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In this report we review the method of explicit calculations of interatomic exchange in-
teractions of magnetic materials. This involves exchange mechanisms normally referred
to as Heisenberg exchange, Dzyaloshinskii-Moriya interaction and anisotropic symmetric
exchange. The connection between microscopic theories of the electronic structure, such
as density functional theory or dynamical mean field theory, and interatomic exchange,
is given in detail. The different aspects of extracting information for an effective spin
Hamiltonian that involves thousands of atoms, from electronic structure calculations
considering significantly fewer atoms (1-50) is highlighted. Examples of exchange inter-
actions of a large group of materials is presented, which involves heavy elements of the 3d
period, alloys between transition metals, Heusler compounds, multilayer systems as well
as overlayers and adatoms on a substrate, transition metal oxides, 4f elements, magnetic
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materials in two dimensions and molecular magnets. Where possible, a comparison to
experimental data is made, that naturally becomes focused on the magnon dispersion.
The influence of relativity is reviewed for a few cases, as is the importance of dynamical
correlations. Development to theories that handle out of equilibrium conditions is also
described here. The review ends with a short description of extensions of the theories
behind explicit calculations of interatomic exchange, to non-magnetic situations, e.g.
that describe chemical (charge) order and superconductivity.
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I. INTRODUCTION

Magnetic phenomena are naturally of quantum na-
ture. This follows from the success that quantum theory
has had in describing magnetism, but it can also be as-
cribed to the discovery of a theorem of Bohr and van
Leeuwen that demonstrates that a classical treatment
fails in describing any magnetic properties at thermal
equilibrium, with the magnetic susceptibility identically
equal to zero (Mohn, 2006). Quantum mechanics has
offered an excellent tool to analyze and interpret mag-
netic materials and since its birth, nearly one hundred
year ago, the magnetism community has developed con-
cepts as well as experimental and theoretical techniques
to study magnetism. There are many textbooks cover-
ing the essentials of these techniques, as well as mag-
netic materials and magnetic phenomena (Buschow and
Boer, 2003; Coey, 2010; Eriksson et al., 2017; Fazekas,
1999; Getzlaff, 2008; Goodenough, 1963; Jensen and
Mackintosh, 1991; Kübler, 2017; Mohn, 2006; Skom-
ski, 2021; Stöhr and Siegmann, 2006; Vonsovskii, 1974;
White and Bayne, 1983; Yosida, 1996). The purpose of
this review article is by no means an attempt to cover
what has already been described in detail in the refer-
ences mentioned above. Instead, the main ambition of
this work is to describe in detail how interatomic ex-
change interactions can be evaluated from ab-initio elec-
tronic structure theory, in a framework based on density
functional theory (DFT) (Hohenberg and Kohn, 1964;
Kohn and Sham, 1965) and dynamical mean field theory
(DMFT) (Georges et al., 1996; Kotliar et al., 2006; Licht-
enstein and Katsnelson, 1998). The pioneering work that
this review focuses on, was published in 1984 (Liechten-
stein et al., 1984), and since then many important con-
tributions have been made to what is now a vibrant re-
search field, that include both fundamental questions on
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the nature of the interatomic exchange interaction but
also involve practical investigations in how to find func-
tional materials with tailor-made properties. The latter
studies involve green energy technologies, e.g. the at-
tempt to find permanent magnets that do not contain
the costly and (from mining perspective) environmentally
troublesome rare-earth metals, as well as to discover ma-
terials to be used in magneto caloric devices (Gutfleisch
et al., 2011; Tegus et al., 2002). As this review describes
in detail, it is possible to evaluate the interatomic ex-
change interaction between any pair of magnetic atoms
of a solid, from theoretical electronic structure calcula-
tions that considers atoms only within a primitive unit
cell. This is illustrated schematically in Fig. 1, and the
capability of extracting information from one scale (that
of a conventional unit cell) to another scale (that involves
thousands or even millions of atoms) is an important
step in realizing approaches for an effective description
of magnetism and magnetization dynamics.

This review hence describes how to calculate from elec-
tronic structure theory, the interaction term, Jij , of the
celebrated Heisenberg Hamiltonian;

HH =
∑

<ij>

JijS⃗i · S⃗j , (1.1)

where the summation is made over pairs of atomic spins,
S⃗i, and how its relativistic generalization (Udvardi et al.,
2003) allows one to evaluate the Dzyaloshinskii-Moriya
(DM) interaction (of vector form - D⃗ij)1 in;

HDM =
∑

<ij>

D⃗ij ·
(
S⃗i × S⃗j

)
. (1.2)

Since this review is focused on methods to evaluate in-
teratomic exchange interactions from electronic structure
theory, a word on the nature of the electron states is rel-
evant. In solids the electron states producing an atomic
spin, that are mapped to describe low energy excitations
by means of Eqns.1.1 and 1.2, are traditionally divided
into localized electron states, where the electronic struc-
ture is described by atomic physics, or itinerant Bloch
states. Traditionally the Heisenberg Hamiltonian was
adopted primarily for the class of magnetic materials
with localized electron states, but as this review out-
lines, many investigations have shown its success also for
systems where the electron states are best described as
Bloch states. The key aspect for this success is partially
described in Section I.B, that demonstrates that mag-
netism (and atomic spins) can be localized in space even
though the electronic structure is completely itinerant.
With modern developments in the theory of electronic
structure, it is in fact quite possible to describe with

1 See Eqs. (3.14) and (3.15) for a more precise generalization.

Figure 1 (Color online) Schematic illustration of the multi-
scale step of using information from electronic structure cal-
culations considering the primitive unit cell (bright square)
to evaluate the exchange interaction, J , between two atomic
spin-moments shown by red (dark grey) arrows. Note that
atomic magnetic moments are only depicted for one pair of
atoms, moments of other atoms are not shown.

equal accuracy the electronic structure of localized and
itinerant electron systems, something we return to below
in the review. The key question is actually not so much
a question of localized versus itinerant electron states,
but rather how configuration dependent the calculated
parameters of Eqns.1.1 and 1.2 are. This is discussed in
Section V.

The steps described in this review, that are used to de-
rive an expression of interatomic exchange interactions,
can be seen as the most robust argument (or deriva-
tion) for using the Heisenberg Hamiltonian (and its gen-
eralizations) to analyze magnetic phenomena, compared
to the original argument of Heisenberg and Dirac (de-
scribed in many textbooks, e.g. Refs.[1-3]), who consid-
ered a rather simple system, that of a two electron sys-
tem and the energy difference between spin-singlet and
spin-triplet states (a derivation which is covered in most
textbooks in solid state physics). In fact, the connec-
tion between electronic structure information and inter-
atomic exchange interactions, pioneered in Ref. Liecht-
enstein et al., 1984, can be seen as the magnetic parallel
to the quantum mechanical forces that are available from
the Hellmann-Feynman theorem. The similarity extends
also to their use; the interatomic exchange interactions
can be used for torque minimization to find a ground
state magnetic configuration, similar to the force mini-
mization, to obtain the geometrical minimum of the nu-
clear position. Also, the use of a magnetic torque for
studies of dynamics of magnets (in so-called spin dy-
namics simulations (Antropov et al., 1995)) is completely
analogous to the use of forces for molecular dynamics
simulations. It should be noted that coupled spin-lattice
dynamics simulations (Antropov et al., 1995), involving
both interatomic forces and exchange, have also been de-
scribed and used in practical simulations (Hellsvik et al.,
2019).
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This review outlines explicit calculations of exchange
parameters, where the term explicit implies that the pa-
rameters are obtained explicitly and directly once the
solution to an electronic structure calculation is ob-
tained (Liechtenstein et al., 1987, 1984, 1985). This can
be compared to implicit approaches, where a Hamilto-
nian of the form used in Eqs. (1.1) and (1.2) is used
to fit total energies obtained from electronic structure
calculations, for a large number of magnetic configura-
tions. A third method that is frequently employed, is
to calculate in a DFT framework, the total energies of
spin-spiral configurations for several wavelengths of the
spin-spiral. In this way one can obtain information of a
reciprocal space representation of the exchange, and after
a Fourier transform, the real space interatomic exchange
paramaters are obtained (Halilov et al., 1998; Jakobsson
et al., 2015; Kübler et al., 1988; Mryasov et al., 1991;
Sandratskii, 1991, 1998; Sandratskii and Bruno, 2002).

The implicit, cluster expansion approach, as well as
the spin-spiral approach have been used with success,
but they are outside of the scope of this review. We do
however note a few key references that have outlined the
cluster expansion approach (Drautz and Fähnle, 2004;
Singer et al., 2011) and excellent treatises have covered
the spin-spiral approach (Jakobsson et al., 2015; Kübler
et al., 1988; Sandratskii, 1998). The focus of this re-
view is, as mentioned, on the explicit method of extract-
ing intraatomic exchange directly from a single electronic
structure calculation, and details in how this is done both
formally and practically are presented. We note that
the method introduced in Ref. Liechtenstein et al., 1984
has its strengths in that it is a universal way to calcu-
late exchange parameters of Eqs. (1.1) and (1.2), in the
sense that systems with or without translation symmetry
can be considered and that alloys and compounds can be
treated on equal footing. It also offers an orbital decom-
position of the interactions, that opens up for symmetry
analysis from contributions between different irreducible
representations of the electron states. It is also an ex-
cellent way to investigate general trends of the exchange
interaction.

It should be noted that similar approaches as the
one reviewed here for the calculations of interatomic ex-
change, have been derived and used with success in other
fields of solid state science. Examples involve for instance
the chemical interaction between atomic species in alloys,
in a method referred to as the ”Generalized perturbation
theory”, first presented in Ref. Ducastelle and Gautier,
1976 (for a review see Ref. Ruban et al., 2004), that is
designed to calculate chemical interactions in alloys. We
will touch briefly on this method in Section X.

A. A short description of the early history of magnetism

Before continuing these introductory remarks, we make
here a short expose of the early historical discoveries of
magnetic phenomena. In ancient times it was known that
a type of stone which was found in northern Greece, close
to a place called Magnesia, could attract iron. Thales
of Milet (a Greek philosopher living in the 7’th century
B.C.) is documented to be aware of the mysterious and
invisible force these stones could have on iron (Mohn,
2006; Verschuur, 1996). Other philosophers of the past
that were attracted to the mysterious properties of these
magnetic minerals (later named Loadstone, where the
magnetism stems from Fe3O4) involve Plinus the elder
and Lucretius, both active in the first century A.D. (Ver-
schuur, 1996). The name of this first discovered mag-
netic mineral comes from the Lodestar (the pole star)
which leads (or marks) the northern direction (Verschuur,
1996). The first documented magnetic device used for
establishing direction, the compass, is to be found in a
Chinese manuscript dated to the 11th century (Mohn,
2006), and it is indeed curious that this technology is
used widely even today, one thousand years later! Apart
from its use in navigation, these first compasses were used
for construction of buildings and their alignment, in the
belief that they would be in harmony with the forces of
nature (Verschuur, 1996).

Other historical breakthroughs in the science of mag-
netism and magnetic materials involve Peter Peregrinus
(13th century) who undertook several experiments with
Loadstone, and discovered that a magnet has poles. He
in fact used the term “polus” to describe the north and
south end of a magnet (Verschuur, 1996). Curiously, he
is known for a quote that “experience rather than ar-
gument is the basis of certainty in science”, a principle
most natural science lives by today, which he realized over
half a millennium ago! Some three hundred years after
the investigations of Peter Peregrinus, the first treatise
of magnetism was published by William Gilbert (Ver-
schuur, 1996). In his book, with a title translated in En-
glish to ”On the Loadstone and Magnetic Bodies and on
the Great Magnet the Earth; a New Physiology, Demon-
strated by Many Arguments and Experiments”, he pre-
sented, among many things, his greatest realizations,
that magnetism could be found to disappear when the
material was heated and that the earth itself is mag-
netic (Verschuur, 1996).

The final major historical leap in the science of mag-
netism, before the development of quantum mechanics,
is the discovery of electromagnetism, one of the greatest
discoveries of the 19th century. This is something that is
covered in almost all textbooks on physics, and is for this
reason not discussed here further. We note however that
from a practical point of view, several discoveries made
in the 19th century, concerning magnetic materials, now
form a firm basis for technologies used to propel our soci-
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ety. To mention concrete examples, Faradays induction
law, which allows the conversion of mechanical energy
to electricity, is used in all power plants. Also, the de-
velopment of electrical motors, which becomes more and
more a standard technology for motorized vehicles, has
performance based on the magnetic field strength (Gut-
fleisch et al., 2011; Tegus et al., 2002). A final example is
that of magnetic refrigeration, and the principle of adi-
abatic demagnetisation, that is considerably less energy
demanding compared to a compressor based technology
of cooling (Gutfleisch et al., 2011; Tegus et al., 2002).
Hence, many technologies that rely on magnetic mate-
rials are used in our society, being key components to
the economy and to the well-being of household and pri-
vate use. The functionality of these technologies is based
on the performance of the magnetic materials they are
constructed around. Hence, in a general aim of a more
electrified society, and with the ambition to find greener
technologies to generate electricity, e.g. in farms of wind
power mills, the search of magnetic materials with tai-
lored properties has become a very active field of sci-
ence (Gutfleisch et al., 2011; Tegus et al., 2002).

We end this subsection with a comment on the cou-
pling of magnetism and biology. The coupling of mag-
netism and living matter were discussed over the many
centuries that magnetic phenomena were known. For
instance, Bartholomew the Englishman (13th century)
advocated its medicinal powers (Verschuur, 1996), and
the ideas of Franz Anton Mesmer (late 18th and early
19th century) around “animal magnetism” have escaped
few. Although the ideas of Mesmer are now regarded
as nonsense, the influence of magnetic fields on biologi-
cal matter is well established, e.g. as demonstrated by
levitating animals or fruit when subjected to strong mag-
netic fields2. It is also established that birds use nano-
particles of magnetite (Fe3O4) to navigate in the Earths
magnetic field (Wiltschko et al., 2006). In addition, it is
well known that magnetic materials, again in the form
of magnetite, can be produced by bacteria, e.g. mag-
netotactic bacteria, and the bacterium GS-15 is known
to produce magnetite (Snowball et al., 2002). It has
even been speculated that this is one reason for large
amounts of fine-grained magnetite found in ancient sed-
iments. Single-domain magnetite produced in this way
could then reveal the magnetic recording of the ancient
geomagnetic field.

B. On magnetic materials and magnetic phenomena

Most elements have for the free atom a pairing of
electron spins, due to intraatomic exchange interaction

2 As can be seen here: https://www.youtube.com/watch?v=A1vyB-
O5i6E.
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Figure 2 (Color online) Comparison between measured mag-
netic spin moments and results obtained from theoretical cal-
culations based on DFT (data taken from Ref. Eriksson et al.,
2017). Data given in µB per atom.

among the electrons. This leads to atomic moments,
similar to what is illustrated schematically in Fig. 1,
for almost all elements of the Periodic Table, provided
they are isolated atoms. In the solid state things are
more complicated since the spin-pairing energy competes
with the kinetic energy, which is lowest for equal popula-
tion of spin up and spin down electrons. Combined with
the fact that band formation of electron states can make
the kinetic energy rather significant, one ends up with a
competition between two mechanisms, one favoring equal
population of spin states, and one that favors spin pair-
ing and local (or atom centered) moments. Stoner theory
quantifies this competition and allows one to identify a
simple rule for when magnetic order is to be expected (see
e.g. Ref. Mohn, 2006). Among most elemental solids, it
is in fact the kinetic energy and band formation that
dominates, so that an equal amount of spin up and down
electron states are populated, making these materials ei-
ther Pauli paramagnetic or diamagnetic. Spontaneous
magnetic order occurs only for a limited number of ele-
ments of the Periodic Table, and at (or just below) room
temperature merely four are found to have spontaneous
ferromagnetic (FM) order (bcc Fe, hcp Co, fcc Ni and
hcp Gd). However, there are thousands of compounds
and alloys that show significant magnetic moments, and
there are plenty of materials to investigate with respect
to the many interesting magnetic phenomena that have
been reported.

One of the more efficient ways to evaluate the delicate
balance between band formation and spin-pairing, relies
on DFT and the invention of efficient methods for solving
the electronic structure of solids, so that measured mag-
netic moments can be reproduced with good accuracy.
These calculations are often referred to as ab-initio, in-
dicating that they are carried out without experimental
input. Results from ab-initio theory are shown in Fig. 2,
where a comparison is made to experimental results for
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the four ferromagnetic elements mentioned above, as well
as for the ferromagnetic, hexagonal compound Fe2P. This
compound has Fe atoms occupying two distinct crystal-
lographic sites, a tetrahedral and an octahedral site, and
neutron scattering measurements have revealed that the
magnetic moments of these sites are quite different. As
Fig. 2 shows, ab-initio theory reproduces the measured
magnetic moments with good accuracy. The moments
for Fe2P are particularly interesting since they reveal a
delicate balance between band formation and interatomic
exchange energy, resulting in very different moments for
Fe atoms situated on different crystallographic sites. The
results shown in Fig. 2 actually reveal a rather typical
accuracy of theory based on DFT, at least when it comes
to reproducing magnetic moments. Based on 2935 calcu-
lations, Ref. (Huebsch et al., 2021) shows the predictive
power of spin polarized density functional theory (com-
bined with cluster-multipole expansion) by reproducing
the experimental magnetic configurations with an accu-
racy of ±0.5µB . Notable difficulties of DFT based theory
are however found for correlated electron systems, where
multiconfiguration effects become important, something
we will also discuss in this review.

Ab-initio theory provide another important piece of in-
formation; that provided by the magnetization density.
This is illustrated in Fig. 3 for bcc Fe, for a plane in-
side the crystal, spanned by vectors parallel to the axis
of the conventional unit cell of the bcc structure. Note
that red (dark grey) coloration indicate high magnetiza-
tion density while blue (light grey) indicate low values
of this density. As the figure shows, the magnetization
density is high only in a small region that is located close
to the atomic nuclei of the Fe atoms. This is a typ-
ical result and allows one, for almost all materials, to
describe the magnetic state as being composed of atom
centered (or atomic) moments, as illustrated in the upper
right of the figure. The results shown in Fig. 3 justifies
a discussion based on atomic moments and the differ-
ent types of phenomena such moments display. These
results also shine light on the dynamics of magnetism,
and the distinction made between fast (electrons) and
slow (site dependent magnetisation directions) variables,
illustrating the concept of ”temporarily broken ergodic-
ity” as analysed in detail in Refs. (Gyorffy et al., 1985;
Staunton et al., 1985, 1984). This is the basic principle
for performing atomistic spin-dynamics simulations, e.g
as outlined in Ref.(Eriksson et al., 2017), where the slow
variables evolve under the influence of a local Weiss field.

The inset of Fig. 3 illustrates a specific arrangement
of atomic moments, and as the figure shows, bcc Fe is
a ferromagnet; all atomic moments point in the same
direction. However, for other materials many different
orderings of atomic moments have been reported, such
as antiferromagnetism, where every other magnetic mo-
ment shown in the inset of Fig. 3 would have its di-
rection reversed. A majority of the materials that have

Figure 3 (Color online) Magnetization density of bcc Fe,
from theoretical calculations based on DFT (redrawn after
Ref. Eriksson et al., 2017).

finite atomic moment have either of these two types of
collinear magnetic order. However, more complex mag-
netic orders exist in nature, where atomic moments form
a noncollinear arrangement (see e.g. Ref. Kübler, 2017).
Among the elements, such order is found predominantly
among the lanthanides (Jensen and Mackintosh, 1991).
As highlighted with the Nobel Prize in Physics 2021,
glass-like phenomena are also found for specific groups
of magnetic materials, in which one singular magnetic
ground state never is realized. Instead, the magnetism
can be understood to reflect a multi-valley landscape,
where very many different configurations of the atomic
moments result in very similar energies (Snowball et al.,
2002). Thermal fluctuations can make the system drift
from one configuration to the next, and aging phenomena
are a fingerprint of spin glasses. Dilute alloys (e.g. Mn
impurities in a Cu matrix (Cannella and Mydosh, 1972))
and more recently, elemental Nd (Kamber et al., 2020;
Verlhac et al., 2022), are known spin glass systems.

Each class of magnetic materials has its own charac-
teristic in terms of ground state properties as well as
fingerprints revealing its excited state. This involves
quasiparticple properties of the collective excitations, re-
ferred to as magnons (see e.g. Ref. Mohn, 2006), the
temperature dependence of the magnetic state, the value
of the ordering temperature and the critical exponents
used to characterize second order phase transitions, when
the magnetic state vanishes with temperature. Many (if
not all) of these phenomena are typically analyzed us-
ing Eqs. (1) (and (2)), and different forms of Heisen-
berg exchange interactions have been discussed to be
responsible for the widespread list of magnetic proper-
ties found in nature. As reviewed in this communica-
tion, this involves direct exchange, super- and double ex-
change, RKKY interaction and interlayer exchange. In
these investigations the dimensionality of the magnetic
material is a natural component of the analysis, and the
celebrated Mermin-Wagner theorem describes the con-
nection between dimensionality and finite temperature
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effects of spontaneously broken symmetries of magnets
(see e.g. Ref. Chakravarty et al., 1989; Irkhin et al., 1999;
Mermin and Wagner, 1966; and Ruelle, 1999).

C. Recent trends in magnetism

Recent trends in magnetism often have focused on
systems in the nano-scale. This relates for instance to
magnetic multilayers and trilayers, where perhaps the
most celebrated finding is the giant magneto resistance
(GMR) effect and its applications for sensors (Baibich
et al., 1988; Binasch et al., 1989). Most applications in
magnetic information storage currently rely on sensors
based on the tunneling magneto resistance (TMR) ef-
fect (Bowen et al., 2001), where interestingly the use of
MgO as an optimal tunneling layer was predicted (But-
ler, 1985) by ab-initio theory before experimental veri-
fication. These investigations have focused on systems
that are confined in one dimension, and thin film physics
is reviewed in many textbooks on magnetism (Kübler,
2017; Stöhr and Siegmann, 2006). Such studies of quasi
two-dimensional systems have now expanded to focus on
toplogical magnetic states (e.g. skyrmions, merons and
hopfions) (Belavin and Polyakov, 1975) as well as inves-
tigations of purely 2D materials. The latter class is par-
ticularly interesting, given the strong influence on geo-
metrical dimensionality and magnetism, as stated by the
Mermin-Wagner theorem. However, Cr trihalides have
been synthesized and their magnetic properties are by
now rather well known (Huang et al., 2017). Other as-
pects of magnetism that currently are under investiga-
tion are coupled to questions on the ultra-fast dynam-
ics, pioneered in Ref. Beaurepaire et al., 1996, as well as
magnonics (Kruglyak et al., 2010) and spintronics (Wolf,
S. A. and Awschalom, D. D. and Buhrman, R. A. and
Daughton, J. M. and von Molnár, S. and Roukes, M. L.
and Chtchelkanova, A. Y. and Treger, D. M., 2001). As a
final remark of this subsection we note the recent interest
in spin-ice (Bramwell and Gingras, 2001) and spin-liquid
states (Norman, 2016), as well as the so-called Kitaev
systems (Kitaev, 2006).

D. Early theories of interatomic exchange

This review has a starting point in the work of
Ref. Liechtenstein et al., 1984, but it is clear that the
work published in Ref. Liechtenstein et al., 1984 has over-
lap with earlier works, that also attempted to find a for-
malism that allows one to extract interatomic exchange
from information given by ab-initio electronic structure
theory. We specifically mention the early works of Oguchi
and coworkers (Oguchi et al., 1983a,b), where a simi-
lar, but not identical method was presented. In this
work an approach was used where the magnetic mo-

ments were rotated by 180 degrees in order to extract
the exchange interaction strength, instead of the use of
infinitesimally small rotations, which is the essence of
the works in (Liechtenstein et al., 1984). The results of
Refs. Oguchi et al., 1983a,b were in fact similar to ear-
lier works by Inoue and Moriya (Inoue and Moriya, 1967)
and by Lacour-Cyet and Cyrot (Lacour-Gayet and Cyrot,
1974). We also mention here the early works of Gyorffy
et al. (Gyorffy and Stocks, 1980) and by Liu (Liu, 1961),
that inspired the works of (Liechtenstein et al., 1984),
and an early work from Wang et al. (Wang et al., 1982)
who studied fluctuating local band theory of itinerant
electron ferromagnetism in nickel and iron.

It should also be noted that exchange interactions in
solids have bearing on many phenomena and theories of
magnetism, that due to space limitations can not be cov-
ered in detail here. For instance, spin-fluctuation theo-
ries have been used with great success to analyse excited
state properties of magnetic solids, including tempera-
ture dependence of magnetism, susceptibility and spe-
cific heat (see e.g. Ref.(Mohn, 2006)). These theories
are typically connected to Landau or Ginzburg-Landau
theories, which are not the topic of this review since they
have been covered in many textbooks already (Kübler,
2017; Mohn, 2006; Stöhr and Siegmann, 2006; White and
Bayne, 1983).

E. A comment on nomenclature

Before entering the main results of this review, we
make a comment on the form of the Hamiltonian used
in this text. In the derivations and the examples given
below we will use the expressions,

HH =
∑

<ij>

Jij e⃗i · e⃗j , (1.3)

and

HDM =
∑

<ij>

D⃗ij · (e⃗i × e⃗j) , (1.4)

where e⃗i is a unit vector describing the direction of the
magnetic moment of the atom at site i. In this review we
will refer to the interaction parameters in Eq. (1.3) ei-
ther as interatomic exchange or as Heisenberg exchange
(Jij) and DM interaction (D⃗ij), or simply as the Jij ’s
or D⃗ij ’s. It should also be noted that the definition of
the interatomic energy, used in this work, is with a plus
sign in front of the summations in Eq. (1.3), where the
summation is made over pairs of atoms < ij >. One
sometimes uses a slightly different notation, where the
summation is made such that i ̸= j, but the indexes i
and j run over all atoms considered in a calculation. In
this case a factor 1/2 appears in front of the summations
in Eq. (1.3), to ensure that each pair interaction is calcu-
lated only once. Some authors choose to use a minus sign
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in front of Eq. (1.3). We also note that in the derivation
of the interatomic exchange formulate a sum where the
local interaction i = j is also considered will be tempo-
rally needed as shown e.g. in Eq. (5.53. Importantly,
in Section VII, where results of exchange parameters are
given, the numerical values (in the main text and also in
the figures) are consistent with the nomenclature given
by Eq. (1.3).

A comparison between Eqs. (1.1) and (1.3) gives that
Jij = JijSiSj where Si and Sj stand for the lengths
of the vectors S⃗i and S⃗j . Similarly we obtain that
D⃗ij = D⃗ijSiSj . This distinction is important when
comparing interactions obtained from different theoret-
ical methods and experiments. The different forms of
Eqs. (1.1) and (1.3) (and between Eqs. (1.2) and (1.4))
also allows an important distinction between quantum-
and classical spin Hamiltonians. We adopt here the
nomenclature that Eqs. (1.3) and (1.4) allow for infinites-
imal rotations of the direction of an atomic moment, and
hence e⃗i can be treated as a classical vector. This is differ-
ent from approaches when S⃗i (as in Eqs. (1.1) and (1.2))
is considered as a quantum mechanical operator. The lat-
ter is obviously preferable from a formal point of view,
but it is in many cases impractical. In fact, all mate-
rials specific examples given in this review make use of
Eqs. (1.3) and (1.4). In the review, we will describe mag-
netic fields that are expressed in energy units. In other
words, we consider a magnetic field as B⃗ = 1

2gµB
⃗̃B where

B̃ is measured in Tesla, µB is the Bohr-magneton and g
approximately equals -2 for electrons. We also note that
we will use bold symbols for vectors in real and recip-
rocal space while symbols with an arrow denotes vec-
tors in spin space. Finally, we note that we use the dot
(·) symbol when components of a vector or a tensor are
contracted (summed over), e.g., A⃗ · B⃗ =

∑
µA

µBµ or
D⃗ ·C · E⃗ =

∑
µν D

µCµνEν , the cross (×) symbol is used
for cross product (or vector product) and the star (⋆)
symbol will be used when an equation continues on a
new line.

II. LINEAR RESPONSE THEORY OF THE
SUSCEPTIBILITY

In this review we present a description of magnetic in-
teractions of many-electron systems, via the separation
of specific spin degrees of freedom (roughly, directions of
localized magnetic moments) from a complete quantum
description of all properties of the system starting from
the Schrödinger equation. This cannot be done without
approximations, due to a presence of strong interelectron
interactions. Nevertheless, it makes sense to start with
a formally rigorous scheme and then introduce these ap-
proximations step by step, something we do here.

For equilibrium properties, there are two main prac-

tical schemes: density functional theory based on the
Hohenberg-Kohn theorem (Hohenberg and Kohn, 1964)
with the associated Kohn-Sham quasiparticles (Kohn
and Sham, 1965) and Green function formalism based
on Luttinger-Ward generating functional (Hedin, 1965a;
Luttinger and Ward, 1960). Spin dynamics deal with out-
of-equilibrium properties, and, fortunately, both these
main techniques can be generalized for this case. For the
Green function functional, this is done in the most gen-
eral form by Baym and Kadanoff (Baym and Kadanoff,
1961) but in reality this method does not have any ap-
plications to the properties of real materials since it is
computationally too demanding. Only for model systems
is there a real progress (Aoki et al., 2014). Since in this
review we are focused on the applications to real materi-
als, connecting calculated results to experimental obser-
vations, we will not consider the time-dependent Green
function functionals here.

On the other hand, the time-dependent generalization
of density functional theory has been realized. It is based
on the Runge-Gross theorem (Runge and Gross, 1984)
and its generalization to spin-polarized calculations (Liu
and Vosko, 1989). There are numerous examples of the
time-dependent density functional theory (TDDFT), ap-
plied to specific magnetic materials (Buczek et al., 2011;
Cooke et al., 1985; Gorni et al., 2018; Savrasov, 1998;
Sharma et al., 2007; Singh et al., 2019). In principle, if
one knows the exact time-dependent density functional
and, in particular, the so-called exchange-correlation ker-
nel (Runge and Gross, 1984), one can calculate the dy-
namical magnetic susceptibility, and find the spin-wave
spectrum as the poles of the dynamical susceptibility. A
fitting of exchange parameters could even be done to the
calculated spectrum. This method would be formally ex-
act, but not very practical, at least at this stage, since
the successes in building of reliable expressions for the
exchange-correlation kernel are still very restrictive (note
however the first attempts that have been made (Cas-
tro et al., 2012; Thiele et al., 2008)). In order to pro-
ceed with practical calculations, we introduce an approx-
imation, that is, the so-called adiabatic approximation
within TDDFT (ADA-TDDFT). According to this ap-
proximation, the exchange correlation kernel is equal to
its equilibrium form. This is naturally a significant sim-
plification. Indeed, whereas the full exchange correlation
kernel depends on two times, in the adiabatic approxima-
tion it depends only on one time, via the time-dependence
of the charge and spin densities only. After this approx-
imation is made, one can proceed to the final expression
for the exchange parameters (Katsnelson and Lichten-
stein, 2004). We will follow here this derivation, which
generalizes earlier theories (Callaway et al., 1981).

We proceed with the master equation of density func-
tional theory, the Kohn-Sham equation, that has the form
of a single particle Schrödinger equation. Within the self-
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consistent ADA-TDDFT approximation it has the form

i
∂ψ

∂t
= Hψ

H = −∇2 + V (r)−
(
B⃗xc(r) + B⃗ext(r)

)
· σ⃗ (2.1)

where V (r) is the effective potential, B⃗ext(r) and B⃗xc(r)
are the external magnetic field and the exchange-
correlation field, respectively, that couple to the elec-
trons spin, and σ⃗ stands for the Pauli spin matrices
{σx, σy, σz}. Note that in this work we adopt the original
formulation of density functional theory, that was formu-
lated at T = 0. The work by Mermin (Mermin, 1965),
and subsequent works (Eschrig, 2010; Pittalis et al.,
2011), showed that the power of density functional the-
ory extends also to finite temperature. However, for the
purposes of this review, it is sufficient to adopt the orig-
inal formulation of density functional theory. Note also
that Rydberg units are used here: ℏ = 2m = e2/2 = 1.

Next, we employ the adiabatic approximation, assum-
ing that the functional dependencies of the exchange-
correlation potential, and hence the field of the charge
and spin density, are the same as in the stationary case.
In the local spin density approximation (LSDA) the ef-
fective potential depends on the values of charge and spin
densities at the same spatial and temporal point only:

V (r) = Vext(r) +

∫
dr′

n(r′)
|r− r′| +

∂

∂n
[nεxc]

B⃗xc(r) = −m⃗
m

∂

∂m
[nεxc], (2.2)

where n(r) and m⃗(r) is the charge and spin density, m(r)
is the magnitude of m⃗(r), εxc is the exchange-correlation
energy density, and Vext(r) is the external potential, that
is, the electrostatic potential of nuclei. Note that the
spin-orbit interaction will be consider later in the review.
We also note that in the expressions above, we have in
some places omitted for simplicity the spatial argument
r, that enters all variables in Eq. (2.2). We will in some of
the equations below also adopt this simplifying notation.

The spin susceptibility which we are interested in is
the linear-response function, therefore we consider the
limit B⃗ext(r) → 0. Then the effective complete “non-
equilibrium” field contains both an external field as well
as an additional exchange correlation field, due to redis-
tribution of the spin density, and the variation of this
field can be expressed as:

δBα
tot = δBα

ext +
δBα

xc

δmβ
δmβ , (2.3)

where αβ are Cartesian indices and a sum over repeated
indices is assumed.

The exact, non-local, frequency-dependent spin sus-
ceptibility, χ̂αβ , is the kernel of the operator that con-
nects the variation of the spin density and the external

magnetic field:

δmα = χ̂αβδBβ
ext . (2.4)

We use here the standard definition of the operator prod-
uct:

(χ̂φ)(r) =

∫
dr′χ(r, r′)φ(r′) . (2.5)

A parallel consideration for the calculation of the
spin-susceptibility follows from the Runge-Gross theo-
rem (Runge and Gross, 1984) and its generalization to
the spin-polarized case (Liu and Vosko, 1989), where in
the time-dependent density functional theory one has the
exact relation

δmα = χ̂αβ
0 δBβ

tot , (2.6)

where χ̂αβ
0 is the susceptibility of an auxiliary system

of one-electron, Kohn-Sham particles. Comparing the
equations (2.3), (2.4), and (2.6), we arrive at the result
that

χ̂αβ = χ̂αβ
0 + χ̂αγ

0

δBγ
xc

δmδ
χ̂δβ , (2.7)

which is a particular case of the Bethe-Salpeter equa-
tion (Salpeter and Bethe, 1951), with δBγ

xc

δmδ playing the
role of the vertex, Γ. One may note that this equation
turns out to be formally exact within ADA-TDDFT. Ac-
tually, even if one does not assume the local spin den-
sity approximation, equation (2.7) is still exact, but the
vertex, Γ, is then not local in spatial coordinates. The
adiabatic approximation assumes however its locality in
time.

The local spin density approximation (2.2) leads to fur-
ther simplifications. Indeed, one then obtains the expres-
sion

δBγ
xc

δmδ
=
Bxc

m

(
δγδ −

mγmδ

m2

)
+
mγmδ

m2

∂Bxc

∂m
, (2.8)

where the first term in Eq. (2.8) is purely transverse and
the second one is purely longitudinal with respect to the
local magnetization density (or the local magnetic mo-
ment) and Bxc is the length of B⃗xc.

As a next simplification, we restrict ourselves to the
case of collinear magnetic ground states, with moments
along the z-direction. Then, the coupling between the
longitudinal and transverse components of the magnetic
susceptibility vanishes. For the transverse spin suscepti-
bility, which is commonly denoted by χ+− and depends
on the frequency ω, we have an especially simple expres-
sion:

χ+−(r, r′, ω) = χ+−
0 (r, r′, ω)

+

∫
dr′′χ+−

0 (r, r′′, ω)Ixc(r
′′)χ+−(r′′, r′, ω) (2.9)
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where

Ixc =
2Bxc

m
, (2.10)

is an exchange-correlation, Stoner (or Hund) interaction.
This is the standard RPA equation for the transverse sus-
ceptibility written for the spatially inhomogeneous case.
As one may see, it follows directly from the adiabatic lo-
cal spin-density approximations of TDDFT, without any
further assumptions. The magnetic and charge electron
densities as well as bare magnetic susceptibility are re-
lated to the Kohn-Sham states in the usual way,

m =
∑

µσ

σfµσ | ψµσ(r) |2 , (2.11)

n =
∑

µσ

fµσ | ψµσ(r) |2 , (2.12)

and

χ+−
0 (r, r′, ω) =
∑

µν

fµ↑ − fν↓
ω − εµ↑ + εν↓

ψ∗
µ↑(r)ψν↓(r)ψ

∗
ν↓(r

′)ψµ↑(r
′) . (2.13)

In these expressions, ψµσ and εµσ are eigenstates and
eigenenergies for the time-independent Kohn-Sham equa-
tion,

(H0 − σBxc)ψµσ = εµσψµσ

H0 = −∇2 + V (r) . (2.14)

Here σ (without a vector symbol) stands for the spin
index ±1 =↑↓ and fµσ = f (εµσ) is the Fermi distribution
function and µ labels the Kohn-Sham states.

The same approach leads to expressions for the longi-
tudinal spin susceptibility, which turns out to be coupled
to the charge density. Since these expressions are not
necessary for the derivation of the values of exchange pa-
rameters we do not show them here, but refer to the work
in Ref. Katsnelson and Lichtenstein, 2004.

Further transformations are needed to make the ex-
pressions for the spin wave spectrum more explicit. First,
when substituting Eq. (2.10) into Eq. (2.9) we have the
product of exchange-correlation field and wave functions.
According to Eq. (2.14) this can be transformed as

2Bxcψµ↑ψ
∗
ν↓ = (εν↓ − εµ↑)ψ

∗
ν↓ψµ↑

+∇(ψµ↑∇ψ∗
ν↓ − ψ∗

ν↓∇ψµ↑) . (2.15)

Substituting Eq. (2.15) into Eq. (2.13) one has

2(χ+−
0 Bxc)(r, r

′, ω) = m(r)δ(r− r′)− ωχ+−
0 (r, r′, ω)

(2.16)
where we used the completeness condition

∑

µ

ψ∗
µσ(r)ψµσ(r

′) = δ(r− r′) . (2.17)

Substituting Eq. (2.16) into Eq. (2.9) we can transform
the latter expression to the following form

χ̂+− = χ̂+−
0 + χ̂+−

0

2Bxc

m
χ̂+−

= χ̂+−
0 + χ̂+− − ωχ̂+−

0

1

m
χ̂+− +

Λ̂

m
χ̂+− (2.18)

or, equivalently,

χ̂+− = m

[
ω −

(
χ̂0

+−
)−1

Λ̂

]−1

(2.19)

where

Λ(r, r′, ω) =
∑

µν

fµ↑ − fν↓
ω − εµ↑ + εν↓

ψ∗
µ↑(r)ψν↓(r)

⋆∇
[
ψµ↑(r

′)∇ψ∗
ν↓(r

′)− ψ∗
ν↓(r

′)∇ψµ↑(r
′)
]
. (2.20)

Using Eqs. (2.13) and (2.19) we come to the final expres-
sion

χ̂+− =
(
m+ Λ̂

)(
ω − IxcΛ̂

)−1

. (2.21)

Let us emphasize that the transformation from Eq. (2.9)
to Eq. (2.21) is exact. The latter however is more conve-
nient to study the magnon spectrum.

The susceptibility, expressed in Eq. (2.21), has poles
at the condition

ω = Ω(r, r′, ω) ≡ IxcΛ(r, r
′, ω) . (2.22)

Solutions to Eq. (2.22) allows us to find a real-valued ex-
pression for the magnon spectrum. The imaginary part
of Ω describes Stoner damping of magnons, that appear
in metals. Note that there are many practical calcula-
tions of exchange interactions and magnon dispersion of
real material, using the dynamical susceptibility (Beloze-
rov et al., 2017; Callaway et al., 1981; Cooke et al., 1985;
Costa et al., 2005; Gorni et al., 2018; Ke and Katsnel-
son, 2021; Lounis et al., 2010; Muniz and Mills, 2002;
Savrasov, 1998).

The last step we describe in this section, and which
allows a crucial result, is to restore effective exchange in-
tegrals from Eq. (2.19). This procedure cannot be made
in a unique way; there are, at least, two different defi-
nitions of exchange integrals which are both reasonable,
but unfortunately not identical.

First, we can try to fit interatomic exchange param-
eters to the poles of the susceptibility, that is, to the
magnon spectrum. To do this explicitly we need a
bit more transformations. Substituting Eq. (2.15) into
Eq. (2.20) one obtains the expression

Λ(r, r′, ω) =
∑

µν

fµ↑ − fν↓
ω − εµ↑ + εν↓

⋆ ψ∗
µ↑(r)ψν↓ [2Bxc(r

′)− εν↓ + εµ↑]ψ
∗
ν↓(r

′)ψµ↑(r
′) .
(2.23)
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Therefore, one may write

Ω(r, r′, ω) =
4

m(r)
J(r, r′, ω) + Ixc(r)

∑

µν

fµ↑ − fν↓
ω − εµ↑ + εν↓

⋆ (εµ↑ − εν↓)ψ
∗
µ↑(r)ψν↓(r)ψ

∗
ν↓(r

′)ψµ↑(r
′) . (2.24)

It is reasonable to identify the quantity

J(r, r′, ω) =
∑

µν

fµ↑ − fν↓
ω − εµ↑ + εν↓

⋆ ψ∗
µ↑(r)Bxc(r)ψν↓(r)ψ

∗
ν↓(r

′)Bxc(r
′)ψµ↑(r

′) (2.25)

as frequency-dependent interatomic exchange parame-
ters. If one sets ω = 0 in this expression, one arrives
at Rudderman-Kittel-Kasuya-Yosida (RKKY) type, in-
direct interactions (Vonsovskii, 1974; Yosida, 1996). As
will be shown later in this review, these expressions
are exactly equivalent to those from Refs. (Liechtenstein
et al., 1995, 1987, 1984). In fact, these expressions are
more general, since they do not assume a rigid-moment
approximation and they take into account the full co-
ordinate dependence of the wave functions. Using the
identity (2.17) one can also show that

Ω(r, r′, 0) =
4

m(r)
J(r, r′, 0)− 2Bxc(r)δ(r− r′) . (2.26)

The other way to evaluate interatomic exchange inter-
actions is to connect exchange parameters to the energy
of spin spiral configurations, that is, with the static mag-
netic susceptibility χ̂+− (0). The latter can be rewritten
as

χ̂+− (0) = m

(
Ω̂−1 − 1

2
B−1

xc

)
(2.27)

which corresponds to the renormalized spin-wave energy

̂̃
Ω = Ω̂

(
1− 1

2
B−1

xc Ω̂

)−1

. (2.28)

Note that this expression corresponds to the definition of
exchange parameters in terms of the energy of static spin
configurations (Antropov, 2003; Bruno, 2003; Szczech
et al., 1998). As we will show below, this corresponds to
the exchange parameters from Refs. (Liechtenstein et al.,
1995, 1987, 1984), normalized by taking into account con-
straints of the density functional (Bruno, 2003).

Thus, strictly speaking one cannot map the density
functional susceptibility onto an effective Heisenberg
model with interatomic exchange parameters in a unique
way. The formal reason is the renormalization of the nu-
merator, that is, the residue of the susceptibility at the
magnon pole in Eq. (2.21). There are however two im-
portant limits where this difference disappears.

First, if we pass to the Fourier representation with
the wave vector q and consider the limit q → 0 then,
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Figure 4 (Color online) Calculated and measured magnon dis-
persion of NiO. Note that several levels of approximation for
the theory are shown (solid lines) together with experiments
(solid circles). Figure redrawn after Ref. Wan et al., 2006.

due to the Goldstone theorem, Ω → 0, the renormal-
ization of the magnon spectrum (2.28) disappears. This
means that the expression for the spin-wave stiffness con-
stant (Liechtenstein et al., 1984) determining magnon
spectrum at q → 0 is well-defined and exact within
the local spin density approximation. Second, if typi-
cal magnon energies are much smaller than the Stoner
splitting, B−1

xc Ω̂ is small and the two definitions of ex-
change integrals coincide. This corresponds to an adi-
abatic approximation for magnons (note that magnon
energies are much smaller than typical electron energies)
which should be, of course, clearly distinguished from the
adiabatic approximation in the sense of TDDFT. This is
the case where the mapping of a full quantum mechanical
description to the effective spin model is possible. In the
sections below, we will focus on this case.

In Fig. 4 we highlight the results of Ref. Wan et al.,
2006, using the expressions of exchange parameters dis-
cussed above. The figure shows results of a calculation
for NiO, and after performing a Fourier transform from
real-space J(r, r′), from Eq. (2.25) to reciprocal space,
J(q), the magnon dispersion was calculated. The figure
also shows experimental data and one may note that the
agreement between observation and calculation is sat-
isfactory, if the correct level of approximation is used
for solving the Kohn-Sham equation (2.1). For NiO dy-
namical mean field theory, LDA+U and the Hubbard
1 approximation are all found to reasonably well repro-
duce experiments. This will be discussed further in Sec-
tion VII.
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III. MAPPING ELECTRONIC ENERGIES TO AN
EFFECTIVE SPIN HAMILTONIAN

In the previous section we touched on the central as-
pect of this review; to extract from calculations of the
electronic structure, parameters that accurately describe
magnetic excitations. In this section we outline the basic
principles of a method to do this, as was originally pro-
posed in Ref. Liechtenstein et al., 1984. A more detailed
description of this method, with its extension for non-
collinear spin systems when spin-orbit coupling (SOC)
is also considered, will be presented in Section V. We
emphasize that unless stated explicitly, we are only con-
cerned with parameters that describe the coupling be-
tween spin moments. We start by a section that contains
the essential aspect of Refs. Liechtenstein et al., 1987,
1984, that involves how to connect changes of the energy
of a spin Hamiltonian (such as the one in Eq. (1.1)) with
changes of the grand canonical potential that contains
energies of the electronic sub-system.

A. Basic assumptions

We start by making a central assumption; that it is
possible to identify well-defined regions of a material
where the magnetisation density is more or less unidi-
rectional and sizeable only close to an atomic nucleus.
This implies the existence of local atomic magnetic mo-
ments (atomic spins), as is illustrated in Fig. 3, with fer-
romagnetic, anti-ferromagnetic (AFM) or non-collinear
interactions between atomic spin moments. As discussed
in connection to Fig. 3, very few materials, if any, are not
accurately described in this way.

An atomic spin moment is here chosen to be described
with a direction, e⃗i, quantified as:

e⃗i = (sin(θi) cos(ϕi), sin(θi) sin(ϕi), cos(θi)) , (3.1)

where θi and ϕi stand for the polar and azimuthal angles,
respectively, of the atomic spin moment at site i. The
rigid-spin approximation (Phariseau and Gyorffy, 2012)
is also assumed, where upon rotation of atomic spins, the
length is not changed.

The method of Ref. Liechtenstein et al., 1984 is an ex-
plicit method for calculations of interatomic exchange in-
teractions, which relies on a formalism of the Green func-
tion of the electronic sub-system (Gyorffy et al., 1985;
Kübler, 2017). The basic idea is that an effective spin
Hamiltonian describes accurately the energy of different
atomic spin configurations, that are close to the magnetic
ground state. We will below refer to the energy of the
spin Hamiltonian as H, and one needs to make sure that
variation of H, when the spin configuration is modified
slightly, follows closely changes of the true total energy
(the grand canonical potential, Ω, described below) as
provided by the electronic sub-system. This then allows

us to map energies of the electron sub-system, as pro-
vided by e.g. density functional theory, to energies of an
effective spin Hamiltonian, as given in Eq. (1.1). Practi-
cally, this mapping is based on the magnetic force theo-
rem, which states that the variation of total energy of the
electronic sub-system can be expressed in terms of varia-
tions only of occupied single particle energies (Andersen
et al., 1980; Liechtenstein et al., 1984; Mackintosh and
Andersen, 1980; Methfessel and Kübler, 1982). Recently,
comparison of different mapping procedures for calcula-
tion of exchange interactions in various classes of mag-
netic materials was presented in Ref. (Solovyev, 2021).
More details of the argumentation and its extension for
correlated systems will be discussed in Subsections V.A
and V.K, respectively.

B. The mapping scheme

In making the mapping between energies of the spin
Hamiltonian and energies of the electronic sub-system,
one considers as a reference state the atomic spin ar-
rangement of the ground state, with the energy H. Then
the orientation of one atomic spin moment, at site i, is
rotated with an infinitesimally small angle, keeping the
length of the spin vector conserved (see Fig. 5). The vari-
ation of the direction of the spin, due to this rotation is
denoted δe⃗i and the new direction of the perturbed spin
can be written as

e⃗′i → e⃗i + δe⃗i . (3.2)

The energy of this system, that can be seen as having a
small perturbation from the ground state, can be written
as H′ = H′(δe⃗i), where

H′ = H+ δHone
i . (3.3)

As a second step, one considers a system with two atomic
spin moments rotated, at the site i and j. One can then
express the energy of this spin arrangement as

H′′ = H+ δHone
i + δHone

j + δHtwo
ij , (3.4)

where H′′ = H′′(δe⃗i, δe⃗j) stands for the energy of a spin
system with two atomic moments rotated with an in-
finitesimal amount (see Fig. 6).

One may assume that the same procedure can be done
for the grand canonical potential variation of the elec-
tronic system, where the value of the single site rotated
system is

Ω′ = Ω+ δΩone
i (3.5)

and for the two-site rotated system is

Ω′′ = Ω+ δΩone
i + δΩone

j + δΩtwo
ij . (3.6)

The next step is to derive explicit expressions for both
δΩone

i and δΩtwo
ij and to make a comparison with the
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δθi

Figure 5. A schematic figure for the one-site spin rotation.
An atomic spin at site i is being rotated with an infinitesimal
angle �✓i. This process costs the energy �Hone

i due to the fact
that the spin interacts with every other spin in the rest of the
spin system.

δθi δθj

Figure 6. A schematic figure for the two-site spin rotation.
Atomic spins at site i and j are rotated with the infinitesimal
angle �✓i and �✓j , respectively. This process costs the energy
�Hone

i +�Hone
j +�Htwo

ij where �Hone
i and �Hone

i stand for the
energy cost of a one-site rotations (shown in Fig. 5) while the
interacting term, �Htwo

ii , see text, characterizes the exchange
energy between the spins located at site i and j.

