-energy. Therefore, a large value of the
bosonic propagator in one channel considerably increases the value of the self-energy, hence
it reduces the value of the Green’s function. In turn, the reduced value of the Green’s function
leads to a smaller value of the dual polarization for app channels, which is the main ingredient
for computing the physical susceptibility and the polarization operator. This feature is not pro-
vided by DMFT calculations of the susceptibility with dynamical vertex corrections [17,19,153]
that are performed non-self-consistently.

5.3 Two-orbital Hubbard-Kanamori model

In this section we study the simplest multi-orbital system, a half-filled two-orbital Hubbard-
Kanamori model on a square lattice. We consider the case when the orbitals have same U , U ′,
and J values for the Kanamori interaction, but different bandwidths. This case is of interest
because the two orbitals are thus characterized by a different effective interaction strength
that can be defined as the ratio between the actual interaction and the width of the band. Our
aim is to show that D-TRILEX is able to capture this basic feature of the model. For simplicity,
we neglect the hybridization term between the two orbitals in the single-particle part of the
Hamiltonian, although it can in principle be taken into account in our implementation. The
dispersion for the corresponding orbital l ∈ {1, 2} is given by the hoppings t l between the
nearest-neighbor lattice sites j and j′ on the square lattice. In momentum space, the electronic
dispersion can be written as follows

εk,l l ′ = −2t l

�

cos kx + cos ky

�

δl l ′ . (37)

We take t1 = 1 and t2 = 0.75, which corresponds to D1 = 4 and D2 = 3 values for the half-
bandwidth Dl .

First, we calculate the local density of states (DOS) from the corresponding local part of
the lattice Green’s function by means of analytical continuation using the maximum entropy
method implemented in the ana_cont package [154]. Fig. 8 shows the results obtained at
the inverse temperature β = 2 for different values of the interaction U = 4, U = 5, and U = 7.
Remaining parameters for the interaction are U ′ = U/2 and J = U/4. The top and bottom rows
in this figure respectively show the DOS for the first (l = 1) and the second (l = 2) orbitals
obtained using DMFT (blue) and D-TRILEX (red). We find that at U = 4 both DMFT and
D-TRILEX results show a qualitatively similar behavior for the first orbital (top left panel).
Thus, the DOS for the first orbital exhibits a quasi particle peak at Fermi energy (E = 0) and
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Figure 8: DOS for the two-orbital Hubbard-Kanamori model obtained using DMFT
(blue line) and D-TRILEX (red line). The value of the interaction U is indicated for
each column. The other parameters for the interaction are U ′ = U/2 and J = U/4.
The top and bottom rows display results for the orbitals l = 1 and l = 2, respectively.
The half-bandwithds for these orbitals are D1 = 4 and D2 = 3.

two “shoulders” that reflect the strong Hubbard interaction. We observe that in D-TRILEX the
quasi-particle peak is smaller and the sub-bands are more pronounced than in DMFT. These
facts indicate that the D-TRILEX result lies closer to the Mott transition. A rather different
but consistent behavior can be found in the DOS for the second orbital (bottom left panel).
The D-TRILEX result shows that at U = 4 the quasiparticle peak is already destroyed, and
the system starts to form a pseudogap at Fermi energy. However, DOS of DMFT still has
a quasiparticle peak with shoulders that are smeared out by large temperature. At U = 5
(middle column) the quasiparticle peak in DOS of D-TRILEX disappears for both orbitals. In
DMFT, the quasiparticle peak remains for the first orbital, but the DOS for the second orbital
qualitatively agrees with the one of D-TRILEX and shows a pronounced pseudogap. Finally, at
U = 7 DMFT and D-TRILEX agree qualitatively in the DOS for both orbitals. At this interaction
strength the DOS for the first orbital still has a small spectral weight at Fermi energy, while the
second orbital lies already in the Mott phase. Nevertheless, we find that D-TRILEX consistently
predicts a smaller spectral weight at Fermi energy compared to DMFT for all considered values
of the interaction. This result is in accordance with the fact that the non-local fluctuations at
half-filling push the system closer to the insulating state [93].

We also calculate the susceptibility for the considered multi-orbital system. The charge,
spin, and orbital components of the susceptibility can be obtained from the orbital-dependent
D-TRILEX susceptibility as follows (see e.g. Ref. [147])

X ch/sp = −
∑

l l ′
X d/m

lll ′ l ′ , X orb = −
∑

l l ′
X d

ll ′ l l ′ = −
∑

l l ′
X m

ll ′ l l ′ . (38)

Fig. 9 shows the static lattice susceptibility X (q,ω = 0) calculated along the high-symmetry
path that connects Γ = (0, 0), X= (0,π), and M= (π,π) points in the Brillouin zone. The
result is obtained for the charge (red), orbital (green), and spin (blue) components of the
susceptibility for different values of the interaction U . We find that both, charge and orbital
susceptibilities decrease upon increasing the interaction strength. At U = 1 these two suscep-
tibilities reveal a peak at the M point. This momentum-structure indicates that the system
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Figure 9: Charge (left), orbital (center) and spin (right) components of the static
susceptibility X (q,ω= 0) computed along the high-symmetry path in momentum
space. Calculations are performed for the half-filled Hubbard-Kanamori model for
different values of U fixing other parameters to β = 2, U ′ = U/2, and J = U/4.

exhibits collective electronic fluctuations in the corresponding channel that are characterized
by a q= (π,π)wave vector. Increasing the value of U suppresses the peak at M point and con-
sequently reduces the strength of the fluctuations. The spin susceptibility shows an opposite
trend compared to X ch and X orb. It increases with the interaction strength up to approximately
U = 6 and then starts to decrease upon further increasing the interaction to U = 8. The spin
susceptibility also shows a maximum at M point, but at strong interactions its value is much
larger than the one of the charge and the orbital susceptibilities. This fact suggests that the
considered model possesses well-developed antiferromagnetic (AFM) fluctuations that repre-
sent the main source of instability in the system.

5.4 Bilayer square lattice

As a final case study, we consider Hubbard model on a bilayer square lattice as a particular
example of a multi-site system. The model Hamiltonian can be written in two equivalent
forms with either one (Nimp = 1) or two (Nimp = 2) lattice sites in the unit cell. This fact
makes the considered system ideal for testing and cross-validating implementations of multi-
site calculations.

The single-particle term of the Hamiltonian with the two sites in the unit cell reads

ε2-site
k, l l ′ = −2t

�

cos kx + cos ky

�

δl l ′ + 2t⊥σ
x
l l ′ , (39)

where t and t⊥ are respectively the intra- and interlayer hopping amplitudes. The index l
numerates the site within the unit cell, and σx is the first Pauli matrix. In the limit t � t⊥,
the two layers are almost decoupled and the system behaves similarly to a single-layer square
lattice Hubbard model. In the opposite limit t � t⊥, the system behaves as a collection of
dimers, where the two site in the same dimer belong to different layers. In this limit, the
electrons have small probability to hop between neighboring dimers.

The introduced single-particle Hamiltonian can be diagonalized in the {l, l ′} space. The
resulting dispersion has two bands that correspond to a tight-binding dispersion for a single-
layer square lattice that is respectively shifted in energy by ±2t⊥. We note that for t⊥ = 2 the
relative shift between the bands becomes ∆E = 4t⊥ = 8, which corresponds to the value of
the bandwidth of each band. Therefore, at larger values of t⊥ the two bands do not overlap
and the non-interacting system becomes a band insulator. Formally, one can parametrize the
two bands by introducing the label kz ∈ {0,π}

ε1-site
k = −2

�

t cos kx + t cos ky + t⊥ cos kz

�

, (40)

22

https://scipost.org
https://scipost.org/SciPostPhys.13.2.036


SciPost Phys. 13, 036 (2022)

Figure 10: DOS for a bilayer square lattice obtained at t = 1, U = 4, β = 4 for dif-
ferent values of the interlayer hopping t⊥. Lighter shades of blue indicate larger t⊥.

in strict analogy with the transformation carried out in Section 5.1 for the Hubbard-Kanamori
dimer. In this representation, the kz label plays a role of a z-component of momentum in the
dispersion of a three-dimensional system that has one lattice site in the unit cell. Throughout
the tests, we performed calculations using both the two-site and the single-site representations
for the Hamiltonian and checked that the results identically coincide.