One may assume that the same procedure can be done
for the grand canonical potential variation of the elec-
trons, where the value of the single site rotated system
is

⌦0 = ⌦ + �⌦one
i (3.4)

and for the two-site rotated system is

⌦00 = ⌦ + �⌦one
i + �⌦one

j + �⌦two
ij . (3.5)

The next step is to derive explicit expressions for both
�⌦one

i and �⌦two
ij and to make a comparison with the

�Hone
i and �Htwo

ij , respectively. The limit when the spin-
orbit coupling (SOC) is neglected, and the spins are ar-
ranged collinearly, along a global quantisation axis (e.g.
the z-direction) will here be referred to as the LKAG-
limit (LKAG is after the authors of Ref.[16]). A typical
case for a small deviation from the collinear state that
will be considered here is: �~ei '

⇣
�✓i, 0,�1/2 (�✓i)

2
⌘
.

C. Excitation of the spin model

The classical Heisenberg spin Hamiltonian has been
introduced in Eqn. (1.3). First, as shown in Fig. 5, we
will derive the one-site spin rotation variation, �Hone

H,i .
Let us denote the non-perturbed spin configuration by
the set of {~el} vectors and a perturbed system by the
set of {~el + �il�~ei} where �~ei stands for an infinitesimal
variation of the spin direction due to a rotation at site i
with the angle �✓i. We can then write that

H0
H = �

X

l 6=k

Jlk (~el + �il �~ei) (~ek + �ik �~ei)

= HH � 2
X

j( 6=i)

Jji~ej�~ei ,
(3.6)

i.e.,

�Hone
H,i = �2

X

j( 6=i)

Jji~ej�~ei . (3.7)

This means that the energy variation of the one-site spin
rotation is an energy cost resulted by the interaction of
the rotated spin and its environment formed by the non-
rotated spins as shown in Fig. 5.

If the non-perturbed configuration is now collinear fer-
romagnetic, i.e., {~el} = {(0, 0, 1)} for all l in the spin
system with the energy H, one obtains ~em�~ei = �ez

i ,
which is proportional to (cos �✓i � 1), i.e., approximately
to �(1/2) (�✓i)

2. Therefore, in the ferromagnetic limit,
one can demonstrate that

�Hone
H,i '

X

j( 6=i)

Jji (�✓i)
2

. (3.8)

Next, we simultaneously rotate two spins at site i and
j with �✓i and �✓j , respectively. As shown in Fig 6, the
perturbed system for the two-site spin rotation is given
by the set of {~el + �il�~ei + �jl�~ej} and its energy is

H00
H = HH + �Hone

H,i + �HH,j � 2Jij�~ei�~ej . (3.9)

Comparing Eq. (3.9) to Eqn. (3.3), we find that

�Htwo
H,ij = �2Jij �~ei�~ej . (3.10)

In the LKAG limit when (�✓i, 0, 0) and (��✓j , 0, 0), it
can be shown that

�Htwo
H,ij = 2Jij �✓i�✓j . (3.11)

Finally, we note that when SOC coupling is present
then one has to deal with a tensorial coupling between
the spins even in collinear systems. Its anti-symmetric
part defines the DM vectors given by Eqn. 1.4. For the
one-site energy variation we then get that

�Hone
DM,i = �2

X

j( 6=i)

~Dij (�~ei ⇥ ~ej) , (3.12)

Figure 5 (Color online) A schematic figure for the one-site
spin rotation when the unperturbed system is collinear, fer-
romagnetic. An atomic spin at site i is being rotated with an
infinitesimal vector δe⃗i. This process costs the energy δHone

i

due to the fact that the spin interacts with every other spin
in the rest of the spin system.

δHone
i and δHtwo

ij , respectively. The limit when the SOC
is neglected, and the spins are arranged collinearly along
a global quantisation axis (e.g. the z-direction) will here
be referred to as the LKAG-limit (LKAG is after the au-
thors of Refs. Liechtenstein et al., 1987, 1984). A typical
case for a small deviation from the collinear state with
atomic moments along the z-axis that will be considered
here is: δe⃗i ≃

(
δθi, 0,−1/2 (δθi)

2
)
.

C. Excitation of the spin model

The classical Heisenberg spin Hamiltonian has been in-
troduced in Eq. (1.3). First, as shown in Fig. 5, we derive
the one-site spin rotation variation, δHone

H,i. Let us denote
the non-perturbed spin configuration by the set of {e⃗l}
vectors and a perturbed system by the set of {e⃗l + δilδe⃗i}
where δe⃗i stands for an infinitesimal variation of the spin
direction due to a rotation at site i with the angle δθi.
One then finds

H′
H =

∑

⟨lk⟩
Jlk (e⃗l + δil δe⃗i) · (e⃗k + δik δe⃗i)

= HH +
1

2

∑

l( ̸=i)

Jli e⃗l · δe⃗i +
1

2

∑

k(̸=i)

Jik δe⃗i · e⃗k ,

(3.7)

where the origin of the factor of 1
2 ’s has been explained

in Subsection I.E. Note that Eq. (3.7) can be simplified
to describe the energy gain due to the rotation as

δHone
H,i =

∑

l(̸=i)

Jli e⃗l · δe⃗i, (3.8)

since the interaction is symmetric, Jil = Jli. This means
that the energy variation of the one-site spin rotation is
an energy cost resulted by the interaction of the rotated
spin and its environment formed by the non-rotated spins
as shown in Fig. 5.

10

δθi

Figure 5. A schematic figure for the one-site spin rotation.
An atomic spin at site i is being rotated with an infinitesimal
angle �✓i. This process costs the energy �Hone

i due to the fact
that the spin interacts with every other spin in the rest of the
spin system.

δθi δθj

Figure 6. A schematic figure for the two-site spin rotation.
Atomic spins at site i and j are rotated with the infinitesimal
angle �✓i and �✓j , respectively. This process costs the energy
�Hone

i +�Hone
j +�Htwo

ij where �Hone
i and �Hone

i stand for the
energy cost of a one-site rotations (shown in Fig. 5) while the
interacting term, �Htwo

ii , see text, characterizes the exchange
energy between the spins located at site i and j.

One may assume that the same procedure can be done
for the grand canonical potential variation of the elec-
trons, where the value of the single site rotated system
is

⌦0 = ⌦ + �⌦one
i (3.4)

and for the two-site rotated system is

⌦00 = ⌦ + �⌦one
i + �⌦one

j + �⌦two
ij . (3.5)

The next step is to derive explicit expressions for both
�⌦one

i and �⌦two
ij and to make a comparison with the

�Hone
i and �Htwo

ij , respectively. The limit when the spin-
orbit coupling (SOC) is neglected, and the spins are ar-
ranged collinearly, along a global quantisation axis (e.g.
the z-direction) will here be referred to as the LKAG-
limit (LKAG is after the authors of Ref.[16]). A typical
case for a small deviation from the collinear state that
will be considered here is: �~ei '

⇣
�✓i, 0,�1/2 (�✓i)

2
⌘
.

C. Excitation of the spin model

The classical Heisenberg spin Hamiltonian has been
introduced in Eqn. (1.3). First, as shown in Fig. 5, we
will derive the one-site spin rotation variation, �Hone

H,i .
Let us denote the non-perturbed spin configuration by
the set of {~el} vectors and a perturbed system by the
set of {~el + �il�~ei} where �~ei stands for an infinitesimal
variation of the spin direction due to a rotation at site i
with the angle �✓i. We can then write that

H0
H = �

X

l 6=k

Jlk (~el + �il �~ei) (~ek + �ik �~ei)

= HH � 2
X

j( 6=i)

Jji~ej�~ei ,
(3.6)

i.e.,

�Hone
H,i = �2

X

j( 6=i)

Jji~ej�~ei . (3.7)

This means that the energy variation of the one-site spin
rotation is an energy cost resulted by the interaction of
the rotated spin and its environment formed by the non-
rotated spins as shown in Fig. 5.

If the non-perturbed configuration is now collinear fer-
romagnetic, i.e., {~el} = {(0, 0, 1)} for all l in the spin
system with the energy H, one obtains ~em�~ei = �ez

i ,
which is proportional to (cos �✓i � 1), i.e., approximately
to �(1/2) (�✓i)

2. Therefore, in the ferromagnetic limit,
one can demonstrate that

�Hone
H,i '

X

j( 6=i)

Jji (�✓i)
2

. (3.8)

Next, we simultaneously rotate two spins at site i and
j with �✓i and �✓j , respectively. As shown in Fig 6, the
perturbed system for the two-site spin rotation is given
by the set of {~el + �il�~ei + �jl�~ej} and its energy is

H00
H = HH + �Hone

H,i + �HH,j � 2Jij�~ei�~ej . (3.9)

Comparing Eq. (3.9) to Eqn. (3.3), we find that

�Htwo
H,ij = �2Jij �~ei�~ej . (3.10)

In the LKAG limit when (�✓i, 0, 0) and (��✓j , 0, 0), it
can be shown that

�Htwo
H,ij = 2Jij �✓i�✓j . (3.11)

Finally, we note that when SOC coupling is present
then one has to deal with a tensorial coupling between
the spins even in collinear systems. Its anti-symmetric
part defines the DM vectors given by Eqn. 1.4. For the
one-site energy variation we then get that

�Hone
DM,i = �2

X

j( 6=i)

~Dij (�~ei ⇥ ~ej) , (3.12)
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Figure 5. A schematic figure for the one-site spin rotation.
An atomic spin at site i is being rotated with an infinitesimal
angle �✓i. This process costs the energy �Hone

i due to the fact
that the spin interacts with every other spin in the rest of the
spin system.

δθi δθj

Figure 6. A schematic figure for the two-site spin rotation.
Atomic spins at site i and j are rotated with the infinitesimal
angle �✓i and �✓j , respectively. This process costs the energy
�Hone

i +�Hone
j +�Htwo

ij where �Hone
i and �Hone

i stand for the
energy cost of a one-site rotations (shown in Fig. 5) while the
interacting term, �Htwo

ii , see text, characterizes the exchange
energy between the spins located at site i and j.

One may assume that the same procedure can be done
for the grand canonical potential variation of the elec-
trons, where the value of the single site rotated system
is

⌦0 = ⌦ + �⌦one
i (3.4)

and for the two-site rotated system is

⌦00 = ⌦ + �⌦one
i + �⌦one

j + �⌦two
ij . (3.5)

The next step is to derive explicit expressions for both
�⌦one

i and �⌦two
ij and to make a comparison with the

�Hone
i and �Htwo

ij , respectively. The limit when the spin-
orbit coupling (SOC) is neglected, and the spins are ar-
ranged collinearly, along a global quantisation axis (e.g.
the z-direction) will here be referred to as the LKAG-
limit (LKAG is after the authors of Ref.[16]). A typical
case for a small deviation from the collinear state that
will be considered here is: �~ei '

⇣
�✓i, 0,�1/2 (�✓i)

2
⌘
.

C. Excitation of the spin model

The classical Heisenberg spin Hamiltonian has been
introduced in Eqn. (1.3). First, as shown in Fig. 5, we
will derive the one-site spin rotation variation, �Hone

H,i .
Let us denote the non-perturbed spin configuration by
the set of {~el} vectors and a perturbed system by the
set of {~el + �il�~ei} where �~ei stands for an infinitesimal
variation of the spin direction due to a rotation at site i
with the angle �✓i. We can then write that

H0
H = �

X

l 6=k

Jlk (~el + �il �~ei) (~ek + �ik �~ei)

= HH � 2
X

j( 6=i)

Jji~ej�~ei ,
(3.6)

i.e.,

�Hone
H,i = �2

X

j( 6=i)

Jji~ej�~ei . (3.7)

This means that the energy variation of the one-site spin
rotation is an energy cost resulted by the interaction of
the rotated spin and its environment formed by the non-
rotated spins as shown in Fig. 5.

If the non-perturbed configuration is now collinear fer-
romagnetic, i.e., {~el} = {(0, 0, 1)} for all l in the spin
system with the energy H, one obtains ~em�~ei = �ez

i ,
which is proportional to (cos �✓i � 1), i.e., approximately
to �(1/2) (�✓i)

2. Therefore, in the ferromagnetic limit,
one can demonstrate that

�Hone
H,i '

X

j( 6=i)

Jji (�✓i)
2

. (3.8)

Next, we simultaneously rotate two spins at site i and
j with �✓i and �✓j , respectively. As shown in Fig 6, the
perturbed system for the two-site spin rotation is given
by the set of {~el + �il�~ei + �jl�~ej} and its energy is

H00
H = HH + �Hone

H,i + �HH,j � 2Jij�~ei�~ej . (3.9)

Comparing Eq. (3.9) to Eqn. (3.3), we find that

�Htwo
H,ij = �2Jij �~ei�~ej . (3.10)

In the LKAG limit when (�✓i, 0, 0) and (��✓j , 0, 0), it
can be shown that

�Htwo
H,ij = 2Jij �✓i�✓j . (3.11)

Finally, we note that when SOC coupling is present
then one has to deal with a tensorial coupling between
the spins even in collinear systems. Its anti-symmetric
part defines the DM vectors given by Eqn. 1.4. For the
one-site energy variation we then get that

�Hone
DM,i = �2

X

j( 6=i)

~Dij (�~ei ⇥ ~ej) , (3.12)

Figure 6 (Color online) A schematic figure for the two-site
spin rotation when the unperturbed system is collinear, fer-
romagnetic. Atomic spins at site i and j are rotated with
the infinitesimal vector δe⃗i and δe⃗j , respectively. This pro-
cess costs the energy δHone

i +δHone
j +δHtwo

ij where δHone
i and

δHone
i stand for the energy cost of a one-site rotations (shown

in Fig. 5) while the interacting term, δHtwo
ii , see text, charac-

terizes the exchange energy between the spins located at site
i and j.

If the non-perturbed configuration is now collinear fer-
romagnetic, i.e., {e⃗j} = {(0, 0, 1)} for all j in the spin sys-
tem with the energy HH , one obtains that e⃗j · δe⃗i = δezi ,
which is proportional to (cos δθi − 1), i.e., approximately
to −(1/2) (δθi)

2. Therefore, in the ferromagnetic limit,
one can demonstrate that

δHone
H,i ≃ −1

2

∑

j( ̸=i)

Jji (δθi)
2
. (3.9)

Next, we simultaneously rotate two spins at site i and
j with δθi and δθj , respectively. As shown in Fig. 6, the
perturbed system for the two-site spin rotation is given
by the set of {e⃗l + δilδe⃗i + δjlδe⃗j} and its energy is

H′′
H = HH + δHone

H,i + δHone
H,j + Jijδe⃗i · δe⃗j . (3.10)

Comparing Eq. (3.10) to Eq. (3.4), we obtain 3

δHtwo
H,ij = Jij δe⃗i · δe⃗j . (3.11)

In the LKAG limit when δe⃗i = (δθi, 0, 0), δe⃗j = (δθj , 0, 0)
and δθi = −δθj = δθ, i.e., the spins are rotated in the
opposite directions, it can be shown that

δHtwo
H,ij = Jij δθiδθj = −Jij (δθ)

2
. (3.12)

One can in a more general way consider a spin Hamil-
tonian with a tensorial coupling between the spins as
follows,

HT =
∑

<ij>

e⃗i · Jij · e⃗j , (3.13)

3 A factor of 2 would appear in the last term of Eq. 3.10, but it is
canceled by a factor of 1

2
(that is explained in Subsection I.E).
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where Jij = {Jµν
ij ;µ, ν ∈ {x, y, z}}. This is needed even

in a collinear system when the SOC is present (Udvardi
et al., 2003). Note that HT can be rewritten as

HT = HH +Hanis +HDM , (3.14)

where

Hanis =
∑

<ij>

e⃗i · Aij · e⃗j (3.15)

is the symmetric anisotropic interaction tensor and HH

and HDM have been introduced by Eqs. (1.3) and (1.4),
respectively. More precisely, the 3 × 3 tensorial interac-
tion is given by

Jij =


Jij +Axx
ij Dz

ij +Axy
ij −Dy

ij +Axz
ij

−Dz
ij +Axy

ij Jij +Ayy
ij Dx

ij +Ayz
ij

Dy
ij +Azx

ij −Dx
ij +Ayz

ij Jij +Azz
ij


 . (3.16)

Such a 3 × 3 tensor can be decomposed by symmetry
into three independent tensor terms; a symmetric scalar
or rank 0, S, an asymmetric vector or rank 1, V, and
lastly a symmetric rank 2 tensor term, T, respectively.
These are defined as

S =
1

3
Tr J (3.17)

V = D⃗ (3.18)

T = A− 1

3
TrA. (3.19)

While we have referred to the Heisenberg interaction
as the term where the explicit magnetic interaction is a
scalar, there is an alternative view that the Heisenberg
interaction is an interaction that is effectively a scalar,
i.e., S. Such an approach ensures that the other interac-
tions are traceless. This means that the Dzyaloshinskii-
Moryia interaction is unique, but the exact Heisenberg
and second rank tensor is kind of a matter of choice.

The one- and two-site energy variations of HT can be
given as the sum of the variations of HH , Hanis and
HDM , i.e.,

δHone
T,i =

∑

j(̸=i)

(
Jij δe⃗i · e⃗j

+ D⃗ij · (δe⃗i × e⃗j) + δe⃗i · Aij · e⃗j
)

(3.20)

and

δHtwo
T,ij =Jij δe⃗i · δe⃗j

+ D⃗ij · (δe⃗i × δe⃗j) + δe⃗i · Aij · δe⃗j , (3.21)

respectively. The expressions of energy variations of the
spin Hamiltonian, in Eqs. (3.20) and (3.21), must now be

compared to similar expressions for the grand canonical
potential variations of the electrons. Before we make this
connection, a few important aspects of electronic struc-
ture theory need to be reviewed, which is what the fol-
lowing section attempts to do.

IV. BASIC CONCEPTS OF ELECTRONIC STRUCTURE
THEORY

In this section we introduce a few central concepts
of electronic structure theory, such as the one-electron
Green function and (integrated) density of states that
will be needed in Section V, where we present the details
of the derivation of the generalized interatomic exchange
formulas.

First of all, we need an expression for the electronic en-
ergy and its variations under a perturbation, such as the
rotations in Figs. 5 and 6. The grand canonical ensemble
is used for this purpose, where energy and particles of the
system considered can be exchanged with a reservoir, im-
plying that the chemical potential (µ) and temperature
(T ) are relevant thermodynamic variables. The grand
canonical potential can be calculated as

Ω = E − TS − µN , (4.1)

where E is the energy given by the equation

E =

∞∫

−∞

dε εf(ε)n(ε), (4.2)

S is the entropy of the band electrons

S = −
∞∫

−∞

dε n(ε) {f(ε) ln f(ε) + [1− f(ε)] ln [1− f(ε)]} ,

(4.3)

and N is the number of electrons in the valence band.
Note that f(ε) is the Fermi-Dirac distribution function
and n(ε) denotes the density of states (DOS). The ex-
act conditions that have proven crucial in constraining
and constructing accurate approximations for ground-
state DFT are generalized to finite temperature, based
on the work of Mermin (Mermin, 1965), can be found in
Ref. (Pittalis et al., 2011).

A. Grand canonical potential at zero temperature

Considering that the Fermi-energy, εF , usually is much
higher than the critical (Curie or Neel) temperature, it
is for most cases enough to work in the T = 0 approach
(i.e. f(ε) is a step function). In this case Ω = E − εFN ,
i.e.,

Ω =

εF∫

−∞

dε ε n(ε)− εFN = −
εF∫

−∞

dεN(ε), (4.4)
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where partial integration has been used. Here the num-
ber of states function (or integrated density of states-
IDOS) is introduced, N(ε), and one finds that the grand
canonical potential can be calculated as an integral of this
function. This means that one has to determine the vari-
ations of IDOS to get the variations of the grand canoni-
cal potential. A practical way to do this is to employ the
so-called Lloyd formula, that will be described in Sec-
tion V. Note that the corresponding formula of Eq. (4.4)
for cases when the energy argument is in the complex
plane, is presented at the of Subsection IV.B.

B. Green function

Since the derivation of the interatomic exchange formu-
las relies on a Green function formalism of the electronic
structure, we summarize here the most central aspects
needed. A full account may be seen in Ref. Economou,
2006. The Green function (or resolvent) of the electronic
Hamiltonian, H, is defined as

G(z) = (z −H)
−1

, (4.5)

where z ∈ C. This implies that G (z∗) = G†(z). If both
sides of the equation (z2 −H) − (z1 −H) = z2 − z1 are
multiplied by G(z1)G(z2) and one sets that z2 = z + dz,
z1 = z and considers the limit dz → 0, then the equation

dG(z)

dz
= −G2(z) (4.6)

can be obtained.
Next, we consider an electronic Hamiltonian, H, with

a discrete spectrum4, with solutions Hφµ = εµφµ. Note
that ⟨φµ|φν⟩ = δµν and the solutions to H form a com-
plete set. The spectral resolution of the Green function
can then be obtained from the so-called Lehmann repre-
sentation,

G(z) =
∑

µ

|φµ⟩⟨φµ|
z − εµ

. (4.7)

This implies that on the basis of the eigenfunction
of H the Green function could be represented as
Gµν(z) = δµν

1
z−εµ

. In addition, G(z) is obviously unde-
fined for z = εµ. However, considering z in the complex
plane, just above or below the real axis (z = ε ± iδ),
allows us to define5:

G±(ε) = lim
δ→0+

G(ε± iδ) . (4.8)

4 Our conclusions would be the same for continuous spectrum.
5 Note that G±(ε) =

(
G∓(ε)

)†.

One should note that a lattice site-dependent Green func-
tion, Gij(z), is relevant here, and it is obtained as

G(z) =
∑

ijµ

|ϕi⟩⟨ϕi|φµ⟩⟨φµ|ϕj⟩⟨ϕj |
z − εµ

=
∑

ij

|ϕi⟩Gij(z)⟨ϕj |.

(4.9)
with local functions |ϕi⟩ at site i.

C. Grand canonical potential at finite temperature

To derive the grand canonical potential at finite tem-
perature, it is useful to find a relationship between the
IDOS, DOS and the Green function, and one may note
that in a system of independent fermions, the expectation
value of a one-particle observable, A, is given as

⟨A⟩ =
∑

µ

pµ⟨φµ|A|φµ⟩ , (4.10)

where pµ = f(εµ), i.e. the Fermi-Dirac distribution func-
tion. One can evaluate this expression with the help of
Cauchy’s theorem, which states that for a closed con-
tour oriented clock-wise the integration of a function
g(z)/(z−a) is equal to −2πig(a) if a is within the contour
(otherwise the result is zero). With the help of Cauchy’s
theorem and Eq. (4.7), Eq. (4.10) can be simply given by
G+(ε) as follows6,

⟨A⟩ = − 1

π
ℑ

∞∫

−∞

dεf(ε) TrLσAG
+(ε) (4.11)

where the trace is taken over both the orbital (L) and
spin (σ) spaces. If A is the identity operator one obtains
the expression

N = − 1

π
ℑ

∞∫

−∞

dεf(ε)TrLσG
+(ε) . (4.12)

This allows us to identify a relationship between the DOS
and the Green function,

n(ε) = − 1

π
ℑTrLσG

+(ε) . (4.13)

In the rest of the paper we consider the limit of the upper
part of the complex plane (Eq. (4.8)) and the “+ symbol”
will be omitted for brevity for functions of real energies.

One can recognize that in Eq. (4.12) the integral is
taken along the real axis, which is not always convenient,
i.e., it is preferable to transform such integrals to the
complex plane. We proceed with the realization that

6 More details: http://newton.phy.bme.hu/∼szunyogh/Elszerk/Kkr-
slides.pdf.
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Figure 7 (Color online) Integration paths in the complex
plane.

the DOS can equally well be calculated with the help
of G−(ε), or since ℜG+(ε) = ℜG−(ε) one can use the
expression

n(ε) = − 1

2πi
TrLσ

{
G+(ε)−G−(ε)

}
. (4.14)

With the latter choice, the number of particles of
Eq. (4.12) can be reformulated as

N = − 1

2πi

∞∫

−∞

dεf(ε)TrLσ

{
G+(ε)−G−(ε)

}
=

= − 1

2πi
TrLσ





∞∫

−∞

dεfG+ +

−∞∫

∞

dεfG−



 . (4.15)

Referring to the two integrals as I+ and I−, one can
view them as the two path integrals illustrated with thick
blue lines in Fig. 7. A closed contour integral can be
obtained by adding the two paths labeled C+ and C−,
respectively, shown with thin red line, that both give
vanishing contributions since the energies of this part of
the path can be chosen to lie infinitely far away from the
poles of the Green functions. Then since the integrand is
analytical within these contours, these integrals can be
evaluated by summing the residues that arise from the
Fermi-Dirac distribution, Res (f, µ + iωn) = −T , due to
its poles at the Matsubara energies z = µ + iωn, where
ωn = (2n + 1)πT and T is the temperature(Auerbach,

1994). Hence

N =
(
I+ + C+

)
+
(
I− + C−) =

= − 1

2πi

{∮

+

dzfG+

∮

−
dzfG

}
=

= − 1

2πi
TrLσ

∞∑

n=−∞
(2πi)Res (fG, µ+ iωn) =

= T

∞∑

n=−∞
TrLσ G(µ+ iωn) . (4.16)

V. DETAILED DERIVATION OF THE EXCHANGE
FORMULAS

In this section, we present the details of the mapping of
the electronic Hamiltonian to the spin Hamiltonian given
by the Jij-tensor as shown in Eq. (3.13). The derivation
is general in the sense that we consider a non-collinear
spin arrangement when the SOC interaction is present.
Hence, we will give explicit expressions for the Heisenberg
Jij , the DM vector D⃗ij and the symmetric anisotropic
exchange term Aij in general, and the interpretation of
the results in the LKAG limit.

A. Magnetic local force theorem

As mentioned in Section III, the mapping of the elec-
tronic Hamiltonian to the spin Hamiltonian is based on
the magnetic force theorem, since one can always consider
small variations from the ground states, i.e, a mapping to
an effective Hamiltonian is locally7 possible (close enough
to the magnetic ground state).

Let us write the grand canonical potential as

Ω = Ωsp − Ωdc . (5.1)

In this expression the subscript sp stands for single par-
ticle, and Ωsp simply represents the integral in Eq. (4.4).
In addition, Ωdc stands for the interaction or "double-
counting" term. Then one can calculate the first-order
change in Ω when the system is under some perturba-
tion. In deriving the magnetic force theorem small ro-
tations are considered as perturbations. These changes
are assumed to be described by some set of parame-
ters(Methfessel and Kübler, 1982). As a first step, the
potential is held fixed which leads to a variation in the
single particle energy δ∗Ωsp. Then, in a second step,
the parameters that characterize the changes are held
constant and the potential is allowed to relax to self-
consistency. This leads to variations δ1Ωsp and −δΩdc in

7 See the discussion of local vs global spin model later in this Sec-
tion.
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the single particle energies and the double counting term,
respectively. However, these two contributions, δ1Ωsp

and −δΩdc cancel each other as shown in Refs. Andersen
et al., 1980; Liechtenstein et al., 1984; Mackintosh and
Andersen, 1980; and Methfessel and Kübler, 1982. In
summary, the magnetic force theorem indeed shows that
the variation of total energy of the electronic sub-system
can be expressed in terms of variations only of occupied
single particle energies. Note that the magnetic local
force theorem strictly holds only for first order variations.

Finally, we close this subsection by mentioning that it
is a challenge to find the ground state due to many local
minima in the DFT-total-energy landscape. The problem
of finding a list of initial magnetic configurations for the
practical calculations has been tackled by Refs. Huebsch
et al., 2021 and Zheng and Zhang, 2021.

B. Energy variation from non-collinear Kohn-Sham
Hamiltonian

Let us start this subsection with a general non-collinear
state with spin moments {e⃗i} and the Kohn-Sham Hamil-
tonian defined by Eq. (2.1). For simplicity we intro-
duce B⃗(r) as B⃗(r) = B⃗xc(r) + B⃗ext(r) and in condensed
form we can express the spin-dependent interaction as
B ≡ B⃗(r) · σ⃗. Then one can let the directions of the local
moments rotate away slightly from given magnetic config-
uration. Instead of the case when only one spin is rotated
in the spin system, as shown in Fig. 5 and by Eq. (3.2),
we allow in principle a δe⃗i change at all possible sites. As
we will see this is more than a sum of one-site rotations
because of the intersite interactions. However, the cor-
responding perturbation in the electronic potential δV ,
which is purely spin-dependent, can be divided into local
changes of the spin polarised potential in a given region
around the atomic sites where the moments are varied

δV = −
∑

i

δB⃗i · σ⃗ = −
∑

i

Bi δe⃗i · σ⃗ , (5.2)

where B⃗i ≡ Bie⃗i. Having the perturbation δV , one can
write for the perturbed Green function, G′ (omitting for
simplicity the energy argument), that

G′ = G+GδV G′

G = G′ −GδV G′ = (1−GδV )G′ , (5.3)

where G stands for the unperturbed Green function.
Now, from Eq. (4.6) one can deduce that

G = −∂ lnG
∂ε

(5.4)

which means that IDOS, which is the primitive function
to the DOS of Eq. (4.13), is given by the equation

N = − 1

π
ℑTriLσ (− lnG) (5.5)

and the change in IDOS, is then given by the Lloyd for-
mula (Lloyd, 1967), i.e.

δN = − 1

π
ℑTriLσ {− lnG′ + ln (1−GδV )G′}

= − 1

π
ℑTriLσ ln (1−GδV ) . (5.6)

This means that one does not have to deal with the exact
Green function G′ in order to calculate δN . One can also
expand the logarithm in a series as long as δV is small,
which yields the expression

δN =
1

π
ℑTriLσ

∞∑

k=1

(δV G)k

k
, (5.7)

where the order of the two factors can be altered due to
the properties of the trace. Note that G is the Green
function corresponding to the electronic Hamiltonian,
Eq. (2.1). It can be decomposed to inter site terms, Gij ,
according to Eq. (4.9), that can further be decomposed
into spin-components into a form where

Gij = G0
ij + G⃗ij · σ⃗ , (5.8)

where G⃗ij is a vector with the components ofGx
ij , G

y
ij and

Gz
ij . We introduce here the notation Gη

ij where the in-
dex η enumerates both the scalar spin-independent Green
function as well as the components of the spin-dependent
vector Green function of Eq. (5.8), i.e. η can be either 0,
x, y or z. Note that Gij is defined in both the spin and
orbital spaces while Gη

ij is represented only in the orbital
space. In other words, Gij can be represented by a 18x18
matrix while Gη

ij is a 9x9 matrix when spd orbitals are
used in a practical calculation. We refer here to G0

ij as
the charge part and to G⃗ij as the spin part of the Green
function and the physical interpretation of the decompo-
sition will be discussed in Subsection V.E. Note that in
the LKAG limit the vector G⃗ij has only a z-component,
and in Subsection V.I we will define the up and down spin
channels with the help of G0

ij and Gz
ij . It should also be

noted that the trace in Eqs. (5.6) and (5.7) is over the
atomic sites i, the local basis functions L, as well as the
spin components σ.

Based on Eq. (4.4), the variation in grand canonical
potential (Eq. (4.1)), due to the moment rotations, is
obtained through integration of the change in number of
states function, i.e.,

δΩ = −
∞∫

−∞

dε δN(ε) f(ε), (5.9)

where Eq. (5.7) can be used for δN . The correspond-
ing grand canonical potential variation formula at finite
temperature can be expressed as

δΩ = T

∞∑

n=−∞
π δN(µ+ iωn) (5.10)
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where δN (that along the real axis is given by Eq. (5.6))
is generalised to an expression in the complex plane

δN(z) = − 1

π
TriLσ ln (1− δV G(z)) , (5.11)

with the limit

ℑ lim
ℑz→0+

δN(z) = δN(ε) . (5.12)

With Eq. (5.11) one can rewrite the sum over Matsubara
frequencies in Eq. (5.10) as a trace

δΩ = −Tr ln (1− δV G) = Tr
∑

k

(δV G)k

k
(5.13)

which is a short notation for

Tr = TrωiLσ = T

∞∑

n=−∞
TriLσ . (5.14)

Using analytical continuation from the Matsubara space
to the real frequencies we can get the following rela-
tion (Katsnelson and Lichtenstein, 2000)

TrωiLσ = − 1

π

∞∫

−∞

dε f(ε)ℑTriLσ . (5.15)

C. Perturbation to first order

One may directly conclude that whenever the lowest
order in Eq. (5.7) is not vanishing it will dominate pro-
viding torques on some of the local moments. Therefore
we first analyse the first order term, which can be de-
scribed as a sum of one-site rotations, i.e.

δNone =
1

π
ℑTriLσ δV G =

∑

i

δNone
i (5.16)

where the site local variation of the number of states is

δNone
i = − 1

π
ℑ δe⃗i · TrLσ Bi σ⃗ Gii =

= − 2

π
ℑ δe⃗i · TrLBi G⃗ii , (5.17)

and the factor 2 arises from the trace over spin variables.
The grand canonical potential variation (δΩone

i ) due to
one-site rotation (Fig. 5) is based on the expression δNone

i

(given by Eq. 5.17) and the details of the derivation will
be presented in Subsection V.F. Note that Fig. 5 shows a
collinear (ferromagnetic) case. However, Eq. (5.17) also
holds for cases when the rotation, δe⃗i, appear in a non-
collinear background of atomic moments.

D. A sum rule

While δNone
i (and therefore δΩone

i ) can be obtained
by direct calculation based only on onsite quantities as
shown by Eq. (5.17), we prefer to deepen the analysis
by taking an algebraic step which allows us to express
this first order term as a bilinear intersite magnetic inter-
action which eases the understanding of these magnetic
interactions. Since the local Green functions arise from
a self-consistent solution of a magnetically ordered state
one can derive an explicit expression for it in the follow-
ing way. One may consider a solution as obtained from
a well defined non-magnetic system with a Hamiltonian
in the form of the right hand side of Eq. (2.1), more pre-
cisely, V (r) = V nm

0 . In this case B⃗xc(r) = B⃗ext(r) = 0.
Note that the non-spin-polarized potential V nm

0 for this
non-magnetic state in general will not be equivalent to
the corresponding spin-independent part of the poten-
tial, V0, for a magnetic state. The Green function of the
magnetic state is related to the Green function of the
non-magnetic state, Gnm, through Dyson’s equation as
follows (omitting for simplicity the energy argument)

G = Gnm +Gnm ∆V G (5.18)

or
(
G−1 −G−1

nm

)
ij
=
{
V nm
0 − V0 + B⃗j · σ⃗

}
δij , (5.19)

where the spin polarized fields can be written B⃗j = Bj e⃗j
and ∆V = V0 − B⃗j · σ⃗ − V nm

0 .
In order to arrive at a suitable expression one makes

use of the fact that this magnetic state has to be degen-
erate with the corresponding time reversed state, i.e., the
state with all moments switched and the direction of a
charge current is reversed. The Green function for this
time reversed problem, G̃, is given by
(
G̃−1 −G−1

nm

)
ij
=
{
V nm
0 − V0 − B⃗j · σ⃗

}
δij . (5.20)

The difference between Eqs. (5.19) and (5.20) gives
(
G−1 − G̃−1

)
ij
= 2B⃗j · σ⃗ δij . (5.21)

By letting G̃ and G act on Eq. (5.21) from either side in
a symmetric fashion, we arrive at a sum rule for the local
Green functions

G̃ii −Gii =
∑

j

(
Gij B⃗j · σ⃗ G̃ji + G̃ij B⃗j · σ⃗ Gji

)
.

(5.22)

E. Further decomposition of Green function and their physical
interpretation

To be able to utilize the relation of Eq. (5.22) one can
further decompose the components of the Green function
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in Eq. (5.8) into terms that are either even or odd under
space reversal (Fransson et al., 2017). This can be done
by introducing Gηκ

ij where the first index η has been in-
troduced and explained after Eq. (5.8) while the second
index κ can be viewed as an indicator whether the terms
that are space reversal invariant and those are not, i.e, κ
can be 0 or 1. This decomposition of the Green function
can be summarised as,

Gη
ij = Gη0

ij +Gη1
ij (5.23)

where G00
ij and G⃗1

ij are time reversal invariant while G01
ij

and G⃗0
ij are not. Sometimes it is convenient to write the

x, y or z dependent components of the Green function as
vectors, i.e. G⃗κ. This decomposition also plays a useful
role in how the Green function behaves under site ex-
change, since in a real local basis (Fransson et al., 2017)
we have the expression

Gηκ
ij = (−1)κGηκ

ji
T
. (5.24)

In fact, it has been shown (Fransson et al., 2017) that
these two-index Green functions are decomposed in terms
that produce local charge-, G00 or spin-densities, G⃗0, and
charge-, G01, and spin-currents G⃗1, respectively, an as-
pect we will come back to.

We can express both the Green function and its time
reversed version as a superposition of these two index
decomposed Green functions, as

G = G00 +G01 + G⃗0 · σ⃗ + G⃗1 · σ⃗ (5.25)

G̃ = G00 −G01 − G⃗0 · σ⃗ + G⃗1 · σ⃗ . (5.26)

These decomposed Green functions are then inserted in
Eq. (5.22), which leads to the expression

G̃ii −Gii =
∑

j

{(
G00 +G01 + G⃗0 · σ⃗ + G⃗1 · σ⃗

)
ij
B⃗j · σ⃗

(
G00 −G01 − G⃗0 · σ⃗ + G⃗1 · σ⃗

)
ji

+
(
G00 −G01 − G⃗0 · σ⃗ + G⃗1 · σ⃗

)
ij
B⃗j · σ⃗

(
G00 +G01 + G⃗0 · σ⃗ + G⃗1 · σ⃗

)
ji

}
, (5.27)

which for the spin dependent and time reversal odd part, G⃗0
ii, of 1

2 (Gii − G̃ii) = G01
ii + G⃗0

ii · σ⃗ allows us to identify the
expression (Cardias et al., 2020)

G⃗0
ii =−

∑

j

{(
G00

ij B⃗j G
00
ji −G01

ij B⃗j G
01
ji

)
+ i
(
G⃗1

ij × B⃗j G
00
ji +G00

ij B⃗j × G⃗1
ji

)
− i
(
G⃗0

ij × B⃗j G
01
ji +G01

ij B⃗j × G⃗0
ji

)

+
(
G⃗1

ij · B⃗j G⃗
1
ji − G⃗0

ij · B⃗j G⃗
0
ji

)
−
((
G⃗1

ij × B⃗j

)
× G⃗1

ji −
(
G⃗0

ij × B⃗j

)
× G⃗0

ji

)}
. (5.28)

Note that the expression in Eq. (5.28) is general, despite
that we arrived at it from considerations of the Green
function of its normal and spin reversed state. Hence
Eq. (5.28) can be used also for small angle rotations of
moments8, which will be utilized in Subsection V.F.

To give a physical interpretation for the charge- and
spin-densities and charge- and spin-currents, it is useful
to study the decomposition of the Green function in real
space , G(r, r′; ε), into eight independent two indexed

8 Note that ∆V that we consider in Subsections V.D and V.E is not
the same as δV that stands for perturbations due to different kind
of infinitesimally small spin rotations in the rest of Subsection
V.

contributions, i.e., to consider the expression

G(r, r′; ε) =
∑

η∈{0,x,y,z}

1∑

κ=0

ση G
ηκ(r, r′; ε) , (5.29)

where σ0 represents the identity matrix. Note that the
second index, κ, of the Green function in Eq. (5.29), in-
dicates whether the function is even (0) or odd (1) under
the exchange of spatial coordinates (r ↔ r′)

Gηκ(r′, r; ε) = (−1)κGηκ(r, r′; ε) , (5.30)

where the κ decomposition is defined through

Gκ(r, r′; ε) =
G(r, r′; ε) + (−1)κG(r′, r; ε)

2
. (5.31)
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The meaning of this two-index decomposition can be
summarised in the equation

G(r, r′; ε) =
∑

η∈{0,x,y,z}

1∑

κ=0

(−1)κση G
ηκ(r′, r; ε) . (5.32)

The four different Green function, two scalar and two vec-
tor valued, as discussed above, all have a direct physical
property as in the local and non-relativistic limit they
give rise to charge and spin density (scalar and vector)
and charge and spin current densities (vector and tensor),
respectively, through the formulas

n(r) =− 1

π
ℑ lim

r′→r

∫
G00(r, r′; ε) dε (5.33)

m⃗(r) =− 1

π
ℑ lim

r′→r

∫
G⃗0(r, r′; ε) dε (5.34)

j(r) =− 1

π
ℜ lim

r′→r

∫
∇G01(r, r′; ε) dε (5.35)

q⃗(r) =− 1

π
ℜ lim

r′→r

∫
∇G⃗1(r, r′; ε) dε . (5.36)

These four independent density quantities are important
in the case of magnetic materials and is known to appear
in many other approaches such as in general Hartree-Fock
theory (Fukutome, 1981).

Expanding the Green function represented in real
space in a local basis (Eq. (4.9)) results in the expres-
sion

Gηκ(r, r′; ε) = ϕTi (r)G
ηκ
ij ϕj(r

′), (5.37)

where space is divided into regions around the atomic
sites, such that the site i is specified by the position r
and the vector of basis functions ϕi(r) is uniquely defined.
Then the condition of Eq. (5.30) leads to the relationship

Gηκ(r′, r; ε) = ϕTj (r
′)Gηκ

ji ϕi(r)

= (−1)κ ϕTi (r)G
ηκ
ij ϕj(r

′)

= (−1)κ
(
ϕj(r

′)T
{
Gηκ

ij

}T
ϕi(r)

)T

= (−1)κ ϕj(r
′)T

{
Gηκ

ij

}T
ϕi(r) , (5.38)

where the outer transpose is superfluous since it is acting
on a scalar. This leads to the relation for the Green
function matrices expanded in a real basis shown in
Eq. (5.24), which illustrates that the decomposed Green
functions that stem from currents, κ = 1, are asymmetric
in the direction of the propagation in contrast to those
that stem from densities, κ = 0.

F. Bilinear interaction parameters due to one-site spin
rotation

One can generally express the variation of the grand
potential as a series of contributions coming from differ-

ent orders of perturbation, as

δΩ = δΩone + δΩtwo + . . . . (5.39)

It is relevant to express both these two first terms in
the series in terms of bilinear interaction parameters. In
the case of one-site spin rotation one then has to ex-
press the one-site grand potential variation, δΩone, in
terms of intersite Green functions, which corresponds
to inserting Eq. (5.17) into Eq. (5.9) where Eq. (5.17)
is given with the onsite Green function, G⃗ii. However,
it is only the time reversal odd spin-dependent Green
function, G⃗0

ii, that will give rise to a non-zero product
TrLBiG⃗ii in Eq. (5.17), where G⃗0

ii in turn can be ex-
pressed in terms of intersite Green functions due to the
sum rule of Eq. (5.28). Hence, one can express the first
order term as a superposition of different pair interac-
tions, using the expression

δΩone =
2

π
ℑ
∑

i

δe⃗i ·
∫

TrLBi G⃗
0
ii(ε) dε =

= 2
∑

<ij>

δe⃗i · J(1)ij · e⃗j + δΩone
loc , (5.40)

where the tensor J(1)ij has the same form as given by Eqs.
(3.13)-(3.16) with the exchange parameter J (1)

ij , the DM
vector D⃗(1

ij , and the symmetric anisotropic interaction
tensor A1

ij . Note that comparing Eq. (5.40) to Eq. (3.20)
allows us to identify the exchange parameter J (1)

ij from
the expression

J
(1)
ij =− 2

π
ℑ
∫

TrL

(
BiG

00
ij Bj G

00
ji −BiG

01
ij Bj G

01
ji

+
∑

ν

BiG
ν0
ij Bj G

ν0
ji −

∑

ν

BiG
ν1
ij Bj G

ν1
ji

)
dε,

(5.41)

while the components of the vector D⃗(1)
ij and the tensor

A(1)
ij are given from the equation

D
(1)ν
ij = − 4

π
ℜ
∫

TrL
(
BiG

00
ij BjG

ν1
ji −BiG

01
ij Bj G

ν0
ji

)
dε

(5.42)
and

A
(1)νµ
ij = − 4

π
ℑ
∫

TrL

(
BiG

ν1
ij BjG

µ1
ji −BiG

ν0
ij BjG

µ0
ji

)
dε ,

(5.43)
respectively, where µ and ν can be x, y or z. Note that
the index (1) in J (1)

ij , D⃗(1)
ij and A(1)

ij refers to the fact that
these parameters are derived from one-site spin rotation.
We also note that the prefactor 2 in the second line in
Eq. 5.40 arises for the same reason as why the one-site
term enters twice in Eq. (3.6). The second term in Eq.
5.40 is given by the formula

δΩone
loc =

∑

i

δe⃗i · J(1)ii · e⃗i, (5.44)
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which may play roles for the magnetic anisotropy
(Solovyev et al., 1995) or the longitudinal exchange cou-
plings (Shallcross et al., 2005), i.e., we have arrived at
a more general model, beyond what is usually consid-
ered in bilinear spin models, as Eq. (3.20). However,
in the collinear–non-relativistic limit, this term can be
shown to be cancelled by a similar local term in the sec-
ond order interaction (Liechtenstein et al., 1987), which
we will come back to in Subsection V.I. Nevertheless,
considering the intersite terms in the second line in Eq.
(5.40), a local mapping can always be made with the
Heisenberg exchange parameter Jij = J

(1)
ij , the DM vec-

tor D⃗ij = D⃗
(1
ij and the symmetric anisotropic interaction

tensor Aij = A(1)
ij , around the magnetic order of the ref-

erence state.

G. Bilinear interaction parameters due to two-site spin
rotations

Whenever the first order term vanishes the second or-
der perturbation plays a role. This is for instance the
case for a collinear state in the absence of SOC where
the first order contribution is identically zero. This term
might also be of importance when one aims to calculate
collective excitations, i.e. spin waves, in linear spin wave
theory, where the spin Hamiltonian has to be bilinear in
the variations of the magnetic moments (Toth and Lake,
2015). The second order term in Eq. (5.7) can be writ-
ten as δN two analogously to δNone given by Eq. (5.16).
Inserting δN two into Eq. (5.9) leads to the grand poten-
tial variation δΩtwo, which corresponds to simultaneous
rotations at site i and j as illustrated in Fig. 6 and is
naturally bilinear. This term also contains a local term,
δΩtwo

loc , that again we will ignore. Then one can obtain
that

δΩtwo − δΩtwo
loc =

= − 1

2π

∑

<ij>

∫
ℑTrLσ δe⃗i · σ⃗ BiGij δe⃗j · σ⃗ Bj Gji dε .

(5.45)

Note that Fig. 6 shows a collinear (ferromagnetic) case,
but Eq. (5.45) also holds for the general non-collinear
case. One should note that Eq. (5.45) can be simplified
in a similar fashion as the first order contributions; first
decompose the Green functions and then sum out the
spin degrees of freedom after manipulating the matrix
product by means of Pauli algebra. A comparison with
Eq. (3.21) leads to the expression

δΩtwo − δΩtwo
loc =

∑

<ij>

δe⃗i · J(2)ij · δe⃗j , (5.46)

where J (2)
ij is defined as

J
(2)
ij =− 2

π
ℑ
∫

TrL

(
BiG

00
ij Bj G

00
ji +BiG

01
ij Bj G

01
ji

−
∑

ν

BiG
ν0
ij Bj G

ν0
ji −

∑

ν

BiG
ν1
ij Bj G

ν1
ji

)
dε ,

(5.47)

while the components of D⃗(2)
ij and A(2)

ij are given from
the expression

D
(2)ν
ij = − 4

π
ℜ
∫

TrL
(
BiG

00
ij Bj G

ν1
ji +BiG

01
ij Bj G

ν0
ji

)
dε

(5.48)
and

A
(2)νµ
ij = − 4

π
ℑ
∫

TrL

(
BiG

ν1
ij BjG

µ1
ji +BiG

ν0
ij BjG

µ0
ji

)
dε ,

(5.49)
respectively, where the superscript (2) in J

(2)
ij , D⃗(2)

ij and
A(2)

ij refers to the fact that these parameters are derived
from two-site spin rotations. This is an alternative map-
ping since J(2)ij ̸= J(1)ij , i.e., the mapping procedures based
on the one- and two-site spin rotations lead to different
results in general. Their comparison and physical inter-
pretations are discussed in Subsection V.I.

H. Explicit symmetric or asymmetric interactions

With a relation in hand for the decomposed Green
function we observe that the interactions are explicitly
determined as symmetric or asymmetric. For example
for the Dzyaloshinskii-Moryia interaction of Eq. (5.42)
we can, since the trace of the transpose of a matrix is
equal to the trace of the matrix and the fact that the
trace of a product is invariant under cyclic permutation
of the factors, derive its asymmetric property explicitly
due to the property of Eq. (5.24) as follows,

D
(1)ν
ij = − 4

π
ℜ
∫

TrL
(
BiG

00
ij BjG

ν1
ji −BiG

01
ij BjG

ν0
ji

)T
dε

=
4

π
ℜ
∫

TrL
(
BjG

ν1
ji BiG

00
ij −BjG

ν0
ji BiG

01
ij

)
dε

= −D(1)ν
ji . (5.50)

In general we can conclude that pair interaction terms
that include an even number of asymmetric Green func-
tions become symmetric, while those that include an odd
number are asymmetric. Then it is clear that it is only
the Dzyaloshinskii-Moriya interaction that is asymmet-
ric among the bilinear interactions of Eqs. (5.41)–(5.43).
Note that the argumentation presented here holds for
D

(2)ν
ij (see Eq. (5.48)) as well.
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I. Comparison the interaction parameters obtained from one-
and two-site variations

Since we have reformulated the first order interactions
in a bilinear form (Eq. (5.41)), it can be directly com-
pared with the second order interactions that are nat-
urally bilinear (Eq. (5.47)). There are clear differences
in the two expressions, which might not be very sur-
prising as they reflect different quantities, the first order
interaction describes the local torques on the magnetic
moments while the second order interaction mainly de-
scribe the interaction of rotated moments. However, in
the LKAG limit, i.e. with collinear order and negligible
spin-orbit coupling, it has been observed (Liechtenstein
et al., 1984) that they actually give rise to identical in-
teraction parameters. When studying the details of this
limit it turns out that this is slightly fortuitous. The
mapping to the spin Hamiltonian HT based on one-site
spin rotation, resulted in the exchange parameters J (1)

ij ,
D⃗(1) and A(1) while a similar mapping based on two-site
spin variations led to the parameters J (2)

ij , D⃗(2) and A(2).
In the LKAG limit there is no spin and charge current
present and we can choose a global coordinate system in
which the non-perturbed spin-arrangement will all point
to the z direction and one has the freedom to restrict the
small rotations to the xz plane.