We perform calculations at half-filling for t = 1, U = 4, and β = 4, and investigate how
the properties of the system change as a function of t⊥. In order to understand the physics
of this system, we compute both single- and two-particle observables, namely the electronic
DOS (Fig. 10) and the static magnetic susceptibility (Fig. 11). In particular, we focus on
the two independent components of the spin susceptibility X sp

|| (left panel of Fig. 11) and

X sp
⊥ (right panel of Fig. 11) that respectively describe magnetic fluctuations within and be-

tween the layers. In the two-site representation these components have the following form:
X sp
|| ≡ −X m

1111 = −X m
2222 and X sp

⊥ ≡ −X m
1122 = −X m

2211. These quantities can also be found in

the single-site representation as: 2X sp
|| = X sp

kz=0 + X sp
kz=1 and 2X sp

⊥ = Xkz=0 − X sp
kz=1. The charge

susceptibility for the considered system is small and is not shown here.
At t⊥ = 0, which corresponds to the case of completely decoupled layers, the DOS exhibits

a dip at the Fermi energy. A relatively large leading eigenvalue of the Bethe–Salpeter equation
in the magnetic channel λ= 0.8 at the wave vector q=M and the corresponding peak in the
intralayer spin susceptibility X sp

|| indicate that this dip signals the formation of a pseudogap

due to strong AFM fluctuations. The interlayer component X sp
⊥ of the spin susceptibility is

zero, since the two layers are decoupled. This result is in a perfect agreement with the be-
havior reported in Ref. [94] for a single-layer case. We find that for t⊥ ≤ 1 the electronic
spectral function is still dominated by the two peaks that lie close to the Fermi energy. The
splitting between the two peaks increases with increasing t⊥ in accordance with the results
of Ref. [155] obtained for a bilayer Bethe lattice. This behavior can be partially attributed
to the shift between the two non-interacting bands that is proportional to t⊥. However, the
value of this shift appears to be renormalized by electronic correlations. In addition, in this
regime of t⊥ magnetic fluctuations still play an important role, which is confirmed by rela-
tively large values of both, inter- and intralayer components of the spin susceptibility. We find
that increasing t⊥ reduces the value of X sp

|| and increases the value of X sp
⊥ at the M point. We

attribute this behavior to the fact that fluctuations within the dimers become more and more
important, which effectively reduces available degrees of freedom for in-plane magnetic fluc-
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Figure 11: Interlayer X sp
|| (left) and intralayer X sp

⊥ (right) components of the spin
susceptibility obtained along the high symmetry path in momentum space for differ-
ent values of the interlayer hopping t⊥. Calculations are performed for the bilayer
square lattice at t = 1, U = 4, and β = 4.

tuations. At t⊥ = 2, we observe a qualitative change in the DOS. In particular, it reveals a
four-peak structure that consists in two small peaks at E ' ±1 and two large peaks at E ' ±5.
The distance between the latter does not exactly coincide with the relative splitting between
the two non-interacting bands ∆E = 8. This shows that electronic correlations still play an
important role in renormalizing the dispersion in this regime. However, a strong suppression
of both components of the spin susceptibility indicates that this renormalization cannot be
attributed to spatial magnetic fluctuations. The appearance of small peaks close to Fermi en-
ergy and a small spectral weight at Fermi energy indicate that at t⊥ = 2 the dimer physics in
the system starts to dominate over the lattice physics. Thus, the splitting between the small
peaks ∆E ' 2 can be attributed to singlet fluctuations within the dimer that have energy of
the exchange interaction J = 2t2

⊥/U = 2.
These findings are consistent with what has been observed previously for the case of a

bilayer Bethe lattice [155, 156] and with the results of cluster DMFT studies for the bilayer
square lattice [157]. In spite of the different geometric structures, the phase diagrams for the
bilayer Bethe lattice and the bilayer square lattice appear to be both characterized by a metallic
phase, a correlation-driven insulating phase and a band-insulating phase induced by the for-
mation of dimers. Indeed, a transition from a metal to a band-insulator upon increasing t⊥ was
reported for small value of the interaction, while a transition from an AFM pseudogap regime
to a band-insulator was found at larger interactions for both models. In our calculations, we
find that D-TRILEX qualitatively reproduces the behaviour observed in the mentioned works
capturing the expected crossover between these regimes. Hence, D-TRILEX can be seen as
a reliable tool for describing the complex physics in the considered model. A more detailed
analysis of the phase diagram is desirable and deserves further studies.

6 Conclusion

We introduced the D-TRILEX theory in a general multi-orbital and multi-site framework. This
method is designed to tackle strongly-interacting electronic materials and allows for a self-
consistent treatment of both single- and two-particle physical observables. The balanced di-
agrammatic structure of D-TRILEX accounts for the desired vertex corrections and the lead-
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ing non-local collective electronic fluctuations, while remaining computationally feasible in a
multi-band context. The method also allows for considering the frequency- and momentum-
dependent interactions without introducing bosonic hybridizations in the reference system.

We provided a detailed derivation and description of all the constituent equations. We also
illustrated the computational workflow that was used in our numerical implementation. Addi-
tionally, we discussed some hints that allowed us to improve the performances and the stability
of the self-consistent procedure. Further, we investigated electronic correlations in four rele-
vant model systems. They were chosen either to compare the performance of the method with
existing benchmark results, or to illustrate specific capabilities of the developed approach. We
focused on zero- and two-dimensional systems to show that D-TRILEX correctly accounts for
the correlation effects even in low dimensions, where DMFT is not always expected to provide
an optimal reference system. We have found that D-TRILEX shows a very good agreement
with the benchmarks in all considered cases. Where benchmarks are not available, the results
of the method reproduced general trends reported in previous studies of similar models.

Since the method can be formulated on the basis of an arbitrary reference system, it allows
for several possibilities for further improvements of the results by tuning the parameters of the
reference system, especially in situations where the DMFT impurity problem does not provide
a good starting point for the D-TRILEX diagrammatic expansion. For instance, the reference
system can be improved by considering a cluster of suitable size, or by introducing more ap-
propriate fermionic and bosonic hybridization functions. In addition to that, the solution of
the derived partially bosonized dual action (5) can be systematically improved by considering
more elaborate diagrammatic contribution that are not taken into account in D-TRILEX [94].

Even though not included in our current computational scheme, one can also address the
problem of superconductivity in the framework of the developed approach. In order to find the
transition temperature to a superconducting state one can look at the divergence of the lattice
susceptibility (72) in the corresponding particle-particle channel. To this aim one can either
consider a suitable reference problem related to the desired superconducting order parameter
(see, e.g., Refs. [56, 131, 158, 159]) and use the D-TRILEX form for the polarization operator
in the particle-particle channel, or to additionally account for the scattering on the transverse
momentum- and frequency-dependent bosonic fluctuations in the polarization operator in the
particle-particle channel in the case of a single-site reference system [91, 160, 161]. Going
inside the superconducting phase would require to introduce an anomalous component of the
Green’s function working in the Nambu space formalism similarly to what has been proposed
in the framework of the TRILEX approach [91].

We believe that the ability of our approach to consistently account for the effect of the
non-local collective electronic fluctuations could open a route towards an accurate description
of a broad class of materials where multi-orbital effects play a crucial role. The use of our
approach should especially be appealing in situations where the non-local correlations where
so far neglected due to the lack of a computationally feasible method, and where the local
approximations still represent the state-of-the-art solution of the problem.
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A Derivation of the multi-band D-TRILEX approach

In this Appendix we present the derivation of the multi-band D-TRILEX approach following
Refs. [93,94], where the method was introduced in the single-band framework.

A.1 Effective partially bosonized dual action

We start with isolating the reference (impurity) problem from the initial lattice action (1). The
action for the reference system

Simp =−
∑

ν,{l},
σσ′

c∗νσl

�

(iν+µ)δσσ′δl l ′ −∆
σσ′

ν,l l ′

�

cνσ′ l ′

+
1
2

∑

q,{k},
{l},{σ}

U pp
l1 l2 l3 l4

c∗k,σ,l1
c∗q−k,σ′,l2

cq−k′,σ′,l4
ck′,σ,l3

+
1
2

∑

ω,{l},ς

Y ς
ω, l1 l2, l3 l4

ρ
ς
−ω, l1 l2

ρ
ς
ω, l4 l3

+
∑

ω,{l},ϑ

Y ϑω, l1 l2, l3 l4
ρ∗ϑω, l1 l2

ρϑω, l3 l4
(41)

contains momentum-independent parts of the lattice action (1). In addition to them, we in-
troduce fermionic ∆σσ

′

ν,l l ′ and bosonic Y r
ω, l1 l2, l3 l4

hybridization function that usually enter the
impurity problem of the (extended) DMFT [48, 126–130]. In Eq. (41) these quantities are
written in a general frequency ν (ω), band l, spin σ, and channel r ∈ {ς,ϑ} dependent form.
These hybridization functions are usually determined according to some self-consistency con-
dition and their form depends on the choice of the reference system and on the initial problem.
The composite variables that are coupled to the bosonic hybridization functions are defined in
the main text. The corresponding densities for the particle-particle channel are following

ns
q, l1 l2

=
1
2

∑

k

�

cq−k,↓l2
ck↑l1
− cq−k,↑l2

ck↓l1

�

, n∗ s
q, l1 l2

=
1
2

∑

k

�

c∗k↑l1 c∗q−k,↓l2
− c∗k↓l1 c∗q−k,↑l2

�

,

nt0
q, l1 l2

=
1
2

∑

k

�

cq−k,↓l2
ck↑l1

+ cq−k,↑l2
ck↓l1

�

, n∗ t0
q, l1 l2

=
1
2

∑

k

�

c∗k↑l1 c∗q−k,↓l2
+ c∗k↓l1 c∗q−k,↑l2

�

,

nt+
q, l1 l2

=
1
p

2

∑

k

cq−k,↑l2 ck↑l1 , n∗ t+
q, l1 l2

=
1
p

2

∑

k

c∗k↑l1 c∗q−k,↑l2
,

nt−
q, l1 l2

=
1
p

2

∑

k

cq−k,↓l2 ck↓l1 , n∗ t−
q, l1 l2

=
1
p

2

∑

k

c∗k↓l1 c∗q−k,↓l2
. (42)
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The remaining part of the lattice action reads

Srem =
∑

k,{l}

∑

σσ′

c∗kσl ε̃
σσ′

k,l l ′ ckσ′ l ′ +
1
2

∑

q,{l},ς

Ṽ ςq, l1 l2, l3 l4
ρ
ς
−q, l1 l2

ρ
ς
q, l4 l3

+
∑

q,{l},ϑ

Ṽ ϑq, l1 l2, l3 l4
ρ∗ϑq, l1 l2

ρϑq, l3 l4
,

(43)

where ε̃σσ
′

k,l l ′ = ε
σσ′

k,l l ′ −∆
σσ′

ν,l l ′ and Ṽ r
q, l1 l2, l3 l4

= V r
q, l1 l2, l3 l4

− Y r
ω, l1 l2, l3 l4

. Let us perform following
Hubbard-Stratonovich transformations for the partition function of Srem

exp

(

−
∑

k,{l}

∑

σσ′

c∗kσl ε̃
σσ′

k,l l ′ ckσ′ l ′

)

= (44)

D f

∫

D[ f ∗, f ]exp

(

∑

k,{l}

∑

σσ′

�

f ∗kσl

�

ε̃−1
k

�σσ′

l l ′ fkσ′ l ′ − f ∗kσl ckσl − c∗kσl fkσl

�

)

,

exp

(

−
1
2

∑

q,{l},ς

ρ
ς
−q, l1 l2

Ṽ ςq, l1 l2, l3 l4
ρ
ς
q, l4 l3

)

= (45)

Dϕ

∫

D[ϕς]exp

(

∑

q,{l},ς

�

1
2
ϕ
ς
−q, l1 l2

h
�

Ṽ ςq
�−1i

l1 l2, l3 l4
ϕ
ς
q, l4 l3

−ϕς−q, l1 l2
ρ
ς
q, l2 l1

�

)

,

exp

(

−
∑

q,{l},ϑ

ρ∗ϑq, l1 l2
Ṽ ϑq, l1 l2, l3 l4

ρϑq, l3 l4

)

= (46)

Dϕ

∫

D[ϕ∗ϑ,ϕϑ]exp

(

∑

q,{l},ϑ

�

ϕ∗ϑq, l1 l2

h
�

Ṽ ϑq
�−1i

l1 l2, l3 l4
ϕϑq, l3 l4

−ϕ∗ϑq, l1 l2
ρϑq, l1 l2

−ρ∗ϑq, l1 l2
ϕϑq, l1 l2

�

)

.

The terms D f = −det [ε̃k] and D−1
ϕ = −

q

det
�

Ṽq

�

can be neglected, because they do not affect
the calculation of expectation values. After these transformations the lattice action takes the
following form

S ′ =−
∑

k,{l}

∑

σσ′

f ∗kσl

�

ε̃−1
k

�σσ′

l l ′ fkσ′ l ′ +
∑

k,σ,l

¦

�

f ∗kσl +η
∗
kσl

�

ckσl + c∗kσl

�

fkσl +ηkσl

�

©

+Simp

−
∑

q,{l},ϑ

§

ϕ∗ϑq, l1 l2

h
�

Ṽ ϑq
�−1i

l1 l2, l3 l4
ϕϑq, l3 l4

−
�

ϕ∗ϑq, l1 l2
+ j∗ϑq, l1 l2

�

ρϑq, l1 l2

−ρ∗ϑq, l1 l2

�

ϕϑq, l1 l2
+ jϑq, l1 l2

�©

−
∑

q,{l},ς

§

1
2
ϕ
ς
−q, l1 l2

h
�

Ṽ ςq
�−1i

l1 l2, l3 l4
ϕ
ς′

q, l4 l3

−
�

ϕ
ς
−q, l1 l2

+ jς−q, l1 l2

�

ρ
ς
q, l2 l1

©

, (47)

where we additionally introduced source fields η(∗) and j(∗) for fermionic c(∗) and composite
ρ(∗) variables, respectively. Below, these fields will be used to derive the connection between
the dual and lattice quantities. Now, we shift fermionic f (∗)→ f̂ (∗) = f (∗) −η(∗) and bosonic
ϕ(∗)→ ϕ̂(∗) = ϕ(∗) − j(∗) variables to decouple the source fields from original Grassmann vari-
ables c(∗). After that the lattice action becomes

S ′ =−
∑

k,{l}

∑

σσ′

f̂ ∗kσl

�

ε̃−1
k

�σσ′

l l ′ f̂kσ′ l ′ +
∑

k,σ,l

�

f ∗kσl ckσl + c∗kσl fkσl

�

+
∑

q,{l},r

�

ϕ
ς
−q, l1 l2

ρ
ς
q, l2 l1

+ϕ∗ϑq, l1 l2
ρϑq, l1 l2

+ρ∗ϑq, l1 l2
ϕϑq, l1 l2

�

+Simp

−
1
2

∑

q,{l},ς

ϕ̂
ς
−q, l1 l2

h
�

Ṽ ςq
�−1i

l1 l2, l3 l4
ϕ̂
ς
q, l4 l3

−
∑

q,{l},ϑ

ϕ̂∗ϑq, l1 l2

h
�

Ṽ ϑq
�−1i

l1 l2, l3 l4
ϕ̂ϑq, l3 l4

. (48)
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At this step we can integrate out the reference problem Simp by explicitly taking the path
integral over fermionic c(∗) variables

∫

D[c∗, c] exp

�

−Simp −
∑

k,l l ′,σσ′

�

f ∗kσl

�

B−1
ν

�σσ′

l l ′ ckσ′ l ′ + c∗kσl

�

B−1
ν

�σσ′

l l ′ fkσ′ l ′

�

−
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q,{l},{r}

�

ϕ
ς
−q, l1 l2

[α−1
ω ]