Let us start with the exchange parameters obtained
from two-site variations. In this case we can see that the
J
(2)
ij parameter, defined by Eq. (5.47), is reduced to the

expression

J
(2)
ij = − 2

π
ℑ
∫

TrL

(
BiG

00
ij Bj G

00
ji −BiG

z0
ij Bj G

z0
ji

)
dε .

(5.51)
In the LKAG limit, D⃗(2), defined by Eq. (5.48), van-
ishes and the symmetric anisotropic interaction tensor
A(2), defined by Eq. (5.49), will only have one non-
vanishing component, A(2)zz

ij with a collinear magnetic
order along the z-direction. However since the variation
δezi = −(δθi)

2/2 is quadratic in the small rotation angle
δθi this term gives a variation of fourth and not second
order in the rotation angles 9. This means that only
the first Heisenberg term of Eq. (5.46) is relevant, i.e. of
second order in the variation angle. We introduce the
notation G↑

ij = G00
ij + Gz0

ij and G↓
ij = G00

ij − Gz0
ij , then

the LKAG exchange expression will be given in its well-
known form:

J
(2)
ij = − 2

π
ℑ
∫

TrL

(
BiG

↑
ij Bj G

↓
ji

)
dε . (5.52)

We note here that substituting Eq. (4.7) into Eq. (5.52)
and integrating over energy one arrives at an expression

9 When δθi = −δθj = δθ then δezi δe
z
j is proportional to (δθ)4.

which is equivalent to Eq. (2.25) (Antropov et al., 1997).
We also note that the leading term in the corresponding
variation in the grand potential becomes

δΩtwo ≈ 1

2

∑

ij

J
(2)
ij δθiδθj , (5.53)

i.e., only the onsite i-i term will have a factor 1/2 and
the intersite terms will be given as shown in Eq. (3.12).

Next, we focus on the parameters obtained from one-
site variation in the absence of SOC. For a collinear order
along z one only has to deal with the component δezi of
the variation and the second line in Eq. (5.40) is reduced
to the expression

δΩone ≈ −
∑

ij

(
J
(1)
ij +A

(1)zz
ij

)
(δθi)

2
/2. (5.54)

In the non-relativistic limit a global spin rotation, i.e. all
δθi = δθ, is always a symmetry operation, which is now
seen to appear as a non-trivial cancellation of the first
and second order interactions from the consideration that

δΩ = δΩone + δΩtwo + . . . ≈

≈ −1

2

∑

ij

(
J
(1)
ij +A

(1)zz
ij − J

(2)
ij

)
(δθ)

2
= 0, (5.55)

that are justified by inspection of Eqs. (5.40) and (5.51),
considering the vanishing intersite Green functions G⃗1 =
G01 = 0 in the LKAG limit. Another case when there is
a cancellation between first and second order is the case
of rotation of the moment at a single site i = 0. Then we
note that in the LKAG limit the sum over all intersite
exchange parameters, J0 =

∑
<0i> J

(2)
0i , is determined

by a cancellation (Liechtenstein et al., 1987) of δΩone
loc

and δΩtwo
loc in the total variation of the grand potential

resulting in the expression10

δΩone + δΩtwo
loc =

= − 2

π
ℑ
∫

TrL

(
B0

G↑
00 −G↓

00

2

(δθ0)
2

2
+

+
1

2
B0G

↑
00B0G

↓
00 (δθ0)

2
)
dε =

=−
∑

<0i>

2
(
J
(1)
0i +A

(1)zz
0i

) (δθ0)
2

2
=

=−
∑

<0i>

J
(2)
0i (δθ0)

2 = −J0 (δθ0)2 . (5.56)

It is also worth noting that for a collinear state with
SOC included, the symmetric interactions still vanish

10 Note that the expressions in the second and the third line of Eq.
(5.56) are proportional to − (δθ0)2. This leads to a non-trivial
expression for J0 depending exclusively on onsite Green func-
tions, which can be utilized in testing of code implementations.
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in first order while the asymmetric DM interaction will
be finite in absence of inversion symmetry. This non-
vanishing torque leads to instabilities of collinear or-
der, e.g. ferromagnetic states that are unstable towards
cycloidal order (Mankovsky and Ebert, 2017) or anti-
ferromagnetic order that are unstable towards tilting
which might give rise to a weak ferromagnetic order
(Mazurenko and Anisimov, 2005; Solovyev et al., 1996a).

Finally, we note the components of the DM vectors
D⃗

(1)
ij and D⃗(2)

ij are sums of two independent terms. Both
the terms are mediated by products of Green functions
such that one factor is density related and the other cur-
rent related, as indicated by the 0 and 1 site exchange
symmetry indices κ defined in 5.24, in Eqs. (5.42)–(5.48).
This implies that for the trivial topology with collinear
spin arrangment the DM term will vanish in absence of
SOC as then the current contributions are prohibited,
while for general non-collinear order these interactions
are non-vanishing even in absence of SOC. For the sec-
ond term of the symmetric anisotropic interaction pa-
rameters A(1)

ij and A(2)
ij defined by Eqs. (5.43)–(5.49) is

mediated by density related spin polarised Green func-
tions that exist for all magnetic order even in absence
of SOC.This term was investigated and discussed as an
anisotropy anomaly in Ref. Lounis and Dederichs, 2010.

We end this subsection with a comment for practical
reasons, we will in Section VII give numerical examples
of exchange interactions that are mostly based on the
equations obtained from the two-site energy variations.
An exception is for the results in Fig. 13, where the first
derivative of the grand potential with respect to angle is
shown.

J. Local versus global spin models

We make a comment here on the distinction between
local and global spin models proposed by Ref. Streib
et al., 2021. Here we have focused on spin models that
are obtained within a generalization of the LKAG ap-
proach. This approach is still based on the fact that there
is a perturbation that consists of small rotations of lo-
cal moments in an already magnetic reference state. The
generalization of LKAG is that the magnetic state is now
allowed to have any non-collinear order and that relativis-
tic effects, i.e. mainly spin-orbit coupling, are included,
but only in a weak enough limit such that the local mo-
ments are still well defined as spin moments. In such an
approach the reference state will incorporate composed
Green functions, G⃗0, G⃗1 and G01, that are directly de-
pendent on the magnetic order. Hence the mapped spin
model is only valid locally on the energy vs. configuration
curve, i.e. it is only relevant for small magnetic variations
around the reference state. This is in contrast to the con-
cept of global spin models that are supposed to be valid
for all magnetically ordered states and the full curve of

energy vs. configuration.

The fact that the models are local implies that they
do not have to fulfill global symmetry requirements. A
magnetic state dependence of the interaction coefficients
arises naturally for local models due to their dependence
on the reference state (Cardias et al., 2020; Streib et al.,
2021). If the state dependence is taken into account for
a local spin model, all global symmetries are of course
recovered.

One way to avoid the reference state dependence is to
start with a non-magnetic reference state for which the
Green functions of course are independent of any mag-
netic state. In this approach (Brinker et al., 2019, 2020)
there will be extensions of the formulas beyond bilinear
interactions, which involve e.g. biquadratic effects with
coupling terms like

∑
<ij> J BQ

ij (S⃗i · S⃗j)
2 and generaliza-

tions of it, i.e.,
∑

<ijkl> J Ring
ijkl (S⃗i · S⃗j)(S⃗k · S⃗l), where

i, j, k, l are site indices. In such an approach the per-
turbations are proportional to the full spin dependent
potentials and these larger perturbations in the series of
Eq. (5.7) will in general be slowly convergent so higher
orders play a role.

These two approaches, with non-magnetic respectively
magnetic reference states, are in a sense complimentary.
While one approach includes the effects in terms of multi-
spin interactions (Drautz and Fähnle, 2004; Mankovsky
et al., 2020b) the other approach includes the same ef-
fects within the composite Green functions mediating the
interaction. The first approach will have a large validity
range, in favorable cases maybe even global, but will be
less accurate for any given magnetic state, while the sec-
ond approach can calculate the interaction parameters
accurately for any general magnetic order but only for
one local magnetic state at a time.

It is also important to realize that the existence of
global spin models for itinerant-electron systems is not
guaranteed, since there is no way to prove that the mag-
netic degrees of freedom can be globally described by a
Hamiltonian dependent solely on spin operators. At the
same time, at least for small frequencies and small wave-
vectors, any ferromagnetic system should be described
by the macroscopic Landau-Lifshitz equation (Aharoni,
2000; Akhiezer et al., 1968; Vonsovskii, 1974). This
means that at least the expression for the spin-wave stiff-
ness constant, based on small variations from the ferro-
magnetic ground state, is always meaningful (Liechten-
stein et al., 1984). Moreover, within the local approxi-
mations such as dynamical mean-field theory (see Sub-
section V.K) the expression for the spin-wave stiffness
constant derived from magnetic force theorem becomes
exact (Lichtenstein and Katsnelson, 2001).
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K. Exchange interactions in correlated system

In order to calculate the effective exchange interac-
tion parameters for correlated magnetic systems the Dy-
namical Mean-Field Theory (DMFT) approach has been
explored, with a local frequency dependent self energy.
The implementation of DMFT into DFT-based first-
principle calculations (Kotliar et al., 2006; Lichtenstein
and Katsnelson, 1998) is based on the mapping to multi-
band Hubbard-like model. It assumes knowledge of ef-
fective parameters characterising local Coulomb interac-
tions (the problem of Hubbard U). The state-of-the-art
way includes taking into account screening effects via the
so-called constrained Random Phase Approximation (c-
RPA) (Aryasetiawan et al., 2004). Within this approach
no arbitrary parameters are introduced and calculations
remain fully first-principles. Note that in the early days
of this method, U was frequently used as a fitting param-
eter. The historical developments of the method and its
relations to the previous LDA+U formalism can be found
in Ref.Kotliar et al., 2006. What is important here is the
statement that in principle DFT and DMFT can be com-
bined in a fully ab-initio way. The remaining questions
on the applicability of c-RPA for realistic situations was
recently analysed in details in Ref. van Loon et al., 2021

First of all, let us prove the analog of the local force
theorem in the DMFT-like theory (Katsnelson and Licht-
enstein, 2000). Instead of working with the thermody-
namic potential Ω as a density functional we have to
start from its general expression in terms of an exact
Green function (Kotliar et al., 2006; Luttinger and Ward,
1960), i.e.

Ω = Ωsp − Ωdc

Ωsp = −Tr
{
ln
[
Σ−G−1

0

]}

Ωdc = TrΣG− Φ (5.57)

where G,G0 and Σ are an exact Green function, its bare
value and self-energy, correspondingly; Φ is the Lut-
tinger generating functional (sum of the all connected
skeleton diagrams without free legs), Tr = TrωiLσ is
the sum over Matsubara frequencies Trω... = T

∑
ω
...,

ω = πT (2n+ 1) , n = 0,±1, ..., and T is the temper-
ature. Furthermore, iLσ are site numbers (i), orbital
quantum numbers (L = l,m) and spin projections σ,
correspondingly. Both Green functions are related via
the Dyson equation:

G−1 = G−1
0 − Σ (5.58)

with the important variational identity

δΦ = TrΣδG. (5.59)

We represent the expression Eq. (5.57) as a difference of
“single particle” (sp) and “double counted” (dc) terms as

it is usual in the density functional theory. When ne-
glecting the quasiparticle damping, Ωsp is nothing but
the thermodynamic potential of ”free” fermions but with
exact quasiparticle energies. Suppose we change the ex-
ternal potential, for example, by small spin rotations.
Then the variation of the thermodynamic potential can
be written as

δΩ = δ∗Ωsp + δ1Ωsp − δΩdc, (5.60)

where δ∗ is the variation without taking into account the
change of the “self-consistent potential” (i.e. self energy)
and δ1 is the variation due to this change of Σ. Tak-
ing into account Eq. (5.59) it can be easily shown (cf.
Ref. Kotliar et al., 2006 and Luttinger and Ward, 1960)
that one may identify the expression

δ1Ωsp = δΩdc = TrGδΣ (5.61)

and hence

δΩ = δ∗Ωsp = −δ∗Tr ln
[
Σ−G−1

0

]
, (5.62)

which is an analog of the “local force theorem” in the den-
sity functional theory (Andersen et al., 1980; Liechten-
stein et al., 1984; Mackintosh and Andersen, 1980; Meth-
fessel and Kübler, 1982).

In the DMFT scheme, the self energy is local, i.e., it
is diagonal in site indices. Let us write the spin-matrix
structure of the self energy and Green function in the
following form

Σi = Σc
i + Σ⃗s

i σ⃗

Gij = Gc
ij + G⃗s

ij σ⃗ (5.63)

where Σ
(c,s)
i = 1

2

(
Σ↑

i ± Σ↓
i

)
, Σ⃗s

i = Σs
i e⃗i, with e⃗i be-

ing the unit vector in the direction of effective spin-
dependent potential on site i and in the local moment
approximation not depending on frequency (discussed
furter in Section IX), Gc

ij = 1
2Trσ(Gij) and G⃗s

ij =
1
2Trσ(Gij σ⃗).

Then following the general idea of infinitesimal rota-
tion of local magnetic potential/self-energy the effective
exchange interactions in correlated magnetic system can
be obtained by rewriting all equations in this section
with a substitution of Σs

i for Bi, leading to the expres-
sion (Katsnelson and Lichtenstein, 2000)

Jij = 2TrωL

(
Σs

iG
↑
ijΣ

s
jG

↓
ji

)
, (5.64)

to be compared with Eq. (5.15). In the strong cou-
pling limit for half filled Hubbard model this expres-
sion reduced to the standard Anderson kinetic exchange
t2ij/U (Stepanov et al., 2022a)



25

VI. BEYOND KINETIC EXCHANGE

Let us now return to a general discussion of ex-
change interactions within the, formally rigorous, scheme
of time-dependent density functional presented in Sec-
tion II. In this approach, the whole dynamics of the
many-electron system is described in terms of the time-
dependent one-particle density matrix ραβ (r, r,t) =〈
η+β (r, t) ηα (r, t)

〉
, where ηα (r, t) is the annihilation op-

erator for the electron at the point r with spin projec-
tion α at the instant time t. Equivalently, one can intro-
duce the charge n (r,t) = TrLσρ (r, r, t) and magnetiza-
tion m⃗ (r,t) = TrLσρ (r, r, t) σ⃗ densities (also obtained in
the time-independent case from Eqs. (2.11) and (2.12)).
In the adiabatic approximation, the spin and charge den-
sities are expressed in terms of Kohn-Sham spinor eigen-
fuctions ψνα (r,t) and the corresponding eigenenergies
ϵν (t) satisfying the Kohn-Sham equation of Eqs. (2.1)
and (2.14). The Kohn-Sham wave functions and the cor-
responding energies depend here on time due to the time-
dependence of the densities and external field (the latter
is supposed to be slowly varying in time in comparison
to the characteristic electron energies).

Very importantly, even in the local-density approxima-
tion there is a nonlocality in the kinetic term in the total
density functional, via nonlocality of the kinetic-energy
term T [ρ̂], due to nonlocality of Kohn-Sham states. The
total effective magnetic field can be represented as

B⃗tot(r) = − δT

δm⃗(r)
− δExc

δm⃗(r)
+ B⃗ext(r), (6.1)

and the first term in the r.h.s. of Eq. (6.1) depends on
m⃗(r′) at r′ ̸= r even if the exchange-correlation term
B⃗xc(r) is local. This leads to exchange interactions, i.e.,
a connection between magnetization direction in differ-
ent points of space. In this sense, exchange parameters
discussed until now all correspond to kinetic, or indirect,
exchange. Note that despite GW-approach formally goes
beyond locality it deals with the nonlocality in charge
density only and not in spin density. This means that
within GW theory one has only kinetic exchange as well.

As will be discussed in Section VII, the whole expe-
rience of calculations of exchange parameters via the
LKAG formula, or its extensions, is that for many classes
of systems it reproduces experimental data with good ac-
curacy. This means that in most of the cases indirect,
that is, a kinetic contribution, to exchange interactions
is dominant. There is nevertheless a natural question as
to what is exactly neglected in this approach (Katsnelson
and Antropov, 2003). To answer this question one needs
to go beyond the local spin-density approximation and
study the nonlocality of B⃗xc[m⃗].

There are many works on a general analysis of non-
collinear magnetism within density functional without
local spin-density approximation (Bulik et al., 2013;

Capelle and Gyorffy, 2003; Capelle et al., 2001; Eich and
Gross, 2013; Eich et al., 2013; Heine and Samson, 1983;
Katsnelson and Antropov, 2003; Kleinman, 1999; Kübler
et al., 1988; Kübler, 2017; Nordström and Singh, 1996;
Peralta et al., 2007; Scalmani and Frisch, 2012; Sharma
et al., 2007, 2018; Ullrich, 2018). Here we focus only on
one aspect of this activity, namely, the applicability of
the local spin-density approximation to the calculations
of exchange parameters. To study this issue we need
to investigate the origin of nonlocality in the exchange-
correlation functionals.

At the construction of the local spin-density approxi-
mation, one starts with the calculation of the exchange-
correlation energy for a homogeneous electron gas, from
a given charge and spin density. A natural step in study-
ing its nonlocality is to replace this reference system
by the simplest nonuniform state, namely, the electron
gas in a spin-spiral state. This approach was suggested
by Kleinman (Kleinman, 1999) at the level of the Fock
approximation and by Katsnelson and Antropov (Kat-
snelson and Antropov, 2003) at the level of the random
phase approximation (RPA). The latter was developed
further and used in electronic structure calculations, e.g.
as published in Refs. Bulik et al., 2013; Eich and Gross,
2013; Eich et al., 2013; Peralta et al., 2007; Scalmani and
Frisch, 2012; Sharma et al., 2007, 2018; and Ullrich, 2018.
To illustrate the basic idea and some simple estimations
we will follow here the presentation of Ref. Katsnelson
and Antropov, 2003.

Let us consider a homogeneous electron gas in the spin-
density-wave (SDW) state. The latter is characterized
by anomalous averages sp =

〈
c+p+Q/2↑cp−Q/2↓

〉
where

c+pσ,cpσ are the creation and annihilation operators of
electrons with momentum p and spin projection σ. To
consider a spin-density wave, it is convenient to use a
spinor representation of the creation and annihilation op-
erators, similar to the Gorkov-Nambu formalism in the
theory of superconductivity (Schrieffer, 1999; Vonsovsky
et al., 1982). To this end, we introduce the spinor oper-
ator ηp = (c+p+Q/2↑, cp−Q/2↓). Then the Hamiltonian of
the homogeneous electron gas takes the form

H =
∑

p

ηphpηp+
1

2

∑

q̸=0

∑

pp′

vc (q)
(
η+p+qηp

) (
η+p′−qηp′

)
,

(6.2)
where vc (q) = 4πe2/q2V, V is a volume, hp = θp +
τpσz −∆pσx and

θp =
1

2

(
εp+Q/2 + εp−Q/2

)
= p2/2 +Q2/8− µ,

τp =
1

2

(
εp+Q/2 − εp−Q/2

)
= pQ/2, (6.3)

where εp = p2/2−µ is the energy of the free electron and
2∆p is the antiferromagnetic gap, related to the forma-
tion of the spin-density wave. Note that in this Section
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we use the units ℏ = m = 1. In the Fock approximation
the gap equals to

∆p =
∑

p′

vc(p− p′)sp′ . (6.4)

To simplify the consideration as much as possible one can
replace vc by and effective Stoner exchange splitting I =(
V ↑
exc − V ↓

exc

)
/ (n↑ − n↓) , where V σ

exc = ∂ (nεexc) /∂nσ.
Then, Eq. (6.4) can be replaced by ∆ = I (n↑ − n↓) /2,
where ∆ does not depend on p.

To calculate the correlation contribution to the energy
of the homogeneous electron gas one can restrict oneself
to the simplest meaningful approximation, namely, the
RPA corresponding to the summation of all “bubble” di-
agrams (Giuliani and Vignale, 2005; Mahan, 2000). The
“bare” Green function in the Matsubara representation
has the form

G (iωm,p) =
1

iωm − hp
=
iωm − θp + τpσz −∆pσx(
iωm − ξp↑

) (
iωm − ξp↓

) ,

(6.5)
where ξp↑,↓ = θp ∓ Ep is a quasiparticle spectrum for
SDW with Ep =

√
τ2p +∆2. From Eq. (6.5) one can find

the occupation number matrix

2Np =

(
1 +

τpσz −∆σx
Ep

)
fp↑+

(
1− τpσz −∆σx

Ep

)
fp↓,

(6.6)
where fpσ = f (ξpσ) is a Fermi function. Then for the
Fock contribution to the exchange-correlation energy one
has

EFock = −1

2

∑

pp′

vc (p− p′)Tr [N(p)N(p′)]

= E
(1)
Fock + E

(2)
Fock , (6.7)

where

E
(1)
Fock = −1

4

∑

pp′σ

vc (p− p′) fpσfp′σ

(
1 +

τpτp′ +∆2

EpEp′

)
,

E
(2)
Fock = −1

2

∑

pp′

vc (p− p′) fp↑fp′↓

(
1− τpτp′ +∆2

EpEp′

)
.

(6.8)

Further, one may consider the case of small Q only, which
is sufficient for the calculation of the contributions to
the spin-wave stiffness constant. The RPA-based calcu-
lations without this restriction were first performed in
Ref. Eich et al., 2013. Expansion of Eq. (6.7) up to Q2

leads to the corrections of the chemical potential (from
the conservation of the number of particles)

δµ̃ = µ̃Q − µ̃Q=0 = − Q2

8F (n↑, n↓)
(6.9)

and to the total energy

EFock

V
= − e2

8π3

{
(
p4F↑ + p4F↓

)

−Q2

[(
1

2F
− 2

3

)(
p2F↑ + p2F↓

)
+

(pF↑ + pF↓)
2

12F 2

]}
.

(6.10)

where F = (pF↑ + pF↓)I(n↑, n↓)/2π2 is a dimensionless
Stoner enhancement factor, pFσ = (6π2nσ)

1/3.
To treat the correlation effects, one may use RPA

and sum up the bubble diagrams (Giuliani and Vignale,
2005; Mahan, 2000). The corresponding expression is ex-
pressed in terms of the empty-loop polarization operator

Π(iω,q) = −Tr
∑

p

T
∑

εn

G (p+ q, iεn + iωn)G (p, iεn) .

(6.11)
The corresponding contribution to the Ω-potential equals

Ωcorr =
∑

q

∞∫

−∞

dω

4π

{
ln

[
1 + vc (q)Π (iω,q)

1 + vc (q)ΠQ=0 (iω,q)

]

− vc (q) [Π (iω,q)−ΠQ=0 (iω,q)]

}
, (6.12)

where only Q-dependent part of the correlation energy
was considered. Substituting Eq. (6.5) into Eq. (6.11)
one finds

Π(iω,q) =
1

2

∑

p,σ

(
1 +

τpτp+q +∆2

EpEp+q

)
fpσ − fp+qσ

iω + ξpqσ − ξpσ

+ 2
∑

p

(
1− τpτp+q +∆2

EpEp+q

)
fp↑ − fp+q↓

iω + ξp+q↓ − ξp↑
. (6.13)

The corresponding exchange-correlation addition to the
spin wave spectrum at finite Q can be written as

δωQ =
4

M
[ESDW (Q)− ESDW (0)] , (6.14)

where ESDW (Q) is the total energy of the spin spiral and
M is the magnetic moment of the unit cell.

The next step is to restore the expression of
the exchange-correlation functional corresponding to
Eq. (6.14). The simplest rotational invariant expression
has the form

Eexc =

∫
dr {nεexc (n↑, n↓) + λ (n↑, n↓)D} , (6.15)

where D = (∇αeβ) (∇αeβ) = (∇θ)2 + sin2 θ (∇φ)2 is the
rotational invariant of lowest order. Here e⃗ = m⃗/ |m⃗| ≡
(sin θ cosφ, sin θ sinφ, cos θ) . More detailed analysis of
the functional dependence in the general density func-
tional can be found in Refs. Bulik et al., 2013; Eich and
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Gross, 2013; Eich et al., 2013; Scalmani and Frisch, 2012;
Sharma et al., 2007; and Ullrich, 2018. Based on the anal-
ysis of Fock and RPA expressions for the total energy of
the spin-spiral state, the following expression for λ was
suggested in Ref. Katsnelson and Antropov, 2003:

λ (n↑, n↓) =− e2

16π2

(
1

F
− 4

3

)(
V ↑
excpF↑ − V ↓

excpF↓
)

+
e2

96π3F 2
. (6.16)

To evaluate the importance of the non-locality of the
exchange-correlation functional for the exchange param-
eters one can calculate the corresponding contribution to
the spin-wave stiffness constant, which can be expressed
as

D =
4

M

[
lim
Q→0

ESDW (Q)− ESDW (0)

Q2

]
. (6.17)

Namely, Eq. (6.15) gives:

δD =
4

M

∫
drλ (n↑, n↓) , (6.18)

with integration over the whole elementary cell. The
numerical calculations for the case of Fe and Ni, per-
formed in Ref. Katsnelson and Antropov, 2003, led to
the following results: whereas the standard local-spin-
density approximation gave the values 239 meVÅ2 and
692 meVÅ2 for D in bcc Fe and fcc Ni, respectively, the
corrections, Eq. (6.18), for δD were equal to 13 meVÅ2

and 45 meVÅ2, respectively. Hence, the total D became
253 meVÅ2 and 735 meVÅ2 for bcc Fe and fcc Ni, re-
spectively. Thus, for these materials, that serve as im-
portant systems for testing theoretical models, the indi-
rect (kinetic) contributions are much larger than the di-
rect contributions from the non-locality of the exchange-
correlation functional.

In the model (e.g., tight-binding) approach direct ex-
change enters the Hamiltonian straightforwardly, via the
matrix elements

Jij = ⟨ij |v| ji⟩

=

∫
drdr′ψ∗

i (r)ψ
∗
j (r

′)v (r− r′)ψj(r)ψi(r
′), (6.19)

where v (r− r′) is the effective potential of electron-
electron interaction (in the simplest approximation, just
Coulomb interaction). In most of the cases, this contri-
bution is supposed to be irrelevant but in some cases it is
claimed that this interaction is important and can even
change the calculated magnetic ground state (e.g., trans-
form a spin-spiral state into a ferromagnet). Examples
include single-side hydrogenated graphene (Mazurenko
et al., 2016) and half-metallic CrO2 (Solovyev et al.,
2015). The direct exchange interaction is also rel-
evant in single-side fluorinated graphene (Mazurenko

et al., 2016) and fourth-group adatoms at the surface of
Si(111) (Badrtdinov et al., 2016) and SiC(0001) (Badrt-
dinov et al., 2018). Whereas sp-bonded magnets may be
considered as an exotic exception, the example of CrO2

demonstrates that the issue is not completely clear even
for conventional 3d-electron magnets and requires a care-
ful investigation.

VII. NUMERICAL EXAMPLES OF INTERATOMIC
EXCHANGE

In this section we provide examples of numerical cal-
culations of interatomic exchange interactions as well as
magnetic moments, for several classes of materials. Re-
views of theoretical results of magnetic materials have
been published before, albeit with different focus than
the present article. However, it is noteworthy that in
Refs. Eriksson et al., 2017; Kübler, 2017; and Mohn,
2006, a comparison between experiment and theory re-
garding bulk magnetic moments was made, with some of
the results shown in Fig. 2. In general, DFT calculations
reproduce experimental magnetic moments with an er-
ror that seldom exceeds 5%, in particular for transition
metal elements and their intermetallic compounds. Since
reviews of magnetic moments have been published be-
fore, we focus in this section on results of the interatomic
exchange. The work in Ref. Kübler, 2017 also reviews re-
sults of interlayer exchange interactions of magnetic mul-
tilayers, as well as magnon dispersion from spin-spiral
calculations (Halilov et al., 1998; Jakobsson et al., 2015;
Kübler et al., 1988; Sandratskii, 1991, 1998; Sandratskii
and Bruno, 2002). Results for thin films were reviewed
in Ref. Etz et al., 2015, where magnon measurements
based on spin-polarized electron energy loss spectroscopy
(SPEELS) were compared to adiabatic magnon spectra
evaluated from explicit calculations of interatomic ex-
change. Finally, we note that in Ref. Sato et al., 2010
a full review was published of the magnetic properties,
including explicit calculations of interatomic exchange,
of diluted magnetic semiconductors. We also note here
that the most direct comparison between experiment and
theory of interatomic exchange interactions is likely to be
the magnon dispersion. This is in contrast to, e.g., es-
timates of the Curie temperature, that in principle also
reflects the strength of the interatomic exchange. How-
ever, most of the DFT calculations of interatomic ex-
change are carried out at low (in fact zero) temperature,
which challenges a comparison for results at finite tem-
perature. If the exchange interaction was independent
on temperature (or magnetic configuration), a compari-
son to experimental results at finite temperature, such as
the ordering temperature, would be unproblematic. Al-
though most materials do have interatomic exchange that
depends on temperature, there have been progress also
in calculations of configuration dependent exchange, and
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magnetic properties at finite temperature, as discussed in
Section V. Before entering details of materials specific re-
sults of interatomic exchange, we note that since we give
examples from previously published works, there will be
a mixture of units presented. In particular, energy is in
some works given in eV and sometimes in Ry. We have
however been consistent with the definition of the spin
Hamiltonian introduced in Section I, which means that
a negative value of the interatomic exchange corresponds
to a ferromagnetic coupling.

Early implementations of the explicit method, i.e.
Eq. (5.52), were incorporated in the linear muffin-
tin orbital (LMTO) (Andersen and Jepsen, 1984) and
Korringa-Kohn-Rostoker (KKR) (Kohn and Rostoker,
1954; Korringa, 1947) electronic structure methods. Both
approaches were first formulated either within the muffin-
tin (MT) or the atomic sphere approximation (ASA),
where the potential inside each sphere is assumed to be
spherically symmetric. For closed-packed systems this is
a reasonable approximation and the results were consis-
tent. However, with the development of so-called full-
potential electronic structure methods, which are free
from geometrical constraints of the self-consistent den-
sity and potential, it quickly became clear that for more
loosely-packed, or low-dimensional, systems, this level of
approximation is needed. There are several ab-initio im-
plementations, using different basis functions, that em-
ploy a full-potential approach. However, it should be
noted that the computationally much more efficient ASA
calculations are still being pursued with good accuracy,
especially for close packed systems.

The biggest advantage of ASA-based codes is the com-
pact representation of the basis functions, which are
atom-centered and have a well-defined angular momen-
tum character. This is very convenient for implementa-
tion of the magnetic force theorem, which operates with
quantities, which have a site index i attached (section
V). In the full-potential codes the basis set is more ex-
tended and in general a minimal basis set is avoided. In
this case, the problem of defining a good representation
of the local basis (see Eq.4.9) becomes less obvious and
in general it does not have a unique solution. This is-
sue sometimes hinders a proper quantitative comparison
between the results obtained with various codes or even
implementations within a given code.

When one evaluates the interatomic exchange interac-
tion between two atoms, the resulting values may depend
on the choice of orbitals, which represent these atoms
(see e.g. Ref. Han et al., 2004 and Yoon et al., 2018).
This issue was discussed in detail in Ref. Kvashnin et al.,
2015a and Steenbock et al., 2015, where the compari-
son between the Jij ’s obtained with the projection on
the muffin-tin sphere and Löwdin-orthogonalized orbitals
were presented. Overall, the results for fcc Ni and hcp Gd
were very consistent, but in general it is found that de-
pending on system there may be an unwanted sensitivity

to the projection. Moreover, strong covalent bonding be-
tween 3d and ligand states also calls for either perturbing
the spins of the hybrid orbitals or for explicit treatment
of ligand spins as a standalone entity (Logemann et al.,
2017, 2018; Solovyev, 2021).

One commonly used choice is to use Wannier functions
to obtain a localized basis for the Jij calculations (Ko-
rotin et al., 2015; Logemann et al., 2018; Rudenko et al.,
2013; Zhu et al., 2020). In particular, maximally localized
Wannier functions (Marzari et al., 2012) form an appeal-
ing basis set, which is well-defined for a given set of bands
and thus enables the comparison of the magnetic inter-
actions obtained with different DFT codes. There are a
couple of versatile softwares, which allow one to apply the
present formalism for an arbitrary tight-binding Hamil-
tonian independent of the chosen projection scheme (He
et al., 2021; Yoon et al., 2020).

Having these issues in mind, we now proceed with a
discussion of calculated results of interatomic exchange
for several classes of magnetic materials.

A. Elemental transition metals

One of the most important test cases for explicit cal-
culations of interatomic exchange, is the ability to quan-
titatively reproduce magnetic properties such as spin-
wave dispersion and ordering temperature of the three
ferromagnetic 3d elements; bcc Fe, hcp Co and fcc Ni.
The spin-wave stiffness, D, of bcc Fe was evaluated in
the original articles of explicit calculations of interatomic
exchange (Liechtenstein et al., 1987, 1984). In these
works, the interaction between the first two coordination
shells was calculated for bcc Fe. The dominant, nearest-
neighbour (NN) coupling was found to be ferromagnetic
(FM), while the next NN coupling was found to be an-
tiferromagnetic, and much smaller. The obtained value
of the spin-wave stiffness, D, was 294 meVÅ2 for bcc
Fe, which is in good agreement with experimental values
that range from 305 meVÅ2 (Ref. You et al., 1980) to
314 meVÅ2 (Ref. Stringfellow, 1968). This initial result
proved the formalism described in detail in Section V
to be highly promising. The formula for calculating the
Heisenberg exchange, Jij , also allowed the authors of
Ref. Liechtenstein et al., 1987, 1984 to evaluate D as
a function of the upper integration limit, which can be
viewed as the position of the Fermi level (see Fig. 8).
This provides valuable information of how D can be af-
fected by doping of the material. In particular, as one
changes the Fermi level to arrive at the half-filled 3d-
shell, at around -1 – -3 eV in Fig. 8, the D takes negative
values, indicating that the FM reference state becomes
unstable.

In Refs. Liechtenstein et al., 1987, 1984 it was ar-
gued that the NN exchange coupling primarily deter-
mines the value of spin-wave stiffness. The interac-
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Figure 8 (Color online) Spin-wave stiffness in bcc Fe as a
function of the upper integration limit. Figure adopted from
Ref. Liechtenstein et al., 1984.

Figure 9 Calculated spin-wave dispersion relation of fcc Ni
from Ref. Pajda et al., 2001. Experimental data are taken
from Ref. Mook and Paul, 1985.

tions with the neighbours beyond 2nd coordination shell
were not computed, as their contribution to D was ex-
pected to be negligibly small due to their oscillatory
sign (Oguchi et al., 1983b). However, later it was shown
that the magnetic interactions in elemental transition
metals are, in fact, extremely long-ranged (Antropov
et al., 1999; Frota-Pessôa et al., 2000; van Schilfgaarde
and Antropov, 1999) and obtaining a well-converged
value of the spin-wave stiffness was indeed found to be ex-
tremely difficult (Antropov et al., 1999; van Schilfgaarde
and Antropov, 1999).

Pajda and co-workers made a substantial advancement
in that direction, by performing a thorough study of
spin-waves and ordering temperatures, calculated from
explicit values of Jij , for bcc Fe, fcc Co and fcc Ni (Pajda
et al., 2001). Their calculations were performed using
a tight-binding LMTO method (Andersen and Jepsen,
1984). This work was done using the full set of valence
states (spd basis) and a very fine k-point mesh. For a
magnetic material with one-atom per unit cell the spin-

wave dispersion is governed by the exchange couplings,
Jij , in the following way:

ω(q) =
4

M

∑

j

Jij(1− exp (iq ·Rij)), (7.1)

where M is the value of the saturated magnetic moment.
Since the real space values of Jij ’s are involved, the sum-
mation has to be truncated. The authors of Ref. Pajda
et al., 2001 considered interactions with first 195 and 172
shells for bcc and fcc metals, respectively, in order to en-
sure that the spin-wave dispersions are converged. The
obtained dispersion for fcc Ni is shown in Fig. 9. The ex-
perimental data obtained with inelastic neutron scatter-
ing is also shown for comparison. Since the experimental
spin waves become damped for higher values of q, it is
only possible to compare experiments and theory in a re-
gion around the zone-center, and as Fig. 9 shows, in this
regime the agreement between theory and experiment is
impressive. Results of similar accuracy were obtained
from spin-spiral calculations (Kübler, 2017), and it is re-
assuring that DFT calculations of interatomic exchange
obtained from different methods give similar results. In
fact a direct comparison between the two methods was
made for bcc Fe, with very similar results (Bergqvist,
2005).

In Fig. 9 experimental data are only shown for fcc Ni.
This is primarily due to the fact that it is difficult to
measure inelastic scattering of polarized neutrons of Co,
due to the strong self-absorption effect. In addition, the
crystal structure of bulk Co is hcp, not fcc. However, as
reviewed in Ref. Etz et al., 2015, experimental results of
the magnon dispersion have been published for thin films
of Co (in the fcc structure), as an overlayer of, e.g., Cu
(001). Also here can one find good agreement between
theory and experiments. The results for thin films of
fcc Co were also reported in Refs. Balashov et al., 2014;
Liu et al., 1996; Vollmer et al., 2003, 2004, with good
agreement between theory and observations.

Since this review article focuses on the explicit method,
in Fig. 10 we compare selected, calculated interatomic
exchange parameters of bcc Fe – which is a common test-
material in case of code implementations. The exchange
parameters in Fig. 10 are calculated by Eq. (5.52),
however, the actual electronic structure methods used,
energy functionals as well as details of the implementa-
tions differ in the different investigations reported. This
causes some differences between the different investiga-
tions. The first-nearest neighbor couplings (using the
form of the Heisenberg Hamiltonian in Eqn.1.3) were ob-
tained as -1.97, -2.86, -2.40, -2.44, -1.90 and -1.90 mRy in
Refs. (Morán et al., 2003), (Pajda et al., 2001), (Frota-
Pessôa et al., 2000), (Antropov et al., 1999), (Mankovsky
et al., 2020a), and Kvashnin et al., 2016, respectively.
These data, together with interactions at longer distance,
are shown in Fig. 10. One may note from the figure that
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Figure 10 (Color online) Interatomic exchange parameters in
bulk bcc Fe calculated from Eq. (5.52) with different code
implementations. In case a) denoted by red squares a tight-
binding (TB) LMTO-ASA method was used by Morán et al.
(Morán et al., 2003). In case b) another TB LMTO method
was used by Pajda et al. (Pajda et al., 2001). The case c) is
obtained by the use of real space LMTO-ASA code by Frota-
Pessoa et al. (Frota-Pessôa et al., 2000). The cases d) and e)
are also real space LMTO-ASA calculations by Antropov et
al. (Antropov et al., 1999) and Schilfgaarde et al. (van Schilf-
gaarde and Antropov, 1999), respectively. The case f) is a real
space tight-binding framework used by Spišák et al. (Spišák
and Hafner, 1997). In case of g) an LDA++ approach was
used for the first time by Katsnelson et al. (Katsnelson and
Lichtenstein, 2000). In case of h) a full-potential, relativistic
calculation (RSPt) was used with extended basis and in case
of i) RSPt was used by with a minimal basis (unpublished).
Note that J1=-1.9 mRy was found with a KKR calculation
by Mankovsky et al. (Mankovsky et al., 2020a).

the general behaviour of the interatomic exchange inter-
action, as a function of distance between atoms, is very
similar for all reported studies. The strongest interac-
tions are clearly between nearest neighbours, followed by
that from next nearest neighbours, while longer range
interactions are in all published studies much weaker.
Fig. 10 also shows that differences in the value of in-
teratomic exchange varies between the published results,
which reflects the sensitivity of this parameter with re-
spect to computational details (basis set, energy func-
tional etc). Another relevant parameter that is extracted
from a set of interatomic exchange is the total exchange
value, J0 =

∑
<0i> J0i given by Eq. (5.56). Values for J0

were found as -10.00, -11.03, -12.20 and -13.58 mRy in
Refs. (Sakuma, 1999), (Frota-Pessôa et al., 2000), (Kat-
snelson and Lichtenstein, 2000) and (Pajda et al., 2001),
respectively. These values vary with approximately the

same amount as the values in Fig. 10, which seems nat-
ural. Note that all numerical values we report here are
adjusted11 to the spin Hamiltonian of Ref.(1.3). More
details on this issue can be read in Subsection I.E.

In Ref. Pajda et al., 2001 the long-ranged character
of the oscillations was discussed in great detail. Using
stationary phase approximation and the asymptotic be-
haviour of the inter-site Green function, the long-range
character of the Jij ’s was shown to be of the following
form:

Jij ∝ ℑexp [i((k↑
F + k↓

F )Rij +Φ↑ +Φ↓)]

R3
ij

, (7.2)

where kF is the wave vector of energy EF having the
direction such that the associated group velocity is par-
allel to Rij , Φ is an additional phase factor, while ↑ and
↓ denote spin projections. For weak itinerant-electron
ferromagnets, which have both spin-up (majority) and
spin-down (minority) bands partially occupied, the Fermi
wave vectors are real and one recovers the oscillatory ex-
change interaction, known as Rudermann-Kittel-Kasuya-
Yosida (RKKY) mechanism of indirect exchange (Rud-
erman and Kittel, 1954). At the same time, if one of the
spin channels is completely empty or filled, the Fermi
wave vector becomes imaginary kF = iκF , which in turn
results in the evanescence of the Jij ’s. Thus, in weak
ferromagnets one can expect more long-ranged magnetic
interactions than in e.g. half-metals or strong ferromag-
nets, that have a filled majority-band. This result also
provides an explanation for why bcc Fe, being a weak fer-
romagnet, shows much more pronounced Kohn anomalies
in the spin-wave spectra compared to Co and Ni (Halilov
et al., 1998).

Ref. Pajda et al., 2001 also demonstrated that the in-
teractions with very distant neighbors must be taken into
account when calculating the spin-wave stiffness. How-
ever, by considering interactions between very distant
atoms (which are more than 6 lattice constant apart),
the value of D keeps oscillating as one takes more coor-
dination shells in the summation. The reason for this is
that the expression for the D includes a term R2

ij (see
Eq. (7.3). The Jij ’s have at worst (from a summation
point of view) an R−3

ij dependence (Eq. (7.2)). As a re-
sult, the numerical convergence of D is quite a problem-
atic. One solution to this problem was also proposed
in Ref. Pajda et al., 2001. It was suggested that the
expression for spin-wave stiffness can be regularized by
introducing an additional decay factor η, which ensures
its convergence at large distances. So the D(η) is then

11 In many cases one can find − 1
2
Jij values in the literature where

the nomenclature differs.
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Table I Calculated and measured values of spin-wave stiffness
in elemental ferromagnets in the units of meVÅ2.

Metal Dtheo (Ref. Pajda et al., 2001) Dexp

Fe (bcc) 250 ± 7 281c, 266a, 256a

Co (fcc) 663 ± 6 384a, 371a, 466d, 435e, 580f

Ni (fcc) 756 ± 29 374a, 403a, 555b

a - Ref. Pickart et al., 1967 and references therein.
b - Ref. Mook et al., 1973

c - Ref. Shirane et al., 1968
d - Ref. Liu et al., 1996 (thin films)

e - hcp Co, Ref. Liu et al., 1996
f - hcp Co, Ref. Pauthenet, 1982

defined as:

D(η) = lim
Rmax→∞

2

3M

∑

Rij≤Rmax

JijR
2
ije

(
−η

Rij
a

)
(7.3)

and finally the spin-wave stiffness is calculated by taking
the limit of η going to zero:

D = lim
η→0

D(η). (7.4)

The so obtained values are shown in Table I. They show
systematically good agreement with experimental data,
measured by different techniques. In Table I we also
show the experimental results for hcp Co. The mag-
netic interactions in hcp Co were calculated in several
studies (Kvashnin et al., 2015b; van Schilfgaarde and
Antropov, 1999; Turek et al., 2003b). In one of the more
recent works the spin-wave excitations and the Tc were
calculated by means of atomistic spin dynamics simula-
tions and excellent agreement with experiment for both
properties was reported (Chimata et al., 2017).

The magnetic ordering temperatures of the three FM
metals were also calculated in a number of publica-
tions, from several different approaches: mean-field ap-
proximation (MFA), Tiablikov’s decoupling scheme (also
known as random phase approximation (RPA) (Tiab-
likov, 2013)), classical Monte Carlo simulations or atom-
istic spin dynamics (Antropov et al., 1996, 1995; Eriks-
son et al., 2017; Evans et al., 2014; Shirinyan et al., 2019;
Turzhevskii et al., 1990), while the latter uses unsuper-
vised machine learning. The MFA values for bcc Fe and
fcc Co were reported to be in reasonably good agreement
with experiment. For instance, for Fe it was found to be
∼ 1400 K, while the experimental value is 1045 K (Pa-
jda et al., 2001). Given the fact that MFA is known to
overestimate the estimates by roughly 30% as compared
with a more accurate Monte Carlo method (Binder and
Heermann, 2010), the calculated value is close to what
one should expect.

The calculations for fcc Ni suggested a Tc of about 397
in MFA and 350 K in RPA (Pajda et al., 2001), which is
much smaller than the experimental value of about 630
K. This striking underestimation was already reported

in Refs. Liechtenstein et al., 1987 and van Schilfgaarde
and Antropov, 1999. However, the spin-wave stiffness is,
on the contrary, overestimated as compared with experi-
ment. This suggests that the inconsistency of the results
for Ni can not be circumvented by a simple re-scaling of
the exchange integrals.

The problem of describing magnetic excitations in fcc
Ni has been addressed for a long time. Bruno suggested
that the corrections to the LKAG formula due to trans-
verse constraining fields become substantial when the ex-
change splitting is small and becomes comparable with
magnon energies (Bruno, 2003), as discussed also in Sec-
tion II of this review. This is indeed the case of fcc Ni,
whose saturated magnetic moment amounts to roughly
0.6 µB per atom, indicating that the splitting between
spin-up and spin-down bands is the smallest among three
elemental magnets as shown in Ref. Singer et al., 2005.
Using renormalized values of exchange parameters, it was
shown that the MFA-based Tc estimates can be substan-
tially improved (Bruno, 2003). At the same time, the em-
ployed corrections were shown not to modify the magnon
spectrum (Katsnelson and Lichtenstein, 2004), such that
the good agreement between theory and experiment re-
mained (Fig. 9).

However, as discussed above, the case of Ni also raises
questions whether the small moment of Ni can be treated
classically. In addition, the values of the magnetic mo-
ments in fcc Ni depend significantly on the magnetic con-
figuration, and this dependence is much more pronounced
than in, e.g., bcc Fe Antropov et al., 1999; Rosengaard
and Johansson, 1997; and Turzhevskii et al., 1990. It
seems that the best gauge for estimating the accuracy
of interatomic exchange of fcc Ni is to compare magnon
dispersion, as opposed to the Curie temperature.

Since both the calculated magnetic moments and the
interatomic exchange integrals depend on the reference
state, it is reasonable to expect that the spin stiffness
should be better described by the set of Jij ’s extracted
from the ordered magnetic ground state, while the Tc
should be estimated using a magnetic configuration found
at the ordering temperature (Ruban et al., 2004; Shall-
cross et al., 2005). The problem is that representing such
a state in DFT calculations is not straightforward. In
the so-called disordered local moment picture that we
will be discussed in Subsection VII.D in detail, the mag-
netic moments experience a completely spin-disordered
environment introduced via the coherent potential ap-
proximation (CPA) (Elliott et al., 1974; Kakehashi, 1992;
Soven, 1967). However, in these calculations, the lo-
cal moment in fcc Ni collapses to zero (Shallcross et al.,
2005), in contrast to observations. A generalized Heisen-
berg model, which takes into account not only the short-
range order effects (Antropov, 2005), but also allows the
magnetic moments to change their magnitude, i.e. in-
troducing longitudinal spin fluctuations, were proposed
in Refs. Rosengaard and Johansson, 1997; Ruban et al.,
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Figure 11 (Color online) Spin-wave dispersion in bcc Fe
as obtained from DFT+DMFT (referred to as LDA+Σ(E))
and spin-polarized DFT (LSDA) calculations (Katsnelson and
Lichtenstein, 2000).

2007; and Wysocki et al., 2008, and from this model the
calculated Tc’s of bcc Fe and fcc Ni are in good agreement
with experimental values.

In general, interatomic exchange is a quantity that de-
pends critically on the details of the electronic structure.
The results discussed so far were obtained employing
LSDA or the similar, spin polarized generalized gradi-
ent approximation (GGA). Electron correlations beyond
LSDA/GGA can be captured by means of a combination
of DFT and dynamical mean field theory (Georges et al.,
1996; Kotliar et al., 2006; Lichtenstein and Katsnelson,
1998). In Ref. Katsnelson and Lichtenstein, 2000 this
method was used to calculate interatomic exchange. It
was shown that taking into account local correlations of
bcc Fe will influence both the local magnetic moment and
the Jij ’s. Subsequent work (Frota-Pessôa et al., 2000)
basically confirmed this result.