ςς′

l1 l2, l3 l4
ρ
ς′

q, l4 l3
+ϕ∗ϑq, l1 l2

[α−1
ω ]

ϑϑ′

l1 l2, l3 l4
ρϑ

′

q, l3 l4
+ρ∗ϑq, l1 l2

[α−1
ω ]

ϑϑ′

l1 l2, l3 l4
ϕϑ

′

q, l3 l4

�

�

=

Zimp exp

�

−
∑

k,{l},{σ}

f ∗kσ1 l1

�

B−1
ν

�σ1σ2

l1 l2
gσ2σ3
ν,l2 l3

�

B−1
ν

�σ3σ4

l3 l4
fkσ4 l4

−
1
2

∑

q,{l},{ς}

ϕ
ς1
−q, l1 l2

[α−1
ω ]

ς1ς2

l1 l2, l ′1 l ′2
χ
ς2ς3

ω, l ′1 l ′2, l ′3 l ′4
[α−1
ω ]

ς3ς4

l ′3 l ′4, l3 l4
ϕ
ς4
l4 l3

−
∑

q,{l},{ϑ}

ϕ
∗ϑ1
q, l1 l2

[α−1
ω ]

ϑ1ϑ2

l1 l2, l ′1 l ′2
χ
ϑ2ϑ3

ω, l ′1 l ′2, l ′3 l ′4
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ω ]

ϑ3ϑ4

l ′3 l ′4, l3 l4
ϕ
ϑ4
q, l3 l4

− F̃[ f ,ϕ]

�

. (49)

Zimp, gσσ
′

ν, l l ′ and χ r r ′
ω, l1 l2, l3 l4

are respectively the partition function, the Green’s function, and
the susceptibility of the reference (impurity) problem. Note that in Eq. (49) we additionally
rescaled the fermionic f (∗) and bosonic ϕ(∗) fields by the parameters B−1

ν and α−1
ω , respec-

tively. These parameters will be determined below. Following the standard approximation
used in dual theories [71–75,77–80,82,83,93,94], the interaction part of the action F̃[ f ,ϕ]
is truncated at the level of the two-particle correlations functions and reads

F̃[ f ,ϕ]'
∑

q,{k}

∑

{ν},{l}

∑

{σ},ς/ϑ

×

×
�

1
4
[Γνν′ω]

σ1σ2σ3σ4
l1 l2 l3 l4

f ∗kσ1 l1
fk+q,σ2 l2

f ∗k′+q,σ4 l4
fk′σ3 l3

+Λσσ
′ς

νω, l1, l2, l3 l4
f ∗kσl1

fk+q,σ′,l2
ϕ
ς
q, l4 l3

+
1
2

�

Λσσ
′ϑ

νω, l1, l2, l3 l4
f ∗kσl1

f ∗q−k,σ′,l2
ϕϑq, l3 l4

+Λ∗σσ
′ϑ

νω, l1, l2, l3 l4
ϕ∗ϑq, l3 l4

fq−k,σ′,l2
fkσl1

�

�

. (50)

Here, Γ is the four-point (fermion-fermion) vertex function, which is explicitly defined in
Eq. (92). The three-point (fermion-boson) vertex functions Λσσ

′r
νω have the following form

Λ
σ1σ2ς

νω, l1, l2, l3 l4
=

∑

{σ′},{l ′},ς′

D

c
νσ′1 l ′1

c∗
ν+ω,σ′2 l ′2

ρ
ς′

−ω, l ′3 l ′4

E

�

B−1
ν

�σ′1σ1

l ′1 l1

�

B−1
ν+ω

�σ′2σ2

l ′2 l2

�

α−1
ω

�ς′ς

l ′3 l ′4 l3 l4
, (51)

Λ
σ1σ2ϑ

νω, l1, l2, l3 l4
=

∑

{σ′},{l ′},ϑ′

D

c
νσ′1 l ′1

c
ω−ν,σ′2 l ′2

ρ∗ϑ
′

ω, l ′3 l ′4

E

�

B−1
ν

�σ′1σ1

l ′1 l1

�

B−1
ω−ν

�σ′2σ2

l ′2 l2

�

α−1
ω

�ϑ′ϑ

l ′3 l ′4 l3 l4
, (52)

Λ
∗σ1σ2ϑ

νω, l1, l2, l3 l4
=

∑

{σ′},{l ′},ϑ′

D

ρϑ
′

ω, l ′3 l ′4
c∗
ω−ν,σ′2 l ′2

c∗
νσ′1 l ′1

E

�

B−1
ν

�σ′1σ1

l ′1 l1

�

B−1
ω−ν

�σ′2σ2

l ′2 l2

�

α−1
ω

�ϑ′ϑ

l ′3 l ′4 l3 l4
. (53)

If the scaling parameters are chosen as Bσσ
′

ν,l l ′ = gσσ
′

ν,l l ′ and

αr r ′

ω, l1 l2, l ′1 l ′2
= δl1,l ′1

δl2,l ′2
δr r ′ +

∑

l3,l4

Ũ r
ω, l1 l2, l3 l4

χ r r ′

ω, l3 l4, l ′1 l ′2
, (54)

where Ũ r
ω, l1 l2, l3 l4

= U r
l1 l2, l3 l4

+ Y r
ω, l1 l2, l3 l4

is the bare interaction of the reference system and U r

is defined in Eqs. (10)–(13), then Λσσ
′r

νω takes the usual form of the three-point vertex of the
reference system [80, 83, 93, 94, 162]. However, in this case the vertex contains the inverse
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of the impurity Green’s function gσσ
′

ν,l l ′ and consequently has a big numerical noise at large

frequencies. At the same time, inverting αr r ′
ω does not lead to the numerical noise due to the

presence of a delta-function term in Eq. (54). For this reason in the current implementation
of the D-TRILEX method, we keep αr r ′

ω in the form of Eq. (54) and set Bσσ
′

ν,l l ′ = δσσ′δl l ′ .
It is important to mention that in the most available impurity solvers based on continuous

time quantum Monte Carlo method [141–144], the two-particle quantities of the reference
system are defined in imaginary time τ with a different order of the operators compared
to our case. For instance, in w2dynamics package [145] the time-ordered two-particle cor-
relation functions are computed as Gabcd = 〈Tτcac†

bcc c†
d〉 [163]. Here, Tτ is the imaginary-

time ordering operator and the latin indices a = {la,σa,τa} describe the orbital, spin, and
imaginary-time dependence. Often, the correlation functions are directly measured in the
Matsubara space as a function of ω (or ν and ω), by performing a Fourier transform on the
fly. In order to exploit these correlation functions in D-TRILEX, they have to be recast in
the form used in Eqs. (51)–(53) for the vertex functions and in the form of the susceptibility
χ
ςς′

ω, l1 l2, l3 l4
= −〈ρς

ω, l2 l1
ρ
ς′

−ω, l3 l4
〉. Taking into account that ρr

ω, l1 l2
= nr

ω, l1 l2
−
¬

nr
ω, l1 l2

¶

, where
the densities nr

ω are defined in Eqs. (4) and (42), the quantities required for constructing
D-TRILEX diagrammatic expansion can be obtained by subtracting the disconnected parts from
the corresponding correlation functions of the reference system. Note also that the fermionic
operators in Gabcd have to be placed in a desired order by applying commutation relations,
which may also lead to additional contributions to the disconnected terms.

After integrating out the reference system Simp, the action takes the form of the dual boson
problem [80,83,93,94]

S̃ = −
∑

k,l l ′

∑

σσ′

f̂ ∗kσl[ε̃
−1
k ]

σσ′

l l ′ f̂kσ′ l ′ +
∑

k,l l ′

∑

σσ′

f ∗kσl g
σσ′

ν,l l ′ fkσ′ l ′ + F̃[ f ,ϕ]

−
1
2

∑

q,{l},{ς}

�

ϕ̂
ς
−q, l1 l2

h
�

Ṽ ςq
�−1i

l1 l2, l3 l4
ϕ̂
ς
q, l4 l3

−ϕς1
−q, l1 l2

[α−1
ω ]

ς1ς2

l1 l2, l ′1 l ′2
χ
ς2ς3

q, l ′1 l ′2, l ′3 l ′4
[α−1
ω ]

ς3ς4

l ′3 l ′4, l3 l4
ϕ
ς4
q, l4 l3

�

−
∑

q,{l},{ϑ}

�

ϕ̂∗ϑq, l1 l2

h
�

Ṽ ϑq
�−1i

l1 l2, l3 l4
ϕ̂ϑq, l3 l4

−ϕ∗ϑ1
q, l1 l2

[α−1
ω ]

ϑ1ϑ2

l1 l2, l ′1 l ′2
χ
ϑ2ϑ3

ω, l ′1 l ′2, l ′3 l ′4
[α−1
ω ]

ϑ3ϑ4

l ′3 l ′4, l3 l4
ϕ
ϑ4
q, l3 l4

�

.