The results shown in Fig. 11 indicate that the calcu-
lation of the spin-wave stiffness in bcc Fe, obtained us-
ing LSDA, is different from results of DFT+DMFT (by
roughly 20%). We note that the starting point for these
calculations was non-magnetic DFT solution, and there-
fore the local exchange splitting emerges purely from
DMFT and is governed by the Hubbard U term. How-
ever, it was shown that if one starts from magnetic DFT
and performs DMFT calculations on top of it, then the
differences between LSDA and LSDA+DMFT results are
quite modest (Kvashnin et al., 2015a). This is partly re-
lated with the fact that the exchange splitting is intro-

In this work we perform an orbital-by-orbital analysis on
the magnetic interactions in the FM bcc phase, using DFT
and DFTþ DMFT, and make an attempt to classify them
and associate them with the well-known textbook exchange
mechanisms. Surprisingly, we find that there is a strong
antiferromagnetic (AFM) component to the nearest-
neighbor (NN) exchange interaction (J1) for the states of
T2g character. This is caused by the Ruderman-Kittel-
Kasuya-Yosida (RKKY)-type coupling [28,29], governed
by the topology of the Fermi surface (FS). In contrast, the
Eg states contribute ferromagnetically to the NN coupling
with a combination of double exchange (DE) and super-
exchange. As a consequence, the Eg states give rise to
short-range magnetic interactions in bcc Fe, whereas T2g
states contribute to longer range couplings, with a pro-
nounced oscillatory behavior.
The calculations were performed with the use of standard

DFT techniques by means of either real-space linear
muffin-tin orbital (LMTO) method within the atomic
sphere approximation [30,31] or a full-potential realization
of the LMTO method [32]. We employed the standard local
spin density approximation (LSDA) for the exchange-
correlation energy throughout the study, but explicitly
demonstrate that the inclusion of the many-body correla-
tions within DMFT does not affect the results significantly.
The intersite exchange integrals (Jij’s) were extracted by
means of the magnetic force theorem (MFT) [10]. Within
this approach, the magnetic subsystem is mapped onto a
HH of the conventional form (see, e.g., Refs. [8,9]).
For some calculations, we have also adopted a recent
generalization of the MFT, allowing for treatment of the
noncollinear spin structures [17]. In addition to the total
value of the Jij, we have computed the individual orbital
contributions to each particular coupling (for details, see,
e.g., Ref. [33]). The latter ones were grouped according to
the representations of the cubic space group, so that each
exchange integral is represented as

Jij ¼ JEg-Eg
ij þ JEg-T2g

ij þ JT2g-T2g
ij ; ð1Þ

where, for instance, JEg-T2g
ij denotes an aggregate strength of

the coupling of the Eg orbitals located on the site iðjÞ
interacting with the T2g subset located at the site jðiÞ. For
an arbitrary i-j pair, the aforementioned mixed couplings
are allowed by symmetry even in the Im3̄m space group.
This is so because Jij is an intersite quantity and thus
depends on the bonding vector Rij, which, in most cases,
locally destroys the full cubic symmetry, hence allowing for
mixing between the Eg and T2g orbitals.
In order to put Fe into the perspective of the 3d series, we

have calculated NN exchange (J1) for Cr, Mn, Fe, Co, and
Ni in a bcc crystal structure. We chose a common crystal
structure since it becomes easier to follow the trends across
the series and to build the connection with the filling of

electron states. The results of the total exchange interaction,
as well as its symmetry-resolved components, are shown
in Fig. 1. One can see that the total values of the NN
interaction follow the celebrated Bethe-Slater curve [34]
perfectly. However, looking at the decomposition of each
coupling to symmetry-resolved contributions reveals a few
surprises. Mn and Fe are the only two elements where
different orbital couplings are substantially large but, at the
same time, have opposite signs. This competition is the
most pronounced in Fe, where all three symmetry-resolved
contributions have comparable strength, which makes this
system special among all 3d metals. Such a strong AFM
contribution to the NN coupling is surprising for bcc Fe,
which is known as one of the most stable ferromagnetic
materials. We also note from Fig. 1 that for Mn the
contributions to J1 compete with each other, and that this
element’s position at the border between the FM and AFM
interaction [35–38] is a consequence of this competition.
The data in Fig. 1 highlight the unique interaction of bcc
Fe, having an AFM T2g-T2g contribution that dwarfs that of
any other 3d element, including the AFM phase of bcc Cr.
The net NN interaction of bcc Fe becomes ferromagnetic
only due to equally large and positive Eg-Eg and Eg-T2g
interactions. Since bcc Fe stands out so much in Fig. 1,
most of the discussion in the remainder of this Letter is
focused on it.
We continued by performing a set of calculations of the

noncollinear exchange by rotating a single Fe moment on
an angle θ with respect to a FM background. At each given
θ, the Jij parameters were extracted following the recipe
given in Ref. [17]. We found that, for any value of θ, the
JT2g-T2g
1 is practically independent of the mutual orientation

of spins, thus suggesting that the magnetic interaction of
these orbitals is well described by the HH. In contrast,
the JEg-Eg

1 and JEg-T2g
1 contributions become modified, so

that for large values of θ they amount to 230% and 150%,
respectively, of the θ ¼ 0 values. It has been suggested that
this pronounced θ dependence is due to DE [39,40],
something we investigate in detail below. However, at this
stage we can already conclude that the J1 coupling in bcc
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FIG. 1. Orbitally decomposed NN exchange interaction in
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Figure 12 (Color online) Calculated orbital decomposed first-
nearest neighbour exchange interaction in elemental 3d metals
in the bcc structure from Ref. Kvashnin et al., 2016. The
calculations were made with the use of the RS-LMTO-ASA
method.

duced by LSDA and does not change much after U is
explicitly added to consideration. In the case of mod-
erate correlation strength, the overall differences in the
total exchange interaction J0 are related to the quasipar-
ticle’s mass renormalization, brought by electron-electron
interactions (Mazurenko et al., 2013). However, since
the orbitals of different symmetry have different effective
masses, the overall impact of dynamical correlations on
each individual Jij is more sophisticated. In Ref. Borisov
et al., 2021 it was shown that dynamical correlations,
as described by DMFT, can produce up to 30 % vari-
ation of the leading Heisenberg and DM exchange in-
teractions. This was exemplified by a study of inter-
metallic compounds such as CoPt and FePt, MnSi and
FeGe, as well as transition metal bilayers; Co/Pt(111)
and Mn/W(001). Furthermore, non-local correlations,
modelled on the GW level, have also been made for Fe, Co
and Ni (Yoon et al., 2019), albeit with marginal changes
in the Heisenberg exchange.

A great advantage of the formalism of explicit calcu-
lation of the Jij parameters, is that one can perform
orbital-by-orbital decomposition of each magnetic cou-
pling. This decomposition is possible since in the LKAG
formula (given by Eq. (5.52)) the TrL can first be taken
over just a part of the orbitals, i.e., one can analyze the
individual orbital contributions of the exchange param-
eter. In a cubic material one can then follow the cou-
pling between different irreducible representations of the
3d orbitals (Eg and T2g). This turns out to be a pow-
erful tool for obtaining a microscopic understanding of
the nature of magnetic interactions. To be specific, if the
material has cubic symmetry, the d orbitals split into Eg

and T2g manifolds. In the basis of cubic harmonics the
local exchange splitting becomes a diagonal matrix and
the exchange interaction can be represented as a sum of
orbital contributions Jmm′

ij , where an orbital m on the
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Figure 12 Calculated orbital decomposed first-nearest neigh-
bour exchange interaction in elemental 3d metals in the bcc
structure from Ref. Kvashnin et al., 2016. The calculations
were made with the use of the RS-LMTO-ASA method.

the Jij ’s. Subsequent work (Frota-Pessôa et al., 2000)
basically confirmed this result.

The results shown in Fig. 11 indicate that the calcu-
lation of the spin-wave stiffness in bcc Fe, obtained us-
ing LSDA, is different from results of DFT+DMFT (by
roughly 20%). We note that the starting point for these
calculations was non-magnetic DFT solution, and there-
fore the local exchange splitting emerges purely from
DMFT and is governed by the Hubbard U term. How-
ever, it was shown that if one starts from magnetic DFT
and performs DMFT calculations on top of it, then the
differences between LSDA and LSDA+DMFT results are
quite modest (Kvashnin et al., 2015a). This is partly re-
lated with the fact that the exchange splitting is intro-
duced by LSDA and does not change much after U is
explicitly added to consideration. In the case of mod-
erate correlation strength, the overall differences in the
total exchange interaction J0 are related to the quasipar-
ticle’s mass renormalization, brought by electron-electron
interactions (Mazurenko et al., 2013). However, since
the orbitals of different symmetry have different effective
masses, the overall impact of dynamical correlations on
each individual Jij is more sophisticated. In Ref. Borisov
et al., 2021 it was shown that dynamical correlations,
as described by DMFT, can produce up to 30 % vari-
ation of the leading Heisenberg and DM exchange in-
teractions. This was exemplified by a study of inter-
metallic compounds such as CoPt and FePt, MnSi and
FeGe, as well as transition metal bilayers; Co/Pt(111)
and Mn/W(001). Furthermore, non-local correlations,
modelled on the GW level, have also been made for Fe, Co
and Ni (Yoon et al., 2019), albeit with marginal changes
in the Heisenberg exchange.

A great advantage of the formalism of explicit calcu-
lation of the Jij parameters, is that one can perform
orbital-by-orbital decomposition of each magnetic cou-
pling. This decomposition is possible since in the LKAG
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Magnetic moment in µB ’s (solid
lines) and the first derivative of the energy (⌦) with the re-
spect to angle ✓i (dashed lines) for the case of bcc Fe and
fcc Ni shown on the left and right sides, respectively, when
one spin is rotated with a finite ✓i in a ferromagnetic back-
ground (Turzhevskii et al., 1990) as shown by the added
schematic figure.

formula (given by Eq. (5.52)) the TrL can first be taken
over just a part of the orbitals, i.e., one can analyze the
individual orbital contributions of the exchange param-
eter. In a cubic material one can then follow the cou-
pling between different irreducible representations of the
3d orbitals (Eg and T2g). This turns out to be a pow-
erful tool for obtaining a microscopic understanding of
the nature of magnetic interactions. To be specific, if the
material has cubic symmetry, the d orbitals split into Eg

and T2g manifolds. In the basis of cubic harmonics the
local exchange splitting becomes a diagonal matrix and
the exchange interaction can be represented as a sum of
orbital contributions Jmm0

ij , where an orbital m on the
site i is coupled with each orbital m0 on the site j. In the
cubic system it is therefore natural to group these terms
into three contributions:

Jij = J
Eg�Eg

ij + J
Eg�T2g

ij + J
T2g�T2g

ij , (7.5)

which combine the individual orbital contributions ac-
cording to the symmetry of the d orbitals involved. In
Ref. Kvashnin et al., 2016 such orbital decomposition of
the NN exchange integral was performed for a series of
transition metal alloys in the bcc structure. The re-
sults, also shown in Fig. 12, reveal that in case of Mn
and Fe there is a strong competition between different
terms having opposite (FM and AFM) signs. This bal-
ance is most intricate for bcc Fe, where all three terms
in Eq. (7.5) are of comparable size. Most interestingly, it
was shown that thanks to this decomposition it was pos-
sible to identify the microscopic exchange mechanisms
to each of these three channels, revealing a combination
of RKKY, double- and super-exchange (Kvashnin et al.,
2016).

Overall, the sign of the NN coupling in all elemental 3d
follows the famous Bethe-Slater curve, but it is governed
by a complex interplay between different orbital contri-
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Figure 12 Calculated orbital decomposed first-nearest neigh-
bour exchange interaction in elemental 3d metals in the bcc
structure from Ref. Kvashnin et al., 2016. The calculations
were made with the use of the RS-LMTO-ASA method.

the Jij ’s. Subsequent work (Frota-Pessôa et al., 2000)
basically confirmed this result.

The results shown in Fig. 11 indicate that the calcu-
lation of the spin-wave stiffness in bcc Fe, obtained us-
ing LSDA, is different from results of DFT+DMFT (by
roughly 20%). We note that the starting point for these
calculations was non-magnetic DFT solution, and there-
fore the local exchange splitting emerges purely from
DMFT and is governed by the Hubbard U term. How-
ever, it was shown that if one starts from magnetic DFT
and performs DMFT calculations on top of it, then the
differences between LSDA and LSDA+DMFT results are
quite modest (Kvashnin et al., 2015a). This is partly re-
lated with the fact that the exchange splitting is intro-
duced by LSDA and does not change much after U is
explicitly added to consideration. In the case of mod-
erate correlation strength, the overall differences in the
total exchange interaction J0 are related to the quasipar-
ticle’s mass renormalization, brought by electron-electron
interactions (Mazurenko et al., 2013). However, since
the orbitals of different symmetry have different effective
masses, the overall impact of dynamical correlations on
each individual Jij is more sophisticated. In Ref. Borisov
et al., 2021 it was shown that dynamical correlations,
as described by DMFT, can produce up to 30 % vari-
ation of the leading Heisenberg and DM exchange in-
teractions. This was exemplified by a study of inter-
metallic compounds such as CoPt and FePt, MnSi and
FeGe, as well as transition metal bilayers; Co/Pt(111)
and Mn/W(001). Furthermore, non-local correlations,
modelled on the GW level, have also been made for Fe, Co
and Ni (Yoon et al., 2019), albeit with marginal changes
in the Heisenberg exchange.

A great advantage of the formalism of explicit calcu-
lation of the Jij parameters, is that one can perform
orbital-by-orbital decomposition of each magnetic cou-
pling. This decomposition is possible since in the LKAG
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fcc Ni shown on the left and right sides, respectively, when
one spin is rotated with a finite ✓i in a ferromagnetic back-
ground (Turzhevskii et al., 1990) as shown by the added
schematic figure.

formula (given by Eq. (5.52)) the TrL can first be taken
over just a part of the orbitals, i.e., one can analyze the
individual orbital contributions of the exchange param-
eter. In a cubic material one can then follow the cou-
pling between different irreducible representations of the
3d orbitals (Eg and T2g). This turns out to be a pow-
erful tool for obtaining a microscopic understanding of
the nature of magnetic interactions. To be specific, if the
material has cubic symmetry, the d orbitals split into Eg

and T2g manifolds. In the basis of cubic harmonics the
local exchange splitting becomes a diagonal matrix and
the exchange interaction can be represented as a sum of
orbital contributions Jmm0

ij , where an orbital m on the
site i is coupled with each orbital m0 on the site j. In the
cubic system it is therefore natural to group these terms
into three contributions:

Jij = J
Eg�Eg

ij + J
Eg�T2g

ij + J
T2g�T2g

ij , (7.5)

which combine the individual orbital contributions ac-
cording to the symmetry of the d orbitals involved. In
Ref. Kvashnin et al., 2016 such orbital decomposition of
the NN exchange integral was performed for a series of
transition metal alloys in the bcc structure. The re-
sults, also shown in Fig. 12, reveal that in case of Mn
and Fe there is a strong competition between different
terms having opposite (FM and AFM) signs. This bal-
ance is most intricate for bcc Fe, where all three terms
in Eq. (7.5) are of comparable size. Most interestingly, it
was shown that thanks to this decomposition it was pos-
sible to identify the microscopic exchange mechanisms
to each of these three channels, revealing a combination
of RKKY, double- and super-exchange (Kvashnin et al.,
2016).

Overall, the sign of the NN coupling in all elemental 3d
follows the famous Bethe-Slater curve, but it is governed
by a complex interplay between different orbital contri-
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In this work we perform an orbital-by-orbital analysis on
the magnetic interactions in the FM bcc phase, using DFT
and DFTþ DMFT, and make an attempt to classify them
and associate them with the well-known textbook exchange
mechanisms. Surprisingly, we find that there is a strong
antiferromagnetic (AFM) component to the nearest-
neighbor (NN) exchange interaction (J1) for the states of
T2g character. This is caused by the Ruderman-Kittel-
Kasuya-Yosida (RKKY)-type coupling [28,29], governed
by the topology of the Fermi surface (FS). In contrast, the
Eg states contribute ferromagnetically to the NN coupling
with a combination of double exchange (DE) and super-
exchange. As a consequence, the Eg states give rise to
short-range magnetic interactions in bcc Fe, whereas T2g
states contribute to longer range couplings, with a pro-
nounced oscillatory behavior.
The calculations were performed with the use of standard

DFT techniques by means of either real-space linear
muffin-tin orbital (LMTO) method within the atomic
sphere approximation [30,31] or a full-potential realization
of the LMTO method [32]. We employed the standard local
spin density approximation (LSDA) for the exchange-
correlation energy throughout the study, but explicitly
demonstrate that the inclusion of the many-body correla-
tions within DMFT does not affect the results significantly.
The intersite exchange integrals (Jij’s) were extracted by
means of the magnetic force theorem (MFT) [10]. Within
this approach, the magnetic subsystem is mapped onto a
HH of the conventional form (see, e.g., Refs. [8,9]).
For some calculations, we have also adopted a recent
generalization of the MFT, allowing for treatment of the
noncollinear spin structures [17]. In addition to the total
value of the Jij, we have computed the individual orbital
contributions to each particular coupling (for details, see,
e.g., Ref. [33]). The latter ones were grouped according to
the representations of the cubic space group, so that each
exchange integral is represented as

Jij ¼ JEg-Eg
ij þ JEg-T2g

ij þ JT2g-T2g
ij ; ð1Þ

where, for instance, JEg-T2g
ij denotes an aggregate strength of

the coupling of the Eg orbitals located on the site iðjÞ
interacting with the T2g subset located at the site jðiÞ. For
an arbitrary i-j pair, the aforementioned mixed couplings
are allowed by symmetry even in the Im3̄m space group.
This is so because Jij is an intersite quantity and thus
depends on the bonding vector Rij, which, in most cases,
locally destroys the full cubic symmetry, hence allowing for
mixing between the Eg and T2g orbitals.
In order to put Fe into the perspective of the 3d series, we

have calculated NN exchange (J1) for Cr, Mn, Fe, Co, and
Ni in a bcc crystal structure. We chose a common crystal
structure since it becomes easier to follow the trends across
the series and to build the connection with the filling of

electron states. The results of the total exchange interaction,
as well as its symmetry-resolved components, are shown
in Fig. 1. One can see that the total values of the NN
interaction follow the celebrated Bethe-Slater curve [34]
perfectly. However, looking at the decomposition of each
coupling to symmetry-resolved contributions reveals a few
surprises. Mn and Fe are the only two elements where
different orbital couplings are substantially large but, at the
same time, have opposite signs. This competition is the
most pronounced in Fe, where all three symmetry-resolved
contributions have comparable strength, which makes this
system special among all 3d metals. Such a strong AFM
contribution to the NN coupling is surprising for bcc Fe,
which is known as one of the most stable ferromagnetic
materials. We also note from Fig. 1 that for Mn the
contributions to J1 compete with each other, and that this
element’s position at the border between the FM and AFM
interaction [35–38] is a consequence of this competition.
The data in Fig. 1 highlight the unique interaction of bcc
Fe, having an AFM T2g-T2g contribution that dwarfs that of
any other 3d element, including the AFM phase of bcc Cr.
The net NN interaction of bcc Fe becomes ferromagnetic
only due to equally large and positive Eg-Eg and Eg-T2g
interactions. Since bcc Fe stands out so much in Fig. 1,
most of the discussion in the remainder of this Letter is
focused on it.
We continued by performing a set of calculations of the

noncollinear exchange by rotating a single Fe moment on
an angle θ with respect to a FM background. At each given
θ, the Jij parameters were extracted following the recipe
given in Ref. [17]. We found that, for any value of θ, the
JT2g-T2g
1 is practically independent of the mutual orientation

of spins, thus suggesting that the magnetic interaction of
these orbitals is well described by the HH. In contrast,
the JEg-Eg

1 and JEg-T2g
1 contributions become modified, so

that for large values of θ they amount to 230% and 150%,
respectively, of the θ ¼ 0 values. It has been suggested that
this pronounced θ dependence is due to DE [39,40],
something we investigate in detail below. However, at this
stage we can already conclude that the J1 coupling in bcc
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FIG. 1. Orbitally decomposed NN exchange interaction in
elemental 3d metals in the bcc structure.
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Figure 12 Calculated orbital decomposed first-nearest neigh-
bour exchange interaction in elemental 3d metals in the bcc
structure from Ref. Kvashnin et al., 2016. The calculations
were made with the use of the RS-LMTO-ASA method.

was shown that taking into account local correlations of
bcc Fe will influence both the local magnetic moment and
the Jij ’s. Subsequent work (Frota-Pessôa et al., 2000)
basically confirmed this result.

The results shown in Fig. 11 indicate that the calcu-
lation of the spin-wave stiffness in bcc Fe, obtained us-
ing LSDA, is different from results of DFT+DMFT (by
roughly 20%). We note that the starting point for these
calculations was non-magnetic DFT solution, and there-
fore the local exchange splitting emerges purely from
DMFT and is governed by the Hubbard U term. How-
ever, it was shown that if one starts from magnetic DFT
and performs DMFT calculations on top of it, then the
differences between LSDA and LSDA+DMFT results are
quite modest (Kvashnin et al., 2015a). This is partly re-
lated with the fact that the exchange splitting is intro-
duced by LSDA and does not change much after U is
explicitly added to consideration. In the case of mod-
erate correlation strength, the overall differences in the
total exchange interaction J0 are related to the quasipar-
ticle’s mass renormalization, brought by electron-electron
interactions (Mazurenko et al., 2013). However, since
the orbitals of different symmetry have different effective
masses, the overall impact of dynamical correlations on
each individual Jij is more sophisticated. In Ref. Borisov
et al., 2021 it was shown that dynamical correlations,
as described by DMFT, can produce up to 30 % vari-
ation of the leading Heisenberg and DM exchange in-
teractions. This was exemplified by a study of inter-
metallic compounds such as CoPt and FePt, MnSi and
FeGe, as well as transition metal bilayers; Co/Pt(111)
and Mn/W(001). Furthermore, non-local correlations,
modelled on the GW level, have also been made for Fe, Co
and Ni (Yoon et al., 2019), albeit with marginal changes
in the Heisenberg exchange.

A great advantage of the formalism of explicit calcu-
lation of the Jij parameters, is that one can perform
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Figure 12 Calculated orbital decomposed first-nearest neigh-
bour exchange interaction in elemental 3d metals in the bcc
structure from Ref. Kvashnin et al., 2016. The calculations
were made with the use of the RS-LMTO-ASA method.

the Jij ’s. Subsequent work (Frota-Pessôa et al., 2000)
basically confirmed this result.

The results shown in Fig. 11 indicate that the calcu-
lation of the spin-wave stiffness in bcc Fe, obtained us-
ing LSDA, is different from results of DFT+DMFT (by
roughly 20%). We note that the starting point for these
calculations was non-magnetic DFT solution, and there-
fore the local exchange splitting emerges purely from
DMFT and is governed by the Hubbard U term. How-
ever, it was shown that if one starts from magnetic DFT
and performs DMFT calculations on top of it, then the
differences between LSDA and LSDA+DMFT results are
quite modest (Kvashnin et al., 2015a). This is partly re-
lated with the fact that the exchange splitting is intro-
duced by LSDA and does not change much after U is
explicitly added to consideration. In the case of mod-
erate correlation strength, the overall differences in the
total exchange interaction J0 are related to the quasipar-
ticle’s mass renormalization, brought by electron-electron
interactions (Mazurenko et al., 2013). However, since
the orbitals of different symmetry have different effective
masses, the overall impact of dynamical correlations on
each individual Jij is more sophisticated. In Ref. Borisov
et al., 2021 it was shown that dynamical correlations,
as described by DMFT, can produce up to 30 % vari-
ation of the leading Heisenberg and DM exchange in-
teractions. This was exemplified by a study of inter-
metallic compounds such as CoPt and FePt, MnSi and
FeGe, as well as transition metal bilayers; Co/Pt(111)
and Mn/W(001). Furthermore, non-local correlations,
modelled on the GW level, have also been made for Fe, Co
and Ni (Yoon et al., 2019), albeit with marginal changes
in the Heisenberg exchange.

A great advantage of the formalism of explicit calcu-
lation of the Jij parameters, is that one can perform
orbital-by-orbital decomposition of each magnetic cou-
pling. This decomposition is possible since in the LKAG
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Magnetic moment in µB ’s (solid
lines) and the first derivative of the energy (⌦) with the re-
spect to angle ✓i (dashed lines) for the case of bcc Fe and
fcc Ni shown on the left and right sides, respectively, when
one spin is rotated with a finite ✓i in a ferromagnetic back-
ground (Turzhevskii et al., 1990) as shown by the added
schematic figure.

formula (given by Eq. (5.52)) the TrL can first be taken
over just a part of the orbitals, i.e., one can analyze the
individual orbital contributions of the exchange param-
eter. In a cubic material one can then follow the cou-
pling between different irreducible representations of the
3d orbitals (Eg and T2g). This turns out to be a pow-
erful tool for obtaining a microscopic understanding of
the nature of magnetic interactions. To be specific, if the
material has cubic symmetry, the d orbitals split into Eg

and T2g manifolds. In the basis of cubic harmonics the
local exchange splitting becomes a diagonal matrix and
the exchange interaction can be represented as a sum of
orbital contributions Jmm0

ij , where an orbital m on the
site i is coupled with each orbital m0 on the site j. In the
cubic system it is therefore natural to group these terms
into three contributions:

Jij = J
Eg�Eg

ij + J
Eg�T2g

ij + J
T2g�T2g

ij , (7.5)

which combine the individual orbital contributions ac-
cording to the symmetry of the d orbitals involved. In
Ref. Kvashnin et al., 2016 such orbital decomposition of
the NN exchange integral was performed for a series of
transition metal alloys in the bcc structure. The re-
sults, also shown in Fig. 12, reveal that in case of Mn
and Fe there is a strong competition between different
terms having opposite (FM and AFM) signs. This bal-
ance is most intricate for bcc Fe, where all three terms
in Eq. (7.5) are of comparable size. Most interestingly, it
was shown that thanks to this decomposition it was pos-
sible to identify the microscopic exchange mechanisms
to each of these three channels, revealing a combination
of RKKY, double- and super-exchange (Kvashnin et al.,
2016).

Overall, the sign of the NN coupling in all elemental 3d
follows the famous Bethe-Slater curve, but it is governed
by a complex interplay between different orbital contri-
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Figure 12 Calculated orbital decomposed first-nearest neigh-
bour exchange interaction in elemental 3d metals in the bcc
structure from Ref. Kvashnin et al., 2016. The calculations
were made with the use of the RS-LMTO-ASA method.

the Jij ’s. Subsequent work (Frota-Pessôa et al., 2000)
basically confirmed this result.

The results shown in Fig. 11 indicate that the calcu-
lation of the spin-wave stiffness in bcc Fe, obtained us-
ing LSDA, is different from results of DFT+DMFT (by
roughly 20%). We note that the starting point for these
calculations was non-magnetic DFT solution, and there-
fore the local exchange splitting emerges purely from
DMFT and is governed by the Hubbard U term. How-
ever, it was shown that if one starts from magnetic DFT
and performs DMFT calculations on top of it, then the
differences between LSDA and LSDA+DMFT results are
quite modest (Kvashnin et al., 2015a). This is partly re-
lated with the fact that the exchange splitting is intro-
duced by LSDA and does not change much after U is
explicitly added to consideration. In the case of mod-
erate correlation strength, the overall differences in the
total exchange interaction J0 are related to the quasipar-
ticle’s mass renormalization, brought by electron-electron
interactions (Mazurenko et al., 2013). However, since
the orbitals of different symmetry have different effective
masses, the overall impact of dynamical correlations on
each individual Jij is more sophisticated. In Ref. Borisov
et al., 2021 it was shown that dynamical correlations,
as described by DMFT, can produce up to 30 % vari-
ation of the leading Heisenberg and DM exchange in-
teractions. This was exemplified by a study of inter-
metallic compounds such as CoPt and FePt, MnSi and
FeGe, as well as transition metal bilayers; Co/Pt(111)
and Mn/W(001). Furthermore, non-local correlations,
modelled on the GW level, have also been made for Fe, Co
and Ni (Yoon et al., 2019), albeit with marginal changes
in the Heisenberg exchange.

A great advantage of the formalism of explicit calcu-
lation of the Jij parameters, is that one can perform
orbital-by-orbital decomposition of each magnetic cou-
pling. This decomposition is possible since in the LKAG
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one spin is rotated with a finite ✓i in a ferromagnetic back-
ground (Turzhevskii et al., 1990) as shown by the added
schematic figure.

formula (given by Eq. (5.52)) the TrL can first be taken
over just a part of the orbitals, i.e., one can analyze the
individual orbital contributions of the exchange param-
eter. In a cubic material one can then follow the cou-
pling between different irreducible representations of the
3d orbitals (Eg and T2g). This turns out to be a pow-
erful tool for obtaining a microscopic understanding of
the nature of magnetic interactions. To be specific, if the
material has cubic symmetry, the d orbitals split into Eg

and T2g manifolds. In the basis of cubic harmonics the
local exchange splitting becomes a diagonal matrix and
the exchange interaction can be represented as a sum of
orbital contributions Jmm0

ij , where an orbital m on the
site i is coupled with each orbital m0 on the site j. In the
cubic system it is therefore natural to group these terms
into three contributions:

Jij = J
Eg�Eg

ij + J
Eg�T2g

ij + J
T2g�T2g

ij , (7.5)

which combine the individual orbital contributions ac-
cording to the symmetry of the d orbitals involved. In
Ref. Kvashnin et al., 2016 such orbital decomposition of
the NN exchange integral was performed for a series of
transition metal alloys in the bcc structure. The re-
sults, also shown in Fig. 12, reveal that in case of Mn
and Fe there is a strong competition between different
terms having opposite (FM and AFM) signs. This bal-
ance is most intricate for bcc Fe, where all three terms
in Eq. (7.5) are of comparable size. Most interestingly, it
was shown that thanks to this decomposition it was pos-
sible to identify the microscopic exchange mechanisms
to each of these three channels, revealing a combination
of RKKY, double- and super-exchange (Kvashnin et al.,
2016).

Overall, the sign of the NN coupling in all elemental 3d
follows the famous Bethe-Slater curve, but it is governed
by a complex interplay between different orbital contri-

Figure 13 Magnetic moment in µB ’s (solid lines) and the
first derivative of the energy (⌦) with the respect to angle
✓i (dashed lines) for the case of bcc Fe and fcc Ni shown on
the left and right sides, respectively, when one spin is rotated
with a finite ✓i in a ferromagnetic background (Turzhevskii
et al., 1990) as shown by the added schematic figure.

orbital-by-orbital decomposition of each magnetic cou-
pling. This decomposition is possible since in the LKAG
formula (given by Eq. (5.52)) the TrL can first be taken
over just a part of the orbitals, i.e., one can analyze the
individual orbital contributions of the exchange param-
eter. In a cubic material one can then follow the cou-
pling between different irreducible representations of the
3d orbitals (Eg and T2g). This turns out to be a pow-
erful tool for obtaining a microscopic understanding of
the nature of magnetic interactions. To be specific, if the
material has cubic symmetry, the d orbitals split into Eg

and T2g manifolds. In the basis of cubic harmonics the
local exchange splitting becomes a diagonal matrix and
the exchange interaction can be represented as a sum of
orbital contributions Jmm0

ij , where an orbital m on the
site i is coupled with each orbital m0 on the site j. In the
cubic system it is therefore natural to group these terms
into three contributions:

Jij = J
Eg�Eg

ij + J
Eg�T2g

ij + J
T2g�T2g

ij , (7.5)

which combine the individual orbital contributions ac-
cording to the symmetry of the d orbitals involved. In
Ref. Kvashnin et al., 2016 such orbital decomposition of
the NN exchange integral was performed for a series of
transition metal alloys in the bcc structure. The re-
sults, also shown in Fig. 12, reveal that in case of Mn
and Fe there is a strong competition between different
terms having opposite (FM and AFM) signs. This bal-
ance is most intricate for bcc Fe, where all three terms
in Eq. (7.5) are of comparable size. Most interestingly, it
was shown that thanks to this decomposition it was pos-
sible to identify the microscopic exchange mechanisms
to each of these three channels, revealing a combination
of RKKY, double- and super-exchange (Kvashnin et al.,
2016).

Overall, the sign of the NN coupling in all elemental 3d
follows the famous Bethe-Slater curve, but it is governed
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In this work we perform an orbital-by-orbital analysis on
the magnetic interactions in the FM bcc phase, using DFT
and DFTþ DMFT, and make an attempt to classify them
and associate them with the well-known textbook exchange
mechanisms. Surprisingly, we find that there is a strong
antiferromagnetic (AFM) component to the nearest-
neighbor (NN) exchange interaction (J1) for the states of
T2g character. This is caused by the Ruderman-Kittel-
Kasuya-Yosida (RKKY)-type coupling [28,29], governed
by the topology of the Fermi surface (FS). In contrast, the
Eg states contribute ferromagnetically to the NN coupling
with a combination of double exchange (DE) and super-
exchange. As a consequence, the Eg states give rise to
short-range magnetic interactions in bcc Fe, whereas T2g
states contribute to longer range couplings, with a pro-
nounced oscillatory behavior.
The calculations were performed with the use of standard

DFT techniques by means of either real-space linear
muffin-tin orbital (LMTO) method within the atomic
sphere approximation [30,31] or a full-potential realization
of the LMTO method [32]. We employed the standard local
spin density approximation (LSDA) for the exchange-
correlation energy throughout the study, but explicitly
demonstrate that the inclusion of the many-body correla-
tions within DMFT does not affect the results significantly.
The intersite exchange integrals (Jij’s) were extracted by
means of the magnetic force theorem (MFT) [10]. Within
this approach, the magnetic subsystem is mapped onto a
HH of the conventional form (see, e.g., Refs. [8,9]).
For some calculations, we have also adopted a recent
generalization of the MFT, allowing for treatment of the
noncollinear spin structures [17]. In addition to the total
value of the Jij, we have computed the individual orbital
contributions to each particular coupling (for details, see,
e.g., Ref. [33]). The latter ones were grouped according to
the representations of the cubic space group, so that each
exchange integral is represented as

Jij ¼ JEg-Eg
ij þ JEg-T2g

ij þ JT2g-T2g
ij ; ð1Þ

where, for instance, JEg-T2g
ij denotes an aggregate strength of

the coupling of the Eg orbitals located on the site iðjÞ
interacting with the T2g subset located at the site jðiÞ. For
an arbitrary i-j pair, the aforementioned mixed couplings
are allowed by symmetry even in the Im3̄m space group.
This is so because Jij is an intersite quantity and thus
depends on the bonding vector Rij, which, in most cases,
locally destroys the full cubic symmetry, hence allowing for
mixing between the Eg and T2g orbitals.
In order to put Fe into the perspective of the 3d series, we

have calculated NN exchange (J1) for Cr, Mn, Fe, Co, and
Ni in a bcc crystal structure. We chose a common crystal
structure since it becomes easier to follow the trends across
the series and to build the connection with the filling of

electron states. The results of the total exchange interaction,
as well as its symmetry-resolved components, are shown
in Fig. 1. One can see that the total values of the NN
interaction follow the celebrated Bethe-Slater curve [34]
perfectly. However, looking at the decomposition of each
coupling to symmetry-resolved contributions reveals a few
surprises. Mn and Fe are the only two elements where
different orbital couplings are substantially large but, at the
same time, have opposite signs. This competition is the
most pronounced in Fe, where all three symmetry-resolved
contributions have comparable strength, which makes this
system special among all 3d metals. Such a strong AFM
contribution to the NN coupling is surprising for bcc Fe,
which is known as one of the most stable ferromagnetic
materials. We also note from Fig. 1 that for Mn the
contributions to J1 compete with each other, and that this
element’s position at the border between the FM and AFM
interaction [35–38] is a consequence of this competition.
The data in Fig. 1 highlight the unique interaction of bcc
Fe, having an AFM T2g-T2g contribution that dwarfs that of
any other 3d element, including the AFM phase of bcc Cr.
The net NN interaction of bcc Fe becomes ferromagnetic
only due to equally large and positive Eg-Eg and Eg-T2g
interactions. Since bcc Fe stands out so much in Fig. 1,
most of the discussion in the remainder of this Letter is
focused on it.
We continued by performing a set of calculations of the

noncollinear exchange by rotating a single Fe moment on
an angle θ with respect to a FM background. At each given
θ, the Jij parameters were extracted following the recipe
given in Ref. [17]. We found that, for any value of θ, the
JT2g-T2g
1 is practically independent of the mutual orientation

of spins, thus suggesting that the magnetic interaction of
these orbitals is well described by the HH. In contrast,
the JEg-Eg

1 and JEg-T2g
1 contributions become modified, so

that for large values of θ they amount to 230% and 150%,
respectively, of the θ ¼ 0 values. It has been suggested that
this pronounced θ dependence is due to DE [39,40],
something we investigate in detail below. However, at this
stage we can already conclude that the J1 coupling in bcc
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FIG. 1. Orbitally decomposed NN exchange interaction in
elemental 3d metals in the bcc structure.
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Figure 12 Calculated orbital decomposed first-nearest neigh-
bour exchange interaction in elemental 3d metals in the bcc
structure from Ref. Kvashnin et al., 2016. The calculations
were made with the use of the RS-LMTO-ASA method.

was shown that taking into account local correlations of
bcc Fe will influence both the local magnetic moment and
the Jij ’s. Subsequent work (Frota-Pessôa et al., 2000)
basically confirmed this result.

The results shown in Fig. 11 indicate that the calcu-
lation of the spin-wave stiffness in bcc Fe, obtained us-
ing LSDA, is different from results of DFT+DMFT (by
roughly 20%). We note that the starting point for these
calculations was non-magnetic DFT solution, and there-
fore the local exchange splitting emerges purely from
DMFT and is governed by the Hubbard U term. How-
ever, it was shown that if one starts from magnetic DFT
and performs DMFT calculations on top of it, then the
differences between LSDA and LSDA+DMFT results are
quite modest (Kvashnin et al., 2015a). This is partly re-
lated with the fact that the exchange splitting is intro-
duced by LSDA and does not change much after U is
explicitly added to consideration. In the case of mod-
erate correlation strength, the overall differences in the
total exchange interaction J0 are related to the quasipar-
ticle’s mass renormalization, brought by electron-electron
interactions (Mazurenko et al., 2013). However, since
the orbitals of different symmetry have different effective
masses, the overall impact of dynamical correlations on
each individual Jij is more sophisticated. In Ref. Borisov
et al., 2021 it was shown that dynamical correlations,
as described by DMFT, can produce up to 30 % vari-
ation of the leading Heisenberg and DM exchange in-
teractions. This was exemplified by a study of inter-
metallic compounds such as CoPt and FePt, MnSi and
FeGe, as well as transition metal bilayers; Co/Pt(111)
and Mn/W(001). Furthermore, non-local correlations,
modelled on the GW level, have also been made for Fe, Co
and Ni (Yoon et al., 2019), albeit with marginal changes
in the Heisenberg exchange.

A great advantage of the formalism of explicit calcu-
lation of the Jij parameters, is that one can perform
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Figure 12 Calculated orbital decomposed first-nearest neigh-
bour exchange interaction in elemental 3d metals in the bcc
structure from Ref. Kvashnin et al., 2016. The calculations
were made with the use of the RS-LMTO-ASA method.

the Jij ’s. Subsequent work (Frota-Pessôa et al., 2000)
basically confirmed this result.

The results shown in Fig. 11 indicate that the calcu-
lation of the spin-wave stiffness in bcc Fe, obtained us-
ing LSDA, is different from results of DFT+DMFT (by
roughly 20%). We note that the starting point for these
calculations was non-magnetic DFT solution, and there-
fore the local exchange splitting emerges purely from
DMFT and is governed by the Hubbard U term. How-
ever, it was shown that if one starts from magnetic DFT
and performs DMFT calculations on top of it, then the
differences between LSDA and LSDA+DMFT results are
quite modest (Kvashnin et al., 2015a). This is partly re-
lated with the fact that the exchange splitting is intro-
duced by LSDA and does not change much after U is
explicitly added to consideration. In the case of mod-
erate correlation strength, the overall differences in the
total exchange interaction J0 are related to the quasipar-
ticle’s mass renormalization, brought by electron-electron
interactions (Mazurenko et al., 2013). However, since
the orbitals of different symmetry have different effective
masses, the overall impact of dynamical correlations on
each individual Jij is more sophisticated. In Ref. Borisov
et al., 2021 it was shown that dynamical correlations,
as described by DMFT, can produce up to 30 % vari-
ation of the leading Heisenberg and DM exchange in-
teractions. This was exemplified by a study of inter-
metallic compounds such as CoPt and FePt, MnSi and
FeGe, as well as transition metal bilayers; Co/Pt(111)
and Mn/W(001). Furthermore, non-local correlations,
modelled on the GW level, have also been made for Fe, Co
and Ni (Yoon et al., 2019), albeit with marginal changes
in the Heisenberg exchange.

A great advantage of the formalism of explicit calcu-
lation of the Jij parameters, is that one can perform
orbital-by-orbital decomposition of each magnetic cou-
pling. This decomposition is possible since in the LKAG
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Magnetic moment in µB ’s (solid
lines) and the first derivative of the energy (⌦) with the re-
spect to angle ✓i (dashed lines) for the case of bcc Fe and
fcc Ni shown on the left and right sides, respectively, when
one spin is rotated with a finite ✓i in a ferromagnetic back-
ground (Turzhevskii et al., 1990) as shown by the added
schematic figure.

formula (given by Eq. (5.52)) the TrL can first be taken
over just a part of the orbitals, i.e., one can analyze the
individual orbital contributions of the exchange param-
eter. In a cubic material one can then follow the cou-
pling between different irreducible representations of the
3d orbitals (Eg and T2g). This turns out to be a pow-
erful tool for obtaining a microscopic understanding of
the nature of magnetic interactions. To be specific, if the
material has cubic symmetry, the d orbitals split into Eg

and T2g manifolds. In the basis of cubic harmonics the
local exchange splitting becomes a diagonal matrix and
the exchange interaction can be represented as a sum of
orbital contributions Jmm0

ij , where an orbital m on the
site i is coupled with each orbital m0 on the site j. In the
cubic system it is therefore natural to group these terms
into three contributions:

Jij = J
Eg�Eg

ij + J
Eg�T2g

ij + J
T2g�T2g

ij , (7.5)

which combine the individual orbital contributions ac-
cording to the symmetry of the d orbitals involved. In
Ref. Kvashnin et al., 2016 such orbital decomposition of
the NN exchange integral was performed for a series of
transition metal alloys in the bcc structure. The re-
sults, also shown in Fig. 12, reveal that in case of Mn
and Fe there is a strong competition between different
terms having opposite (FM and AFM) signs. This bal-
ance is most intricate for bcc Fe, where all three terms
in Eq. (7.5) are of comparable size. Most interestingly, it
was shown that thanks to this decomposition it was pos-
sible to identify the microscopic exchange mechanisms
to each of these three channels, revealing a combination
of RKKY, double- and super-exchange (Kvashnin et al.,
2016).

Overall, the sign of the NN coupling in all elemental 3d
follows the famous Bethe-Slater curve, but it is governed
by a complex interplay between different orbital contri-
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Figure 12 Calculated orbital decomposed first-nearest neigh-
bour exchange interaction in elemental 3d metals in the bcc
structure from Ref. Kvashnin et al., 2016. The calculations
were made with the use of the RS-LMTO-ASA method.

the Jij ’s. Subsequent work (Frota-Pessôa et al., 2000)
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lines) and the first derivative of the energy (⌦) with the re-
spect to angle ✓i (dashed lines) for the case of bcc Fe and
fcc Ni shown on the left and right sides, respectively, when
one spin is rotated with a finite ✓i in a ferromagnetic back-
ground (Turzhevskii et al., 1990) as shown by the added
schematic figure.
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Figure 13 Magnetic moment in µB ’s (solid lines) and the
first derivative of the energy (⌦) with the respect to angle
✓i (dashed lines) for the case of bcc Fe and fcc Ni shown on
the left and right sides, respectively, when one spin is rotated
with a finite ✓i in a ferromagnetic background (Turzhevskii
et al., 1990) as shown by the added schematic figure.
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Figure 13 (Color online) Magnetic moment in µB ’s (solid
lines) and the first derivative of the energy (Ω) with the re-
spect to angle θi (dashed lines) for the case of bcc Fe (left) and
fcc Ni (right) shown on the left and right sides, respectively,
when one spin is rotated with a finite θi in a ferromagnetic
background (Turzhevskii et al., 1990) as shown by the added
schematic figure.

site i is coupled with each orbital m′ on the site j. In the
cubic system it is therefore natural to group these terms
into three contributions:

Jij = J
Eg−Eg

ij + J
Eg−T2g

ij + J
T2g−T2g

ij , (7.5)

which combine the individual orbital contributions ac-
cording to the symmetry of the d orbitals involved. In
Ref. Kvashnin et al., 2016 such orbital decomposition of
the NN exchange integral was performed for a series of
transition metal alloys in the bcc structure. The re-
sults, also shown in Fig. 12, reveal that in case of Mn
and Fe there is a strong competition between different
terms having opposite (FM and AFM) signs. This bal-
ance is most intricate for bcc Fe, where all three terms
in Eq. (7.5) are of comparable size. Most interestingly, it
was shown that thanks to this decomposition it was pos-
sible to identify the microscopic exchange mechanisms
to each of these three channels, revealing a combination
of RKKY, double- and super-exchange (Kvashnin et al.,
2016).

Overall, the sign of the NN coupling in all elemental 3d
follows the famous Bethe-Slater curve, but it is governed
by a complex interplay between different orbital contri-
butions (Cardias et al., 2017). This result paves the way
towards designing magnetic interactions in metallic 3d
systems in general, and allows for a deeper analysis of in-
teratomic exchange interaction. One way to continue the
analysis is to calculate the symmetry-decomposed inter-
action parameters between further neighbors as was done
for bcc Fe (Kvashnin et al., 2016) and for other 3d ele-
ments (Cardias et al., 2017). One of the most important
conclusions in case of bcc Fe is that the exchange be-
tween the T2g orbitals is Heisenberg-like and long-ranged
while it is relatively short-ranged with a substantial non-
Heisenberg behavior in case of the Eg-Eg and the mixed
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Figure 14 (Color online) First-nearest neighbour Heisenberg
and non-Heisenberg interatomic exchange parameters in bcc
Fe when one spin is rotated by a finite θi running from
zero to π at site i in a ferromagnetic background in case
of bcc Fe (Szilva et al., 2017). JH

1 = J
(2)
1 + A

(2)xx
1 and

JNH
1 = −2A

(2)zx
1 , see Eqs. (5.47) and (5.49). The black

(solid) curve stands for the total value while the red (dot-
ted), blue (dashed), and green (dash-dotted) lines show its
symmetry decomposition in the d channel defined by Eq. 7.5.

(Eg-T2g) channel (Kvashnin et al., 2016).
Note that the non-Heisenberg behavior of bcc Fe and

especially of fcc Ni have been discussed for a long time
(Turzhevskii et al., 1990), from calculations that consid-
ered δΩone

i when a spin is rotated by a finite θi, as shown
in Fig. 13. The results of the figure are clear; a strong
configuration dependence can be observed for the mag-
netic moment and the angular dependence of the energy
variation does not follow a sine function, especially for
angles far from the ground state.

In Ref. Szilva et al., 2017 a similar system was consid-
ered, i.e., one spin was rotated by a finite θi at site i on
a bcc Fe lattice when all other spins formed a ferromag-
netic background and θi ran from 0 to π. In this study
the two-site energy variation was the main focus. Note
that in general one formally gets for the two-site energy
variation (in the lack of SOC) that

δΩtwo
ij = −

(
JH
ij cos θi + JNH

ij sin θi
)
(δθ)

2
, (7.6)

where the terms which are proportional to a cosine and
a sine function are referred to as the Heisenberg (H)
term and the non-Heisenberg (NH) term, respectively
and JH

ij = J
(2)
ij + A

(2)xx
ij and JNH

ij = −2A
(2)zx
ij accord-

ing to Eqs. (5.47) and (5.49). In the discussion of this
paragraph, when the first-nearest neighbour couplings
are considered, the ij indices are replaced by the index
1. The calculated Heisenberg and non-Heisenberg results
for different values of θi are shown by the solid black
line in Fig. 14. The figure shows that in a general, non-
collinear case the non-Heisenberg contribution can be sig-
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the spin-glass structure !due to peculiar behavior of more
distant exchange parameters". Although this is a highly ide-
alized picture, it is obvious, that it reflects some features of
the magnetic interactions in the fcc Fe, and it naturally ex-
plains the appearance of many magnetic configurations with
almost the same energy in the fcc Fe, which are present
exactly in the same volume interval where the peculiarity of
the exchange interactions occurs.20 We therefore may argue
that the origin of magnetic frustrations in the fcc Fe is related
to the peculiar behavior of its exchange parameters.
Next, let us see if the situation changes in alloys. In Figs.

1!b" and 1!c" we show the effective and pair exchange pa-
rameters in the fcc Fe65Ni35 and Fe50Ni50 calculated within
the CPA. Note that the former alloy shows Invar anomaly at
ambient pressure, i.e., at equilibrium volume indicated with
dashed vertical line in the figure. The latter alloy has the
usual thermal expansion at equilibrium volume, but it be-
comes Invar upon compression,5 and the estimated theoreti-
cal volume where Fe50Ni50 should show the Invar behavior is
indicated with a vertical dotted line in Fig. 1!c". Analyzing
the figures, one can first of all see that the effective exchange
parameter of Ni remains practically constant for all volumes
at interest. This is in agreement with observation made in
Ref. 3, where it was found that Ni moments stay almost
collinear and parallel to the direction of net magnetization.
Second, we see that the peculiarity observed for the fcc Fe
and discussed above weakens with increasing Ni concentra-
tion. In the Fe65Ni35 the competing character of exchange
interactions is still quite pronounced, but it is already quite
weak in Fe50Ni50. Thus, there must exist an additional reason
for magnetic frustrations in alloys.
In Fig. 3 we show the exchange parameters in the random

fcc Fe50Ni50 alloy between different Fe-Fe pairs at the first
three coordination shells calculated for a 16-atom supercell
which represents random equiatomic alloy.26 We choose the
small supercell in order to simplify the analysis. It will be
clear from the discussion below that the effect observed in

our study can only be enhanced in larger supercells. Note
also that the mean values of the exchange parameters, indi-
cated by squares in Fig. 3, are in perfect agreement with the
values obtained from CPA calculations !shown with dia-
monds in the figure", indicating the reliability of the above
approximation, as well as justifying the use of the 16-atom
supercell.
The most remarkable feature seen in Fig. 3 is that the

values of the exchange parameters show a huge dispersion
for different Fe-Fe pairs at the same coordination shell. The
tendency increases with decreasing volume. The origin of the
dispersion is an extreme sensitivity of the exchange interac-
tions to the local environments of the atoms. For instance,
the Fe atoms, which are mostly surrounded by Ni atoms in
the first coordination shell have the lowest !negative at both
volumes" value of the pair exchange parameter at the first
coordination shell, and vice versa, the Fe atoms mostly sur-
rounded by Fe atoms in the first coordination shell have the
highest pair exchange parameter. Of course, the pair interac-
tions at the particular shell cannot yield a quantitatively cor-
rect picture of magnetic ordering in the system. It is also
obvious that the dispersion of the exchange interactions can-
not lead on its own to the existence of multiple magnetic
solutions, because if all the interactions are positive, the
ground state would still be ferromagnetic. To introduce a
frustration one needs interactions which have approximately
the same value, but are of opposite sign !similar to the cri-
teria for the existence of a spin-glass state". As one can see in
Fig. 3 this is the case of lower volume where the strongest
interactions at the first coordination shell are distributed al-
most symmetrically with respect to the zero line. At the same
time for the higher volume the positive interactions domi-
nate, and therefore they should lead to the ferromagnetic
ground state.
To elucidate this point, we show in Fig. 4 the volume

dependence of effective exchange parameters J0 at two non-
equivalent Fe sites in the supercell, with different local sur-
roundings. At large volumes the difference is negligible, it
increases at equilibrium volume, but both exchange param-
eters are still large and positive, in agreement with the fact
that equiatomic alloy is ferromagnetic at ambient pressure.
With further decreasing volume the exchange parameters

FIG. 3. !Color online" Pair exchange parameters between differ-
ent Fe-Fe pairs as a function of coordination shell p in fcc Fe50Ni50
alloy simulated by 16 atom supercell !Ref. 26" at theoretical equi-
librium volume 73.6 a.u.3 !filled blue circles, slightly shifted to the
right off tick marks" and at compressed volume 70.3 a.u.3 !filled
green circles, shifted to the left off tick marks". Average values of
the pair exchange parameters #Jp

Fe-Fe$ between all Fe-Fe pairs in the
supercell that belong to the pth coordination shell are indicated with
open squares. They are in perfect agreement with values obtained
by the CPA !open diamonds".