(55)

Note that after rescaling bosonic variables one gets ϕ̂(∗) = ϕ(∗)α−1 − j(∗). In order to eliminate
the four-point vertex function Γ ph from the theory, we add and subtract the following terms

1
2

∑

q,{l}

∑

ςς′

ϕ
ς
−q, l1 l2

�

w̄−1
ω

�ςς′

l1 l2, l3 l4
ϕ
ς′

q, l4 l3
+
∑

q,{l}

∑

ϑϑ′

ϕ∗ϑq, l1 l2

�

w̄−1
ω

�ϑϑ′

l1 l2, l3 l4
ϕϑ

′

q, l3 l4
, (56)

from the dual action (55). At this step, w̄ω are introduced as arbitrary quantities. Further,
they will be adjusted to obtain the partially bosonized approximation for the four-point vertex
function (see Appendix B). The dual boson action becomes

S̃ = −Trσ,l

∑

k

�

f̂ ∗k ε̃
−1
k f̂k − f ∗k gν fk

	

+ F̃[ f ,ϕ] +
1
2

Trς,l
∑

q

ϕ−qw̄−1
ω ϕq + Trϑ,l

∑

q

ϕ∗qw̄−1
ω ϕq

− Trϑ,l

∑

q

�

ϕ∗qα
−1
ω

�

Ṽ−1
q −χω +αωw̄−1

ω αω

�

α−1
ω ϕq + j∗q Ṽ−1

q jq −ϕ
∗
qα
−1
ω Ṽ−1

q jq − j∗q Ṽ−1
q α−1

ω ϕq

�

− Trς,l
∑

q

�

1
2
ϕ−qα

−1
ω

�

Ṽ−1
q −χω +αωw̄−1

ω αω

�

α−1
ω ϕq +

1
2

j−q Ṽ−1
q jq −ϕ−qα

−1
ω Ṽ−1

q jq

�

, (57)
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where we explicitly isolated the terms that contain the bosonic source fields j(∗). To shorten
the expression, we omitted band, spin, and channel indices that can be easily restored using
the fact that all multiplications in Eq. (57) are performed in the matrix form. Now, we perform
the following Hubbard-Stratonovich transformations

exp

¨

1
2

Trς,l
∑

q

ϕ−qα
−1
ω

�

Ṽ−1
q −χω +αωw̄−1

ω αω

�

α−1
ω ϕq

«

=Db

∫

D[bς]×

× exp

¨

−Trς,l
∑

q

�

1
2

b−qw̄−1
ω αω

�

Ṽ−1
q −χω +αωw̄−1

ω αω

�−1
αωw̄−1

ω bq −ϕ−qw̄−1
ω bq

�

«

(58)

exp

¨

Trϑ,l
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ω

�

Ṽ−1
q −χω +αωw̄−1

ω αω

�
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ω ϕq

«

=Db

∫

D[bϑ]×

× exp

¨

−Trϑ,l

∑

q

�
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ω αω

�

Ṽ−1
q −χω +αωw̄−1
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�−1
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ω bq −ϕ
∗
qw̄−1
ω bq − b∗qw̄−1

ω ϕq

�

«

,

(59)

where the terms D−1
b =

q

det
�

w̄α−1
�

Ṽ−1 −χ +αw̄−1α
�

α−1w̄
�

can again be neglected, be-
cause they also do not affect the calculation of correlation functions. The dual action becomes

S̃ ′ = −Trσ,l

∑

k

�

f̂ ∗k ε̃
−1
k f̂k − f ∗k gν fk

	

+ F̃[ f ,ϕ]

+ Trϑ,l

∑

q

b∗qw̄−1
ω αω

�

Ṽ−1
q −χω +αωw̄−1

ω αω

�−1
αωw̄−1

ω bq − Trϑ,l

∑

q

j∗q Ṽ−1
q jq

+
1
2

Trς,l
∑

q

b−qw̄−1
ω αω

�

Ṽ−1
q −χω +αωw̄−1

ω αω

�−1
αωw̄−1

ω bq −
1
2

Trς,l
∑

q

j−q Ṽ−1
q jq

+ Trϑ,l

∑

q

ϕ∗qw̄−1
ω ϕq − Trϑ,l

∑

q

�

ϕ∗qw̄−1
ω

�

bq − w̄ωα
−1
ω Ṽ−1

q jq
�

+
�

b∗q − j∗q Ṽ−1
q α−1

ω w̄ω
�

w̄−1
ω ϕq

�

+
1
2

Trς,l
∑

q

ϕ−qw̄−1
ω ϕq − Trς,l

∑

q

ϕ−qw̄−1
ω

�

bq − w̄ωα
−1
ω Ṽ−1

q jq
�

. (60)

We shift bosonic variables as b(∗)→ b̂(∗) = b(∗) + w̄α−1Ṽ−1 j(∗) to decouple the sources j(∗) from
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the dual bosonic fields ϕ(∗). After that the fields ϕ(∗) can be integrated out as

∫

D[ϕς] exp

(

−
1
2

Trς,l
∑

q

ϕ−qw̄−1
ω ϕq + Trς,l

∑

q

 

b−qw̄−1
ω −

∑

k,σσ′
f ∗kσ fk+q,σ′Λ

σσ′

νω

!

ϕq

)

=

Zϕ exp

�

1
2

Trς,l
∑

q

b−qw̄−1
ω bq − Trς,l

∑

q,k

∑

σσ′

Λσσ
′

νω f ∗kσ fk+q,σ′ bq

+
1
2

Trς,l
∑

q,{σ}

∑

k,k′
Λσ1σ2
νω w̄ωΛ

σ4σ3
ν′+ω,−ω f ∗kσ1

fk+q,σ2
f ∗k′+q,σ4

fk′σ3

�

, (61)

∫

D[ϕ∗ϑ,ϕϑ] exp

�

− Trϑ,l

∑

q

ϕ∗qw̄−1
ω ϕq + Trϑ,l

∑

q

�

b∗qw̄−1
ω ϕq +ϕ

∗
qw̄−1
ω bq

�

−
1
2

Trϑ,l

∑

q,k

∑

σσ′

�

f ∗kσ f ∗q−k,σ′Λ
σσ′

νω ϕq +ϕ
∗
qΛ
∗σσ′
νω fq−k,σ′ fkσ

�

�

=

Zϕ exp

�

Trϑ,l

∑

q

b∗qw̄−1
ω bq −

1
2

Trϑ,l

∑

q,k

∑

σσ′

�

f ∗kσ f ∗q−k,σ′Λ
σσ′

νω bq + b∗qΛ
∗σσ′
νω fq−k,σ′ fkσ

�

+
1
4

Trϑ,l

∑

q,{σ}

∑

k,k′
Λσ1σ2
νω w̄ωΛ

σ3σ4
ν′ω

f ∗kσ1
f ∗q−k,σ2

fq−k′,σ4
fk′σ3

�

, (62)

where Zϕ is a partition function of the Gaussian part of the bosonic action. As discussed in
Appendix B and Refs. [93,94], quartic terms that appear at the last lines of Eqs. (61) and (62)
approximately cancel the fermion-fermion (Γ ) part of the interaction (50) if the w̄r r ′

ω quantities
are taken in the form of Eq. (96). As the result, the problem reduces to a partially bosonized
dual action

S̃ f b = −Trσ,l

∑

k

�

f̂ ∗k ε̃
−1
k f̂k − f ∗k gν fk

	