FIG. 4. !Color online" Effective exchange parameters J0 at two
nonequivalent Fe sites and two nonequivalent Ni sites in 16-atom
supercell !Ref. 26" as a function of volume per atom. Occupation of
the first neighboring shell for each site is given in the legend box.
Vertical lines have the same meaning as in Fig. 1.
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cated by squares in Fig. 3, are in perfect agreement with the
values obtained from CPA calculations !shown with dia-
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dispersion is an extreme sensitivity of the exchange interac-
tions to the local environments of the atoms. For instance,
the Fe atoms, which are mostly surrounded by Ni atoms in
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volumes" value of the pair exchange parameter at the first
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interactions at the first coordination shell are distributed al-
most symmetrically with respect to the zero line. At the same
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nate, and therefore they should lead to the ferromagnetic
ground state.
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the CPA. Note that the former alloy shows Invar anomaly at
ambient pressure, i.e., at equilibrium volume indicated with
dashed vertical line in the figure. The latter alloy has the
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cal volume where Fe50Ni50 should show the Invar behavior is
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Second, we see that the peculiarity observed for the fcc Fe
and discussed above weakens with increasing Ni concentra-
tion. In the Fe65Ni35 the competing character of exchange
interactions is still quite pronounced, but it is already quite
weak in Fe50Ni50. Thus, there must exist an additional reason
for magnetic frustrations in alloys.
In Fig. 3 we show the exchange parameters in the random

fcc Fe50Ni50 alloy between different Fe-Fe pairs at the first
three coordination shells calculated for a 16-atom supercell
which represents random equiatomic alloy.26 We choose the
small supercell in order to simplify the analysis. It will be
clear from the discussion below that the effect observed in

our study can only be enhanced in larger supercells. Note
also that the mean values of the exchange parameters, indi-
cated by squares in Fig. 3, are in perfect agreement with the
values obtained from CPA calculations !shown with dia-
monds in the figure", indicating the reliability of the above
approximation, as well as justifying the use of the 16-atom
supercell.
The most remarkable feature seen in Fig. 3 is that the

values of the exchange parameters show a huge dispersion
for different Fe-Fe pairs at the same coordination shell. The
tendency increases with decreasing volume. The origin of the
dispersion is an extreme sensitivity of the exchange interac-
tions to the local environments of the atoms. For instance,
the Fe atoms, which are mostly surrounded by Ni atoms in
the first coordination shell have the lowest !negative at both
volumes" value of the pair exchange parameter at the first
coordination shell, and vice versa, the Fe atoms mostly sur-
rounded by Fe atoms in the first coordination shell have the
highest pair exchange parameter. Of course, the pair interac-
tions at the particular shell cannot yield a quantitatively cor-
rect picture of magnetic ordering in the system. It is also
obvious that the dispersion of the exchange interactions can-
not lead on its own to the existence of multiple magnetic
solutions, because if all the interactions are positive, the
ground state would still be ferromagnetic. To introduce a
frustration one needs interactions which have approximately
the same value, but are of opposite sign !similar to the cri-
teria for the existence of a spin-glass state". As one can see in
Fig. 3 this is the case of lower volume where the strongest
interactions at the first coordination shell are distributed al-
most symmetrically with respect to the zero line. At the same
time for the higher volume the positive interactions domi-
nate, and therefore they should lead to the ferromagnetic
ground state.
To elucidate this point, we show in Fig. 4 the volume

dependence of effective exchange parameters J0 at two non-
equivalent Fe sites in the supercell, with different local sur-
roundings. At large volumes the difference is negligible, it
increases at equilibrium volume, but both exchange param-
eters are still large and positive, in agreement with the fact
that equiatomic alloy is ferromagnetic at ambient pressure.
With further decreasing volume the exchange parameters

FIG. 3. !Color online" Pair exchange parameters between differ-
ent Fe-Fe pairs as a function of coordination shell p in fcc Fe50Ni50
alloy simulated by 16 atom supercell !Ref. 26" at theoretical equi-
librium volume 73.6 a.u.3 !filled blue circles, slightly shifted to the
right off tick marks" and at compressed volume 70.3 a.u.3 !filled
green circles, shifted to the left off tick marks". Average values of
the pair exchange parameters #Jp

Fe-Fe$ between all Fe-Fe pairs in the
supercell that belong to the pth coordination shell are indicated with
open squares. They are in perfect agreement with values obtained
by the CPA !open diamonds".

FIG. 4. !Color online" Effective exchange parameters J0 at two
nonequivalent Fe sites and two nonequivalent Ni sites in 16-atom
supercell !Ref. 26" as a function of volume per atom. Occupation of
the first neighboring shell for each site is given in the legend box.
Vertical lines have the same meaning as in Fig. 1.
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the spin-glass structure !due to peculiar behavior of more
distant exchange parameters". Although this is a highly ide-
alized picture, it is obvious, that it reflects some features of
the magnetic interactions in the fcc Fe, and it naturally ex-
plains the appearance of many magnetic configurations with
almost the same energy in the fcc Fe, which are present
exactly in the same volume interval where the peculiarity of
the exchange interactions occurs.20 We therefore may argue
that the origin of magnetic frustrations in the fcc Fe is related
to the peculiar behavior of its exchange parameters.
Next, let us see if the situation changes in alloys. In Figs.

1!b" and 1!c" we show the effective and pair exchange pa-
rameters in the fcc Fe65Ni35 and Fe50Ni50 calculated within
the CPA. Note that the former alloy shows Invar anomaly at
ambient pressure, i.e., at equilibrium volume indicated with
dashed vertical line in the figure. The latter alloy has the
usual thermal expansion at equilibrium volume, but it be-
comes Invar upon compression,5 and the estimated theoreti-
cal volume where Fe50Ni50 should show the Invar behavior is
indicated with a vertical dotted line in Fig. 1!c". Analyzing
the figures, one can first of all see that the effective exchange
parameter of Ni remains practically constant for all volumes
at interest. This is in agreement with observation made in
Ref. 3, where it was found that Ni moments stay almost
collinear and parallel to the direction of net magnetization.
Second, we see that the peculiarity observed for the fcc Fe
and discussed above weakens with increasing Ni concentra-
tion. In the Fe65Ni35 the competing character of exchange
interactions is still quite pronounced, but it is already quite
weak in Fe50Ni50. Thus, there must exist an additional reason
for magnetic frustrations in alloys.
In Fig. 3 we show the exchange parameters in the random

fcc Fe50Ni50 alloy between different Fe-Fe pairs at the first
three coordination shells calculated for a 16-atom supercell
which represents random equiatomic alloy.26 We choose the
small supercell in order to simplify the analysis. It will be
clear from the discussion below that the effect observed in

our study can only be enhanced in larger supercells. Note
also that the mean values of the exchange parameters, indi-
cated by squares in Fig. 3, are in perfect agreement with the
values obtained from CPA calculations !shown with dia-
monds in the figure", indicating the reliability of the above
approximation, as well as justifying the use of the 16-atom
supercell.
The most remarkable feature seen in Fig. 3 is that the

values of the exchange parameters show a huge dispersion
for different Fe-Fe pairs at the same coordination shell. The
tendency increases with decreasing volume. The origin of the
dispersion is an extreme sensitivity of the exchange interac-
tions to the local environments of the atoms. For instance,
the Fe atoms, which are mostly surrounded by Ni atoms in
the first coordination shell have the lowest !negative at both
volumes" value of the pair exchange parameter at the first
coordination shell, and vice versa, the Fe atoms mostly sur-
rounded by Fe atoms in the first coordination shell have the
highest pair exchange parameter. Of course, the pair interac-
tions at the particular shell cannot yield a quantitatively cor-
rect picture of magnetic ordering in the system. It is also
obvious that the dispersion of the exchange interactions can-
not lead on its own to the existence of multiple magnetic
solutions, because if all the interactions are positive, the
ground state would still be ferromagnetic. To introduce a
frustration one needs interactions which have approximately
the same value, but are of opposite sign !similar to the cri-
teria for the existence of a spin-glass state". As one can see in
Fig. 3 this is the case of lower volume where the strongest
interactions at the first coordination shell are distributed al-
most symmetrically with respect to the zero line. At the same
time for the higher volume the positive interactions domi-
nate, and therefore they should lead to the ferromagnetic
ground state.
To elucidate this point, we show in Fig. 4 the volume

dependence of effective exchange parameters J0 at two non-
equivalent Fe sites in the supercell, with different local sur-
roundings. At large volumes the difference is negligible, it
increases at equilibrium volume, but both exchange param-
eters are still large and positive, in agreement with the fact
that equiatomic alloy is ferromagnetic at ambient pressure.
With further decreasing volume the exchange parameters

FIG. 3. !Color online" Pair exchange parameters between differ-
ent Fe-Fe pairs as a function of coordination shell p in fcc Fe50Ni50
alloy simulated by 16 atom supercell !Ref. 26" at theoretical equi-
librium volume 73.6 a.u.3 !filled blue circles, slightly shifted to the
right off tick marks" and at compressed volume 70.3 a.u.3 !filled
green circles, shifted to the left off tick marks". Average values of
the pair exchange parameters #Jp

Fe-Fe$ between all Fe-Fe pairs in the
supercell that belong to the pth coordination shell are indicated with
open squares. They are in perfect agreement with values obtained
by the CPA !open diamonds".

FIG. 4. !Color online" Effective exchange parameters J0 at two
nonequivalent Fe sites and two nonequivalent Ni sites in 16-atom
supercell !Ref. 26" as a function of volume per atom. Occupation of
the first neighboring shell for each site is given in the legend box.
Vertical lines have the same meaning as in Fig. 1.
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the spin-glass structure !due to peculiar behavior of more
distant exchange parameters". Although this is a highly ide-
alized picture, it is obvious, that it reflects some features of
the magnetic interactions in the fcc Fe, and it naturally ex-
plains the appearance of many magnetic configurations with
almost the same energy in the fcc Fe, which are present
exactly in the same volume interval where the peculiarity of
the exchange interactions occurs.20 We therefore may argue
that the origin of magnetic frustrations in the fcc Fe is related
to the peculiar behavior of its exchange parameters.
Next, let us see if the situation changes in alloys. In Figs.

1!b" and 1!c" we show the effective and pair exchange pa-
rameters in the fcc Fe65Ni35 and Fe50Ni50 calculated within
the CPA. Note that the former alloy shows Invar anomaly at
ambient pressure, i.e., at equilibrium volume indicated with
dashed vertical line in the figure. The latter alloy has the
usual thermal expansion at equilibrium volume, but it be-
comes Invar upon compression,5 and the estimated theoreti-
cal volume where Fe50Ni50 should show the Invar behavior is
indicated with a vertical dotted line in Fig. 1!c". Analyzing
the figures, one can first of all see that the effective exchange
parameter of Ni remains practically constant for all volumes
at interest. This is in agreement with observation made in
Ref. 3, where it was found that Ni moments stay almost
collinear and parallel to the direction of net magnetization.
Second, we see that the peculiarity observed for the fcc Fe
and discussed above weakens with increasing Ni concentra-
tion. In the Fe65Ni35 the competing character of exchange
interactions is still quite pronounced, but it is already quite
weak in Fe50Ni50. Thus, there must exist an additional reason
for magnetic frustrations in alloys.
In Fig. 3 we show the exchange parameters in the random

fcc Fe50Ni50 alloy between different Fe-Fe pairs at the first
three coordination shells calculated for a 16-atom supercell
which represents random equiatomic alloy.26 We choose the
small supercell in order to simplify the analysis. It will be
clear from the discussion below that the effect observed in

our study can only be enhanced in larger supercells. Note
also that the mean values of the exchange parameters, indi-
cated by squares in Fig. 3, are in perfect agreement with the
values obtained from CPA calculations !shown with dia-
monds in the figure", indicating the reliability of the above
approximation, as well as justifying the use of the 16-atom
supercell.
The most remarkable feature seen in Fig. 3 is that the

values of the exchange parameters show a huge dispersion
for different Fe-Fe pairs at the same coordination shell. The
tendency increases with decreasing volume. The origin of the
dispersion is an extreme sensitivity of the exchange interac-
tions to the local environments of the atoms. For instance,
the Fe atoms, which are mostly surrounded by Ni atoms in
the first coordination shell have the lowest !negative at both
volumes" value of the pair exchange parameter at the first
coordination shell, and vice versa, the Fe atoms mostly sur-
rounded by Fe atoms in the first coordination shell have the
highest pair exchange parameter. Of course, the pair interac-
tions at the particular shell cannot yield a quantitatively cor-
rect picture of magnetic ordering in the system. It is also
obvious that the dispersion of the exchange interactions can-
not lead on its own to the existence of multiple magnetic
solutions, because if all the interactions are positive, the
ground state would still be ferromagnetic. To introduce a
frustration one needs interactions which have approximately
the same value, but are of opposite sign !similar to the cri-
teria for the existence of a spin-glass state". As one can see in
Fig. 3 this is the case of lower volume where the strongest
interactions at the first coordination shell are distributed al-
most symmetrically with respect to the zero line. At the same
time for the higher volume the positive interactions domi-
nate, and therefore they should lead to the ferromagnetic
ground state.
To elucidate this point, we show in Fig. 4 the volume

dependence of effective exchange parameters J0 at two non-
equivalent Fe sites in the supercell, with different local sur-
roundings. At large volumes the difference is negligible, it
increases at equilibrium volume, but both exchange param-
eters are still large and positive, in agreement with the fact
that equiatomic alloy is ferromagnetic at ambient pressure.
With further decreasing volume the exchange parameters

FIG. 3. !Color online" Pair exchange parameters between differ-
ent Fe-Fe pairs as a function of coordination shell p in fcc Fe50Ni50
alloy simulated by 16 atom supercell !Ref. 26" at theoretical equi-
librium volume 73.6 a.u.3 !filled blue circles, slightly shifted to the
right off tick marks" and at compressed volume 70.3 a.u.3 !filled
green circles, shifted to the left off tick marks". Average values of
the pair exchange parameters #Jp

Fe-Fe$ between all Fe-Fe pairs in the
supercell that belong to the pth coordination shell are indicated with
open squares. They are in perfect agreement with values obtained
by the CPA !open diamonds".

FIG. 4. !Color online" Effective exchange parameters J0 at two
nonequivalent Fe sites and two nonequivalent Ni sites in 16-atom
supercell !Ref. 26" as a function of volume per atom. Occupation of
the first neighboring shell for each site is given in the legend box.
Vertical lines have the same meaning as in Fig. 1.
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Figure 15 (Color online) Calculated Fe-Fe exchange inter-
actions with first 3 coordination shells in fcc Fe0.5Ni0.5 for
two different unit cell volumes (V ) (Ruban et al., 2005).
The 16-atom supecell-based results for V =73.6 a.u.3 and
V =70.3 a.u.3 are shown with blue (dark grey) and green (light
grey) circles, respectively. Supercell- and CPA-averaged Jij ’s
are shown for comparison.

nificant. However, the symmetry decomposition proves
that in the T2g channel the system is more Heisenberg-
like and the non-Heisenberg behavior originates from the
Eg and the mixed channel. This is in good agreement
with the conclusions based on collinear formalism pre-
sented in Refs. Cardias et al., 2017 and Kvashnin et al.,
2016.

B. Itinerant magnets based on 3d metal alloys and
compounds

The explicit method of calculating exchange has
been widely applied to study 3d-based alloys and com-
pounds(Ebert et al., 2011; Turek et al., 2006), and we
describe in this subsection some selected examples. Ac-
cording to the Slater-Pauling curve, the maximal magne-
tization per atom in 3d metal alloys is achieved for the
Fe1−xCox family. In the entire composition range, these
alloys are ferromagnetic (Ležaić et al., 2007). Ref. Ležaić
et al., 2007 suggested that all pairs of Fe-Fe, Fe-Co and
Co-Co interactions are FM and the NN JFe-Co have the
highest value. The latter result was also reported earlier
for an ordered B2-FeCo system (MacLaren et al., 1999),
highlighting the fact that the efficient hybridization be-
tween Fe and Co states results in the enhancement of
both the saturated magnetization and the Tc. Interest-
ingly, for x>0.17, an experimental value of Tc of the bcc
phase is unknown, since the structural bcc-fcc transition
occurs before the bcc structure reaches a Curie temper-
ature. The temperature of the bcc-fcc transition sets a

Figure 16 Calculated versus measured Tc’s in the series of
L21 Heusler alloys (Thoene et al., 2009).

lower value of the expected Tc of the bcc structure, and
it is very high. In fact, MFA-based estimates predict
values of 1600K for x=0.5 (Ležaić et al., 2007), which
is consistent with expectations. An interesting feature
of this family of alloys is that by changing concentra-
tion, one gradually transforms the electronic structure,
to achieve a transition from weak to strong ferromag-
netism. As a result, depending on Co concentration, the
magnetic interactions (and hence the Tc’s) have very dif-
ferent sensitivity to, e.g., volume changes (Ležaić et al.,
2007).

Iron-nickel alloys form in the fcc crystal structure, and
are celebrated thanks to the Invar effect; a vanishing ther-
mal expansion at room temperature, which is in an in-
trinsic relation with the temperature dependence of the
magnetic configuration (van Schilfgaarde et al., 1999). In
Ref. Ruban et al., 2005, the magnetic interactions were
calculated in Fe0.5Ni0.5 and Fe0.65Ni0.35. They were com-
pared with those in (fcc) γ-Fe, and it was found that al-
though both types of systems are frustrated, the physical
picture is drastically different. In fcc Fe, the frustration
comes from the competition between FM NN exchange
coupling and that with more distant neighbours, having
long-ranged oscillatory character. In contrast, the Fe-Ni
alloys are characterized by highly dispersive interactions
already with the first coordination shell, as one can see
in Fig. 15. Although CPA-based results agree well with
the averaged Jij ’s obtained from the supercell approach,
it is clear that the latter captures more details and re-
veals strong influence of the local environment, which
infers why the magnetic order of these alloys is so com-
plex. Note that fcc-based Fe-Mn alloys have a similar ten-
dency to AFM coupling and non-collinearity (Sakuma,
2000). Generally, for Ni-based alloys, it was found that
the renormalized (Bruno, 2003) Jij ’s provide better es-
timates of the Tc’s (Kudrnovský et al., 2008), which is
again related with relatively small exchange splitting of
its 3d states.
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Heusler alloys have been intensely studied with the
explicit formalism of exchange interaction (Buchelnikov
et al., 2008, 2010; Chico et al., 2016; Comtesse et al.,
2014; Khmelevskyi et al., 2015; Kurtulus et al., 2005;
Rusz et al., 2006; Simon et al., 2015; Thoene et al., 2009;
Wollmann et al., 2014). For instance, in Ref. Thoene
et al., 2009, a systematic study of magnetic interactions,
spin wave dispersion and Tc was done for the series
of Heusler compounds with L21 structure. The results
shown in Fig. 16 demonstrate that Tc’s calculated from
Jij ’s combined with a mean field (MFA) estimate of the
ordering temperature, are overall in excellent agreement
with experiment. Given all the approximations of this
work, such as a MFA for Tc estimation and the neglec-
tion of local correlations, one may regard this excellent
result as somewhat fortuitous. However, it is still im-
pressive that the theory is able to correctly reproduce
the experimental trend so well.

Heusler alloys attract great attention partially due to
the half-metallic character, which is observed in some of
them. However, there are many other half-metals, such
as Cr- and Mn- compounds, with zinc blende structure,
which were also successfully modelled by the formalism
presented here (Bose and Kudrnovský, 2010; Liu et al.,
2010; Sanyal et al., 2003). An overall review of the cal-
culated Jij ’s in half-metallic magnets can be found in
Ref. Katsnelson et al., 2008. As expected from the ear-
lier considerations (Eq. (7.2)), the Jij ’s in half-metals are
relatively short-ranged.

C. Alloys with 4d and 5d elements

The 4d and 5d metals are typically non-magnetic due
to relatively more pronounced band dispersion, which
makes it difficult for the Stoner criterion to get satisfied.
However, when placed in proximity to 3d metals, these
elements can get quite substantial induced magnetic mo-
ments (Mohn and Schwarz, 1993). The problem of coex-
isting intrinsic- and induced moments was addressed in
several works on FePt and CoPt alloys with L10 struc-
ture (Mryasov, 2004, 2005). It was suggested that the
size of the induced moments of 5d elements is defined
by an effective Weiss field, produced by the surround-
ing 3d magnetic moments. This idea was later elabo-
rated on, where a generalized Monte Carlo-based scheme
was suggested, which dynamically updates the induced
magnetic moments for each magnetic configuration dur-
ing the simulation (Polesya et al., 2010). Application
of this scheme to the series of FexPd1−x and CoxPt1−x

alloys was shown to deliver a systematically good agree-
ment with experimental values of Tc. In Ref. Polesya
et al., 2016 it was pointed out that such treatment of
the induced moments effectively leads to the emergence
of higher-order (biquadratic) exchange interactions be-
tween 3d metal moments. Indeed, such interactions were

suggested (Mryasov, 2005) to play a key role in explain-
ing the intriguing metamagnetism of FeRh (Barker and
Chantrell, 2015). In ordered FePd3, the biquadratic
interactions were also suggested to stabilize the non-
collinear 3Q phase under pressure (Kvashnin et al., 2012)
and they were needed to get a consistent model of mag-
netism in ferropnictides (Wysocki et al., 2011).

Alloying 3d metals with heavier elements can also
boost the effective strength of the spin-orbit coupling.
Indeed, the SOC constant of Pt 5d states is one order of
magnitude larger than that of Fe 3d states, and can there-
fore be used to enhance anisotropic magnetic interactions
and the magnetocrystalline anisotropy (MAE). Indeed,
the results for Pt-doped 3d metals (Solovyev et al., 1995)
showed that the MAE is to a large extent defined by
non-local scattering of electrons from the SOC potential
of Pt states. Below, we will see how these ideas become
particularly useful for inducing large magnetocrystalline
anisotropy and DM interaction in low-dimensional sys-
tems.

D. Results from the disordered local moment approximation

So far we have focused most of the discussion on theo-
retical calculations of the electronic structure, and the
mapping of these results to the Hamiltonian of Eqns.
1.3 and 1.4. However, the electronic structure can have
a strong configuration dependence, which was clearly
demonstrated in a sequence of papers (Gyorffy et al.,
1985; Staunton et al., 1985, 1984). In these works fi-
nite temperature effects were introduced, by separating
the variables into slow and fast, and the concept of ”tem-
porarily broken ergodicity” was introduced, as mentioned
in connection to Fig.3. A central aspect of these works
was the description of the electronic structure above an
ordering temperature by means of the disordered local
moment (DLM) model (Edwards, 1982; Gyorffy et al.,
1985; Hasegawa, 1979a; Hubbard, 1979b; Oguchi et al.,
1983b; Pindor et al., 1983; Staunton et al., 1985, 1984),
in which the electronic structure is evaluated from a sin-
gle site approximation of the coherent potential approx-
imation. This implies that the electronic structure at
finite temperature is represented by an atom with a po-
tentially finite magnetic moment in an environment with
”spin-average” scattering properties. Hence there is no
short range order in this model, which seems at vari-
ance with experimental results from e.g. muon-spin res-
onance, with significant amount of short range order also
at elevated temperatures. The fluctuating local band
(FLB) model(Capellmann, 1979; Korenman et al., 1977a;
Moriya, 1981) also builds on short range magnetic order
at or even above the ordering temperature, and in fact the
early works of the FLB model express the basic principles
behind non-collinear electronic structure theory. In this
discussion it becomes relevant to also note early works of
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Figure 17 Calculated inverse susceptibility of bcc Fe in units
of 10−2µ−2
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2) (where a0=2.789 Å), from DLM
electronic structure theory (see text), evaluated as a function
of temperature. Figure redrawn after Ref.(Staunton et al.,
1984).

Hubbard, who argued for a theory that builds on itiner-
ant electron states, but with a local exchange field that
varies in direction and strength from atom to atom (see
Refs. (Hubbard, 1981a,b)). The probability of finding
a system in a given configuration of local exchange field
was evaluated by an energy expression together with a
Boltzman factor, allowing for calculations of magnetism
at finite temperature. This theory resulted in a Curie
temperature of 1840 K for Fe and 1200 K for Ni. Both
values are significantly larger than the experimental val-
ues.

Although many materials show short range order also
above the ordering temperature, the DLM approach, that
neglects short range order, has given very encouraging re-
sults (see e.g. Refs. (Delczeg-Czirjak et al., 2012; Dong
et al., 2017; Khmelevskyi et al., 2007; Ruban and Razu-
movskiy, 2012)). As an example of this method, we show
in Fig. 17 the inverse of the susceptibility of bcc Fe, eval-
uated as a function of temperature, in a calculation that
builds on the DLM model (Staunton et al., 1984). As
seen in the figure, the susceptibility diverges at 1260 K,
corresponding to the ordering temperature, which is in
good agreement with the experimental Curie tempera-
ture of 1040 K. There are several examples of calcula-
tions of Heisenberg exchange from the DLM approach,
e.g. the works quoted above in this subsection, and the
relativistic extension of the DLM approach makes possi-
ble to calculate the temperature dependence of magnetic
anisotropy as well (Staunton et al., 2006). We also note
that an excellent review of critical dynamics of magnets
above and below the transition temperature can be found
in Ref. (Frey and Schwabl, 1994).
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FIG. 3. TRPA
c of Co (left) and Fe (right) overlayers on a fcc-

Cu(001) substrate covered by a cap layer of varying thickness.
The dashed lines represent the embedded layer limit (infinite cap
thickness) while the limit of zero cap thickness corresponds to
the uncovered overlayer.

temperatures of ferromagnetic monolayers (being of the
order of 150 200 K). It is unclear whether this is due to
some inaccuracy of the theory or to some imperfections
of the samples used in the experiments. On the contrary,
such important experimental facts as the strong influence
of the metallic coverage on the Curie temperature [1]
are well explained by our theory as illustrated in Fig. 3.
The oscillatory character of TRPA

c around the value
corresponding to an infinite cap, i.e., to the limit of the
embedded layer, is clearly visible and is in a qualitative
agreement with the recent experiment of Vollmer et al. [1].
The origin of these oscillations can be traced back to
the oscillatory behavior of the EEIs and it has the same
origin as related oscillations of the interlayer exchange
couplings found for the Co!Cu!Co(001) trilayer with a
varying Cu-cap-layer thickness [20]. These oscillations
are due to quantum-well states in the Cu-cap layer formed
between the vacuum and the magnetic layer which, in
turn, influence properties of the magnetic layer. We have
verified that amplitudes of oscillations of the EEIs decay
with the thickness d of the cap layer approximately as
d22. The same thickness dependence was also found for
the related case of the interlayer exchange interactions for
the Co!Cu!Co trilayer with the varying thickness of the
Cu-cap layer [21]. A similar behavior was also verified
for the oscillatory dependences of TRPA

c and TMFA
c which,

in turn, are derived from the EEIs. It should be noted that
amplitudes and phases of oscillations can be influenced

by the thickness of the magnetic layer and/or the presence
of the disorder in the system.

In conclusion, in view of the interpretation proposed
here, the oscillatory behavior of the Curie temperature of
Fe films as a function of the Cu-cap thickness as reported
by Vollmer et al. [1] would constitute the first direct ex-
perimental evidence of the oscillatory RKKY character of
exchange interactions in itinerant ferromagnets.
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Figure 18 RPA-derived estimates of the Tc of Co (left) and Fe
(right) monolayers on Cu(001) substrate, covered by Cu-layer
of varying thickness (Pajda et al., 2000).

E. Multilayers and atoms on metallic surfaces

With the development of epitaxial growth techniques,
it is now possible to produce extremely thin layers of
magnetic materials with good control of the structural
homogeneity. The magnetic interactions in such low-
dimensional magnets bring many surprises and opportu-
nities for applications, e.g. in spintronics and magnonics.

For thin-film systems, SPEELS serves as a very ac-
curate experimental tool for observing magnon excita-
tions (Vollmer et al., 2003). In a number of works, the
adiabatic magnon spectra, calculated using Jij ’s, are di-
rectly compared against measured spectra, with in gen-
eral a good agreement (Chuang et al., 2014; Meng et al.,
2014; Zakeri et al., 2021). In order to incorporate fi-
nite temperatures into the theory, atomistic spin dy-
namics simulations have also been widely used to model
the surface magnons (for a review, see Ref. Etz et al.,
2015). Among the studied materials one observes the
Co/Cu(111), Co/Cu(001), Fe/Cu(001) and Fe/W(110)
systems (Bergqvist et al., 2013).

Exchange interactions in multilayers of elemental tran-
sition metals were investigated in many studies. Ref. Vaz
et al., 2008 provides a comprehensive overview of calcu-
lated spin-wave stiffnesses, obtained using different elec-
tronic structure methods. An interesting result was ob-
tained in Refs. Bruno et al., 2002 and Pajda et al., 2000,
where Fe and Co monolayers on Cu(001) was consid-
ered. Depending on the thickness of the capping Cu
layer, the Tc’s were shown to have oscillatory charac-
ter. This results, also shown in Fig. 18, was suggested
to be caused by the interference effects in the capping
layer. Such oscillations have actually been observed in
Co/Cu/Ni trilayers (Ney et al., 1999) and also explained
using the explicit approach of calculating exchange inter-
actions (Isaev et al., 2001).
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Figure 19 (Color online) Computed and measured acoustic
magnon dispersions in Fe/Rh(001) from Ref. Meng et al.,
2014. Inset shows the parts of the Brillouine zone used in
the plot.

Multilayers of 3d metals on the substrates of heavier
elements get even more unpredictable behaviour. This is
partially related to substantial exerted strain as well as a
modification of the bandwidth of electron states. For in-
stance, in Ref. Meng et al., 2014 the study of Fe/Rh(001)
revealed a pronounced softening of acoustic magnons at
the M point, as seen as a dip in the dispersion in Fig. 19.
Usually in layered systems the lowest magnon branch
originates from the spins subject to the smallest effec-
tive Weiss field (defined by the total exchange interac-
tion). In this work it was demonstrated that Fe atoms
at the interface have a strong tendency to AFM cou-
pling and therefore give the main contribution to the
lowest acoustic magnon mode. This is an unexpected
result, given that bulk bcc Fe has such a pronounced
NN and next NN FM interaction. In fact, this tendency
was also reported for pure Fe surface (Keshavarz et al.,
2015) and is related with the changes of density of states
of the surface Fe atoms. A similar tendency to AFM
Fe-Fe interactions were reported for Fe/Ir(001) (Chuang
et al., 2014; Kudrnovský et al., 2009; Zakeri et al., 2013).
We note that in a similar system, in a monolayer Fe on
Rh(111), an up-up-down-down double-row-wise antifer-
romagnetic magnetic ground state was directly observed
in Ref. (Krönlein et al., 2018). We also note that the
occurrence of a novel type of atomic-scale spin lattice in
an Fe monolayer on the Ir(001) surface was predicted in
Ref. (Hoffmann et al., 2015).

F. Influence of spin-orbit coupling

Although several LKAG-inspired approaches for calcu-
lating relativistic interactions have been proposed, DM
interactions have attracted most attention (Ebert and
Mankovsky, 2009; Ebert et al., 2021; Katsnelson et al.,

2010; Mankovsky and Ebert, 2017; Mazurenko and Anisi-
mov, 2005; Secchi et al., 2013; Solovyev et al., 1996a;
Udvardi et al., 2003). As described here, DM param-
eters can be extracted using first-order or second-order
variation in the spin rotation angles, depending on the
situation.

The first-order approach has been utilized to calculate
the instability of a ferromagnetic state towards a for-
mation of a cycloid configuration in Ref. (Mankovsky
and Ebert, 2017), as well as for the so-called weak fer-
romagnets (which are weakly ferromagnetic due to un-
compensated antiferromagnetism, in contrast to the weak
itinerant electron ferromagnets (Katsnelson et al., 2010;
Mazurenko and Anisimov, 2005) discussed in Subsec-
tion VII.A). As regards weak ferromagnets this leads
to good agreement with experimentally observed canting
angles for both La2CuO4 (Katsnelson et al., 2010) and
FeBO3 (Dmitrienko et al., 2014). This approach relies
on the fact that the canting angle is small and a collinear
magnetic state, subject to a finite torque acting on the
magnetic moments, is not far from the true one. Inter-
estingly, in this approach one can rotate spin and orbital
momenta separately and for both studied systems the lat-
ter contributed significantly to the total DM interaction
value. Similar calculations of finite torques on collinear
magnetic moments due to symmetry allowed DM inter-
actions are the calculation of the small tiltings due to
lattice distortions in LaMnO3 (Solovyev et al., 1996a)
and the instability of the ferromagnetic state of the B20
alloy Fe1−xCoxGe towards a cycloidal spin density wave
(Mankovsky and Ebert, 2017). This latter instability is
the origin of the formation of skyrmion lattices in this
system(Heinze et al., 2011a).

The second order approach is most appropriate for
DM interactions that are used for spin wave spectra.
The relativistic effects on the excitation spectra was
demonstrated by a systematic comparison of relativis-
tic exchange couplings calculated for Fe/Cu(001) and
Fe/Au(001), in Ref. Udvardi et al., 2003. The authors
showed that strong SOC of Au-5d states gives rise to sub-
stantially different magnon spectra for the in-plane and
out-of-plane orientation of the magnetization. Currently,
experimental efforts are concentrated on the studies of
DM interaction in such systems (Zakeri et al., 2010)).
Indeed, DM interactions can be effectively enhanced on
the surfaces of heavy elements due to the combined ef-
fect of narrow surface states and substrate induced, large
SOC. By means of explicit calculations, it was shown that
sizeable DM interaction exists between Fe atoms on a
W(110) surface (Udvardi, L. and Szunyogh, L., 2009).
The so obtained DM vectors are shown in Fig. 20. Due
to the symmetry of the system, the DM vectors are ori-
ented strictly in the plane of the surface, such that the
z-component of the DM vector is zero.

Moreover, in Ref. Udvardi, L. and Szunyogh, L., 2009
these interactions were predicted to give rise to an asym-



38

1

2

C

Figure 20 (Color online) Schematic representation of the cal-
culated DM interactions in Fe/W(110) between central iron
atom (C) and its NN and next NN, denoted as 1 and 2, respec-
tively. Figure is taken from Ref. Udvardi, L. and Szunyogh,
L., 2009. The DM vectors are seen to obey twofold rotational
symmetry.

metry of the magnon dispersion, i.e. a preferred chi-
rality, with an asymmetry energy defined as ∆E =
E(q)−E(−q). This asymmetry was later confirmed ex-
perimentally, in Ref. Zakeri et al., 2010. The compari-
son between computed and measured asymmetry energy
for the Fe/W(110) system, also shown in Fig. 21, was
done in Ref. Bergqvist et al., 2013. Without DM inter-
action, ∆E is strictly zero for all q-vectors. Thus, ∆E
can be effectively used for quantifying DM couplings in
this class of systems, partially due to high resolution of
SPEELS-based experiments and partially due to the the-
ory of evaluating the Dij ’s. In this respect, the relativis-
tic interactions between transition metals deposited on
Pt(111) have attracted particular attention (Mankovsky
et al., 2009; Simon et al., 2018; Vida et al., 2016; Zim-
mermann et al., 2019).

As demonstrated, e.g., in Ref. Udvardi, L. and Szun-
yogh, L., 2009, a Hamiltonian with a 3× 3 tensorial cou-
pling between the spins can be considered where the x-
component of the moment on atomic site i can interact
with the y-component of the moment on atomic site j,
as shown in Eqs. (3.13) and (3.14). These interactions
come in a form that is antisymmetric under interchange
of x- and y-indices, which leads to the DM interaction
discussed above. However, there is also a symmetric com-
ponent to the anisotropic exchange interaction, as shown
in Eq. (3.15), that in some cases is significant. As an
example we note a recent calculation of symmetric and
antisymmetric exchange of CoPt, where the two inter-
actions were found to be of similar size (Borisov et al.,
2021). As a final remark to this subsection, we note that
more references on calculations of DM interactions by
various first principles methods can be found in a recent
review focused on this topic (Yang et al., 2022).

ATOMISTIC SPIN DYNAMICS OF LOW-DIMENSIONAL . . . PHYSICAL REVIEW B 87, 144401 (2013)

FIG. 8. (Color online) Calculated spin wave asymmetry for
the magnon spectrum of 2 ML Fe/W(110), using theoretically
determined Dzyaloshinskii-Moriya interactions. The experimental
values have been obtained by Zakeri et al. (Ref. 4) for M ‖ [1̄10].

wave vectors ranging from −H̄ to H̄ in the two-dimensional
Brillouin zone, using theoretically determined Dzyaloshinskii-
Moriya interaction parameters; see Table IV.

The simulations were performed at room temperature,
as in experiment, with realistic damping. We obtain a
qualitatively good agreement with experiment but the am-
plitude of the calculated spin wave asymmetry is slightly
overestimated(≈12 meV compared to ≈8 meV in experiment).
There are several explanations to this discrepency, primarily
the asymmetry is sensitive to the value of the Dzyaloshinskii-
Moriya interaction, which is very delicate to calculate from ab
initio theory. The assumption made in the calculations of an
atomically sharp interface between Fe and W may also be a
limiting factor.

TABLE IV. Dzyaloshinskii-Moriya interactions as calculated
from first principles, for the Fe bilayer on W(110). All the
Dzyaloshinskii-Moriya vectors up to a distance of three lattice
parameters have been calculated and included in simulations, but
for clarity we list only the x and y component of the first two shells
in the table (the z component is zero). The interface Fe layer has label
1 and surface layer 2.

Dzyaloshinskii-Moriya
interactions (mRy)

Type of interaction |Dx | |Dy |

Intralayer
(1–1) 0.038 0.069

0.000 0.085
(2–2) 0.012 0.021

0.000 0.027
Interlayer
(1–2) 0.000 0.051

0.026 0.000

D. Analysis of the dynamical structure factor

In neutron scattering, the susceptibility can be written in
the following form:56

¯̄χ (q + τ ,ω) = 1
2 (1 + cosφ) ¯̄χAc(q,ω) + 1

2 (1−cosφ) ¯̄χOp(q,ω),

(9)

where ¯̄χAc and ¯̄χOp are the susceptibilites originating from
accoustic and optical branches, respectively, q is a recip-
rocal vector within the primitive Brillouin zone (BZ), τ =
[hkl] = hb1 + kb2 + lb3, and φ = τ · ρ, where ρ is a vector
connecting two sublattices. In this manner, by changing the
momentum transfer by varying τ , the intensity of the accoustic
and optical branches is changing. If we take the Fe bilayer
on W(110) as an example, τ = [0 1√

2
0.5]a and the reciprocal

vectors are restricted in the film plane (l = 0), then it follows
that φ = hπ + kπ . Inside the primitive BZ, the phase φ = 0
and in the limit q → 0, in Eq. (9) the acoustic term will
dominate and will be detected in experiment. If we go outside
the first BZ, it is possible to have a situation where the optical
term dominates, on the expense of the acoustic response, for
instance by choosing τ = [10], as illustrated in Fig. 7(b). If
there are more than two atoms in the unit cell, the analysis
becomes more complicated but the principle is the same.

III. CONCLUSIONS

Summarizing, we have shown that combining first-
principles calculations with atomistic spin dynamics sim-
ulations provides a powerful tool for studies of magnetic
excitations in low-dimensional systems. It is hoped that
the remarkable progress using the SPEELS technique3 will
continue to provide new and surprising experimental results,
for which the currently presented theory seems to be a
good tool for analyzing the experimental data and predicting
magnon spectra and related properties. The materials presented
here have several common features, e.g., the absence of
optical modes in the magnon curves, both as determined by
experiments as well as obtained by theory. This fact has been
analyzed in detail and it is argued that also the optical modes
should be visible if one considers excitations which allow
for momentum transfer outside the first Brillouin zone. The
realization of this in the SPEELS method is clearly a challenge.
In addition, we show that all thin film systems investigated
here have a spin wave stiffness which is considerably softer
compared to the bulk value. This applies both to Fe as well
as Co films. Finally, we report on a quantitative agreement
between theory and measured magnon curves for 2 ML Fe on
W(110) and 8 ML Co on Cu(001).
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2021). As a final remark to this subsection, we note that
more references on calculations of DM interactions by
various first principles methods can be found in a recent
review focused on this topic (Yang et al., 2022).

G. Clusters of atoms on surfaces

With the invention of real space methods for calcula-
tions of electronic structures (Andersen and Jepsen, 1984;
Haydock et al., 1975), it has become possible to study
magnetic exchange interactions of systems without peri-
odic boundary conditions. This is the case when clus-
ters or defects are embedded into a solid or at a surface
with the use of LMTO (Andersen and Jepsen, 1984) or
KKR (Kohn and Rostoker, 1954; Korringa, 1947) meth-
ods. In Fig. 22 we give an example when the real-space
LMTO-ASA method was used (Igarashi et al., 2012),
since its implementation is built on a Green function
formalism, and the expressions of interatomic exchange
(Section V) are, more or less, straightforward to im-
plement. This has, e.g., been published in a series of
works (Bergman et al., 2007; Bezerra-Neto et al., 2013;
Cardias et al., 2016; Carvalho et al., 2021; Frota-Pessôa
et al., 2000; Igarashi et al., 2012; Ribeiro et al., 2011;
Szilva et al., 2013, 2017). The results shown in Fig. 22
are obtained from a calculation based on the LSDA, for
an isolated chain of Mn atoms (5 and 9 Mn atoms in
the chain was considered) on top of a bcc Fe (001) sur-
face. The results of Fig. 22 show that the interactions
are dominantly short ranged between all atom types. In
addition, the interactions between Mn-Mn pairs as well
as Mn-Fe pairs, are both ferromagnetic and antiferrmag-
netic, depending on distance between the atoms. This
competition between interactions is responsible for the
complex, non-collinear magnetic structures found in this
system.

H. f -electron systems

Unpaired electrons of transition metal d states is the
most common source of magnetism, but not the only one.
Many elements with partially filled electronic f shells
also exhibit intrinsic magnetic ordering. Modelling mag-
netism of such systems is quite challenging, since the f
electrons are governed by a sophisticated interplay be-
tween strong local correlations, spin-orbit coupling, crys-
tal field effects and hybridization. Capturing all these
ingredients on equal footing is a huge challenge for first-
principles electronic structure calculations.

An advantage of the rare-earth elements is that their
4f wavefunctions are extremely localized and hybridiza-
tion effects can be neglected (with few exceptions; La
and Ce) (Jensen and Mackintosh, 1991). Indeed, al-
though 4f electrons are responsible for the formation of

Figure 21 Experimental (Zakeri et al., 2010) and theoreti-
cal (Udvardi, L. and Szunyogh, L., 2009) chiral asymmetry of
magnon spectrum of bilayer Fe/W(110) (from Ref. Bergqvist
et al., 2013). |q|

the local magnetic moments, they do not explicitly par-
ticipate in the formation of magnetic interactions (Rud-
erman and Kittel, 1954). Instead, the 4f electrons locally
spin-polarized valence 6s6p5d orbitals, which mediate the
exchange couplings (see e.g. Ref. Perlov et al., 2000).

Turek et al. have shown that by treating the 4f elec-
trons as a non-interacting spin-polarized core, a very
good description of magnetic interaction can be achieved
for hcp Gd from calculations of a FM state (Turek
et al., 2003a). Gadolinium orders ferromagnetically with
an observed total magnetic moment of about 7.6 µB

per atom, where 7 µB come from half-filled f -shell
(S=7/2) (Jensen and Mackintosh, 1991). This is repro-
duced by theory (Colarieti-Tosti et al., 2003). In the work
of Ref. Turek et al., 2003a, the MFA-based estimate of
the Tc was 334 K, which is in excellent agreement with
experiment (293 K) (Jensen and Mackintosh, 1991). Sub-
sequent studies treated the paramagnetic phase of Gd by
means of the DLM approach (Khmelevskyi et al., 2007).
Although the calculated values of NN Jij ’s were differ-
ent from the FM-derived ones, a similar Tc estimate was
obtained.

A systematic study of the entire series of late rare-
earths was published in Ref. Locht et al., 2016. It was
here shown that the calculations incorporating local 4f
correlations on Hubbard-I level of approximation (HIA)
are capable of reproducing both electronic valence band
excitation spectra, showing well pronounced atomic mul-
tiplets, and magnetic interactions of these systems. Also,
full charge self-consistency in DMFT was shown to be
of utter importance in order to correctly describe the
exchange couplings. Fortunately, the Jij ’s can already
be well described with the 4f -as-core approach, which is
much less computationally demanding.

As Ref. Locht et al., 2016 shows, the best possible ap-
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2021). As a final remark to this subsection, we note that
more references on calculations of DM interactions by
various first principles methods can be found in a recent
review focused on this topic (Yang et al., 2022).
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ods. In Fig. 22 we give an example when the real-space
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formalism, and the expressions of interatomic exchange
(Section V) are, more or less, straightforward to im-
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are obtained from a calculation based on the LSDA, for
an isolated chain of Mn atoms (5 and 9 Mn atoms in
the chain was considered) on top of a bcc Fe (001) sur-
face. The results of Fig. 22 show that the interactions
are dominantly short ranged between all atom types. In
addition, the interactions between Mn-Mn pairs as well
as Mn-Fe pairs, are both ferromagnetic and antiferrmag-
netic, depending on distance between the atoms. This
competition between interactions is responsible for the
complex, non-collinear magnetic structures found in this
system.

H. f -electron systems

Unpaired electrons of transition metal d states is the
most common source of magnetism, but not the only one.
Many elements with partially filled electronic f shells
also exhibit intrinsic magnetic ordering. Modelling mag-
netism of such systems is quite challenging, since the f
electrons are governed by a sophisticated interplay be-
tween strong local correlations, spin-orbit coupling, crys-
tal field effects and hybridization. Capturing all these
ingredients on equal footing is a huge challenge for first-
principles electronic structure calculations.

An advantage of the rare-earth elements is that their
4f wavefunctions are extremely localized and hybridiza-
tion effects can be neglected (with few exceptions; La
and Ce) (Jensen and Mackintosh, 1991). Indeed, al-
though 4f electrons are responsible for the formation of

Figure 21 Experimental (Zakeri et al., 2010) and theoreti-
cal (Udvardi, L. and Szunyogh, L., 2009) chiral asymmetry of
magnon spectrum of bilayer Fe/W(110) (from Ref. Bergqvist
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the local magnetic moments, they do not explicitly par-
ticipate in the formation of magnetic interactions (Rud-
erman and Kittel, 1954). Instead, the 4f electrons locally
spin-polarized valence 6s6p5d orbitals, which mediate the
exchange couplings (see e.g. Ref. Perlov et al., 2000).

Turek et al. have shown that by treating the 4f elec-
trons as a non-interacting spin-polarized core, a very
good description of magnetic interaction can be achieved
for hcp Gd from calculations of a FM state (Turek
et al., 2003a). Gadolinium orders ferromagnetically with
an observed total magnetic moment of about 7.6 µB

per atom, where 7 µB come from half-filled f -shell
(S=7/2) (Jensen and Mackintosh, 1991). This is repro-
duced by theory (Colarieti-Tosti et al., 2003). In the work
of Ref. Turek et al., 2003a, the MFA-based estimate of
the Tc was 334 K, which is in excellent agreement with
experiment (293 K) (Jensen and Mackintosh, 1991). Sub-
sequent studies treated the paramagnetic phase of Gd by
means of the DLM approach (Khmelevskyi et al., 2007).
Although the calculated values of NN Jij ’s were differ-
ent from the FM-derived ones, a similar Tc estimate was
obtained.

A systematic study of the entire series of late rare-
earths was published in Ref. Locht et al., 2016. It was
here shown that the calculations incorporating local 4f
correlations on Hubbard-I level of approximation (HIA)
are capable of reproducing both electronic valence band
excitation spectra, showing well pronounced atomic mul-
tiplets, and magnetic interactions of these systems. Also,
full charge self-consistency in DMFT was shown to be
of utter importance in order to correctly describe the
exchange couplings. Fortunately, the Jij ’s can already
be well described with the 4f -as-core approach, which is
much less computationally demanding.

As Ref. Locht et al., 2016 shows, the best possible ap-
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an isolated chain of Mn atoms (5 and 9 Mn atoms in
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are dominantly short ranged between all atom types. In
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as Mn-Fe pairs, are both ferromagnetic and antiferrmag-
netic, depending on distance between the atoms. This
competition between interactions is responsible for the
complex, non-collinear magnetic structures found in this
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also exhibit intrinsic magnetic ordering. Modelling mag-
netism of such systems is quite challenging, since the f
electrons are governed by a sophisticated interplay be-
tween strong local correlations, spin-orbit coupling, crys-
tal field effects and hybridization. Capturing all these
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principles electronic structure calculations.

An advantage of the rare-earth elements is that their
4f wavefunctions are extremely localized and hybridiza-
tion effects can be neglected (with few exceptions; La
and Ce) (Jensen and Mackintosh, 1991). Indeed, al-
though 4f electrons are responsible for the formation of
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ticipate in the formation of magnetic interactions (Rud-
erman and Kittel, 1954). Instead, the 4f electrons locally
spin-polarized valence 6s6p5d orbitals, which mediate the
exchange couplings (see e.g. Ref. Perlov et al., 2000).

Turek et al. have shown that by treating the 4f elec-
trons as a non-interacting spin-polarized core, a very
good description of magnetic interaction can be achieved
for hcp Gd from calculations of a FM state (Turek
et al., 2003a). Gadolinium orders ferromagnetically with
an observed total magnetic moment of about 7.6 µB
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Although the calculated values of NN Jij ’s were differ-
ent from the FM-derived ones, a similar Tc estimate was
obtained.

A systematic study of the entire series of late rare-
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here shown that the calculations incorporating local 4f
correlations on Hubbard-I level of approximation (HIA)
are capable of reproducing both electronic valence band
excitation spectra, showing well pronounced atomic mul-
tiplets, and magnetic interactions of these systems. Also,
full charge self-consistency in DMFT was shown to be
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much less computationally demanding.

As Ref. Locht et al., 2016 shows, the best possible ap-

38

2021). As a final remark to this subsection, we note that
more references on calculations of DM interactions by
various first principles methods can be found in a recent
review focused on this topic (Yang et al., 2022).

G. Clusters of atoms on surfaces

With the invention of real space methods for calcula-
tions of electronic structures (Andersen and Jepsen, 1984;
Haydock et al., 1975), it has become possible to study
magnetic exchange interactions of systems without peri-
odic boundary conditions. This is the case when clus-
ters or defects are embedded into a solid or at a surface
with the use of LMTO (Andersen and Jepsen, 1984) or
KKR (Kohn and Rostoker, 1954; Korringa, 1947) meth-
ods. In Fig. 22 we give an example when the real-space
LMTO-ASA method was used (Igarashi et al., 2012),
since its implementation is built on a Green function
formalism, and the expressions of interatomic exchange
(Section V) are, more or less, straightforward to im-
plement. This has, e.g., been published in a series of
works (Bergman et al., 2007; Bezerra-Neto et al., 2013;
Cardias et al., 2016; Carvalho et al., 2021; Frota-Pessôa
et al., 2000; Igarashi et al., 2012; Ribeiro et al., 2011;
Szilva et al., 2013, 2017). The results shown in Fig. 22
are obtained from a calculation based on the LSDA, for
an isolated chain of Mn atoms (5 and 9 Mn atoms in
the chain was considered) on top of a bcc Fe (001) sur-
face. The results of Fig. 22 show that the interactions
are dominantly short ranged between all atom types. In
addition, the interactions between Mn-Mn pairs as well
as Mn-Fe pairs, are both ferromagnetic and antiferrmag-
netic, depending on distance between the atoms. This
competition between interactions is responsible for the
complex, non-collinear magnetic structures found in this
system.

H. f -electron systems

Unpaired electrons of transition metal d states is the
most common source of magnetism, but not the only one.
Many elements with partially filled electronic f shells
also exhibit intrinsic magnetic ordering. Modelling mag-
netism of such systems is quite challenging, since the f
electrons are governed by a sophisticated interplay be-
tween strong local correlations, spin-orbit coupling, crys-
tal field effects and hybridization. Capturing all these
ingredients on equal footing is a huge challenge for first-
principles electronic structure calculations.

An advantage of the rare-earth elements is that their
4f wavefunctions are extremely localized and hybridiza-
tion effects can be neglected (with few exceptions; La
and Ce) (Jensen and Mackintosh, 1991). Indeed, al-
though 4f electrons are responsible for the formation of

Figure 21 Experimental (Zakeri et al., 2010) and theoreti-
cal (Udvardi, L. and Szunyogh, L., 2009) chiral asymmetry of
magnon spectrum of bilayer Fe/W(110) (from Ref. Bergqvist
et al., 2013). �H̄ H̄ �̄

the local magnetic moments, they do not explicitly par-
ticipate in the formation of magnetic interactions (Rud-
erman and Kittel, 1954). Instead, the 4f electrons locally
spin-polarized valence 6s6p5d orbitals, which mediate the
exchange couplings (see e.g. Ref. Perlov et al., 2000).

Turek et al. have shown that by treating the 4f elec-
trons as a non-interacting spin-polarized core, a very
good description of magnetic interaction can be achieved
for hcp Gd from calculations of a FM state (Turek
et al., 2003a). Gadolinium orders ferromagnetically with
an observed total magnetic moment of about 7.6 µB

per atom, where 7 µB come from half-filled f -shell
(S=7/2) (Jensen and Mackintosh, 1991). This is repro-
duced by theory (Colarieti-Tosti et al., 2003). In the work
of Ref. Turek et al., 2003a, the MFA-based estimate of
the Tc was 334 K, which is in excellent agreement with
experiment (293 K) (Jensen and Mackintosh, 1991). Sub-
sequent studies treated the paramagnetic phase of Gd by
means of the DLM approach (Khmelevskyi et al., 2007).
Although the calculated values of NN Jij ’s were differ-
ent from the FM-derived ones, a similar Tc estimate was
obtained.

A systematic study of the entire series of late rare-
earths was published in Ref. Locht et al., 2016. It was
here shown that the calculations incorporating local 4f
correlations on Hubbard-I level of approximation (HIA)
are capable of reproducing both electronic valence band
excitation spectra, showing well pronounced atomic mul-
tiplets, and magnetic interactions of these systems. Also,
full charge self-consistency in DMFT was shown to be
of utter importance in order to correctly describe the
exchange couplings. Fortunately, the Jij ’s can already
be well described with the 4f -as-core approach, which is
much less computationally demanding.

As Ref. Locht et al., 2016 shows, the best possible ap-

37

Figure 19 Computed and measured acoustic magnon disper-
sions in Fe/Rh(001) from Ref. Meng et al., 2014. Inset shows
the parts of the Brillouine zone used in the plot.

romagnets (which are weakly ferromagnetic due to un-
compensated antiferromagnetism, in contrast to the weak
itinerant electron ferromagnets (Katsnelson et al., 2010;
Mazurenko and Anisimov, 2005) discussed in Subsec-
tion VII.A). As regards weak ferromagnets this leads
to good agreement with experimentally observed canting
angles for both La2CuO4 (Katsnelson et al., 2010) and
FeBO3 (Dmitrienko et al., 2014). This approach relies
on the fact that the canting angle is small and a collinear
magnetic state, subject to a finite torque acting on the
magnetic moments, is not far from the true one. Inter-
estingly, in this approach one can rotate spin and orbital
momenta separately and for both studied systems the lat-
ter contributed significantly to the total DM interaction
value. Similar calculations of finite torques on collinear
magnetic moments due to symmetry allowed DM inter-
actions are the calculation of the small tiltings due to
lattice distortions in LaMnO3 (Solovyev et al., 1996a)
and the instability of the ferromagnetic state of the B20
alloy Fe1�xCoxGe towards a cycloidal spin density wave
(Mankovsky and Ebert, 2017). This latter instability is
the origin of the formation of skyrmion lattices in this
system(Heinze et al., 2011a).

The second order approach is most appropriate for
DM interactions that are used for spin wave spectra.
The relativistic effects on the excitation spectra was
demonstrated by a systematic comparison of relativis-
tic exchange couplings calculated for Fe/Cu(001) and
Fe/Au(001), in Ref. Udvardi et al., 2003. The authors
showed that strong SOC of Au-5d states gives rise to sub-
stantially different magnon spectra for the in-plane and
out-of-plane orientation of the magnetization. Currently,
experimental efforts are concentrated on the studies of
DM interaction in such systems (Zakeri et al., 2010)).
Indeed, DM interactions can be effectively enhanced on
the surfaces of heavy elements due to the combined ef-
fect of narrow surface states and substrate induced, large

Figure 20 Schematic representation of the calculated DM in-
teractions in Fe/W(110) between central iron atom (C) and
its NN and next NN, denoted as 1 and 2, respectively. Figure
is taken from Ref. Udvardi, L. and Szunyogh, L., 2009. The
DM vectors are seen to obey twofold rotational symmetry.

SOC. By means of explicit calculations, it was shown that
sizeable DM interaction exists between Fe atoms on a
W(110) surface (Udvardi, L. and Szunyogh, L., 2009).
The so obtained DM vectors are shown in Fig. 20. Due
to the symmetry of the system, the DM vectors are ori-
ented strictly in the plane of the surface, such that the
z-component of the DM vector is zero.

Moreover, in Ref. Udvardi, L. and Szunyogh, L., 2009
these interactions were predicted to give rise to an asym-
metry of the magnon dispersion, i.e. a preferred chi-
rality, with an asymmetry energy defined as �E =
E(q)�E(�q). This asymmetry was later confirmed ex-
perimentally, in Ref. Zakeri et al., 2010. The compari-
son between computed and measured asymmetry energy
for the Fe/W(110) system, also shown in Fig. 21, was
done in Ref. Bergqvist et al., 2013. Without DM inter-
action, �E is strictly zero for all q-vectors. Thus, �E
can be effectively used for quantifying DM couplings in
this class of systems, partially due to high resolution of
SPEELS-based experiments and partially due to the the-
ory of evaluating the Dij ’s. In this respect, the relativis-
tic interactions between transition metals deposited on
Pt(111) have attracted particular attention (Mankovsky
et al., 2009; Simon et al., 2018; Vida et al., 2016; Zim-
mermann et al., 2019).

As demonstrated, e.g., in Ref. Udvardi, L. and Szun-
yogh, L., 2009, a Hamiltonian with a 3⇥ 3 tensorial cou-
pling between the spins can be considered where the x-
component of the moment on atomic site i can interact
with the y-component of the moment on atomic site j,
as shown in Eqs. (3.13) and (3.14). These interactions
come in a form that is antisymmetric under interchange
of x- and y-indices, which leads to the DM interaction
discussed above. However, there is also a symmetric com-
ponent to the anisotropic exchange interaction, as shown
in Eq. (3.15), that in some cases is significant. As an
example we note a recent calculation of symmetric and
antisymmetric exchange of CoPt, where the two inter-
actions were found to be of similar size (Borisov et al.,

calculated
experimental

Figure 21 (Color online) Experimental (Zakeri et al., 2010)
and theoretical (Udvardi, L. and Szunyogh, L., 2009) chiral
asymmetry of magnon spectrum of bilayer Fe/W(110) (from
Ref. Bergqvist et al., 2013).

G. Clusters of atoms on surfaces

With the invention of real space methods for calcula-
tions of electronic structures (Andersen and Jepsen, 1984;
Haydock et al., 1975), it has become possible to study
magnetic exchange interactions of systems without peri-
odic boundary conditions. This is the case when clus-
ters or defects are embedded into a solid or at a surface
with the use of LMTO (Andersen and Jepsen, 1984) or
KKR (Kohn and Rostoker, 1954; Korringa, 1947) meth-
ods. In Fig. 22 we give an example when the real-space
LMTO-ASA method was used (Igarashi et al., 2012),
since its implementation is built on a Green function
formalism, and the expressions of interatomic exchange
(Section V) are, more or less, straightforward to im-
plement. This has, e.g., been published in a series of
works (Bergman et al., 2007; Bezerra-Neto et al., 2013;
Cardias et al., 2016; Carvalho et al., 2021; Frota-Pessôa
et al., 2000; Igarashi et al., 2012; Ribeiro et al., 2011;
Szilva et al., 2013, 2017). The results shown in Fig. 22
are obtained from a calculation based on the LSDA, for
an isolated chain of Mn atoms (5 and 9 Mn atoms in
the chain was considered) on top of a bcc Fe (001) sur-
face. The results of Fig. 22 show that the interactions
are dominantly short ranged between all atom types. In
addition, the interactions between Mn-Mn pairs as well
as Mn-Fe pairs, are both ferromagnetic and antiferrmag-
netic, depending on distance between the atoms. This
competition between interactions is responsible for the
complex, non-collinear magnetic structures found in this
system.
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H. f -electron systems

Unpaired electrons of transition metal d states is the
most common source of magnetism, but not the only one.
Many elements with partially filled electronic f shells
also exhibit intrinsic magnetic ordering. Modelling mag-
netism of such systems is quite challenging, since the f
electrons are governed by a sophisticated interplay be-
tween strong local correlations, spin-orbit coupling, crys-
tal field effects and hybridization. Capturing all these
ingredients on equal footing is a huge challenge for first-
principles electronic structure calculations.

An advantage of the rare-earth elements is that their
4f wavefunctions are extremely localized and hybridiza-
tion effects can be neglected (with few exceptions; La
and Ce) (Jensen and Mackintosh, 1991). Indeed, al-
though 4f electrons are responsible for the formation of
the local magnetic moments, they do not explicitly par-
ticipate in the formation of magnetic interactions (Rud-
erman and Kittel, 1954). Instead, the 4f electrons locally
spin-polarize valence 6s6p5d orbitals, which mediate the
exchange couplings (see e.g. Ref. Perlov et al., 2000).

Turek et al. have shown that by treating the 4f elec-
trons as a non-interacting spin-polarized core, a very
good description of magnetic interaction can be achieved
for hcp Gd from calculations of a FM state (Turek
et al., 2003a). Gadolinium orders ferromagnetically with
an observed total magnetic moment of about 7.6 µB

per atom, where 7 µB come from half-filled f -shell
(S=7/2) (Jensen and Mackintosh, 1991). This is repro-
duced by theory (Colarieti-Tosti et al., 2003). In the work
of Ref. Turek et al., 2003a, the MFA-based estimate of
the Tc was 334 K, which is in excellent agreement with
experiment (293 K) (Jensen and Mackintosh, 1991). Sub-
sequent studies treated the paramagnetic phase of Gd by
means of the DLM approach (Khmelevskyi et al., 2007).
Although the calculated values of NN Jij ’s were differ-
ent from the FM-derived ones, a similar Tc estimate was
obtained.

A systematic study of the entire series of late rare-
earths was published in Ref. Locht et al., 2016. It was
here shown that the calculations incorporating local 4f
correlations on Hubbard-I level of approximation (HIA)
(Lichtenstein and Katsnelson, 1998) are capable of repro-
ducing both electronic valence band excitation spectra,
showing well pronounced atomic multiplets, and mag-
netic interactions of these systems. Also, full charge self-
consistency in DMFT was shown to be of utter impor-
tance in order to correctly describe the exchange cou-
plings. Fortunately, the Jij ’s can already be well de-
scribed with the 4f -as-core approach, which is much less
computationally demanding.

As Ref. Locht et al., 2016 shows, the best possible ap-
proach to the electronic structure of the rare-earths is the
HIA approximation. It reproduces measured electronic
structures (both occupied and unoccupied states) and
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muffin-tin orbital–atomic sphere approximation) method,38,39

which is based on the LMTO-ASA formalism,40 and employs
the recursion method41 to solve the eigenvalue problem
directly in real space. The RS-LMTO-ASA method has
been generalized to describe noncollinear magnetism.42,43

The calculations presented here are fully self-consistent
and performed within the local spin-density approximation
(LSDA).44 In this study, we have considered Mn nanos-
tructures with different geometries supported on a Fe(001)
surface.

The Fe(001) surface has been modeled by a cluster
containing ∼10 000 atoms positioned in a bcc lattice with
the experimental lattice parameter of Fe. In the recursion
method, the continued fraction has been calculated exactly up
to 20 recursion levels and then appended with the Beer-Pettifor
terminator.45 In order to provide a basis for the wave function
in the vacuum outside the surface and to treat charge transfers
correctly, we included two layers of empty spheres above the
Fe surface. The calculations of the Mn nanostructures have
been performed by embedding the clusters as a perturbation
on the self-consistently converged Fe(001) surface. The Mn
sites and the first and second nearest neighbors of Fe (or
empty spheres) atoms around the defect were recalculated
self-consistently, with size varying from 10 up to 78 sites,
while the potential parameters for all other sites far from the
Mn cluster were kept unchanged.

We have performed calculations with and without structural
relaxations. In the latter we consider that the Mn atoms occupy
the unrelaxed hollow positions, assuming the experimental
lattice parameter of the Fe substrate. In the former we
inspect inward and outward perpendicular relaxations to the
Fe(001) surface of 2% and 6%. These choices are based on
experimental results, where it was observed that Mn grows on
Fe(001) in a bct structure, with the in-plane lattice parameter
of Fe (2.87 Å), and out-of-plane distances (d⊥) that vary with
the Mn film thickness. For example, in ultrathin films with
up to two monolayers of Mn/Fe(001), the Fe-Mn interplanar
distance is dFeMn

⊥ ≈ 1.4 Å, whereas the separation between the
Mn layers is dMnMn

⊥ ≈ 1.5 Å.12–15 Fully relativistic calculations
forcing a magnetic collinear configuration have been carried
out by taking into account the spin-orbit interaction in each
variational step. Our results show that the atomic orbital
moments are rather small, being less than 0.04µB/atom
and 0.1µB/atom for Mn and Fe atoms, respectively. For
noncollinear magnetic arrangements, we also performed cal-
culations with spin-orbit coupling. For a particular system of
a nanowire with nine atoms, we also performed noncollinear
calculations without spin-orbit coupling, in order to extract the
effect of this interaction on the magnetic configuration of the
system.

The Heisenberg exchange interaction parameters Jij have
been calculated employing the formula of Liechtenstein
et al.,46 as implemented in the RS-LMTO-ASA method.47

The obtained values of Jij are then used to analyze, on
a qualitative level, the competition between nearest and
next-nearest interactions, as well as the effect of frustration
in the magnetic orderings explored in our full noncollinear
calculations. The positive (negative) value of Jij indicates a
ferromagnetic (antiferromagnetic) coupling.

FIG. 1. (Color online) Finite linear chains of Mn atoms adsorbed
on bcc Fe(001) surface. The red (dark) and gray (light) balls indicate
Mn and Fe atoms, respectively.

III. RESULTS AND DISCUSSIONS

A. Mn nanowires on Fe(001)

1. Collinear structures

In Fig. 1 we show the geometries of various finite linear
chains of Mn atoms adsorbed on bcc Fe(001) along the [100]
direction. Each Mn atom, in this case, has only Fe atoms as its
first nearest neighbors, though its next nearest neighbors can be
either Mn or Fe atoms, where the closest distance between Mn
atoms is equal to the bcc Fe lattice parameter (a = 2.87 Å)
and the configurations are denoted by Mnn/Fe(001). We
have performed calculations for different collinear magnetic
configurations of the Mn nanostructures, assuming that the
Fe substrate is always in a ferromagnetic state. We consider
the following cases: (i)-(FM), where all Mn and Fe magnetic
moments are ferromagnetically aligned; (ii)-(AF), where all
Mn moments are ferromagnetically aligned, but antiferromag-
netically aligned to the Fe moments; and (iii), where all Mn
magnetic moments are antiferromagnetically aligned to each
other. In (iii) we have examined three situations: chains with
even number of Mn atoms (iii.1)-(FI1), where the net Mn
magnetization is virtually zero; and chains with odd numbers
of Mn atoms, where there is always one unpaired Mn moment
leading to a finite Mn chain net magnetization that may be
aligned either parallel (iii.2)-(FI2) or antiparallel (iii.3)-(FI3)
to the Fe substrate magnetization.

Our calculations show that the spin contributions to the
Mn magnetic moments may vary considerably. For case
(i)-(FM), we obtained mMn = 3.4µB for a single Mn adatom,
mMn ≈ 3.3µB for Mn atoms located at the tips of the chains,
and mMn ≈ 3.2µB for Mn central sites. Our results for
Mn sites coupled antiferromagnetically to the substrate are
systematically larger than those obtained in case (i)-(FM),
ranging from mMn ≈ 3.5µB for Mn atoms located at the
chain’s tips to mMn ≈ 3.6µB for Mn atoms at inner sites. The
corresponding values for surface Fe atoms with only one and
two Mn nearest neighbors are mFe ≈ 2.6µB and mFe ≈ 2.2µB ,
respectively. For subsurface Fe atoms we found mFe ≈ 2.1µB .

014436-2

Figure 22 (Color online) Geometry of Mn chain shown by or-
ange (dark grey) spheres on a bcc Fe surface (001 orientation)
with Fe atoms as light grey spheres (upper panel). Calculated
exchange interactions between Mn-Mn pairs and between Fe-
Mn pairs (lower panel). Data from Ref. Igarashi et al., 2012.

results in realistic magnetic properties. As discussed in
Ref. Locht et al., 2016 LDA+U has a significantly worse
performance for elemental rare earths. This is shown ex-
plicitly in Fig. 14 of Ref. Locht et al., 2016, where the
valence band of HIA calculations is compared to LDA+U
calculations. The latter is seen to not capture experi-
ments while the former does. Also, for compounds such
as TbN, HIA gives a much better description of the to-
tal energy, equilibrium lattice constant and bulk modulus
than LDA+U Peters et al., 2014. At the same time, as
argued in Ref. Locht et al., 2016, a poor-man’s treatment
of the 4f electrons is to consider them as non-hybridizing
core states with a spin-moment constrained according to
LS-coupling, an approach also considered in Ref. Turek
et al., 2003a that successfully reproduced experimental
moments and exchange interactions. In the case where
non-local interaction effects are important, that is inter-
site Coulomb interactions, a reasonable alternative could
be the self-interaction corrected local spin density (SIC-
LSD) approximation (Temmerman et al., 2007, 1993).

The Fourier transform of the obtained Jij ’s of the
heavy rare-earths, calculated in Ref. Locht et al., 2016, is
shown in Fig. 23 (as J(q⃗)−J(0)). The minimum value of
this curve indicates the ground state magnetic ordering
q-vector. The results show that Er and Tm have a ten-
dency to have non-collinear magnetic order (similarly to
Eu (Turek et al., 2003c)). Holmium is also on the border
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FIG. 4. Calculated TN/C for heavy REs. The results are obtained
using Jij ’s presented in Fig. 3. The experimental data for the ordering
temperature, i.e., the transition from a paramagnetic state to an
ordered state, is taken from Ref. [12]. These ordered states have no
net magnetic moment, with an exception for Gd, where the transition
is directly to the ferromagnetic state. The solid lines are calculated
with the classical spin moment; the dashed line is calculated with the
de Gennes prescription and is merely a rescaling of the classical MFA
result.

with Monte Carlo and MFA methods, utilizing the Jij ’s
presented in Fig. 3, as defined in the first term of Eq. (6).
In all simulations the total spin moment (see legend of
Fig. 3), including f and [spd] contributions, was used in the
classical limit [(Sz

f spd )2]. Additionally, we plot the ordering
temperatures in the MFA when de Gennes prescription S2 →
(gJ − 1)2J (J + 1) is used. In this case, the total angular
momentum quantum number J is due only to the f elec-
trons. Although both approaches rely on the same physical
mechanism, namely that the exchange interaction is between
spin moments, de Gennes prescription takes into account the
existence of an orbital moment, by taking the projection of the
spin onto the J axis.

We have also verified the impact of varying the amount
of neighbor interactions on the resulting TN/C values. For this
study we used the computationally less demanding MFA-based
estimation. In the inset of Fig. 4 the results obtained with two
different cutoff radii for the Jij interactions are compared. One
can see that an increase of the cluster radius from 3.2a to 5.57a
produces almost negligible changes in the calculated ordering
temperature for almost all heavy REs. The exceptional case
is Gd, where the differences are more significant, as was also
shown in Ref. [64]. We believe that it is related to the fact that
the strength of the Jij ’s in this metal is the largest among the
studied systems. The TN/C’s obtained from the maximum in
the susceptibility are calculated with a cutoff radius of 5.57a.
For the CCM we used only 3.2a, except for Gd, where we used
5.57a.

From Fig. 4 one can see that both Monte Carlo methods
(TN/C obtained from the maximum in the susceptibility and
using CCM) and the MFA produce quite similar results. MFA
has a well-known tendency to overestimate the TN/C’s. Indeed,
our results indicate that MFA-based estimates are about 20%

FIG. 5. Fourier transform of the exchange interaction J (q) −
J (0) for heavy rare-earth metals plotted along the !-A-! line. The
inset shows a magnification of the figure for the reduced wave vector
in the interval [0, 0.6]. In the inset we also indicated the pitch vector
for Er and Tm, showing that the ferromagnetic reference state is
unstable for both metals.

larger than the ones obtained with Monte Carlo methods. One
can also see that the calculated TN/C’s produced with both
methods are in fair agreement with experimental data. The
largest errors in the Monte Carlo calculation are found for
Gd and Dy and reach about 35 K. However, in spite of these
differences, the qualitative trend of lowering of the TN/C across
the heavy RE series is nicely reproduced in these calculations.

A small remark on the experimental TN/C in Fig. 4: We
chose to compare our results to the experimental ordering
temperature related to magnetically ordered to paramagnetic
transition. However, for most heavy rare-earth elements there
is a low-temperature ferromagnetism, followed by a phase
without net moment (helix, cone, or longitudinal spin wave)
before the paramagnetic phase. In principle, Monte Carlo
simulations should be able to reproduce both transitions.
However, to investigate the full magnetic phase diagram, one
needs both temperature-dependent Jij ’s and a temperature-
dependent anisotropy. These quantities we cannot calculate at
the moment.

4. Fourier transform exchange parameters

The Fourier-transformed exchange constants J (q) shifted
by the value at the ! point, are shown in Fig. 5 for heavy
rare-earth metals. The values have been calculated by using
linear spin-wave theory in the framework of the adiabatic
approximation and are plotted in the reciprocal space along the
path !-A-!, with A-! laying in the second Brillouin zone. The
reported results for Gd, Tb, Dy, and Ho have been computed
by using as a reference state a collinear configuration with the
magnetic moments pointing parallel to the basal plane. The
positive maximum at finite q vector for Er and Tm indicates
that for these elements the ferromagnetic state is unstable
by about 0.15 and 0.36 meV, respectively. In experiments at
low temperature, indeed a spin spiral is found for Er and a

085137-9

As we have previously seen in Sections 2.5 and 2.6, the occuring matrices have distinct

symmetries when formed in the basis of real spherical harmonics (imposed by time-reversal),

namely,

�
tia
�T

= tia (3.13)
�
tid
�T

= tid (3.14)
⇣
e�ij

(1)↵

⌘T

= �e�ji
(1)↵. (3.15)

As the trace is invariant to transposition, (3.12) can identically be written as

�TrL

⇣
tid
e�ii

(1)↵

⌘
= �TrL

⇣
tid
e�ii

(1)↵

⌘T

= �TrL

⇣
e�ii

(1)↵

⌘T �
tid
�T
�

= TrL

⇣
e�ii

(1)↵t
i
d

⌘
= TrL

⇣
tid
e�ii

(1)↵

⌘
. (3.16)

This immediately implies that

�⇠ Tr ti�ii
(1) = 0, (3.17)

thus to reveal the dependence of the grand potential on �!n , we must study at least the second

order terms (3.9) and (3.10).

3.4 Second order terms in ⇠: the on-site anisotropy

Taking the trace of the tensor product, (3.9) can be written as

�⇠2 Tr
�
ti�ii

(2)

�
= � ⇠2 Tr

h�
tia + tidn↵�↵

� e�ii
(2)������

i

= � ⇠2 TrL

h
tiae�ii

(2)��

i
TrS [����] � ⇠2 TrL

h
tide�ii

(2)��

i
TrS [�↵����] n↵. (3.18)

It can easily be shown (see Appendix A) that

�↵���� = ı"↵�� I2 + S 0, where S 0 2 Lin{�x, �y, �z} (3.19)

therefore, we get

�⇠2 Tr
⇥
ti�ii

(2)

⇤
= �2⇠2 TrL

h
tiae�ii

(2)��

i
� 2ı"↵�� ⇠

2 TrL

h
tide�ii

(2)��

i
n↵. (3.20)

Earlier in Section 2.5 we showed that the second order e�(2) matrices have the symmetry,

⇣
e�ij

(2)↵�

⌘T

= e�ji
(2)�↵. (3.21)

Combining this with the previously used transposition and cyclic permutation invariance of the

17

As we have previously seen in Sections 2.5 and 2.6, the occuring matrices have distinct

symmetries when formed in the basis of real spherical harmonics (imposed by time-reversal),

namely,

�
tia
�T

= tia (3.13)
�
tid
�T

= tid (3.14)
⇣
e�ij

(1)↵

⌘T

= �e�ji
(1)↵. (3.15)

As the trace is invariant to transposition, (3.12) can identically be written as

�TrL

⇣
tid
e�ii

(1)↵

⌘
= �TrL

⇣
tid
e�ii

(1)↵

⌘T

= �TrL

⇣
e�ii

(1)↵

⌘T �
tid
�T
�

= TrL

⇣
e�ii

(1)↵t
i
d

⌘
= TrL

⇣
tid
e�ii

(1)↵

⌘
. (3.16)

This immediately implies that

�⇠ Tr ti�ii
(1) = 0, (3.17)

thus to reveal the dependence of the grand potential on �!n , we must study at least the second

order terms (3.9) and (3.10).

3.4 Second order terms in ⇠: the on-site anisotropy

Taking the trace of the tensor product, (3.9) can be written as

�⇠2 Tr
�
ti�ii

(2)

�
= � ⇠2 Tr

h�
tia + tidn↵�↵

� e�ii
(2)������

i

= � ⇠2 TrL

h
tiae�ii

(2)��

i
TrS [����] � ⇠2 TrL

h
tide�ii

(2)��

i
TrS [�↵����] n↵. (3.18)

It can easily be shown (see Appendix A) that

�↵���� = ı"↵�� I2 + S 0, where S 0 2 Lin{�x, �y, �z} (3.19)

therefore, we get

�⇠2 Tr
⇥
ti�ii

(2)

⇤
= �2⇠2 TrL

h
tiae�ii

(2)��

i
� 2ı"↵�� ⇠

2 TrL

h
tide�ii

(2)��

i
n↵. (3.20)

Earlier in Section 2.5 we showed that the second order e�(2) matrices have the symmetry,

⇣
e�ij

(2)↵�

⌘T

= e�ji
(2)�↵. (3.21)

Combining this with the previously used transposition and cyclic permutation invariance of the

17

0

20

40

60

80

-0.8

-0.4

0.0

0.4

0.8

STANDARD MODEL OF THE RARE EARTHS ANALYZED . . . PHYSICAL REVIEW B 94, 085137 (2016)

40

80

120

160

200

240

280

Gd Tb Dy Ho Er Tm

O
rd

er
in

g
T
em

p
er

a
tu

re
T
N

/
C

(K
)

40
80

120
160
200
240
280

Gd Tb Dy Ho Er Tm

T
N

/
C

(K
)

Experiment

MFA (dmax = 5.57a)
(gJ−1)2J(J+1)

(Sfspd)2 MFA

CCM

Susceptibility

3.20a
5.57a

FIG. 4. Calculated TN/C for heavy REs. The results are obtained
using Jij ’s presented in Fig. 3. The experimental data for the ordering
temperature, i.e., the transition from a paramagnetic state to an
ordered state, is taken from Ref. [12]. These ordered states have no
net magnetic moment, with an exception for Gd, where the transition
is directly to the ferromagnetic state. The solid lines are calculated
with the classical spin moment; the dashed line is calculated with the
de Gennes prescription and is merely a rescaling of the classical MFA
result.

with Monte Carlo and MFA methods, utilizing the Jij ’s
presented in Fig. 3, as defined in the first term of Eq. (6).
In all simulations the total spin moment (see legend of
Fig. 3), including f and [spd] contributions, was used in the
classical limit [(Sz

f spd )2]. Additionally, we plot the ordering
temperatures in the MFA when de Gennes prescription S2 →
(gJ − 1)2J (J + 1) is used. In this case, the total angular
momentum quantum number J is due only to the f elec-
trons. Although both approaches rely on the same physical
mechanism, namely that the exchange interaction is between
spin moments, de Gennes prescription takes into account the
existence of an orbital moment, by taking the projection of the
spin onto the J axis.

We have also verified the impact of varying the amount
of neighbor interactions on the resulting TN/C values. For this
study we used the computationally less demanding MFA-based
estimation. In the inset of Fig. 4 the results obtained with two
different cutoff radii for the Jij interactions are compared. One
can see that an increase of the cluster radius from 3.2a to 5.57a
produces almost negligible changes in the calculated ordering
temperature for almost all heavy REs. The exceptional case
is Gd, where the differences are more significant, as was also
shown in Ref. [64]. We believe that it is related to the fact that
the strength of the Jij ’s in this metal is the largest among the
studied systems. The TN/C’s obtained from the maximum in
the susceptibility are calculated with a cutoff radius of 5.57a.
For the CCM we used only 3.2a, except for Gd, where we used
5.57a.

From Fig. 4 one can see that both Monte Carlo methods
(TN/C obtained from the maximum in the susceptibility and
using CCM) and the MFA produce quite similar results. MFA
has a well-known tendency to overestimate the TN/C’s. Indeed,
our results indicate that MFA-based estimates are about 20%

FIG. 5. Fourier transform of the exchange interaction J (q) −
J (0) for heavy rare-earth metals plotted along the !-A-! line. The
inset shows a magnification of the figure for the reduced wave vector
in the interval [0, 0.6]. In the inset we also indicated the pitch vector
for Er and Tm, showing that the ferromagnetic reference state is
unstable for both metals.

larger than the ones obtained with Monte Carlo methods. One
can also see that the calculated TN/C’s produced with both
methods are in fair agreement with experimental data. The
largest errors in the Monte Carlo calculation are found for
Gd and Dy and reach about 35 K. However, in spite of these
differences, the qualitative trend of lowering of the TN/C across
the heavy RE series is nicely reproduced in these calculations.

A small remark on the experimental TN/C in Fig. 4: We
chose to compare our results to the experimental ordering
temperature related to magnetically ordered to paramagnetic
transition. However, for most heavy rare-earth elements there
is a low-temperature ferromagnetism, followed by a phase
without net moment (helix, cone, or longitudinal spin wave)
before the paramagnetic phase. In principle, Monte Carlo
simulations should be able to reproduce both transitions.
However, to investigate the full magnetic phase diagram, one
needs both temperature-dependent Jij ’s and a temperature-
dependent anisotropy. These quantities we cannot calculate at
the moment.

4. Fourier transform exchange parameters

The Fourier-transformed exchange constants J (q) shifted
by the value at the ! point, are shown in Fig. 5 for heavy
rare-earth metals. The values have been calculated by using
linear spin-wave theory in the framework of the adiabatic
approximation and are plotted in the reciprocal space along the
path !-A-!, with A-! laying in the second Brillouin zone. The
reported results for Gd, Tb, Dy, and Ho have been computed
by using as a reference state a collinear configuration with the
magnetic moments pointing parallel to the basal plane. The
positive maximum at finite q vector for Er and Tm indicates
that for these elements the ferromagnetic state is unstable
by about 0.15 and 0.36 meV, respectively. In experiments at
low temperature, indeed a spin spiral is found for Er and a
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Figure 23 (Color online) Fourier transform of the exchange
interaction J(q⃗)−J(0) in heavy elemental lanthanides (Locht
et al., 2016). If the minimum correspond to Γ point, the
ferromagnetic order is preferable.

to have a finite-q maximum, which is compatible with
experiments (Jensen and Mackintosh, 1991). In fact, Ho
has just passed the border between ferromagnetism and
non-collinearity and measurements demonstrate a finite
spin-spiral vector. Calculations based on non-hybridizing
core states with a 4f spin-moment constrained according
to LS-coupling reproduce this experimental finding quite
accurately (Nordström and Mavromaras, 2000).

In Ref. Locht et al., 2016 the ordering temperatures
were calculated from the spin Hamiltonian (Eq. (1.3))
using explicit calculations of the obtained Jij ’s. Com-
bined with Monte Carlo simulations this allowed for esti-
mates of the ordering temperature, which was shown to
be in good agreement with experiments for all studied,
heavy rare earths. Overall, the ordering temperature was
found to decrease linearly with the number of electrons
in the 4f shell. Also, an intriguing self-induced spin glass
state was recently observed experimentally for elemental
Nd (Kamber et al., 2020; Verlhac et al., 2022). Ab-initio
calculations of the exchange parameters of this element
revealed that this is related to the unique exchange in-
teractions of the crystal structure of Nd (dhcp), with
competing FM and AFM interactions of equal strength.

Numerous lanthanide-based systems (Gong et al.,
2019; Khmelevskyi, 2012; Liu and Altounian, 2010; Rusz
et al., 2005; Söderlind et al., 2017) were successfully mod-
elled with the methods reviewed here to calculated inter-
atomic exchange, by treating the 4f electrons as core
states. Alternatively, HIA (which also neglects the hy-
bridisation effects) was also used in several works (Han
et al., 2008; Wan et al., 2011). Both theoretical meth-
ods to treat the 4f shell have been used to analyse the
magnetism of intermetallic compounds containing 4f ele-

ments. This class of materials, often referred to as hard
magnets, is of particular importance for electromagnetic
applications, e.g. the conversion of mechanical energy
to electricity or as key components in electrical engines
(see e.g. Refs. (Coey, 2010; Skomski and Coey, 1999;
Skomski, 2021; Skomski and Coey, 1993)). The most es-
tablished permanent magnet is Nd2Fe14B (see e.g. Refs.
(Croat et al., 1984; Herbst et al., 1984; Sagawa et al.,
1984)), a material that has had its electronic structure
and magnetic properties investigated with DFT (Jaswal,
1990; Nordström et al., 1993). In these earlier theories
of the electronic structure of compounds containing lan-
thanides, the 4f shell was treated as a non-hybridized
part of a spin-polarized core, where the magnetic state
was confined to follow LS coupling, and in general good
agreement between theory and observations was found.
Calculations using the HIA have also been published for
hard magnets, e.g. for SmCo5 (Grånäs et al., 2012)
where the electronic structure and magnetic properties
were found to be in good agreement with experiments
(Tie-song et al., 1991). The reason why calculations
based on ”4f as core” and HIA both reproduce the ex-
perimental magnetic properties is connected to the fact
that both are faithful to the standard model of the lan-
thanides (Jensen and Mackintosh, 1991), in which the 4f
shell basically is an atomic like, non-hybridized entity. In
more recent years the theory connected to HIA has been
developed to also enable calculations of crystal field split-
tings of the 4f shell (Boust et al., 2022; Pourovskii et al.,
2020) an important achievement in the field, since the 4f
crystal field splitting is connected to the magneto crys-
talline anisotropy of these systems (Coey, 2010; Jensen
and Mackintosh, 1991; Skomski and Coey, 1999; Skomski,
2021), and therefore for their excellent magnetic perfor-
mance. When it comes to calculations of interatomic ex-
change using the LKAG formalism, fewer examples have
been published. A notable recent exception is however
calculations of the Heisenberg exchange of the compound
Ce2Fe17 (Vishina et al., 2021), a material that is consid-
ered as an alternative to Nd2Fe14B for applications as a
hard magnet. Its peculiar magnetic properties was ex-
plained from electronic structure calculations coupled to
the LKAG formalism of interatomic exchange (Vishina
et al., 2021).

The magnetic interactions of 5f -based compounds are
much more complicated due to more pronounced hybridi-
sation and the stronger spin-orbit coupling. This situa-
tion often leads to strong spin-orbital mixing which in
turn gives rise to high anisotropy of the spin density,
so that approximating spins with dipoles does not apply
any longer. Instead, higher-order multipoles come into
play, which have been extensively discussed in the con-
text of actinide oxides (Santini et al., 2009) as well as
other actinide compounds (Bultmark et al., 2009; Cric-
chio et al., 2011). A new methodology has recently been
applied to investigate the magnetism of UO2 (Pourovskii
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and Khmelevskyi, 2019) and NpO2 (Pourovskii and
Khmelevskyi, 2021). In the former case, calculated
quadrupolar exchange interactions have successfully pre-
dicted stabilization of the 3Q magnetic order in the cu-
bic phase, which could previously only be explained by
the presence of lattice distortions. In order to calculate
these multipoles, a generalized many-body force theorem
has been proposed in Ref. Pourovskii, 2016. It relies on
the assumption that the correlated states (responsible
for magnetism) can be well projected onto atomic wave-
functions (calculated via HIA). Another general approach
valid for less correlated actinide compounds adopts the
DFT+U method which treats the correlation in mean-
field level (Bultmark et al., 2009). This type of approach
is in agreement by large with experiments regarding mag-
nitudes of actinide magnetic moments, with substantial
orbital moments and reduced spin moments. The effect
behind these calculated magnetic moments can be ex-
plained as due to the presence of large high ranked mag-
netic multipoles (Cricchio et al., 2011).

I. Transition metal oxides

Transition metal oxides (TMOs) is a class of materi-
als, which shows outstanding variety of different mag-
netic orders and interesting physical and chemical prop-
erties. The magnetism of these materials can usu-
ally be explained in terms of super-exchange (Ander-
son, 1959; Goodenough, 1955, 1963; Kanamori, 1959;
Kramers, 1934) or double-exchange (Zener, 1951) pro-
cesses. The competition between them is, for example,
responsible for a particularly rich phase diagram of doped
manganites (Schiffer et al., 1995).

Oguchi et al. calculated magnetic interactions in tran-
sition metal monoxides MnO and NiO from first princi-
ples at an early stage (Oguchi et al., 1983a,b). The ob-
tained values were too high compared with experiment,
which was most likely related to the absence of strong
local correlations in the calculation. Indeed, later it was
shown that taking a Hubbard U term into account for the
transition metal 3d states, substantially improves the sit-
uation (Fischer et al., 2009; Keshavarz et al., 2018; Loge-
mann et al., 2017; Solovyev and Terakura, 1998). As was
demonstrated in Ref. Fischer et al., 2009, a systematic,
good description of the Néel temperatures can be ob-
tained in the whole series of transition metal monoxides
using a self-interaction-corrected (SIC) version of DFT,
although the valence band spectrum of these types of cal-
culations do not agree with observations. The magnon
spectra calculated from SIC theory, of MnO, FeO, CoO
and NiO (Fischer et al., 2009), is shown in Fig. 24,
and one may note excellent agreement with experimental
data. Furthermore, the impact of dynamical correlations
(treated in DMFT) on the Jij ’s of the transition metal
monoxides was considered in Refs. Kvashnin et al., 2015a

and Wan et al., 2006. Although there are some quantita-
tive differences, the results of DMFT are rather close to
the LDA+U results, SIC data and values from the HIA
(see Fig. 4). This result might seem counter-intuitive,
since the electronic structure resulting from the differ-
ent approaches is substantially different (Grånäs et al.,
2012). The likely reason is probably due to the fact that
wide-gap TMOs are close to the U >> t limit, where
the exchange integrals are roughly defined as t2/U , which
is similar in the various approaches. The interatomic ex-
change extracted from a calculation of the susceptibility,
using the GW approximation, also provide results of sim-
ilar quality (Kotani and van Schilfgaarde, 2008).

Perovskite 3d oxides were studied very intensely by
Solovyev and co-workers (Solovyev, 2006; Solovyev and
Terakura, 1999a,b; Solovyev et al., 1996a,b). Despite a
huge variety of magnetic phases which are found in these
materials, the Jij ’s are usually consistent with experi-
mental ground state magnetic orders. Clearly this is a
very rewarding result. Treating the electron interactions
beyond DFT usually results in better values of the in-
teratomic exchange interactions of these materials. No-
tably, LaMnO3 may be an interesting exception to this
rule. In Ref. Solovyev et al., 1996b it was suggested that
the Hubbard U acting on the eg and t2g orbitals of this
compound are different, due to differences in the screen-
ing of the two sets of orbitals. It was thus suggested that
having no U is a better choice than adding the same U on
the entire set of Mn-3d orbitals for LaMnO3. However,
this result depends on details of the implementation, as
discussed in Ref. Jang et al., 2018.

Generally, TMO’s are regarded as good Heisenberg
magnets, in the sense that the spins are localized around
3d ions and the interactions are of bilinear kind with-
out strong configuration dependence. However, the to-
tal energies of different magnetic orders are not always
consistent with the Heisenberg model of Eq. (1.3), as
was reported in several publications (Logemann et al.,
2017; Solovyev, 2009). Oxygen polarization is suggested
to be responsible for this inconsistency (Keshavarz et al.,
2018). Moreover, for certain oxides, like LiCu2O2, which
have 90◦ superexchange, direct exchange also plays a cru-
cial role (Mazurenko et al., 2007). Direct exchange inter-
action was first introduced in the original Heitler-London
scheme (Heitler and London, 1927). Oxides with more
complex crystal structures (Barker et al., 2020; Gorbatov
et al., 2021; Jodlauk et al., 2007; Mazurenko et al., 2006,
2008), including the ones with 4d and 5d elements (Etz
et al., 2012; Panda et al., 2016; Solovyev, 2002) have
also been successfully analysed with respect to the inter-
atomic exchange, using the method reviewed here. We
also note that multi-spin interactions have been found
also to be important in magnetic oxides (Fedorova et al.,
2015).

Finally, it is worth pointing out that for heavy transi-
tion metals of the 5d series, the large spin orbit coupling



42

Figure 24 Calculated spin-wave dispersion in MnO, FeO, CoO
and NiO (solid line) from Ref. Fischer et al., 2009. Experi-
mental results are shown with symbols.

leads to strong spin-orbital mixing as in the j = 1/2
pseudo-spin relevant for Ir oxides (Moon et al., 2008).
The arguments in Sect. VII.H for the case where the
pure spin moment has less meaning is valid also for the
5d-oxides.

J. Novel 2D magnets

Magnetism in layered van-der-Waals (vdW)-bonded
materials was already reported in the 1960’s (Dillon and
Olson, 1965; Tsubokawa, 1960). For a long time, these
materials were not in the focus of researchers, but in re-

cent years they have attracted enormous attention (Gong
et al., 2017; Huang et al., 2017). The discovery of in-
trinsic 2D magnetic order does not only challenge well-
established preconceptions about 2D magnetism (Mer-
min and Wagner, 1966), but also offers prospects for
building ultra-thin spintronic devices by combining these
types of layered materials (Burch et al., 2018; Gibertini
et al., 2019).

CrI3 is the most well-studied example of 2D magnets.
It is ferromagnetic and the Tc of its monolayer form is 45
K, which is slightly smaller than that of the bulk form
(61 K) (Huang et al., 2017). The crystal structure of the
monolayer of CrI3 is shown in Fig. 25. Here Cr atoms
are seen to form a honeycomb lattice and each of them is
surrounded by six iodine atoms forming an octahedron.
Two I octahedra of the NN Cr atoms are sharing one
edge, as illustrated in Fig. 25(b), which results in the
Cr-I-Cr bond angle being close to 90◦. The material is
an insulator, so it is expected that the magnetic inter-
actions are defined by a superexchange process involving
also the I5p states. Nominally, the Cr3+ ions should be
characterized by a d3 configuration, with a half-filled t2g
shell and with the eg states are completely empty. In
Ref. Besbes et al., 2019, it was shown that the eg states
form very strong covalent bonds with I5p orbitals and
become effectively occupied by hybridization and band
broadening. As a result, the NN Jij ’s between Cr atoms
are affected by two competing contributions, namely the
AFM superexchange between half-filled t2g orbitals and
FM superexchange between t2g and eg states. The lat-
ter dominates and results in the overall FM sign of the
NN exchange. The same physics was confirmed to take
place also in case of monolayer CrI3 (Kashin et al., 2020;
Soriano et al., 2021). Since the structure is the same
in all three chromium halides, CrX3 (X={Cl,Br,I}), the
complex nature of the NN coupling in these materials
explains why its sign is so sensitive to lattice distor-
tions and strain (Dupont et al., 2021; Sadhukhan et al.,
2022; Webster and Yan, 2018). Similar orbital analysis
for the interlayer coupling (Jang et al., 2019) has pro-
vided a microscopic description of the theoretically pre-
dicted stacking-dependent magnetic order in bilayered
CrI3 (Sivadas et al., 2018), which was also confirmed ex-
perimentally (Li et al., 2019; Song et al., 2019). The cal-
culated magnetic interactions in trilayer CrI3 were also
suggested to exhibit similar features (Wang and Sanyal,
2021).

One intriguing aspect of bulk CrI3 is a large gap (≈
4 meV) between the two magnon branches, which was
observed experimentally (Chen et al., 2018). There are
mainly two mechanisms that have been proposed to ex-
plain this, namely a large next NN DM interaction (Chen
et al., 2018) or NN Kitaev interactions (Lee et al., 2020).
Relativistic exchange interactions in bulk and monolayer
of CrI3 were studied in Ref. Kvashnin et al., 2020. Ac-
cording to that work, where both conventional DFT as
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(b)

∠Cr-I-Cr ≈ 90∘

(a)

Figure 25 (Color online) Left panel: Crystal structure of CrI3
monolayer with I atoms shown by spheres with a light part in
their centre, and Cr shown by homogeneously colorod spheres.
Cr atoms form honeycomb lattice. Right panel: Local struc-
ture of the Cr-I-Cr bond.

well as two different flavours (Anisimov et al., 1991;
Czyżyk and Sawatzky, 1994) of LDA+U calculations
were employed, both calculated DM interaction and Ki-
taev terms were found to be too small to induce a sub-
stantial gap in the magnon spectrum at theK point. The
work of Ref. Ke and Katsnelson, 2021 suggested that this
is moderately correlated materials with strong non-local
interaction effects and GW approximation combined with
a Hubbard U , is needed to reproduce the magnon spec-
trum and most importantly that the ≈ 4 meV magnon
gap is open by correlation enhanced interlayer coupling.
More elaborate discussions on the role of non-local cor-
relation effects and on the importance of charge self-
consistency in CrX3 can be found in Refs. (Acharya et al.,
2021a,b). Given the relative young age of this field of
magnetic materials, it is likely that other mechanisms
will be discussed in the future.

Other 2D magnets, such as Cr2Ge2Te6 (Wang
et al., 2019), Fe3GeTe2 (Jang et al., 2020), CrOX
(X={Cl,Br}) (Jang et al., 2021), FeX2 (Ghosh et al.,
2021) have also been studied with the help of explicit
calculations of interatomic exchange. Interestingly, the
class of 2D versions of Cr2X2Te6 (X=Ge and Si) sys-
tems was predicted from ab-initio electronic structure
theory (Lebègue et al., 2013) before the experimental
realization. A rather common feature of the magnetic
2D materials is that they are characterized by relatively
strong hybridization of 3d orbitals of the transition met-
als and the p orbitals of the ligand states. In this case,
the choice of electronic states that should be used in
the expressions of interatomic exchange (Section V), i.e.
the projection scheme, becomes particularly non-trivial.
This issue has been raised by Solovyev and co-workers in
Refs. Besbes et al., 2019 and Wang et al., 2019.