+
1
2

Trς,l
∑

q

b̂−qw̄−1
ω αω

�

Ṽ−1
q −χω +αωw̄−1

ω αω

�−1
αωw̄−1

ω b̂q −
1
2

Trς,l
∑

q

j−q Ṽ−1
q jq

−
1
2

Trς,l
∑

q

b−qw̄−1
ω bq + Trς,l

∑

q,k

∑

σσ′

Λσσ
′

νω f ∗kσ fk+q,σ′ bq

+ Trϑ,l

∑

q

b̂∗qw̄−1
ω αω

�

Ṽ−1
q −χω +αωw̄−1

ω αω

�−1
αωw̄−1

ω b̂q − Trϑ,l

∑

q

j∗q Ṽ−1
q jq

− Trϑ,l

∑

q

b∗qw̄−1
ω bq +

1
2

Trϑ,l

∑

q,k

∑

σσ′

�

f ∗kσ f ∗q−k,σ′Λ
σσ′

νω bq + b∗qΛ
∗σσ′
νω fq−k,σ′ fkσ

�

, (63)

that upon neglecting fermionic η(∗) and bosonic j(∗) source takes the simple form shown in
Eq. (5) of the main text. The bare fermionic Green’s function for this action is defined in
Eq. (7). The bare dual bosonic propagator reads

W̃ r1r2
q, l1 l2, l3 l4

=
∑

{r ′},{l ′}

α
r1r ′1
ω, l1 l2, l ′1 l ′2

h
�

Ṽ−1
q −χω

�−1ir ′1r ′2

l ′1 l ′2, l ′3 l ′4
α

r ′2r2

ω, l ′3 l ′4, l3 l4
+ w̄r1r2

ω, l1 l2, l3 l4
. (64)

Substituting the explicit expression (96) for the w̄r r ′
ω quantities leads for the final form for the

bare bosonic propagator shown in Eq. (8).
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A.2 Physical quantities from the dual space

The source fields introduced in the previous Appendix allows one to derive expressons for
the correlation functions of the initial lattice problem (1) even though the original Grassman
variables c(∗) have been already integrated out. By definition, the fermionic Green’s function
can be found as

Gσσ
′

k,l l ′ = −〈ckσl c
∗
kσ′ l ′〉= −

1
Z

∂ 2Z
∂ η∗kσl∂ ηkσ′ l ′

, (65)

where Z is the partition function of the problem. Taking into account that the source fields
enter only the partially bosonized dual action (63), the lattice Green’s function becomes

Gσσ
′

k,l l ′ = −
�

ε̃−1
k

�σσ′

l l ′ −
∑

l1 l2

∑

σ1σ2

�

ε̃−1
k

�σσ1

l l1
〈 fkσ1 l1

f ∗kσ2 l2
〉
S̃ f b

�

ε̃−1
k

�σ2σ
′

l2 l ′

= −
�

ε̃−1
k

�σσ′

l l ′ +
∑

l1 l2

∑

σ1σ2

�

ε̃−1
k

�σσ1

l l1
G̃σ1σ2

kl1 l2

�

ε̃−1
k

�σ2σ
′

l2 l ′ . (66)

Using the Dyson equation for the dressed dual fermionic Green’s function (15) and substituting
the explicit form for the bare dual fermionic Green’s function (7) allows to get the following
relation for the lattice Green’s function

�

G−1
k

�σσ′

l l ′ =
�

�

gν + Σ̃k

�−1�σσ
′

l l ′
+∆σσ

′

ν,l l ′ − ε
σσ′

k,l l ′ , (67)

shown in Eq. (20) of the main text. Expression (21) for the lattice self-energy can then be
obtained straightforwardly using the standard Dyson equation for the lattice Green’s func-
tion (22).

The lattice susceptibilities can be obtained in a similar way as

X ςς
′

q, l1 l2, l3 l4
= −〈ρςq, l2 l1

ρ
ς′

−q, l3 l4
〉= −

1
Z

∂ 2Z
∂ j ς−q, l1 l2

∂ j ς
′

q, l4 l3

, (68)

X ϑϑ
′

q, l1 l2, l3 l4
= −〈ρϑq, l1 l2

ρ∗ϑ
′

q, l3 l4
〉= −

1
Z

∂ 2Z
∂ j∗ϑq, l1 l2

∂ j ϑ′q, l3 l4

. (69)

The part of the action that depends on the bosonic sources is in the following form

S̃ j =
1
2

Trς,l
∑

q

j−q Cq jq + Trς,l
∑

q

j−q Rq bq

+ Trϑ,l

∑

q

j∗q Cq jq + Trϑ,l

∑

q

�

j∗q Rq bq + j∗q Rq bq

�

, (70)

where the terms Cq and Rq explicitly read

Cq = Ṽ−1
q

�

Ṽ−1
q −χω +αωw̄−1

ω αω

�−1
Ṽ−1

q − Ṽ−1
q ,

Rq = Ṽ−1
q

�

Ṽ−1
q −χω +αωw̄−1

ω αω

�−1
αωw̄−1

ω . (71)

Therefore, the susceptibility takes the form

X r1r2
q, l1 l2, l3 l4

= C r1ς2
q, l1 l2, l3 l4

+
∑

{l ′},{r ′}

R
r1r ′1
q, l1 l2, l ′1 l ′2

W̃
r ′1r ′2

q, l ′1 l ′2, l ′3 l ′4
R

r ′2r2

q, l ′3 l ′4, l3 l4
. (72)
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Importantly, the terms Cq and Rq are not divergent. For this reason, the divergence of the
susceptibility Xq and of the renormalized dual interaction W̃q occurs at the same time. After
some algebra, the expression (72) can be drastically simplified, and the inverse susceptibility
takes the form of a standard Dyson equation

�

X−1
q

�r r ′

l1 l2, l3 l4
=
�

Π−1
q

�r r ′

l1 l2, l3 l4
−
�

U r
l1 l2, l3 l4

+ V r
q, l1 l2, l3 l4

�

δr r ′ , (73)

with the following polarization operator of the lattice problem

Πr r ′
q, l1 l2, l3 l4

= Πimp r r ′

ω, l1 l2, l3 l4
+
∑

l ′ l ′′,r1

Π̃
r r1
q, l1 l2, l ′ l ′′

�

�

1+ ū · Π̃q

�−1�r1r ′

l ′ l ′′, l3 l4
. (74)

The ūr
l1 l2, l3 l4

term is defined in Appendix B. It is important to emphasize that the derived rela-
tions for the Green’s function (67) and the susceptibility (73) do not depend on the particular
approximation used to obtain the dual self-energy Σ̃ and the dual polarization operator Π̃.

A.3 General form for D-TRILEX diagrams

In the D-TRILEX approach the self-energy Σ̃ and the polarization operator Π̃ are obtained self-
consistently from the following functional that corresponds to the partially bosonized dual
action (5)

Φ[G̃, W̃ ,Λ] =−
1
2

∑

q,k

∑

{l},{σ}

∑

ςς′

Λ
σ1σ2ς

νω, l1, l2, l3 l4
G̃σ2σ8

k+q,l2 l8
G̃σ7σ1

k,l7 l1
W̃ ςς′

q, l3 l4, l5 l6
Λ
σ8σ7ς

′

ν+ω,−ω, l8, l7, l6 l5

+
1
2

∑

k,k′

∑

{l},{σ}

∑

ςς′

Λ
σ1σ2ς

ν,ω=0, l1, l2, l3 l4
G̃σ2σ1

k,l2 l1
G̃σ7σ8

k′,l7 l8
W̃ςς′

q=0, l3 l4, l5 l6
Λ
σ8σ7ς

′

ν′,ω=0, l8, l7, l6 l5
.