3

FIG. 3. Maximally localized Wannier functions describing
the band at the Fermi level in Si(111):{C, Si, Sn, Pb}. Violet
spheres denote adatoms (center of the Wannier function).

III. WANNIER FUNCTIONS

To parametrize the DFT+SO spectra and construct
the corresponding low-energy models we used maximally
localized Wannier functions.21–23 As it is shown in Fig.
3, being centered at the adatom pz-orbitals the resulting
Wannier functions are strongly delocalized (Fig.3). Their
spread of the Wannier functions in Si(111):{C,Si,Sn,Pb}
(Table I) is much larger than that one observes in 3d
transition metal compounds with strong hybridization ef-
fects. For instance, the WF spread in a copper oxide24

is about 4.5 Å2. As we will show below, such a delo-
calization of the magnetic orbitals leads to an additional
ferromagnetic contribution to the total exchange interac-
tion between nearest neighbours in the system.

Another sign of the magnetic orbital delocalization
is the contribution of the atomic-like pz orbital of the
adatom to the Wannier function. From Table I one can
see that the pz orbital contributes about 28 % to the elec-
tronic density around the Fermi level. This value is two
times smaller than that calculated for low-dimensional
cuprate24.

IV. ORBITAL MAGNETIZATION

According to our DFT results, Si(111):{C,Si,Sn,Pb}
surface nanostructures are characterized by strong spin-
orbit coupling. The pz atomic orbital of the adatom
(head of the magnetic orbital) corresponds to L=0 and,
as the result, gives zero contribution orbital magneti-
zation. However, in the situation of the strong delo-
calization of the Wannier function one can expect that
there could be a non-zero net orbital magnetization as
described in Ref.25 and 26. To estimate it we performed
calculations by using procedure realized in the Wan-
nier 90 package. In these calculations we use minimal

(
√

3 ×
√

3) unit cell with ferromagnetic configuration.
Due to the strong hybridization and spin-orbit cou-

pling, the resulting spin moment of the unit cell is
considerably suppressed in the case of the Sn and Pb
adatoms (Table I). The calculated total magnetic mo-
ment in Sn/Si(111) system agrees with results of Ref.9.

It was found that the orbital magnetization is close to
zero (∼ 10−3 µB) for all the systems in question. Thus
we conclude that the g-factor is purely spin one, g = 2.
This result will be used in Section VIII for estimating
critical magnetic fields of skyrmion formation.

V. LOW-ENERGY MODEL

To describe electronic and magnetic properties of the
adatom systems we use an effective electronic model tak-
ing into account spin-orbit coupling and electronic corre-
lations in the Wannier function basis:

Ĥ =
∑

ij,σσ′
tσσ′
ij â+

iσâjσ′ +
1

2

∑

i,σσ′
U â+

iσâ+
iσ′ âiσ′ âiσ

+
1

2

∑

ij,σσ′

Vij â+
iσâ+

jσ′ âjσ′ âiσ +
1

2

∑

ij,σσ′

JF
ij â+

iσ â+
jσ′ âiσ′ âjσ,(1)

where i(j) and σ(σ′) are site and spin indices; U , Vij and
JF

ij represent the local Coulomb, non-local Coulomb and

non-local exchange interactions, respectively. tσσ′
ij is the

element of the hopping matrix with spin–orbit coupling.
Coulomb and direct exchange interactions. The de-

tailed analysis of the local and non-local Coulomb inter-
actions in the Si(111):X systems was reported in Ref. 5.
It was found that the screened Coulomb interactions cal-
culated within random phase approximation (RPA) are
about 4-5 times smaller than bare ones. In our work we
use their partially screened values as reported in Ref.5: U
= 1.4, 1.1, 1.0 and 0.9 eV for C, Si, Sn and Pb adatoms,
respectively, and V01 = 0.5 eV for all adatoms.

In contrast to previous studies our model contains fer-
romagnetic exchange interactions as a result of the direct

TABLE I. Bare non-local exchange interactions and spreads
of the Wannier functions calculated for the adatom systems
Si(111):{C,Si,Sn,Pb}. The third row gives contributions of
the adatom pz orbital to the electron density described by
the Wannier functions. MS and Madatom

S are the total spin
magnetization of the

√
3 ×

√
3 unit cell and spin moment of

the adatom as obtained from spin-polarized DFT+SO calcu-
lations for the ferromagnetic state.

X C Si Sn Pb

JF
bare, meV 1.64 3.81 5.44 7.34

Spread of WF, Å2 12.4 15.6 16.8 17.7
pz-state in WF, % 12 42 37 28
MS , µB 0.99 0.7 0.27 0.18
Madatom

S , µB 0.028 0.058 0.015 0.006

43

Figure 26 Maximally localized Wannier functions represent-
ing the band crossing the Fermi level in Si(111):X where
X = {Sn, C, Si, Pb}. Violet spheres denote adatoms, while
red and blue isosurfaces gives the positive and negative parts
of Wannier functions. The figure is taken from Ref. Badrtdi-
nov et al., 2016.

K. sp-magnets

Another class of systems where the magnetism emerges
from highly covalent states is sp-magnets. One exam-
ple of such materials is semi-hydrogenated or fluorinated
graphene (Mazurenko et al., 2016). Another example is
systems of X adatoms (X = {Sn, C, Si, Pb}) deposited
periodically on silicon Si(111) (Li et al., 2013; Lobo et al.,
2003; Modesti et al., 2007; Slezák et al., 1999; Tresca
et al., 2018; Upton et al., 2005; Zhang et al., 2010), ger-
manium Ge(111) (Carpinelli et al., 1997; Floreano et al.,
2001; Tresca and Calandra, 2021), or SiC(0001) (Glass
et al., 2015) surfaces. These systems are characterized by
the presence of a single relatively narrow half-filled band
crossing Fermi level, which is subject to strong local and
non-local electron correlations (see, e.g., Refs. Badrtdi-
nov et al., 2016; Hansmann et al., 2013a,b). Although
this band originates from the sp-electrons of adatoms,
its wavefunction is highly delocalized and has tails well
inside the Si slab, as can be seen in Fig. 26. It has been
proposed that this band leads to a magnetic instabil-
ity and various exotic magnetic orders can be realized
in these materials. For instance, the low-temperature
ground state of Si(111):X systems ranges from a 120�-
Néel (Schuwalow et al., 2010) to a collinear row-wise (Li
et al., 2011) and different non-collinear chiral (Tresca
et al., 2018; Vandelli et al., 2023) magnetic orders. More-
over, formation of skyrmions is suggested to emerge upon
application of a high magnetic (Badrtdinov et al., 2016)
or a high-frequency laser (Stepanov et al., 2017) fields.

Due to the delocalized nature of the orbitals, carrying
the magnetic moments, the influence of direct exchange
mechanism is extremely pronounced. It gives rise to a
ferromagnetic exchange (as expected for wavefunctions
with small overlap) and its magnitude is so strong that it

may compensate indirect exchange contributions (Badrt-
dinov et al., 2016). As a result, the isotropic exchange
can be effectively suppressed, which results in relatively
large | ~D | /J ratio, where | ~D | is the size of DM interac-
tion (Badrtdinov et al., 2016; Vandelli et al., 2023). Since
this ratio defines the period of magnetic texture, the sup-
pression of J has led to the proposition that extremely
compact skyrmions can be realized (Badrtdinov et al.,
2018). Ultimately, it has been envisaged that exchange-
free skyrmions can also potentially emerge (Stepanov
et al., 2019c).

L. Molecular magnets

Single molecular magnets is a class of systems where
transition metal atoms are embedded in an organic en-
vironment (Gatteschi et al., 1994). The chemical for-
mula of these systems are quite complicated. For exam-
ple, K6[V15As6O42(H2O)]·8H2O is one of them, which
is most often referred to as V15 for the sake of brevity.
The coupling between the 3d magnetic moments often
results in a total magnetization that is uncompensated,
where the net moment is regarded as a total molecu-
lar spin. Since the interactions between these molecu-
lar complexes are very weak their collective behaviour is
similar to that of an ensemble of non-interacting point-
like magnetic entities. Thus, molecular magnets not only
allow to address fundamental aspects of magnetism on
the mesoscale (Chiorescu et al., 2000; Dobrovitski et al.,
2000), but also find their applications in spintronics (Bo-
gani and Wernsdorfer, 2008; Mannini et al., 2009).

DFT calculations have been widely used to understand
the basic electronic and magnetic properties of molecular
magnets (for a review, see Ref. Postnikov et al., 2006).
The formalism of Section V) has been widely applied to
model magnetic interactions and excitation spectra in the
systems, like V15 (Boukhvalov et al., 2004), Mn4 (Kam-
pert et al., 2009) and Mn12 (Boukhvalov et al., 2002;
Mazurenko et al., 2014). In these works it was shown that
a very good description of both electron spectroscopy and
magnetic excitations is only possible if the correlation ef-
fects of the 3d states are taken into account via applica-
tion of LDA+U approach, similarly to the situation of
the 3d oxides. We note that the total energy difference
method has also been widely used to extract the Jij pa-
rameters for these systems (see e.g. (Park et al., 2004;
Ruiz et al., 2005)).

The most complete description of exchange interac-
tions in molecular magnets was done for Mn12 acetate
in Ref. Mazurenko et al., 2014. The structure of this
complex, shown in Fig. 27, contains two inequivalent
types of Mn atoms having different oxidation states.
Eight Mn3+ and four Mn4+ ions are coupled antiferro-
magnetically, which results in the total, uncompensated
spin S=10. Contrary to previous works, which only
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Figure 26 Maximally localized Wannier functions represent-
ing the band crossing the Fermi level in Si(111):X where
X = {Sn, C, Si, Pb}. Violet spheres denote adatoms, while
red and blue isosurfaces gives the positive and negative parts
of Wannier functions. The figure is taken from Ref. Badrtdi-
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dinov et al., 2016). As a result, the isotropic exchange
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pression of J has led to the proposition that extremely
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2018). Ultimately, it has been envisaged that exchange-
free skyrmions can also potentially emerge (Stepanov
et al., 2019c).

L. Molecular magnets
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tions in molecular magnets was done for Mn12 acetate
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Figure 26 Maximally localized Wannier functions represent-
ing the band crossing the Fermi level in Si(111):X where
X = {Sn, C, Si, Pb}. Violet spheres denote adatoms, while
red and blue isosurfaces gives the positive and negative parts
of Wannier functions. The figure is taken from Ref. Badrtdi-
nov et al., 2016.
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is most often referred to as V15 for the sake of brevity.
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where the net moment is regarded as a total molecu-
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similar to that of an ensemble of non-interacting point-
like magnetic entities. Thus, molecular magnets not only
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2000), but also find their applications in spintronics (Bo-
gani and Wernsdorfer, 2008; Mannini et al., 2009).
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The formalism of Section V) has been widely applied to
model magnetic interactions and excitation spectra in the
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Figure 26 (Color online) Maximally localized Wannier func-
tions representing the band crossing the Fermi level in
Si(111):X where X = {Sn, C, Si, Pb}. Big (violet) spheres
denote adatoms while isosurfaceses give the different parts of
Wannier functions. The figure is taken from Ref. Badrtdinov
et al., 2016.

K. sp-magnets

Another class of systems where the magnetism emerges
from highly covalent states is sp-magnets. One exam-
ple of such materials is semi-hydrogenated or fluorinated
graphene (Mazurenko et al., 2016). Another example is
systems of X adatoms (X = {Sn, C, Si, Pb}) deposited
periodically on silicon Si(111) (Li et al., 2013; Lobo et al.,
2003; Modesti et al., 2007; Slezák et al., 1999; Tresca
et al., 2018; Upton et al., 2005; Zhang et al., 2010), ger-
manium Ge(111) (Carpinelli et al., 1997; Floreano et al.,
2001; Tresca and Calandra, 2021), or SiC(0001) (Glass
et al., 2015) surfaces. These systems are characterized by
the presence of a single relatively narrow half-filled band
crossing Fermi level, which is subject to strong local and
non-local electron correlations (see, e.g., Refs. Badrtdi-
nov et al., 2016; Hansmann et al., 2013a,b). Although
this band originates from the sp-electrons of adatoms,
its wavefunction is highly delocalized and has tails well
inside the Si slab, as can be seen in Fig. 26. It has been
proposed that this band leads to a magnetic instabil-
ity and various exotic magnetic orders can be realized
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ground state of Si(111):X systems ranges from a 120◦-
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over, formation of skyrmions is suggested to emerge upon
application of a high magnetic (Badrtdinov et al., 2016)
or a high-frequency laser (Stepanov et al., 2017) fields.

Due to the delocalized nature of the orbitals, carrying
the magnetic moments, the influence of direct exchange
mechanism is extremely pronounced. It gives rise to a
ferromagnetic exchange (as expected for wavefunctions
with small overlap) and its magnitude is so strong that it



44
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compact skyrmions can be realized (Badrtdinov et al.,
2018). Ultimately, it has been envisaged that exchange-
free skyrmions can also potentially emerge (Stepanov
et al., 2019c).
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is most often referred to as V15 for the sake of brevity.
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allow to address fundamental aspects of magnetism on
the mesoscale (Chiorescu et al., 2000; Dobrovitski et al.,
2000), but also find their applications in spintronics (Bo-
gani and Wernsdorfer, 2008; Mannini et al., 2009).

DFT calculations have been widely used to understand
the basic electronic and magnetic properties of molecular
magnets (for a review, see Ref. Postnikov et al., 2006).
The formalism of Section V) has been widely applied to
model magnetic interactions and excitation spectra in the
systems, like V15 (Boukhvalov et al., 2004), Mn4 (Kam-
pert et al., 2009) and Mn12 (Boukhvalov et al., 2002;
Mazurenko et al., 2014). In these works it was shown that
a very good description of both electron spectroscopy and
magnetic excitations is only possible if the correlation ef-
fects of the 3d states are taken into account via applica-
tion of LDA+U approach, similarly to the situation of
the 3d oxides. We note that the total energy difference
method has also been widely used to extract the Jij pa-
rameters for these systems (see e.g. (Park et al., 2004;
Ruiz et al., 2005)).

The most complete description of exchange interac-
tions in molecular magnets was done for Mn12 acetate
in Ref. Mazurenko et al., 2014. The structure of this
complex, shown in Fig. 27, contains two inequivalent
types of Mn atoms having different oxidation states.
Eight Mn3+ and four Mn4+ ions are coupled antiferro-
magnetically, which results in the total, uncompensated
spin S=10. Contrary to previous works, which only

Figure 27 (Color online) Crystal structure of Mn12-acetate
from Ref. Zabala-Lekuona et al., 2021. Purple atoms (large
dark grey spheres) represent Mn3+ (S=2) ions and the green
(large light gray) ones correspond to Mn4+ (S=3/2). Carbon
and oxygen are shown in (small light) grey and (small dark
grey) red, respectively, hydrogen atoms have been omitted for
the sake of clarity.

addressed isotropic interactions, Ref. Mazurenko et al.,
2014 adds relativistic exchange interactions and single-
ion anisotropy to the picture. Overall, the following spin
Hamiltonian was considered in Ref. Mazurenko et al.,
2014;

Ĥ = HDM +HH +
∑

iµν

Ŝµ
i A

µν
i Ŝν

i , (7.7)

where {µ, ν} ∈ {x, y, z} and Aµν
i is the single site

anisotropy tensor. This is hence a generalization of the
sum of Eqs. (1.1) and (1.2), since magnetic crystalline
anisotropy is included.

Since transition metal ions in such molecular com-
plexes have a relatively low-symmetric environment, the
Dzyaloshinskii-Moriya interactions can take relatively
large values (more than typically encountered in bulk
3d oxides). This was exactly the case for Mn12 com-
plex, where the calculations with spin-orbit coupling re-
vealed that the ferrimagnetic arrangement of Mn spins is
canted due to the presence of DM interaction. Combining
Heisenberg exchange, DM interaction and magneto crys-
talline anisotropy, the authors of Ref. Mazurenko et al.,
2014 performed an exact diagonalization study of the
complete 12-spin Hamiltonian given by Eq. (7.7), treat-
ing all constituent spins as quantum operators. Thanks
to a very efficient realization of a parallel Lanczos algo-
rithm, it was possible to calculate 50 lowest eigenvalues
of the system, which allowed for a qualitative comparison
with inelastic neutron scattering data and to assign dif-
ferent measured peaks to the transitions from the lowest
S=10 to excited S=9 multiplets.
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VIII. OUT OF EQUILIBRIUM EXCHANGE

Femtosecond laser sources provide a unique possibility
to manipulate magnetism at ultrafast time scales (Kiri-
lyuk et al., 2010; Mentink, 2017). In particular, the light
irradiation of magnetic materials allows one to modify
the value of the exchange interaction (Melnikov et al.,
2003; Mikhaylovskiy et al., 2015; Subkhangulov et al.,
2014). The idea of small spin rotations as a way to de-
rive effective exchange interactions can be generalized to
the case of time-dependent electron Hamiltonians (Sec-
chi et al., 2013). In Ref. Secchi et al., 2013 the approach
was applied to the time-dependent multi-orbital Hubbard
model, that is, only onsite interaction was taken into ac-
count. The Hamiltonian has the form

Ĥ(t) ≡ ĤT (t) + ĤV , (8.1)

where ĤT (t) is the time-dependent single-particle Hamil-
tonian

ĤT (t) ≡
∑

iaλa

∑

ibλb

Tiaλa,ibλb
(t)
∑

σ

ϕ̂†iaλaσ
ϕ̂ibλbσ

=
∑

a

∑

b

Tab(t)ϕ̂
†
a · ϕ̂b, (8.2)

where we have grouped the site and orbital indexes ac-
cording to a ≡ (ia, λa) and b ≡ (ib, λb), and introduced
the spinor fermionic operators

ϕ̂†a =
(
ϕ̂†a↑ ϕ̂†a↓

)
, ϕ̂b =

(
ϕ̂b↑
ϕ̂b↓

)
. (8.3)

The interaction Hubbard-like Hamiltonian ĤV is as-
sumed to be time-independent:

ĤV ≡ 1

2

∑

i

∑

λ1λ2λ3λ4

∑

σσ′

Vλ1λ2λ3λ4 ϕ̂
†
iλ1σ

ϕ̂†iλ2σ′ ϕ̂iλ3σ′ ϕ̂iλ4σ.

(8.4)

The spinor field operators ϕ̂a describes both spin and
charge dynamics of the interacting itinerant-electron sys-
tem. To separate supposedly slow spin dynamics from
the fast charge dynamics one can introduce the rotational
matrices

Ri(t) ≡



√
1− |ξi(t)|2 ξ∗i (t)

−ξi(t)
√

1− |ξi(t)|2


 , (8.5)

where we have introduced bosonic fields

ξi(t) ≡ −eiφi(t) sin [θi(t)/2] , (8.6)

with θi ∈ [0, π[ , φi ∈ [0, 2π[ being the polar angles that
determine the spin axis on site i at time t; it holds that
R†

i (t) ·Ri(t) = 1.
The matrix R̂ provides a transition to the new field

operators ψ̂a via the transformation

ϕ̂†a(t) = ψ̂†
a(t)R

†
a(t),

ϕ̂a(t) = Ra(t)ψ̂a(t), (8.7)

and we assume that in the new coordinate frame the aver-
age spin at the site i at time instant t,

〈
0
∣∣∣ψ̂†

aσσ̂aψ̂aσ

∣∣∣ 0
〉
,

is directed along the z axis. Thus, all the in-
formation about instant direction of the local spin,〈
0
∣∣∣ϕ̂†aσσ̂aϕ̂aσ

∣∣∣ 0
〉
, is passed to the bosonic field, ξi(t).

In the approach of Ref. Secchi et al., 2013, the prob-
lem is reformulated at the Baym-Kadanoff-Keldysh con-
tour (Kadanoff and Baym, 1962; Kamenev, 2011; Ram-
mer and Smith, 1986; Stefanucci and van Leeuwen, 2013),
which is a common way to proceed in non-equilibrium
quantum statistical mechanics. The effective action of
the system is expanded, up to the second order, in the
angles of spin rotations θi(t), and the result is compared
to the effective action of the time-dependent classical
Heisenberg model. As a result, we have expressions for
the time-dependent exchange parameters which are ex-
pressed in terms of single-particle Green functions and
electron self-energies. Both the derivation and the fi-
nal expressions are quite cumbersome, and we refer the
reader to the original paper (Secchi et al., 2013). The
procedure can be dramatically simplified if we consider
electron correlations at the level of time-dependent mean-
field approximation (Secchi et al., 2016a). In this case
one can derive relatively compact expressions for the
time-dependent magnetic susceptibility and extract the
exchange parameters from them, similar to the method
which we used in Section II. The corresponding expres-
sion has the form (Secchi et al., 2016a):

Jij(t) = iΣiS(t) lim
ϵ→0+

∫ ∞

0

dτe−ϵτ ΣjS(t− τ/2)

[(
G<

↓

)i,t+τ/2

j,t−τ/2

(
G>

↑

)j,t−τ/2

i,t+τ/2
−
(
G>

↓

)i,t+τ/2

j,t−τ/2

(
G<

↑

)j,t−τ/2

i,t+τ/2

]
. (8.8)
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Here ΣiS(t) =
1
2 (Σi↑(t)− Σi↓(t)) is the spin part of the

local self energy which is dependent only on one time,
t, in the mean-field approximation and (G<,>

σ )i,tj,t′ are
the corresponding components of the Keldysh two-time
Green functions.

The theoretical description of interacting electronic
systems under different time-dependent perturbations,
such as an applied electric field, generally requires the use
of advanced many-body numerical techniques. However,
there exists a particular type of the perturbation, namely
an off-resonant periodic driving, that can be addressed
in a relatively simple way. Indeed, this type of driving
brings the system to a non-equilibrium steady state, and
the corresponding many-body problem can therefore be
solved using existing time-independent approaches. The
standard theoretical framework to describe the period-
ically driven system is the Floquet formalism (Bukov
et al., 2015; Eckardt, 2017). This method relies on an ef-
fective time-independent Hamiltonian description of the
non-equilibrium system at stroboscopic times. In the
limiting case of a high-frequency driving, this effective
Hamiltonian can be derived analytically. The key idea
is to take advantage of a high-frequency feature of the
light and use a Magnus-like perturbation expansion that
allows one to reduce the time evolution of a quantum
state to a time-independent eigenvalue problem with re-
spect to the effective Hamiltoniana (Itin and Katsnelson,
2015; Itin and Neishtadt, 2014). This can be done as fol-
lows: The time-periodic Hamiltonian, H(t), of the initial
problem obeys the time-dependent Schrödinger equation

i∂tΨ(λ, t) = H(t)Ψ(λ, t). (8.9)

One can introduce a dimensionless parameter λ = δE/Ω,
which compares a certain energy scale δE of the system to
the frequency Ω of the applied field. One the tries to find
a unitary transformation Ψ(λ, τ) = exp{−i∆(τ)}ψ(λ, τ)
that removes the time dependence of the Hamilto-
nian. Here, we introduce τ = Ωt and also impose that
∆(τ) =

∑+∞
n=1 λ

n∆n(τ) with ∆n(τ) being a 2π periodic
function. Then, the Schrödinger equation (8.9) can be
rewritten as

i∂tψ(λ, τ) = λH̄ψ(λ, τ) (8.10)

with an effective Hamiltonian

H̄ = ei∆(τ)H̄(τ)e−i∆(τ) − iλ−1ei∆(τ)∂τe
−i∆(τ). (8.11)

Here, the bar over the Hamiltonian means a normaliza-
tion on the energy scale δE: H̄(τ) = H(τ)/δE. Using
the series representation H̄ =

∑+∞
n=1 λ

nH̃n, one can de-
termine operators H̃n and ∆n(τ) iteratively in all orders
in λ. The zeroth order term in this representation is
given by the time-average over the period of the driving
H̃0 = ⟨H̄(τ)⟩ = H̄0 defined as H̄m =

∫ +π

−π
dτ
2π e

imτ H̄(τ).
The first- and the second-order terms λ in the effective

Hamiltonian are given by the following equations

H̃1 =− 1

2

∑

m̸=0

[
H̄m, H̄−m

]

m
, (8.12)

H̃2 =
1

2

∑

m̸=0

[[
H̄m, H̄0

]
, H̄−m

]

m2
+

1

3

∑

m̸=0

∑

n ̸=0,m

[[
H̄m, H̄n−m

]
, H̄−n

]

mn
, (8.13)

where the square brackets stand for a commutator.
The resulting effective time-independent Hamiltonian de-
scribes the stroboscopic dynamics of the system, whereas
its evolution between two stroboscopic times is encoded
into the time-dependent function ∆n(τ). Importantly,
this approach allows one to explore interesting phases of
matter and to control different properties of materials
through a direct tuning of model parameters (hopping
amplitudes and electronic interactions) that in Floquet
theory become explicitly dependent on characteristics of
the applied perturbation (see e.g. Refs. Bukov et al.,
2016; Dutreix and Katsnelson, 2017; Dutreix et al., 2016;
Itin and Katsnelson, 2015; Kitamura and Aoki, 2016; Per-
onaci et al., 2020; Stepanov et al., 2017; and Valmispild
et al., 2020).

The introduced formalism can also be used for calcu-
lating magnetic exchange interactions under the effect of
the high-frequency light irradiation (Barbeau et al., 2019;
Claassen et al., 2017; Itin and Katsnelson, 2015; Mentink,
2017; Mentink et al., 2015; Stepanov et al., 2017). In
particular, in a strong-coupling limit U ≫ t, where U
is the Coulomb interaction and t is the hopping ampli-
tude, one can make a Schrieffer-Wolff transformation in
order to map the derived effective Hamiltonian onto a
Heisenberg Hamiltonian (Chao et al., 1977a,b; MacDon-
ald et al., 1988; Spałek, 2007). In the presence of an ex-
ternal time-dependent perturbation this transformation
has been performed in Refs. Bukov et al., 2016; Stepanov
et al., 2017; and Valmispild et al., 2020. The resulting
isotropic symmetric exchange interaction J = JK − JD

contains two contributions. The kinetic exchange inter-
action corresponds to a usual antiferromagnetic (AFM)
superexchange JK = t̃2/U that exists in equilibrium.
However, out-of equilibrium JK contains the hopping
amplitude t̃ = tJ0(E) that is renormalised by the m-th
order Bessel function of the first kind Jm(E) due to
the effect of a high-frequency light irradiation. The di-
mensionless parameter E = eE0a/Ω contains the strength
of the laser field E0, the elementary charge e, and the
lattice constant a0. The AFM exchange JK competes
with the direct ferromagnetic (FM) exchange interaction
JD = JD

bare + JD
ind. The bare part of the direct exchange

JD
bare stems from the non-local electronic interactions and

is present already in equilibrium (see e.g. Refs. Badrt-
dinov et al., 2016; Mazurenko et al., 2016, 2008, 2007;
and Rudenko et al., 2013). The second part corresponds
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to the contribution that is induced by the high-frequency
light irradiation (Bukov et al., 2016; Itin and Katsnelson,
2015)

JD
ind = 2t2U

+∞∑

m=1

J 2
m(E)

m2Ω2 − U2
. (8.14)

Remarkably, for the case of a nearly resonant driving
Ω ≃ U/m (Itin and Katsnelson, 2015; Mentink et al.,
2015) or when the bare direct exchange is sufficiently
large (Stepanov et al., 2017) the total isotropic symmet-
ric exchange interaction can be substantially modified by
the high-frequency light and can even change sign under
certain conditions. The introduced formalism can also
be extended to other types of magnetic exchange interac-
tions, such as the Dzyaloshinskii-Moriya (Stepanov et al.,
2017), the chiral three-spin (Claassen et al., 2017), and
the biquadratic exchange (Barbeau et al., 2019) interac-
tion that all can be tuned by high-frequency laser pulses.
In particular, the light control of magnetic interactions
may dynamically induce chiral spin liquids in frustrated
Mott insulators (Claassen et al., 2017). This may also al-
low for creation, stabilization, and modifying the shape of
skyrmions in materials where these topological spin tex-
tures do not exist at equilibrium conditions (Stepanov
et al., 2017). Moreover, when the isotropic symmetric
exchange interaction J is completely suppressed by the
light irradiation, one can access a unique phase where
magnetic properties of the system are governed solely by
the Dzyaloshinskii-Moriya interaction (Stepanov et al.,
2019c).

IX. LOCAL MOMENT FORMATION AND
SPIN-DYNAMICS

Historically, the density functional theory became the
standard language for the theory of magnetism and mag-
netic interactions. As discussed in previous sections, in
this framework exchange interactions can be obtained
considering variations of the total energy with respect
to small rotations of magnetic moments starting from
equilibrium ground states. Despite the success of this
approach in describing many magnetic materials, there
are several important problems that cannot be addressed
using this language. Indeed, realistic models for mag-
netic materials that are derived within DFT are inter-
acting electronic problems. However, finding a possibility
of mapping these electronic models onto Heisenberg-like
spin problems is a highly nontrivial task that remains un-
solved in the framework of DFT. In addition, calculating
the exchange interactions using the magnetic force theo-
rem is based on the assumption that the variation of the
magnetization from the ground state magnetic configura-
tion is small, which is frequently not the case, especially
for itinerant electron systems.

The most common way to introduce an effective spin
model for an interacting electronic problem is based on
a Schrieffer-Wolff transformation (Chao et al., 1977a,b;
MacDonald et al., 1988; Spałek, 2007), which, strictly
speaking, is justified only at integer filling in the limiting
case of a very large interaction between electrons. Al-
ready t-J or s-d exchange models (Vonsovskii, 1974) that
are frequently used to describe the physics of a doped
Mott insulator cannot be easily mapped onto a pure spin
Hamiltonian. Moreover, spin degrees of freedom in the
transformed problem are described in terms of composite
fermionic variables and not in terms of physical bosonic
fields as would be desirable for pure spin models. This re-
sults in a need to introduce artificial constraints in order
to conserve the length of the total spin. In addition, one
also has to assume that the average value of these com-
posite fermionic variables that define the local magneti-
zation is nonzero. The latter is hard to justify in a param-
agnetic regime, where, generally speaking, it should also
be possible to introduce a Heisenberg-like spin model.

Even though already deriving an effective spin prob-
lem for interacting electrons is not an easy task, one
must do more than that and find a way to introduce
a correct equation of motion for spin degrees of freedom.
For localized spins, the classical equation for the spin
precession can be obtained by evaluating path integrals
over spin coherent states in the saddle-point approxima-
tion (Auerbach, 1994; Inomata et al., 1992; Schapere and
Wilczek, 1989). In this approach, the kinetic term that
describes the rotational dynamics of spins originates from
the topological Berry phase, for which the conservation
of the length of the total spin on each site is a necessary
condition. For this reason, generalizing the formalism
of spin-coherent states to itinerant electronic problems is
mathematically a highly non-trivial task. Nevertheless,
finding a way to derive the equation of motion for the
local magnetic moment in the framework of electronic
problems is crucially important for a correct description
of the full spin dynamics of the system. Indeed, studying
classical spin Hamiltonians allows one to describe only a
uniform precession of the local magnetic moment. Tak-
ing into account dissipation effects, e.g. Gilbert damp-
ing, requires to couple classical spins to itinerant elec-
trons (Sayad and Potthoff, 2015; Sayad et al., 2016). In
addition, considering classical spins disregards quantum
fluctuations of the modulus of the local magnetic mo-
ment (Pekker and Varma, 2015) that have been observed
in recent experiments (Hong et al., 2017; Jain et al., 2017;
Merchant et al., 2014; Rüegg et al., 2008; Souliou, Sofia-
Michaela and Chaloupka, Jiří and Khaliullin, Giniyat and
Ryu, Gihun and Jain, Anil and Kim, B. J. and Le Tacon,
Matthieu and Keimer, Bernhard, 2017; Ying et al., 2019).
In analogy with high-energy physics, these fast fluctua-
tions are usually described in terms of a massive Higgs
mode (Englert and Brout, 1964; Guralnik et al., 1964;
Higgs, 1964a,b), while slow spin rotations are associated
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with Goldstone modes that originate from the broken ro-
tational invariance in spin space.

The problem of describing the physics of the local mag-
netic moment in the framework of interacting electronic
models was intensively studied in late 1970th – early
1980th (Edwards, 1982, 1983; Hasegawa, 1983, 1979b,
1980a,b; Hubbard, 1979a,b; Korenman et al., 1977a,b,c).
In these works the local moments were formally intro-
duced into the Hubbard model by using the Hubbard-
Stratonovich transformation and making use of a static
approximation for the introduced decoupling fields. Note
that the static approximation in the Hubbard model
is closed conceptually to the disordered local moment
approach (Gyorffy et al., 1985; Niklasson et al., 2003;
Oguchi et al., 1983b; Pindor et al., 1983; Staunton et al.,
1986; Staunton and Gyorffy, 1992) within the density
functional theory. As a result, initial translationally in-
variant system of interacting electrons is replaced by a
single-particle problem of electrons moving in a random
magnetic field acting on spins. Fluctuations in the direc-
tion of these fields are taken into account thus allowing
to go beyond a mean-field approach. For the case of
the Hubbard or s-d exchange models at Bethe lattices,
one can build the effective classical spin Hamiltonian
taking into account both Anderson superexchange and
Zener double exchange of essentially non-Heisenbergian
character (Auslender and Katsnel’son, 1982; Auslender
and Katsnelson, 1982). This approach allowed one to
go far beyond Stoner picture of itinerant-electron mag-
netism and clarified several important questions such as
the origin of Curie-Weiss law for magnetic susceptibil-
ity above Curie temperature but it did not result in a
complete quantitative theory of magnetism of itinerant
electrons. In particular, it does not work at low tem-
peratures where magnon-like dynamical excitations play
a crucial role. An attempt to add these effects and to
come to an unified picture in a phenomenological way
was made by Moriya and collaborators which is sum-
marized in the book (Moriya, 2012). Several important
questions remained yet unsolved, e.g., the role of dynam-
ical fluctuations that are known to be responsible for the
Kondo effect (Hamann, 1967) was not clarified.

There were also many attempts to address the problem
of the spin dynamics of interacting electrons. To get the
Berry phase, one usually follows a standard route that
consists in introducing rotation angles for a quantiza-
tion axis of electrons (Dupuis, 2001; Dupuis and Pairault,
2000; Schulz, 1990; Weng et al., 1991). These angles are
considered as path integral variables to fulfill rotational
invariance in the spin space. In this case, the Berry phase
term appears as an effective gauge field that, however, is
coupled to fermionic variables instead of a spin bosonic
field. Considering purely electronic problems makes it
difficult to disentangle spin and electronic degrees of free-
dom. For this reason, until very recently it was not possi-
ble to connect the Berry phase to a proper bosonic vari-

able that describes the modulus of the local magnetic
moment. For the same reason, it was also not possible
to introduce a proper Higgs field to describe fluctuations
of the modulus of the magnetization. Indeed, in elec-
tronic problems this field is usually introduced by decou-
pling the interaction term (Gazit et al., 2020; Sachdev,
2008; Scheurer et al., 2018; Thomson and Sachdev, 2018;
Wu et al., 2018). First, such decoupling field does not
have a clear physical meaning and its dynamics does not
necessary correspond to the dynamics of the local mag-
netic moment. Also, in actual calculations this effective
Higgs field is usually treated in a mean-field approxima-
tion assuming that it has a non-zero average value, which
is non-trivial to justify in a paramagnetic phase. One
should also keep in mind that although the decoupling
of the interaction term is a mathematically exact pro-
cedure, it can be performed in many different ways. In
particular, this fact leads to a famous Fierz ambiguity
problem (Baier et al., 2004; Jaeckel, 2002; Jaeckel and
Wetterich, 2003) if the decoupling field is further treated
in a mean-field approximation.

The aim of this section is to collect all previous achieve-
ments in describing spin degrees of freedom of interact-
ing electrons and unify them in a general theory of spin
dynamics and effective exchange interactions in strongly
correlated systems. Below we discuss how an effec-
tive quantum spin action written in terms of physical
bosonic variables can be rigorously derived starting from
a pure electronic problem. Importantly, we show that
this derivation can be performed without assuming that
the average magnetization is nonzero and without im-
posing any constraints such as artificial magnetic fields.
We illustrate that the introduced effective spin problem
allows one to obtain all kinds of exchange interactions be-
tween spins and thus to establish relations between the
magnetic local force approach and the standard language
of response functions. Further, we show that the cor-
responding equation of motion for this action correctly
describes the dissipative rotational dynamics of the local
magnetic moment via the Berry phase and Gilbert damp-
ing term, and also takes into account the Higgs fluctu-
ations of the modulus of the magnetic moment. At the
end, we introduce a physical criterion for the formation
of the local magnetic moment in the system and show
that this approach is applicable even in the paramag-
netic regime. As a whole, this section provides a solid and
mathematically consistent background for a complete de-
scription of spin dynamics in strongly correlated electron
systems.

A. Derivation of the bosonic action for the fermionic problem

To introduce a consistent theory of spin dynamics, we
will mainly follow the route presented in Refs. Stepanov
et al., 2022a, 2018 and will use the action formalism
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based on Feynman path integral technique as a more
appropriate language for treating many-body quantum
problems. We start with a general action for a multi-
orbital extended Hubbard model, as a particular example
of the strongly-correlated electronic problem that pos-
sesses spin dynamics

Slatt[c
(∗)] = −

∫ β

0

dτ
∑

jj′,σσ′,ll′

c∗jτσl
[
G−1

]ττll′
jj′σσ′ cj′τσ′l′

+
1

2

∫ β

0

dτ

{ ∑

j,σσ′,{l}
Ul1l2l3l4c

∗
jτσl1cjτσl2c

∗
jτσ′l4cjτσ′l3

+
∑

jj′,ς,{l}
V jj′ς
l1l2l3l4

ρςjτl1l2ρ
ς
j′τl4l3

}
. (9.1)

This action is written in terms of annihilation (creation)
fermionic Grassmann variables c(∗)jτσl and is considered in
the lattice j, imaginary time τ , spin σ = {↑, ↓}, and or-
bital l space. The bare (non-interacting) Green function
is defined by the inverse of the matrix
[
G−1

]ττ ′ll′

jj′σσ′ = δττ ′

[
δjj′δσσ′δll′(−∂τ + µ)− εσσ

′
jj′ll′

]
.

(9.2)

It contains the chemical potential µ and the hopping ma-
trix εσσ

′
jj′ll′ . The latter has the following form in the spin

space εσσ
′
= ε δσσ′ + i κ⃗ · σ⃗σσ′ , where the diagonal part ε

of this matrix corresponds to the usual hopping ampli-
tude of electrons. The non-diagonal part κ⃗ accounts for
the spin-orbit coupling in the Rashba form (Bychkov and
Rashba, 1984; Yildirim et al., 1995). The interacting part
of the model action (9.1) consists of the local Coulomb
potential Ul1l2l3l4

and the non-local interaction V jj′ς
l1l2l3l4

(V jj = 0) between electrons in the charge (ς = c) and
spin (ς = s = {x, y, z}) channels. Composite fermionic
variables ρςjτll′ = nςjτll′ − ⟨nςll′⟩ describe fluctuations of
charge and spin densities nςjτll′ =

∑
σσ′ c∗jτσl σ

ς
σσ′cjτσ′l′

around their average values.
We note that the exchange interactions between spins

in the bosonic problem that we aim to derive are non-
local, while the dynamics of the magnetic moment is
usually described by local Berry and Higgs terms. For
this reason, it would be useful to explicitly decouple lo-
cal and non-local correlations in the system. The works
in Refs. Stepanov et al., 2022a, 2018 propose to perform
this decoupling by considering the local site-independent
reference problem that accounts for the local part of the
lattice action (9.1)

S(j)
imp[c

(∗)] = −
∫∫ β

0

dτ dτ ′
∑

σ,ll′

c∗jτσl
[
g−1
0

]ll′
ττ ′ cjτ ′σl′

+
1

2

∫ β

0

dτ
∑

σσ′,{l}
Ul1l2l3l4c

∗
jτσl1cjτσl2c

∗
jτσ′l4cjτσ′l3 ,

(9.3)

where
[
g−1
0

]ll′
ττ ′ = δττ ′δll′(−∂τ + µ)−∆ll′

ττ ′ (9.4)

is the inverse of the bare Green function of the refer-
ence system. The action (9.3) has the form of the im-
purity problem of dynamical mean-field theory (Georges
et al., 1996) and is intended to describe the local cor-
relation effects of the initial lattice action (9.1). This
is achieved by introducing a non-stationary hybridiza-
tion function ∆ll′

ττ ′ = ∆ll′(τ − τ ′) that aims at capturing
the effect of surrounding electrons on a given impurity
site. In general, the impurity problem (9.3) can be con-
sidered either in a polarized (Stepanov et al., 2018) or
in a non-polarized (Stepanov et al., 2022a) form, which
corresponds to an ordered or paramagnetic solution for
the problem, respectively. At present, we stick to a non-
polarized local reference system, which allows one to de-
scribe a regime of the system where the average local
magnetization is identically zero ⟨nsll′⟩imp = 0. In this
case, the hybridization function ∆ll′

ττ ′ is spin independent,
and can be determined from the self-consistent condition
1
2

∑
σ G

ττ ′ll′
jjσσ = gll

′
ττ ′ (Stepanov et al., 2022a) that equates

the spin diagonal, local part of the interacting lattice
Green function Gττ ′ll′

jjσσ and the interacting Green func-
tion of the local reference problem gll

′
ττ ′ . A DMFT-like

form of the reference system (9.3) allows for the exact
solution of this local problem using, e.g., the continuous-
time quantum Monte Carlo method (Gull et al., 2011;
Rubtsov et al., 2005; Werner et al., 2006; Werner and Mil-
lis, 2010). This implies that corresponding local many-
body correlation functions including the full interacting
Green function gll

′
ττ ′ and the susceptibility χς ττ ′

l1l2l3l4
can

be obtained numerically exact. This drastically simpli-
fies investigation of many physical effects that are di-
rectly related to local electronic correlations, which, in
particular, includes formation of the local magnetic mo-
ment (Stepanov et al., 2022a). We will discuss this point
in more details in the last part of this section.

After isolating the local reference system, the non-
local correlations are contained in the remaining part of
the lattice action Srem[c

(∗)] = Slatt[c
(∗)]−∑j S

(j)
imp[c

(∗)].
However, the local and non-local correlation effects are
not yet disentangled, because Simp[c

(∗)] and Srem[c
(∗)]

are written in terms of the same fermionic Grassmann
variables. Calculating any physical observable using the
present form of the lattice action will immediately mix
these correlations up. After that, a separation of them is
possible only by a complex resummation of correspond-
ing contributions to a Feynman diagrammatic expan-
sion (Brener et al., 2020; Li, 2015). As an alternative,
there exists a simpler way to completely disentangle lo-
cal and non-local correlation effects. The idea consists
in integrating out the reference system as proposed in
the dual fermion (DF) (Hafermann et al., 2009; Rubtsov
et al., 2008, 2009) and the dual boson (DB) (van Loon
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et al., 2014; Peters et al., 2019; Rubtsov et al., 2012;
Stepanov et al., 2016a,b) theories. To this aim, we
first rewrite the non-local part of the action in terms
of new fermionic c(∗) → f (∗) and bosonic ρς → ϕς vari-
ables by means of the Hubbard-Stratonovich transfor-
mation (Hubbard, 1959; Stratonovich, 1957). After this
transformation, the lattice action Slatt[c

∗, f∗, ϕς ] depends
on two fermionic and one bosonic variables. Original
Grassmann variables c(∗) are contained only in the local
part of the lattice action, which includes the impurity
problem (9.3), and thus can be integrated out.

Before making this integration, one should recall that
isolating local correlation effects should help to correctly
describe dynamics of spin degrees of freedom. In general,
spin dynamics might have a non-trivial form, since it in-
volves a combination of a slow spin precession and fast
Higgs fluctuations of the modulus of the local magnetic
moment. For this reason, it is more convenient to treat
these two contributions separately. In electronic systems,
the Berry phase term that describes the uniform spin pre-
cession is commonly obtained by transforming original
electronic variables to a rotating frame (Dupuis, 2001;
Dupuis and Pairault, 2000; Schulz, 1990; Weng et al.,
1991). This can be achieved by introducing a unitary
matrix in the spin space

Rjτ =

(
cos(θjτ/2) −e−iφjτ sin(θjτ/2)

eiφjτ sin(θjτ/2) cos(θjτ/2)

)
(9.5)

and making the corresponding change of variables
cjτl → Rjτ cjτl, where cjτl = (cjτl↑, cjτl↓)T . Rotation an-
gles ΩR = {θjτ , φjτ} are considered as site j and time
τ dependent variables. Introducing an additional func-
tional integration over them allows one to preserve the
rotational invariance in the spin space. As a conse-
quence, the modified lattice action takes the following
form; Slatt[c

∗, f∗, ϕς ,ΩR].
The Berry phase arises from the local impurity problem

that upon rotation becomes (Stepanov et al., 2022a)

S(j)
imp[c

(∗)] → S(j)
imp[c

(∗)] +
∫ β

0

dτ
∑

s,l

As
jτρ

s
jτll. (9.6)

The z component of an effective gauge field As
jτ

has the desired form of the Berry phase term
Az

jτ = i
2 φ̇jτ (1− cos θjτ ). To exclude other components

of the gauge field from consideration, one usually as-
sumes that the rotation angles ΩR correspond to the spin-
quantization axis of electrons. In this case, the composite
fermionic variable in the spin channel ρs is replaced by its
z component ρz which is coupled to the “correct” compo-
nent of the gauge field Az

jτ . Proceeding in this direction
leads to several problems. Associating rotation angles
with the spin-quantization axis is non-trivial to formu-
late in a strict mathematical sense. In Refs. Dupuis, 2001
and Dupuis and Pairault, 2000 it was done introducing

a slave boson approximation. However, there is no guar-
antee that the average magnetization on a given lattice
site will also point in the z direction. Indeed, the spin-
quantization axes on different sites may point in different
directions, which may induce an effective mean magnetic
field that will change the direction of the magnetization
on a given site. In particular, this does not allow one to
replace the composite fermionic variable ρz by its aver-
age value in the Berry phase term (9.6). Moreover, in
the paramagnetic phase this replacement does not make
sense, because the average magnetization in this case is
identically zero. Finally, in Eq. (9.6) the effective gauge
field As

jτ is coupled to a composite fermionic variable ρs
instead of a proper vector bosonic field that describes
fluctuations of the local magnetic moment. This repre-
sentation of spin degrees of freedom does not conserve the
length of the total spin, which is a necessary condition
for a correct description of a spin precession.

We emphasize that the rotation angles cannot be asso-
ciated with the direction of the newly introduced bosonic
field for spin degrees of freedom ϕs. This field enters the
lattice action as an effective quantum magnetic field that
polarises the electrons (Stepanov et al., 2022a, 2018) and
is frequently associated with the Higgs field (Gazit et al.,
2020; Sachdev, 2008; Scheurer et al., 2018; Thomson and
Sachdev, 2018; Wu et al., 2018). However, this effective
bosonic field is introduced as the result of a Hubbard-
Stratonovich transformation and does not have a clear
physical meaning. Moreover, even if it would be possible
to associate ϕs with the physical Higgs field, its dynamics
would not necessarily correspond to the dynamics of the
local magnetic moment. All these observations suggest
that the idea to describe the spin precession in terms of
rotation angles is very appealing, but one has to find a
way to relate these angles to the direction of the local
magnetic moment and not to the spin-quantization axis
or to the effective Higgs field.

After transforming the original electronic variables
c(∗) to a rotating frame they can finally be integrated
out, which results in the, so-called, dual boson ac-
tion Slatt[f

(∗), ϕς ,ΩR] (van Loon et al., 2014; Rubtsov
et al., 2012; Stepanov et al., 2016b). In this action,
bare propagators for the fermionic f (∗) and bosonic
ϕς variables are purely non-local and explicitly de-
pend on rotation angles ΩR (Stepanov et al., 2022a).
All local correlations are absorbed in the interaction
part of the fermion-boson action F̃ [f (∗), ϕς ,ΩR] that
consist of all possible fermion-fermion, fermion-boson,
and boson-boson vertex functions of the local refer-
ence problem (9.3). To proceed further, we trun-
cate the interaction at the two particle level and keep
only the four-point (fermion-fermion) Γ and three-point
(fermion-boson) Λς vertices. This approximation is
widely used in the dual fermion approach (Hafermann
et al., 2009; Rubtsov et al., 2008, 2009), the dual bo-
son method (van Loon et al., 2014; Peters et al., 2019;
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Rubtsov et al., 2012; Stepanov et al., 2016a,b), and the
recently introduced dual triply irreducible local expan-
sion (D-TRILEX) (Harkov et al., 2021; Stepanov et al.,
2019a; Vandelli et al., 2022), including their diagram-
matic Monte Carlo realizations (Gukelberger et al., 2017;
Iskakov et al., 2016; Vandelli et al., 2020) that provide
results in a good agreement with the exact benchmark
methods (Gukelberger et al., 2017; Harkov et al., 2021;
Iskakov et al., 2016, 2018; Schäfer et al., 2021; Vandelli
et al., 2020).

Integrating out the reference system not only disentan-
gles local and non-local correlations, but also allows one
to get rid of composite fermionic variables ρς that are no
longer present in the dual boson action Slatt[f

(∗), ϕς ,ΩR].
Now, charge and spin degrees of freedom are described by
a proper bosonic field ϕς that has a well-defined propaga-
tor and a functional integration over them. Moreover, in
this action the gauge field As

jτ is coupled (up to a certain
multiplier) to the spin component of this bosonic field
ϕs (Stepanov et al., 2022a). However, as discussed above,
the bosonic variable ϕς does not have a clear physical
meaning. The way of introducing a physical bosonic vari-
able was proposed in Ref. Stepanov et al., 2018 and was
inspired by works (Dupuis, 2001; Dupuis and Pairault,
2000) where a similar transformation was performed for
fermionic fields. The idea consists in introducing a source
field ης for the original composite fermionic variable ρς
that describes fluctuations of charge and spin densities.
Then, after obtaining the dual boson action one performs
one more Hubbard-Stratonovich transformation ϕς → ρ̄ς

that makes ης the source field for the resulting physical
bosonic field ρ̄ς . Further, unphysical bosonic fields ϕς are
integrated out, which leads to the fermion-boson action
Slatt[f

(∗), ρ̄ς ,ΩR].