(75)

Note that the contribution of the particle-particle ϑ channel to the introduced functional is
neglected, because it is negligibly small in the D-TRILEX approximation [94]. The self-energy
and the polarization operator can be found by varying the functional as

Σ̃σσ
′

k,l l ′ =
∂Φ[G̃, W̃ ,Λ]
∂ G̃σ′σk,l ′ l

�

�

�

�

W̃ ,Λ

, Π̃
ςς′

q, l1 l2, l3 l4
= −2

∂Φ[G̃, W̃ ,Λ]

∂ W̃ ς′ς
q,, l3 l4, l1 l2

�

�

�

�

G̃,Λ

. (76)

This results in the following explicit expressions shown in Eqs. (18), (17), and (19) of the
main text and illustrated in Fig. 1

Σ̃
σ1σ7
k,l1 l7

=−
∑

q,ςς′

∑

{l},{σ}

Λ
σ1σ2ς

νω, l1, l2, l3 l4
G̃σ2σ8

k+q,l2 l8
W̃ ςς′

q, l3 l4, l5 l6
Λ
σ8σ7ς

′

ν+ω,−ω, l8, l7, l6 l5

+
∑

k′,ςς′

∑

{l},{σ}

Λ
σ1σ7ς

ν,ω=0, l1, l7, l3 l4
W̃ςς′

q=0, l3 l4, l5 l6
Λ
σ8σ2ς

′

ν′,ω=0, l8, l2, l6 l5
G̃σ2σ8

k′,l2 l8
, (77)

Π̃
ςς′

q, l1 l2, l7 l8
=

∑

k

∑

{l},{σ}

Λ
σ4σ3ς

ν+ω,−ω, l4, l3, l2 l1
G̃σ3σ5

k,l3 l5
G̃σ6σ4

k+q,l6 l4
Λ
σ5σ6ς

′

νω, l5, l6, l7 l8
. (78)

Here, G̃σσ
′

k and W ςς′

q are the dressed fermionic and bosonic propagators of the partially
bosonized dual problem (5) that can be found using Dyson equations (15) and (16), respec-
tively.
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B Partially bosonized approximation for the four-point vertex

In this Appendix we show the partially bosonized approximation for the four-point vertex
function of the reference system for the multi-band case. This approximation allows us to
eliminate the four-point vertex from the theory by introducing w̄ terms in the lattice action
according to Eq. (56). First, we rewrite the interaction of the reference system (41) in the
particle-hole representation

1
2

∑

ω,{ν}

∑

{l},{σ}

U pp
l1 l2 l3 l4

c∗νσl1
c∗ω−ν,σ′ l2

cω−ν′,σ′ l4 cν′σl3
=

1
2

∑

ω,{ν}

∑

{l},{σ}

U pp
l1 l2 l3 l4

c∗νσl1
cν′σl3

c∗ω−ν,σ′ l2
cω−ν′,σ′ l4 −

1
2

∑

ν,{l},σ

U pp
l1 l2 l3 l4

c∗νσl1
cνσl4

δl2 l3
=

1
2

∑

ω,{ν}

∑

{l},{σ}

U ph
l1 l2 l3 l4

c∗νσl1
cν+ω,σl2

c∗ν′+ω,σ′ l4
cν′σ′ l3 −

1
2

∑

ν,{l},σ

U pp
l1 l2 l3 l4

c∗νσl1
cνσl4

δl2 l3
, (79)

which results in the following relation U ph
l1 l2 l3 l4

= U pp
l1 l4 l2 l3

. Now, let us antisymmetrize the in-

teraction as (quadratic terms in Grassmann c(∗) variables are neglected for simplicity)

1
2

∑

ω,{ν}

∑

{l},{σ}

U ph
l1 l2 l3 l4

c∗νσl1
cν+ω,σl2

c∗ν′+ω,σ′ l4
cν′σ′ l3 =

1
8

∑

ω,{ν}

∑

{l},{σ}

Γ 0 d
l1 l2 l3 l4

�

c∗νσl1
cν+ω,σl2

��

c∗ν′+ω,σ′,l4
cν′,σ′,l3

�

+

1
8

∑

ω,{ν}

∑

{l},{σ}

Γ 0 m
l1 l2 l3 l4

�

c∗νσ1 l1
~σσ1σ2

cν+ω,σ2 l2

��

c∗ν′+ω,σ4 l4
~σσ4σ3

cν′σ3 l3

�

, (80)

in order to obtain the expressions for the bare four-point vertex functions of the reference
system in the particle-hole channel

Γ 0 d
l1 l2 l3 l4

= 2U ph
l1 l2 l3 l4

− U ph
l1 l3 l2 l4

= 2U pp
l1 l4 l2 l3

− U pp
l1 l4 l3 l2

, Γ 0 m
l1 l2 l3 l4

= −U ph
l1 l3 l2 l4

= −U pp
l1 l4 l3 l2

. (81)

Alternatively, the interaction can also be antisymmetrized in the particle-particle channel

1
2

∑

ω,{ν}

∑

{l},{σ}

U ph
l1 l2 l3 l4

c∗νσl1
cν+ω,σl2

c∗ν′+ω,σ′ l4
cν′σ′ l3 =

1
4

∑

ω,{ν},{l}

Γ 0 s
l1 l2 l3 l4

�

c∗ν↑l1 c∗ω−ν↓l2 − c∗ν↓l1 c∗ω−ν,↑l2

��

cω−ν′,↓l4 cν′↑l3 − cω−ν′,↑l4 cν′↓l3

�

+

1
4

∑

ω,{ν},{l}

Γ 0 t
l1 l2 l3 l4

�

c∗ν↑l1 c∗ω−ν,↓l2
+ c∗ν↓l1 c∗ω−ν,↑l2

��

cω−ν′,↓l4 cν′↑l3 + cω−ν′,↑l4 cν′↓l3

�

+

1
2

∑

ω,{ν},{l}

Γ 0 t
l1 l2 l3 l4

�

�

c∗ν↑l1 c∗ω−ν,↑l2

��

cω−ν′,↑l4 cν′↑l3

�

+
�

c∗ν↓l1 c∗ω−ν,↓l2

��

cω−ν′,↓l4 cν′↓l3

�

�

, (82)

which gives the corresponding bare vertex functions

Γ 0 s
l1 l2 l3 l4

=
1
2

�

U ph
l1 l3 l4 l2

+ U ph
l1 l4 l3 l2

�

=
1
2

�

U pp
l1 l2 l3 l4

+ U pp
l1 l2 l4 l3

�

, (83)

Γ 0 t
l1 l3 l4 l2

=
1
2

�

U ph
l1 l3 l4 l2

− U ph
l1 l4 l3 l2

�

=
1
2

�

U pp
l1 l2 l3 l4

− U pp
l1 l2 l4 l3

�

. (84)
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Note that the obtained expressions (81), (83) and (84) coincide with the standard definition
for the vertex functions in FLEX approach (see e.g. Ref. [125]).

One can also formally rewrite the interaction of the reference system (41) in the channel
representation as

1
2

∑

ω,{ν}

∑

{l},{σ}

U ph
l1 l2 l3 l4

c∗νσl1
cν+ω,σl2

c∗ν′+ω,σ′ l4
cν′σ′ l3+

1
2

∑

ω,{l},ς

Y ς
ω, l1 l2, l3 l4

ρ
ς
−ω, l1 l2

ρ
ς
ω, l4 l3

+
∑

ω,{l},ϑ

Y ϑω, l1 l2, l3 l4
ρ∗ϑω, l1 l2

ρϑω, l3 l4
=

1
2

∑

ω,{l},ς

Ũς
ω, l1 l2, l3 l4

ρ
ς
−ω, l1 l2

ρ
ς
ω, l4 l3

+
∑

q,{l},ϑ

Ũϑω, l1 l2, l3 l4
ρ∗ϑq, l1 l2

ρϑq, l3 l4
. (85)

In order to determine the bare interaction Ũ r
ω, l1 l2, l3 l4

= U r
l1 l2, l3 l4

+ Y r
ω, l1 l2, l3 l4

of the reference
system for every r channel, we antisymmetrize the expression (85). Following the works [93,
94], the bare four-point vertex functions (81) take the following form
�

Γ 0 d
νν′ω

�

l1 l2 l3 l4
= 2Ũd

ω, l1 l2,l3 l4
− Ũd

ν′−ν, l1 l3,l2 l4
− 3Ũm

ν′−ν, l1 l3,l2 l4
+ Ũ s

ω+ν+ν′, l1 l4,l3 l2
− 3Ũ t

ω+ν+ν′, l1 l4,l3 l2

= 2U ph
l1 l2 l3 l4

− U ph
l1 l3 l2 l4

+ o (Y ) , (86)
�

Γ 0 m
νν′ω

�

l1 l2 l3 l4
= 2Ũm

ω, l1 l2,l3 l4
+ Ũm

ν′−ν, l1 l3,l2 l4
− Ũd

ν′−ν, l1 l3,l2 l4
− Ũ s

ω+ν+ν′, l1 l4,l3 l2
− Ũ t

ω+ν+ν′, l1 l4,l3 l2

= −U ph
l1 l3 l2 l4

+ o (Y ) . (87)

Using the idea of Ref. [93] we associate the static parts U ph of the vertex functions (86)
and (87) with the longitudinal contributions Ũςω. After doing that, we immediately get

Ud
l1 l2, l3 l4

=
1
2

�

2U ph
l1 l2 l3 l4

− U ph
l1 l3 l2 l4

�

=
1
2

�

2U pp
l1 l4 l2 l3

− U pp
l1 l4 l3 l2

�

, (88)

Um
l1 l2, l3 l4

= −
1
2

U ph
l1 l3 l2 l4

= −
1
2

U pp
l1 l4 l3 l2

. (89)

The same procedure can be performed for the particle-particle channel. Since the variables
ρ(∗)ϑω are already defined in the antisymmetrized form (42), the bare interaction in the particle-
particle channel simply coincides with the bare vertex defined in Eqs. (83) and (83)

U s
l1 l2, l3 l4

=
1
2

�

U ph
l1 l3 l4 l2

+ U ph
l1 l4 l3 l2

�

=
1
2

�

U pp
l1 l2 l3 l4

+ U pp
l1 l2 l4 l3

�

, (90)

U t
l1 l2, l3 l4

=
1
2

�

U ph
l1 l3 l4 l2

− U ph
l1 l4 l3 l2

�

=
1
2

�

U pp
l1 l2 l3 l4

− U pp
l1 l2 l4 l3

�

. (91)

As in previous works on D-TRILEX method [93,94], the exact four-point vertex function of the
reference problem is defined as follows

[Γνν′ω]
σ1σ2σ3σ4
l1 l2 l3 l4

=
∑

{l ′},{σ′}

D

c
νσ′1 l ′1

c∗
ν+ω,σ′2 l ′2

c∗
ν′σ′3 l ′3

c
ν′+ω,σ′4 l ′4

E

connected
×

×
�

B−1
ν

�σ′1σ1

l ′1 l1

�

B−1
ν+ω

�σ′2σ2

l ′2 l2

�

B−1
ν′

�σ′3σ3

l ′3 l3

�

B−1
ν′+ω

�σ′4σ4

l ′4 l4
. (92)

The conventional definition for the four-point vertex corresponds to the choice Bσσ
′

ν,l l ′ = gσσ
′

ν,l l ′ .
Following the derivation presented in Refs. [93, 94], in the multi-band case the partially ap-
proximation for the fermion-fermion vertex function reads

[Γνν′ω]
σ1σ2σ3σ4
l1 l2 l3 l4

=
∑

{r}

n
�

Mςς′

νν′ω

�σ1σ2σ3σ4

l1 l2 l3 l4
−
�

Mςς′

ν,ν+ω,ν′−ν

�σ1σ3σ2σ4

l1 l3 l2 l4
−
�

Mϑϑ′

ν,ν′,ω+ν+ν′

�σ1σ4σ3σ2

l1 l4 l3 l2

o

,

(93)
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where the partially bosonized collective electronic fluctuations in different channels are
�

Mςς′

νν′ω

�σ1σ2σ3σ4

l1 l2 l3 l4
=
∑

{l ′}

Λ
σ1σ2ς

νω, l1, l2, l ′1 l ′2
w̄ςς

′

ω, l ′1 l ′2, l ′3 l ′4
Λ
σ4σ3ς

′

ν′+ω,−ω, l4, l3, l ′4 l ′3
, (94)

�

Mϑϑ′

νν′ω

�σ1σ2σ3σ4

l1 l2 l3 l4
=
∑

{l ′}

Λ
σ1σ2ϑ

νω, l1, l2, l ′1 l ′2
w̄ϑϑ

′

ω, l ′1 l ′2, l ′3 l ′4
Λ
∗σ3σ4ϑ

′

ν′ω, l3, l4, l ′3 l ′4
. (95)

The bosonic fluctuation that connects the three-point vertices in Eqs. (94) and (95) is

w̄r r ′
ω, l1 l2, l3 l4

= wr r ′
ω, l1 l2, l3 l4

− ūr
l1 l2 l3 l4

δr r ′ . (96)

It corresponds to the renormalized interaction wr r ′ of the reference system that can be obtained
from the corresponding susceptibility as

wr r ′
ω, l1 l2, l3 l4

= Ũ r
l1 l2, l3 l4

δr r ′ +
∑

{l ′}

Ũ r
l1 l2, l ′1 l ′2

χ r r ′

ω, l ′1 l ′2, l ′3 l ′4
Ũ r ′

l ′3 l ′4, l3 l4
. (97)

As has been discussed in Refs. [93, 94], the choice (10)–(13) for the bare interaction U r in
different r channels provides the best possible partially bosonized approximation for the four-
point vertex function (93). However, this choice leads to the double-counting of the bare
interaction of the reference problem. This double-counting is removed by the ūr term that
enters Eq. (96). The expression for this term can be obtained in the same way as in Refs. [93,
94], and for the multi-band case explicitly reads

ūςl1 l2, l3 l4
=

1
2

Uςl1 l2, l3 l4
, ūϑl1 l2, l3 l4

= Uϑl1 l2, l3 l4
. (98)

C Density and energy from D-TRILEX calculations

The density for each site-orbital index l can be calculated using the regular formula, based on
the Green’s function

〈nlσ〉=
1
2
+
∑

k

Re (Gk)
σσ
l l =

1
2
+

1
β

∑

ν

Re
�

Gloc
ν

�σσ

l l , (99)

and the total density is simply 〈n〉=
∑

lσ〈nlσ〉. In our calculations, we employed a fitting of
the first few even orders in 1/ν of the tail of the local Green’s function Gloc

ν to get an accurate
result.

Another important single-particle observable of the system is the average energy of the
system. It can be obtained as the expectation value of the Hamiltonian H corresponding to
action (1) of the system, 〈E〉tot = 〈H〉. The total energy 〈E〉tot = 〈E〉kin + 〈E〉pot can be split
into a single-particle kinetic contribution 〈E〉kin and a potential energy 〈E〉pot coming from the
interaction. The kinetic part corresponds to

〈E〉kin =
∑

k,{l},
σσ′

�

εσσ
′

k,l l ′ −µδl l ′δσσ′
�




c∗kσl ckσ′ l ′
�

=
∑

k,{l},
σσ′

�

εσσ
′

k,l l ′ −µδl l ′δσσ′
�

Gσσ
′

k,l l ′ . (100)

The potential contribution is the expectation value of the interacting terms

〈E〉pot =
1
2

∑

q,{k}

∑

{l},{σ}

U pp
l1 l2 l3 l4

¬
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¶

+
1
2
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q,{l},ς

V ςq, l1 l2, l3 l4

¬
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ς
−q, l1 l2

ρ
ς
q, l4 l3
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, (101)
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where we neglected particle-particle contributions. After recasting the interaction in the
particle-hole representation (79), we can use the relation (68) and the definition of ρςq,l l ′ to
replace the expectation values of four operators with the quantities computed in D-TRILEX

〈nςq, l2 l1
nς−q, l3 l4

〉= −X ςq, l1 l2, l3 l4
+ 〈nςq, l2 l1

〉 〈nς−q, l3 l4
〉 . (102)

Following these replacements and excluding unphysical term due to Pauli principle, the final
expression for the potential energy in the Kanamori approximation for the interaction reads

〈E〉pot =−
1
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. (103)
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[111] J. Vučičević, J. Kokalj, R. Žitko, N. Wentzell, D. Tanasković and J. Mravlje, Conductivity
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