Importantly, the derived fermion-boson action has
a simpler form compared to the dual boson action
Slatt[f

(∗), ϕς ,ΩR]. Indeed, the interaction part of the
fermion-boson action contains only the three point ver-
tex function Λς . The four-point vertex Γ that is present
in the dual boson action is approximately cancelled
by the counterterm that is generated during the last
Hubbard-Stratonovich transformation (Stepanov et al.,
2018, 2019a). As a result, the fermion-boson action

Slatt[f
(∗), ρ̄ς ,ΩR] takes the form of an effective t-J or s-d

exchange model (Vonsovskii, 1974) that describes local
charge and spin moments ρ̄ς coupled to itinerant elec-
trons f (∗) via the local fermion-boson vertex function Λς .
Moreover, in this action the gauge field As

jτ is coupled to
the spin component of the physical bosonic field ρ̄s as de-
sired for a correct description of the rotational dynamics
of the local magnetic moment (Stepanov et al., 2022a).

We note that at this point all parameters of the
fermion-boson action, including the coupling of the gauge
field As

jτ to the bosonic field ρ̄s, explicitly depend on the
rotation angles ΩR. From the very beginning, these an-
gles are introduced to account for the spin precession ex-
plicitly. For this reason, ΩR should be related to the
direction of the local magnetic moment, which in the
fermion boson action is defined by a bosonic vector field
ρ̄s. It is convenient to rewrite the latter in spherical co-
ordinates as ρsjτll′ =Mjτll′e

s
jτ , where Mjτll′ is a scalar

field that describes fluctuations of the modulus of the
orbitally-resolved local magnetic moment. In this ex-
pression we assume that the multi-orbital system that
exhibits a well-developed magnetic moment is charac-
terised by a strong Hund’s exchange coupling that or-
ders spins of electrons at each orbital in the same direc-
tion. Therefore, the direction of the local magnetic mo-
ment in the system is defined by the orbital-independent
unit vector e⃗jτ , e.g. described by a set of polar angles
ΩM = {θ′jτ , φ′

jτ} associated with this vector. It has been
shown in Ref. Stepanov et al., 2022a that taking the path
integral over rotation angles ΩR in the saddle point ap-
proximation allows one to equate these two sets of an-
gles ΩR = ΩM that from now on define the direction of
the local magnetic moment. After that, the remaining
dependence on rotation angles can be eliminated from
fermionic parts of the fermion-boson action. This can
be achieved in the adiabatic approximation that assumes
that characteristic times for electronic degrees of freedom
are much faster than for spin ones.

The bosonic problem that describes the behavior of
charge and spin densities can be obtained integrating out
fermionic fields f (∗). The fermion-boson action is Gaus-
sian in terms of these fields, so this integration can be
performed exactly. The resulting bosonic action takes
the following final form (Stepanov et al., 2022a)

Slatt =− Tr ln


[G̃−1

]ττ ′ll′

jj′σσ′ − δjj′

∫ β

0

dτ1
∑

ς,l1l′1

σς
σσ′Λ

ς ττ ′τ1
ll′l1l′1

ρ̄ςjτ1l′1l1


+

1

2

∫ β

0

dτ
∑

jj′,ς,{l}
ρ̄ςjτll′ V

jj′ς
ll′l1l′1

ρ̄ςj′τl′1l1

− 1

2

∫∫ β

0

dτ dτ ′
∑

j,{l}

{
ρ̄cjτll′

[
χc−1

]ττ ′

ll′l1l′1
ρ̄cjτ ′l′1l1

+Mjτll′
[
χz−1

]ττ ′

ll′l1l′1
Mjτ ′l′1l1

}
+

∫ β

0

dτ
∑

j

Az
jτMjτ . (9.7)

Importantly, in this action the modulus of the total mag- netic moment Mjτ =
∑

lMjτll is coupled only to the z



52

component of the effective gauge field Az
jτ that gives ex-

actly the desired Berry phase term. Other components
of the gauge field disappear upon associating rotation
angles with the direction of the local magnetic moment.

B. Exchange interactions in many-body theory and relation to
other approaches

Before introducing the explicit expression for the ex-
change interaction it is worth noting that an unambigu-
ous definition for this quantity does not exist. The ex-
change interactions are internal parameters of the model
and thus depend on the particular form of the considered
Hamiltonian. In its turn, the latter crucially depends
on the downfolding scheme used to map the interacting
electronic problem onto an effective bosonic (i.e., spin)
model. For instance, it has been shown that considering
small local variations from the ordered magnetic state
leads to the bilinear exchange interaction that depends on
the magnetic configuration, and the resulting spin Haim-
iltonian also contains higher-order non-linear exchange
interactions that are not negligible a priori (Auslender
and Katsnel’son, 1982; Auslender and Katsnelson, 1982).
On the other hand, one can try to map the interact-
ing electronic problem onto a global Heisenberg-like spin
model with only bilinear exchange interaction. In this
case, the value of the bilinear exchange might be differ-
ent compared to the one of the non-linear spin model.

However, both forms of the spin Hamiltonian are use-
ful. The form that contains non-linear exchange interac-
tions better reproduces the spectrum of spin waves (Pa-
jda et al., 2001). On the other hand, the Heisenberg
Hamiltonian is a standard model for atomistic spin sim-
ulations and gives reasonable thermodynamic properties
of the system (Eriksson et al., 2017). In order to estab-
lish connection between different definitions for the ex-
change interaction, we start with the bosonic action (9.7)
derived above. In this action local and non-local correla-
tion effects are completely disentangled by construction
of the theory. The first line in Eq. (9.7) describes non-
local exchange interactions between charge ρ̄c and spin
ρ̄s densities. The first term in this expression is respon-
sible for all possible kinetic exchange processes (includ-
ing higher-order ones) mediated by electrons. This can
be illustrated by directly expanding the logarithm func-
tion to all orders in ρ̄ς variables. Since this expansion
is performed in terms of the bosonic variables that cor-
respond to charge and magnetic densities, the resulting
bilinear and non-linear exchange interactions are well de-
fined. This expansion is essentially different from the one
performed in terms of rotation angles in DFT-based for-
malisms. Indeed, the latter is based on the magnetic force
theorem (see Section V.A), which cannot be used how-
ever for the discussion of higher-order expansion terms
in rotation angle. The situation is similar to that in

the problem of calculations of elastic moduli of solids
in density functional: whereas the first-order variations
with respect to deformation are very simple and can
be calculated according to the local force theorem, the
second-order variations contain a lot of additional terms
related to the differentiation of the double-counting con-
tributions (Zein, 1984). At the same time, the effective
bosonic action discussed here is based on formally exact
transformations.

The bilinear exchange interaction J ςς′

jj′ is given by the
second order of the expansion

J ςς′ττ ′

jj′ll′l′′l′′′ =

∫ β

0

{dτi}
∑

{σi},{li}

⋆ Λ∗ ς ττ1τ2
ll′l1l2

G̃τ1τ3l1l3
jj′σ1σ3

G̃τ4τ2l4l2
j′jσ4σ2

Λς′τ3τ4τ
′

l3l4l′′l′′′
, (9.8)

where a “transposed” three-point vertex function
Λ∗ ς τ1τ2τ3
l1l2l3l4

= Λς τ3τ2τ1
l4l3l2l1

is introduced to simplify notations.
G̃ stands for the non-local Green function given by the
difference between DMFT G and impurity g Green func-
tions

G̃ττ ′ll′
jj′σσ′ = Gττ ′ll′

jj′σσ′ − δjj′δσσ′gll
′

ττ ′ . (9.9)

The DMFT Green function corresponds to the bare lat-
tice Green function (9.2) dressed in the exact self-energy
Σimp of the local reference problem (9.3) (Georges et al.,
1996). According to the self-consistency condition, the
local part of the DMFT Green function is identically
equal to the exact local Green function g of the refer-
ence problem.

The diagonal part of the bilinear exchange inter-
action is given by the Heisenberg exchange Jss

jj′ for
spin (Stepanov et al., 2022a, 2018) and the Ising in-
teraction Jcc

jj′ for charge (Stepanov et al., 2019b) den-
sities. The latter will be discussed in details in Sec-
tion X. The non-diagonal Js ̸=s′

jj′ components give rise to
the Dzyaloshinskii-Moriya and the symmetric anisotropic
interactions (see, e.g., Ref. Yildirim et al., 1995) that may
appear in the system due to spin-orbit coupling. These
kinetic exchange interactions compete with the bare non-
local electron-electron interaction V ς

jj′ that plays a role
of a direct exchange between charge and spin densities.
This makes the total, non-local bilinear exchange inter-
action to have the form

Iςς′

jj′ = J ςς′

jj′ + δςς′V
ς
jj′ . (9.10)

Importantly, the non-local interaction V ς
jj′ enters the

bosonic problem in the same way as it was introduced
in the initial lattice action (9.1). We also note that the
direct spin-spin interaction V s

jj′ usually has the oppo-
site sign to the kinetic interaction Jss

jj′ . More involved
interactions (Auslender and Katsnel’son, 1982; Auslen-
der and Katsnelson, 1982), e.g. the ring (Eroles et al.,
1999; Honda et al., 1993; Lorenzana et al., 1999), the chi-
ral three-spin (Bauer et al., 2014; Grytsiuk et al., 2020;
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Owerre, 2017; Pachos and Plenio, 2004; Sotnikov et al.,
2021; Zhang et al., 2020) and the four-spin (Heinze et al.,
2011b; Paul et al., 2020; Sato, 2007) exchange interac-
tions can be obtained by expanding the first term in
Eq. (9.7) to higher orders in the ρς variable. For calcula-
tions of bilinear exchange interactions (9.8) in a realistic
material context see Ref. Vandelli et al., 2023.

At this step we can already establish relation between
bilinear exchange interactions derived using a magnetic
force theorem and a quantum many-body path-integral
technique. In this case it is convenient to work in the
Matsubara fermionic ν and bosonic ω frequency represen-
tation. To simplify expressions we further omit orbital
indices that can be restored trivially. First, we note that
the three-point vertex function Λς for the zeroth bosonic
frequency can be obtained from single-particle quantities

Λs
ν,ω=0 = △s

ν + χs−1
ω=0 (9.11)

by varying the self-energy of the local reference prob-
lem (9.3) with respect to the magnetization (Stepanov
et al., 2022a)

△s
ν = ∂Σimp

ν /∂Mω=0. (9.12)

In the ordered phase, where the spin rotational invariance
is broken, this variation can be approximated as

△s
ν =

Σimp
ν↑↑ − Σimp

ν↓↓
2⟨M⟩ . (9.13)

This relation is justified by local Ward identities and
the fact that in the regime of a well-developed mag-
netic moment the renormalized fermion-fermion inter-
action (four-point vertex function) does not depend on
fermionic frequencies (Stepanov et al., 2018). Therefore,
in Eq. (9.11) the △s

ν term describes the spin splitting
of the self-energy due to polarization of the system. In
turn, χs−1

ω=0 can be seen as a kinetic self-splitting effect,
because χs

ω = −⟨ρsωρs−ω⟩imp is the exact spin suscepti-
bility of the reference system. In magnetic materials
with a relatively large value of the magnetic moment the
kinetic contribution can be neglected. Indeed, in this
case the spin splitting of the self-energy is determined
by the Hund’s exchange coupling. The latter is much
larger than the inverse of the spin susceptibility, for which
the estimation χs

ω=0 ∼ T−1 holds due to Curie–Weiss
law (Moriya, 2012). Then, the static exchange interac-
tion Jss′

jj′ (ω = 0) =
∫
dτ ′ Jss′

jj′ (τ − τ ′) (see Ref. Stepanov
et al., 2022a for discussions) reduces to the form

Jss′
jj′,ω=0 =

∑

ν,{σ}
△s

jν G̃σ1σ3

jj′ν △s′
j′ν G̃σ4σ2

j′jν (9.14)

that under the approximation (9.13) coincides with the
expression (5.64) that for the ordered phase was derived
in Section V.K using the magnetic force theorem (Cardias

et al., 2020; Katsnelson and Lichtenstein, 2000; Liecht-
enstein et al., 1987, 1984, 1985). Note that Eq. (9.14)
contains the sum over spin indices {σ} and for this rea-
son does not contain the prefactor 2, that is present in
Eq. (5.64). The magnetic force theorem can also be ap-
plied in a paramagnetic phase. In the HIA this was done
in Ref. Pourovskii, 2016, and the result coincides with
Eq. (9.14), where the relation (9.12) is calculated numer-
ically exactly. It should be emphasized that in Eq. (9.8),
and consequently in Eq. (9.14), the vertex function (9.11)
and thus the self-energy (9.12) are given by the local ref-
erence system (9.3). Moreover, the Green function (9.9)
that enters the expression for the exchange interaction
is also dressed only in the local self-energy. The spin
splitting △s obtained from the non-local self-energy was
introduced in Ref. Secchi et al., 2016b. However, the cor-
responding exchange interaction is formulated in terms
of bare (non-interacting) Green functions and can be de-
rived considering only the density-density approximation
for the interaction between electrons. For these reasons,
the limit of applicability of this approach and the relation
to other methods remain unclear.

In addition, if the fermionic frequency-dependence in
Eq. (9.11) is fully neglected, the the vertex function can
be approximated by the inverse of the local bare polar-
ization Λs ≃ χ0−1

ω=0, where χ0
ω =

∑
ν gνgν+ω. Then, the

exchange interaction (9.8) reduces to the form of an ef-
fective bare non-local susceptibility, as was derived in
Ref. Antropov, 2003,

Jss′
jj′,ω=0 = χ0−1

ω=0 X̃
0
jj′,ω=0 χ

0−1
ω=0, (9.15)

where X̃0
jj′ω =

∑
ν G̃jj′ν G̃j′jν+ω.

One can also establish a relation between the results of
the introduced many-body theory result and the bilinear
exchange interaction that can be deduced from the lattice
susceptibility Xςς′

jj′ using the following expression:

J̄ ςς′

j ̸=j′ = δjj′δςς′ [χ
ς ]
−1 −

[
X−1

]ςς′
jj′

. (9.16)

This expression was used in the works in Refs. (Antropov,
2003; Belozerov et al., 2017; Igoshev et al., 2015; Otsuki
et al., 2019) to estimate the magnetic exchange inter-
action based on the DMFT approximation for the spin
susceptibility (Georges et al., 1996). One can find that
this form for the bilinear exchange interaction (9.16) can
also be obtained from the derived above many-body the-
ory if the non-linear action (9.7) is approximated by the
Gaussian form

S̄ = −1

2

∫∫ β

0

dτ dτ ′
∑

jj′,ςς′

ρ̄ςjτ
[
X−1

]ςς′,ττ ′

jj′
ρ̄ς

′

j′τ ′ . (9.17)

Since the bosonic variables ρ̄ς correspond to the charge
and magnetic densities, the quantity Xςς′,ττ ′

jj′ is noth-
ing more than the lattice susceptibility (Stepanov et al.,
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2022a, 2018, 2019b). More accurately this approxi-
mation can be done using Peierls-Feynman-Bogoliubov
variational principle (Bogolyubov, 1958; Feynman, 1972;
Peierls, 1938). Comparing the two actions (9.7)
and (9.17) shows that in this case the bilinear exchange
interaction should indeed be given by the relation (9.16).

Effectively, this procedure corresponds to the mapping
of the spin problem (9.7) that contains all possible ex-
change interactions onto an effective Heisenberg problem
that accounts only for the bilinear exchange. It should
be emphasised that for this reason it would be incorrect
to relate two expressions for the bilinear exchange intro-
duced in Eqs. (9.8) and (9.16). Indeed, equating these
two quantities corresponds to truncating the expansion
of the logarithm in the bosonic action (9.7) at the second
order in terms of ρ̄ variables. In other words, it means
neglecting the effect of the higher-order exchange interac-
tions on the lattice susceptibility and, consequently, on
the bilinear exchange interaction J̄ . Taking this effect
into account will obviously modify the expression (9.8)
for the bilinear exchange interaction. In particular, it
will result in dressing the Green’s functions G̃ by the
non-local self-energy and in the renormalization of one
of the two vertex functions, Λ, by collective non-local
fluctuations in Hedin’s fashion (Hedin, 1965b).

These observations confirm the statement that we
made at the beginning of this Section, namely that the
expression for the exchange interaction strongly depends
on the form of the considered spin model. If one is limited
to the simplest approximation with only bilinear form of
the exchange interaction, then the latter should be calcu-
lated via the Eq. (9.16) provided that consistent calcula-
tion for the lattice susceptibility is possible. For instance,
using the DMFT form of the susceptibility might already
be questionable, because it accounts for the renormaliza-
tion of the vertex function (in the ladder approximation)
but disregards the non-local self-energy. At the same
time, if a more accurate model that contains the bilinear
and the non-linear exchange interactions is considered,
these interactions should be computed in the form given
by the action (9.7). In this case, the bilinear interaction is
given by Eq. (9.8) or its approximation (9.14). Calculat-
ing it via the lattice susceptibility (9.16) would be incor-
rect, because it would lead to a double-counting problem
for the higher-order interactions, since some contribution
of them is already taken into account in the lattice sus-
ceptibility. The difference between the two forms for the
bilinear exchange interaction can also serve as a measure
of the importance of the non-linear exchange processes
in the system.

C. Equation of motion for the local magnetic moment

The second line in the bosonic action (9.7) contains
only local contributions that describe dynamics of charge

and spin degrees of freedom. The first term in this line
accounts for the Higgs fluctuations of the modulus of
the charge ρc and spin M moments around their aver-
age value. This can be seen by formally expanding the
time-dependence of the moments in powers of τ − τ ′. For
the local magnetic moment this gives

SHiggs = −1

2

∫∫ β

0

dτ dτ ′
∑

j

Mjτ

[
χz−1

]
ττ ′ Mjτ ′

≃ −1

2

∫ β

0

dτ
∑

j

{
χz−1
ω=0M

2
jτ +

∂2χz−1
ω

2 ∂ω2

∣∣∣
ω=0

Ṁ2
jτ

}
.

(9.18)

The first order difference in time vanishes, because the
exact local susceptibility χς

ω is the even function of the
frequency ω. The Lagrangian equation for this action
immediately gives the standard equation of motion for
a simple harmonic oscillator M̈jτ + λ2Mjτ = 0, where
λ2 = −2χz−1

ω=0/
(
∂2ωχ

z−1
ω

)∣∣
ω=0

. Note that in our defini-
tion the susceptibility χς

ω is negative. However, this ex-
pansion has to be performed with ultimate care. Indeed,
Higgs fluctuations of the modulus of the local magnetic
moment are fast, and the spin susceptibility is strongly
non-local in time (Stepanov et al., 2022a). For this rea-
son, there is no uniform justification that the Higgs fluc-
tuations can be accurately described using an equal-time
term (second line of Eq. (9.18)) instead of the full non-
stationary in time local part of the lattice action (first
line of Eq. (9.18)).

The last term in the bosonic action (9.7) that contains
the effective gauge field Az

jτ accounts for the rotational
spin dynamics. It has been shown in Ref. Stepanov et al.,
2022a that after averaging over fast Higgs fluctuations
the equation of motion for the bosonic action reduces
to the standard Landau-Lifshitz-Gilbert form. To illus-
trate this, we replace the scalar field Mjτ by its con-
stant non-zero average value ⟨Mjτ ⟩ = 2S and introduce
S⃗jτ = S e⃗jτ . The spin part of the action becomes

Sspin =

∫ β

0

dτ
∑

j

(
iφ̇jτ (1− cos θjτ )S − S⃗jτ · h⃗jτ

)
,

(9.19)

where we explicitly rewrote the gauge field in terms of ro-
tation angles. Components of the effective magnetic field
h⃗jτ can be expressed via the bilinear exchange interac-
tion and the effective magnetic field that appears due to
spin-orbit coupling (Stepanov et al., 2022a)

hsjτ = − 4

∫ β

0

dτ ′
∑

j′,s′

Iss′
jj′ (τ − τ ′)Ss′

j′τ ′ + hsoc sjτ . (9.20)

In the general case, the equation of motion for the non-
stationary spin action (9.19) is a complex set of integro-
differential equations. However, one can make use of the
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fact that the interaction between spins is determined by
the super-exchange processes mediated by electrons (9.8)
and thus decays fast on the time scales of inverse band
width. Instead, the time-dependence of the angle vari-
ables φjτ and θjτ is slow, because the spin precession
is slow in time (Sayad and Potthoff, 2015; Sayad et al.,
2016; Watzenböck et al., 2020). Contrary to the case of
Higgs fluctuations, this allows one to expand the time-
dependence of the spin variable Ss′

j′τ ′ in Eq. (9.20) up to
the first order in powers of τ − τ ′, which allows to write

hsj(t) =− 4
∑

j′,s′

IR ss′
jj′ (Ω = 0)Ss′

j′ (t) + hsoc sj (t)

− 4
∑

j′,s′

∂

∂Ω
Im IR ss′

jj′ (Ω)
∣∣∣
Ω=0

Ṡs′
j′ (t). (9.21)

With this expression for the effective magnetic field the
spin problem (9.19) becomes stationary in time, and the
corresponding equation of motion for this action takes
the standard Landau-Lifshitz-Gilbert form

˙⃗
Sj(t) = − h⃗j(t)× S⃗j(t). (9.22)

This expression can be derived by making analytical
continuation that transforms the imaginary-time ex-
change interaction Iss′

jj′ (τ − τ ′) to a retarded function
IR ss′
jj′ (t− t′) in real time t. In turn, IR ss′

jj′ (Ω) is a Fourier
transform of the retarded exchange interaction to real
frequency Ω. This transformation allows one to obtain
the Gilbert damping, which is described by the last term
in the effective magnetic field (9.21). A similar expres-
sion for the Gilbert damping was derived in Refs. Sayad
and Potthoff, 2015 and Sayad et al., 2016 for the case
of a classical spin coupled to the system of conduction
electrons. Note that the Gilbert damping cannot be ob-
tained in the imaginary-time representation, because the
exchange Iss′

jj′ (τ − τ ′) is an even function of time. Physi-
cally, this means that dissipation effects cannot be visible
in the equilibrium formalism.

There are several restrictions for the derived Landau-
Lifshitz-Gilbert equation of motion that have to be dis-
cussed. Eq. (9.22) describes the spin precession that is
assumed to be slow in time compared to electronic pro-
cesses in the system. The corresponding effective mag-
netic field (9.21) thus takes into account only the low-
frequency part of the exchange interaction. In general,
the exchange term (9.8) has a non-trivial frequency de-
pendence and even diverges at high frequencies, because
it is given by a non-local part of the inverse of the lattice
susceptibility (9.16). Non-adiabatic effects that corre-
spond to high-frequency behavior of the exchange inter-
action are not taken into account by the Eq. (9.22). The
latter can only be described using the derived bosonic
action (9.7) that has no restriction on the regime of fre-
quencies, but is non-stationary in time.

Another important point is that the Higgs and the
Berry phase terms, in the form they enter the bosonic

action (9.7), can be obtained only after associating the
rotation angles with the direction of the local magnetic
moment. As discussed above, this can be done tak-
ing the path integral over rotation angles in the saddle
point approximation. However, this approximation can
be justified only for the case of a large magnetic mo-
ment (Stepanov et al., 2022a). In practice, it means that
the classical Landau-Lifshitz-Gilbert equation of motion
is applicable only in the multi-orbital case, where the
large value of the local magnetic moment is provided by
a strong Hund’s coupling. If the magnetic moment is
small, spin dynamics in the system is governed by quan-
tum fluctuations. In this case, the local magnetic mo-
ment can still be well-defined, but its behavior can no
longer be described in terms of classical equations of mo-
tion.

D. Local magnetic moment formation

The Landau-Lifshitz-Gilbert equation of motion (9.22)
makes physical sense only for a non-zero value of the av-
erage magnetic moment ⟨M⟩. In the ordered phase this
is ensured by a non-zero average value of the magneti-
zation. Defining ⟨M⟩ in a paramagnetic regime is much
more problematic, because in this case the average mag-
netization is identically zero. For this reason, the value of
⟨M⟩ is commonly estimated from the static (equal-time)
spin susceptibility as

3χz
ττ = ⟨M2⟩ ≃ ⟨M⟩

(
⟨M⟩+ 2

)
. (9.23)

However, this approximation gives quite large and almost
temperature-independent value for the magnetic moment
even in the high-temperature regime where the moment is
not yet formed (Stepanov et al., 2022a). Taking into ac-
count dynamical screening effects changes the value of the
average moment, but it still remains substantially larger
compared to the one measured experimentally (Hans-
mann et al., 2010; Toschi et al., 2012; Watzenböck et al.,
2020). This result can be explained by the fact that the
local spin susceptibility simultaneously accounts for cor-
relations of the local magnetic moment and for spin fluc-
tuations of itinerant electrons. These two contributions
to the susceptibility cannot be easily disentangled.

In Ref. Stepanov et al., 2022a the average value of the
magnetic moment was proposed to obtain from the free
energy of the local problem that describes the behavior of
the magnetic moment. The action of this local problem

Sloc =− Tr ln

[
[g−1]ττ ′δσσ′ +

∫ β

0

dτ1
∑

ς

σς
σσ′Λ

ς
ττ ′τ1ρ

ς
τ1

]

− 1

2

∫∫ β

0

dτ dτ ′
∑

ς

ρςτ
[
χς −1

]
ττ ′ ρ

ς
τ ′ (9.24)

can be derived by excluding the contribution of itiner-
ant electrons from the local reference system (9.3). The
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resulting problem reminds of the bosonic action (9.7),
where the non-local Green function G̃ is replaced by the
full local Green function g. In the introduced local prob-
lem (9.24) the magnetic moment appears as a result of
a spontaneous symmetry breaking. According to Lan-
dau phenomenology (Landau and Lifshitz, 1980) the lat-
ter corresponds to the change of the free energy from a
paraboloid-like form with a minimum at ⟨M⟩ = 0 to a
mexican-hat potential characterized by a continuous set
of minima at ⟨M⟩ ≠ 0 (see insets in Fig. 28). Remark-
ably, the resulting value for the average local magnetic
moment appears to be substantially smaller than the one
deduced from the local spin susceptibility (9.23).

The change of the form of the free energy can be cap-
tured by the sign change of its second variation with re-
spect to the the local magnetic moment

−∂
2Sloc[ρ

s]

∂ρsτ ∂ρ
s
τ ′

=
[
χs−1

]
ττ ′ − J loc

ττ ′ . (9.25)

The right-hand side of this equation can be seen as a self-
exchange between the local magnetic moments, because
it is given by the inverse of the local susceptibility with
subtracted contribution of itinerant electrons. The latter
is described by a local analog of the kinetic exchange
interaction (9.8)

J loc
ττ ′ =

∫ β

0

{dτi}
∑

σ

Λ∗ s
ττ1τ2g

σ
τ1τ3g

σ
τ4τ2Λ

s
τ3τ4τ ′ . (9.26)

It is important to emphasize that the local magnetic mo-
ment exists only at relatively long times compared to
single-electron processes. In the static limit the moment
is screened by Kondo effect or by intersite exchange-
induced spin flips. For this reason, formation of the lo-
cal magnetic moment in the system corresponds to the
symmetry breaking at intermediate time scales. Con-
sequently, as has been shown in Ref. Stepanov et al.,
2022a, the second variation of the local free energy (9.25)
changes sign at any times except τ = τ ′. Therefore, the
formation of the local moment is not a real physical
transition and should be considered as a crossover ef-
fect. The static contribution to the local problem (9.24)
is contained in the inverse of the local susceptibility
χs−1
ττ ′ = (Πs imp

ττ ′ )−1 − δττ ′Us. It is given by the bare local
interaction in the spin channel Us = −U/2. In this ex-
pression Πs imp

ττ ′ is the exact polarization operator of the
reference system (9.3). The criterion for the local mag-
netic moment formation can thus be obtain by explic-
itly excluding this static contribution from Eqs. (9.24)
and (9.25). The corresponding condition written in the
frequency space is that

C =
(
Πs imp

ω=0

)−1 − J loc
ω=0 = 0. (9.27)

This expression illustrates that when the effective self-
exchange becomes diamagnetic (C > 0) the system ac-
quires a magnetic moment. The derived criterion (9.27)

Figure 28 (Color online) Phase diagram for the 3D Hubbard
model as a function of temperature T and local Coulomb in-
teraction U . Red (light grey) line corresponds to the crite-
rion (9.27) for the formation of the local magnetic moment.
Blue (dark gray) line depicts the Néel phase boundary ob-
tained in Ref. Hirschmeier et al., 2015. The insets show the
local free energy (9.24) as a function of the magnetic mo-
ment in two regimes, when it does not exist to the left of the
red (light grey) line and where it is already formed shown
by the red (light grey) shaded area. Figure is adapted from
Ref. Stepanov et al., 2022a.

can be approximately related to the first variation of the
local electronic self-energy with respect to the magne-
tization. This fact suggests that the formation of the
local magnetic moment is energetically favorable when
this variation is negative, which minimizes the energy of
electrons.

Applying the derived criterion (9.27) to interacting
electronic systems shows that the local magnetic moment
develops at temperatures well above the phase transition
to the ordered state (Stepanov et al., 2022a). At the same
time, the moment can be formed only above a relatively
large critical value of the local Coulomb interaction U ,
which for the case of a half-filled single-orbital cubic lat-
tice exceeds the half of the bandwidth. The correspond-
ing result is shown in Fig. 28, where the blue (dark grey)
line corresponds to the Néel phase boundary, and the red
(light grey) line is obtained from the condition (9.27). At
low temperatures the red (light grey) line determines the
point at which the local magnetic moment disappears. In
the regime of large interactions this is related to Kondo
screening (Chalupa et al., 2021; Hewson, 1993). At small
U , the local magnetic moment is destroyed by local spin
fluctuations, which corresponds to the regime of valence
fluctuations of the Anderson model (Hewson, 1993). The
low-temperature branch of the red (light grey) line splits
the ordered phase into two parts, which allows one to
distinguish between Slater (Rohringer and Toschi, 2016;
Slater, 1951) and Heisenberg regimes of spin fluctuations.

To summarise, the path-integral formalism allows us
to derive the bosonic problem (9.7) that describes spin
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dynamics of itinerant electronic systems. The non-local
part of this problem gives a general form for all kinds
of magnetic exchange interactions. Upon certain ap-
proximations, the derived expression for the bilinear ex-
change (9.8) reduces to the result that was originally in-
troduced in a completely different framework of DFT.
These approximations are justified by the existence of
a well-developed magnetic moment in the system and
determine the limit of applicability of the DFT result.
Apart from deriving the magnetic interactions, the path-
integral formalism makes it possible to introduce the
equation of motion for spin degrees of freedom. It was
shown that for a relatively large value of the magnetic
moment its slow rotational dynamics is described by
a standard Landau-Lifshitz-Gilbert equation, and fast
Higgs fluctuations can be taken into account by the local
non-stationary in time contribution to the bosonic prob-
lem. Deriving the criterion for the formation of the local
magnetic moment completes the path-integral formula-
tion of the theory of magnetism and magnetic interac-
tions.

X. NON-MAGNETIC ANALOGUES OF EXCHANGE
INTERACTION

The basic idea presented and discussed in this review is
an idea of coarse-grained description of collective behav-
ior in a system of strongly interacting electrons in solids.
The prototype example is magnetism, and “gross” vari-
ables in the coarse-grained description of spin degrees of
freedom are angles determining directions of individual
local magnetic moments. Technically, the main tool is
the magnetic force theorem when we express the varia-
tion of the total thermodynamic potential under small
spin rotations in terms of variations of single-electron
Green function. This approach is general and can be ap-
plied to other collective phenomena than for magnetism.
Here we consider two examples, namely, superconduc-
tors and charge-ordered systems. Since these subjects
are auxiliary for the main aim of the review we restrict
ourselves by presentation of main ideas and some illus-
trative results emphasizing similarities with the discussed
approach to magnetic exchange interaction.

We start with the case of superconductors; our presen-
tation in this part will mostly follow Ref. Harland et al.,
2019. The superconductor is characterized, in the sim-
plest case of singlet Cooper pairing, by a complex-valued
order parameter meaning a wave function of condensate
of the Cooper pairs. There is a huge literature on the
subject; for a very basic introduction the text books in
Refs. Abrikosov, 1988; Mahan, 2000; and Schrieffer, 1999
can be recommended.

Let us consider a model of a strong-coupling super-
conductor with Cooper pairs relatively well localized in
real space, an analog of a magnet with well-defined local

Figure 29 Illustration of the Hubbard-plaquette lattice (tij ,
U) with lattice vector r, self-energies Σi and plaquette sites
0, 1, 2, 3. It is mapped to the Josephson lattice model with
effective coupling Jij of plaquettes due to phase fluctuations
δθi of the d-wave superconducting order parameter Φi. Figure
is adapted from Ref. Harland et al., 2019.

magnetic moments. This is a very poor model for conven-
tional superconductors with a typical diameter of Cooper
pairs in thousands of interatomic distances (Abrikosov,
1988; Schrieffer, 1999) but it can be reasonably well ap-
plicable to cuprate high-temperature superconductors as-
suming that we consider the lattice of copper plaque-
ttes rather than individual sites (Harland et al., 2019;
Lichtenstein and Katsnelson, 2000). Then, the macro-
scopic superconductivity in the system can be described
in terms of a coherence of the phase of the local Cooper
pairs θi which are supposed to be all equal in the ground
state (without the loss of generality, this ground-state
value of the phase can be chosen as zero). The model
that can address the issue of superconducting phase or-
dering, and thus macroscopic quantum properties of the
superconductor, is the Josephson lattice model,

Heff =
∑

<ij>

Jij cos (θi − θj) , (10.1)

where i, j are (super)site indices (e.g., plaquette indices
for the two-dimensional Hubbard model used in the the-
ory of superconducting cuprates). The Josephson cou-
pling parameters Jij determine in particular superfluid
density and London penetration depth (Abrikosov, 1988;
Mahan, 2000; Schrieffer, 1999).

Instead of magnetic systems where we deal with the
local rotational (or SU(2)) symmetry, for singlet super-
conductors we deal with the U(1) symmetry (see Fig. 29).
Following the general approach accepted in this review,
we have to calculate the variation of the thermodynamic
potential under small phase variations, and the answer
will be expressed in terms of single-particle Green func-
tion. In the superconducting state, the latter is a super-
matrix with normal and anomalous part (the so-called
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Nambu-Gor’kov representation) (Schrieffer, 1999):

(
Gp↑ F

F Gh↓

)−1

ij

=

(
Gp↑

0 0

0 Gh↓
0

)−1

ij

− δij

(
Σp↑ S

S Σh↓

)

i

,

(10.2)

where Gaσ
0 and Gaσ are the normal parts of the bare

(G0) and interacting (G) Green’s functions for an elec-
tron (a = p) and a hole (a = h) with the spin projection
σ ∈ {↑, ↓}. F is the anomalous part of the interacting
Green function, which is considered to be local in the su-
persite, as in Refs. Harland et al., 2019 and Lichtenstein
and Katsnelson, 2000. Σaσ and S are the normal and
anomalous parts of the self-energy, respectively.

To obtain explicit expressions for the Josephson cou-
plings, Jij , we have to calculate the variation of the
thermodynamic potential Ω under small variations of
the superconducting phases, and compare the result
with (10.1). Following the consideration of the ex-
change interactions within dynamical mean-field theory,
discussed in Subsection V.K, we start with a general rep-
resentation of the thermodynamic potential in terms of
single-particle and double-counted contribution with the
Luttinger-Ward functional, Φ, and use the local-force

theorem. The result is (Harland et al., 2019)

δΩ ≃
∑

ij

Tr

(
δijGiiδ

∗Σi +
1

2
Gijδ

∗ΣjGjiδ
∗Σi

)
, (10.3)

where δ∗ denotes the local variation of the self-energy
Σ without taking into account its variation due to the
self-consistency procedure. We omit here for simplicity
matrix indices of intra-plaquette and Nambu spaces.

The variation of the self-energy under an infinitesimal
change of the local phase, δθi, entering Eq. (10.3) in a
homogeneous environment reads

δ∗Σi = eiδθiσz/2Σie
−iδθiσz/2 − Σi

=

(
Σp↑

i eiδθiSi

e−iδθiSi Σh↓
i

)
− Σi

≃


 0

(
iδθi − (δθi)

2

2

)
Si(

−iδθi − (δθi)
2

2

)
Si 0


 ,

(10.4)

where Σp↑
i , Σh↓

i , and Si are electron-up, hole-down, and
anomalous parts of the supersite self-energy, respectively,
and the third Pauli matrix σz acts in the Nambu-space.

A straightforward calculation up to second order in δθ
results in

δΩ =
∑

ij

Trωα

(
Gp↑

ij SjG
h↓
ji Si − δijFiiSi − FijSjFjiSi

)
δθ2i +

1

2

∑

ij

Trωα

(
FijSjFjiSi −Gp↑

ij SjG
h↓
ji Si

)
δθ2ij . (10.5)

The trace goes over Matsubara frequencies and over the
sites within the supersite (α).

The term ∝ δθ2i vanishes, which reflects the gauge in-
variance of the theory, that can be checked by the direct
calculation (Harland et al., 2019). The remaining non-
local term is proportional to δθ2ij , i.e.,

δΩ ≡ −1

2

∑

<ij>

Jijδθ
2
ij . (10.6)

This expression should be compared with (10.1) to find
the coupling constants Jij . The answer is an expression
where

Jij = 2Trωα

(
Gp↑

ij SjG
h↓
ji Si − FijSjFjiSi

)
. (10.7)

In order to study macroscopic observables of the
Josephson lattice model, we take the continuum, long-
wavelength limit of (10.1). In this limit, the interaction

becomes the superconducting stiffness;

Iab = − 1

(2π)
d

∫
ddkTrωα (10.8)

⋆

(
∂Gp↑(k)
∂ka

S
∂Gh↓(k)
∂kb

S − ∂F (k)

∂ka
S
∂F (k)

∂kb
S

)

with the effective Hamiltonian

Heff =
1

2

∑

ab

Iab

∫
ddr

∂θ

∂ra

∂θ

∂rb
. (10.9)

If we assume that the discussed lattice is isotropic (in
two or three dimensions), we have Iab = Iδab, where
the constant I is related to the London penetration
depth (Abrikosov, 1988; Schrieffer, 1999):

1

λ2
=

16πe2

ℏ2c2
I. (10.10)

We present an example of the calculated Josephson
couplings, Jr, for plaquette-translations r in Fig. 30.
The figure shows that Jr reduces sharply with increasing
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Figure 30 (Color online) Josephson coupling Jr (left) and its
constituents, GSGS (center) and FSFS (right), as functions
of doping δ and for different plaquette translations r at T =
1/52 ∼ 0.02, t⊥ = 0.15. Figure is adapted from Ref. Harland
et al., 2019.

plaquette-translation length |r|, and thus the short-range
components of Jr alone can give a complete description.
The strongest coupling is J100, followed by the interlayer
coupling J001. They have their maxima around δ = 0.05
and δ = 0.1, respectively. All couplings diminish at large
dopings, δ > 0.1. The first term of Eq. (10.7) (GSGS)
is negative, and the second (FSFS) is positive. GSGS
is a mixed term with normal (G) and anomalous (S)
contributions. This term provides the main contribution
to J , that can be finite only if there is a superconduct-
ing gap and therefore a finite anomalous self-energy, S.
Regarding the largest contributions to the nearest neigh-
bour Josephson coupling J(1,0,0), GSGS is about 3 times
as large as FSFS.

Another interesting feature of correlated materials
that can be potentially described by a corresponding
bosonic model is charge ordering. In electronic sys-
tems this phenomenon attracts a considerable attention
since the discovery of the Verwey transition in magnetite
Fe3O4 (Mott, 1974; Verwey and Haayman, 1941; Ver-
wey et al., 1947). Further, effects similar to the Verwey
transition have been observed in many other materials,
such as the rare-earth compound Yb4As3 (Fulde et al.,
1995; Goto and Lüthi, 2003; Staub et al., 2005), tran-
sition metal MX2 (Arguello et al., 2014; Ritschel et al.,
2015; Ugeda et al., 2016) and rare-earth R3X4 (Furuno
et al., 1988; Irkhin and Katsnelson, 1990; Wachter, 1980)
chalcogenides (M = V,Nb,Ta; R = Eu,Sm; X = S,Se),
Magnéli phase Ti4O7 (Chakraverty, 1980; Eyert, V. and
Schwingenschlögl, U. and Eckern, U., 2004; Leonov et al.,
2006; Schlenker and Marezio, 1980), vanadium bronzes
NaxV2O5 and LixV2O5 (Dumas et al., 1980; Goto and
Lüthi, 2003). In these materials the charge ordering
is driven by the strong non-local Coulomb interaction
and/or the electron-phonon mechanism. Both these
interactions effectively reduce the strength of the lo-

cal Coulomb repulsion (Berger et al., 1995; van Loon
et al., 2016; Sangiovanni et al., 2005; Schüler et al., 2013;
Werner and Millis, 2007) and may even result in an ef-
fective attraction between electrons. Describing these
effects in the framework of ab initio electronic models
requires to use very advanced many-body approaches,
such as the quantum Monte-Carlo technique (Buivi-
dovich et al., 2017; Hohenadler et al., 2014; Wu and
Tremblay, 2014), the GW method combined with the ex-
tended dynamical mean-field theory (Ayral et al., 2013,
2017), the dynamical cluster approximation (Paki et al.,
2019; Terletska et al., 2017, 2018), or the dual theo-
ries (van Loon et al., 2014; Stepanov et al., 2022b, 2016a;
van Loon et al., 2018; Vandelli et al., 2020). These the-
oretical calculations require significant numerical efforts,
which additionally motivates reformulating the original
electronic problem in terms of effective bosonic variables.

Similarly to magnetism, the charge ordering is char-
acterised by the local order parameter – the onsite elec-
tronic density. This ordering appears as the result of
a spontaneous symmetry breaking of a discrete lattice
symmetry contrary to the case of a magnetic ordering,
which is associated with breaking of a continuous SU(2)
symmetry. For this reason, effective models formulated
in terms of scalar bosonic variables are more suitable for
addressing this problem. In particular, Ising-like mod-
els are frequently used for describing the ordering in al-
loys (Alling et al., 2011; Ekholm et al., 2010; Korzhavyi
et al., 2009; Ruban et al., 2004; Shallcross et al., 2005).
In this framework, one deals with a configuration energy
written in terms of effective interactions V (n)

α for clus-
ters of order n and type α. For the case of a binary
alloy AcB1−c with the concentration c the configuration
energy can be written as

Hconf =
∑

p

V (2)
p

∑

i,j∈p

σiσj +
∑

t

V
(3)
t

∑

i,j,k∈t

σiσjσk

+
∑

q

V (4)
q

∑

i,j,k,l∈q

σiσjσkσl + . . . (10.11)

where scalar variables σi take the value −1 or +1 de-
pending whether A or B atom occupies the site i. Pa-
rameters for this microscopic model can be derived from
ab initio energy calculations within the framework of
density functional theory (Connolly and Williams, 1983;
Ducastelle and Ducastelle, 1991; Hennion, 1983; Ruban
and Abrikosov, 2008). To this aim, one can apply, e.g.,
a generalized perturbation theory (Ducastelle and Gau-
tier, 1976; Ducastelle and Treglia, 1980; Gautier et al.,
1975a,b; Giner et al., 1976; Gonis et al., 1987; Monnier,
1997; Treglia et al., 1978). In this approach effective
cluster interactions V (n)

α can either be obtained by cal-
culating the corresponding n-point correlation functions
(see, e.g., Refs. Alling et al., 2011 and Ruban et al., 2002)
or from the single-electron energy using the force theo-
rem (Mackintosh and Andersen, 1980). In the latter case,
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the variation of the concentration of atoms of a given kind
is considered as a perturbation. This seems to be very
different from consideration of small spin rotations, the
primary topic of this review, that has been used success-
fully in the case of magnetism. Nevertheless, the result-
ing pair interaction between sites j and j′ is given by the
expression

V
(2)
jj′ = − 2

π
ℑ
∫ EF

−∞
dE∆tj G̃jj′(E)∆tj′ G̃j′j(E), (10.12)

which very closely resembles the magnetic exchange in-
teraction derived using the magnetic force theorem (see
Section V). Here, ∆tj = (tAj − tBj )/2 is the difference be-
tween single-site scattering matrices for A and B type
of atoms, and G̃jj′(E) is the partial interatomic Green
function of the reference system provided by a random
alloy.

As in the case of magnetism, using the force theo-
rem does not allow one to rigorously determine limits
of applicability of the theory. In this regard, deriving
effective Ising-like models in the many-body framework
should be beneficial. In the context of interacting elec-
tronic problems this has been achieved in Refs. Stepanov
et al., 2022a, 2019b. The corresponding derivation was
discussed in Section IX leading to an effective bosonic
problem (9.7). It is important to note that introduc-
ing the bosonic model for charge degrees of freedom
does not require imposing the adiabatic approximation
that separates time- and energy-scales of single- and
two-particle fluctuations in the magnetic case (Stepanov
et al., 2019b).

All possible interactions between the electronic densi-
ties at different lattice sites can be obtained by expand-
ing the logarithm in Eq. (9.7) in terms of the bosonic
field ρc that describes fluctuations of the charge densi-
ties n around their average values. The explicit form
for the pair interaction is given by Eqs. (9.8) and (9.10).
The tree-point vertex function Λc that enters the kinetic
exchange (9.8) represents a remormalized local coupling
between electronic and charge degrees of freedom. Thus,
this vertex can be seen as a single-site scattering matrix,
which makes the many-body expression for the exchange
interaction (9.8) very similar to the pair cluster interac-
tion derived in the context of alloys (10.12).

Mapping the quantum bosonic problem for electronic
densities (9.7) onto a classical Ising-like model can be
justified only in the regime of well-developed charge fluc-
tuations. In a broken symmetry (charge ordered) phase,
the electronic density at a given lattice site strongly dif-
fers from the average density of the system. This allows
one to replace the bosonic variable ρcj at each site j by its
average value ⟨ρcj⟩, which reduces the quantum bosonic
action (9.7) to a classical Ising-like Hamiltonian. In the
normal phase the average density on each lattice site is
uniform, which makes it difficult to introduce the corre-

Figure 31 (Color online) Double occupancy of the extended
Hubbard model shown on the U -V phase diagram. Calcu-
lations are performed in the normal phase, where the value
of the double occupancy d is depicted by color. The (light)
gray color depicts the charge ordered phase. The black
dashed line surrounds the area of the large double occupancy
d ≳ 70% dmax, where charge excitations can be described by
an effective Ising model. Values of Coulomb interactions U
and V are given in units of half of the bandwidth 4t = 1, t
is the nearest-neighbor hopping amplitude. The inverse tem-
perature for this calculation was set to T−1 = 50. Figure is
taken from Ref. Stepanov et al., 2019b.

sponding classical problem and complicates determining
the regime of applicability of this approach.

In Ref. Stepanov et al., 2019b the double occupancy
d = ⟨n↑n↓⟩ of the lattice site was proposed as a measure
of the strength of the charge fluctuations in the normal
phase. The double occupancy for a particular case of the
extended Hubbard model on a square lattice is shown in
Fig. 31. The result is obtained at half filling, where the
maximum value of the double occupancy is dmax = 0.25.
In this model the charge ordered phase (light grey area)
is driven by the nearest-neighbor Coulomb interaction,
V . If the latter defeats the onsite Coulomb repulsion,
U , the electronic density forms a checkerboard pattern
on the lattice made of alternating doubly occupied and
empty sites. For a given value of U the maximum value of
the double occupancy appears at the boundary between
the normal and ordered phases, depicted by a dashed red
line. This fact confirms that the strongest charge fluc-
tuations in the normal phase emerge in the region close
to the phase transition to the ordered state. However,
the value of the double occupancy is not uniformly dis-
tributed along the phase boundary and decreases with
the increase of the local Coulomb interaction. It has
been shown in Ref. Stepanov et al., 2019b that strong
charge fluctuations drastically suppress the frequency de-
pendence of the effective local electron-electron interac-
tion (two-particle irreducible four-point vertex function).
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The value of the double occupancy at which the effective
local interaction is nearly frequency independent and co-
incides with the actual Coulomb interaction, U , was es-
timated as d ≳ 70% dmax. This condition defines the
Ising regime of the system, depicted by the black dashed
line in Fig. 31, where charge fluctuations are indeed well-
developed. Interestingly, this regime is not limited to
small values of the local interaction, U , that for some
values of V exceed half of the bandwidth.

In the Ising regime of the normal phase the quantum
action (9.7) can be mapped onto an effective classical
Hamiltonian. This can be achieved by replacing the cor-
responding bosonic variable by an effective charge den-
sity, which is given by the square root of the double
occupancy ρc →

√
d. Note that determining the effec-

tive charge density can be performed more accurately
by finding the minimum of the local free energy in the
same way as is done for estimating the value of the local
magnetic moment (see discussion in Section IX). How-
ever, using the two particle correlation function (the dou-
ble occupancy) to define the average density in the case
of charge degrees of freedom is also well justified, con-
trary to the case of magnetism, where the magnetic phase
corresponds to the ordering of single-particle quantities
(local magnetizations). Since charge ordering is realised
through the formation of double occupations, one needs
to characterize this state from two-particle observables.
Ref. Stepanov et al., 2019b shows that the effective Ising
model introduced in such a simple way is able to pre-
dict the transition temperature between the normal and
charge ordered phases in a good agreement with much
more elaborate methods, even though the calculations
are performed in the unbroken symmetry phase.

XI. SUMMARY AND OUTLOOK

The developments that started in Refs. Gyorffy and
Stocks, 1980; Inoue and Moriya, 1967; Lacour-Gayet and
Cyrot, 1974; Liu, 1961; Oguchi et al., 1983a,b culminated
in Ref. Liechtenstein et al., 1984, with a practical and effi-
cient scheme of extracting exchange interactions between
atomic magnetic moments of solids and molecules. This
has opened up a field of research where a deeper under-
standing of magnetic interactions is possible. These early
works on explicit calculations of interatomic exchange en-
abled new dimensions of DFT and DMFT calculations,
and it is now routine to extract from electronic struc-
ture calculations on one scale (involving a few atoms
per unit cell) information about exchange interactions on
a much larger scale (involving pair interactions between
thousands of atoms), that if needed can be used to evalu-
ate parameters of micromagnetic simulations (Poluektov
et al., 2016, 2018). This represents multiscale transitions
between three length scales and enables simulations of
magnetic phenomena on scales equal to that of experi-

mental sample sizes, without using experimental infor-
mation as input. In addition to offering a deeper un-
derstanding of basic magnetic exchange between atoms,
the method of Ref. Liechtenstein et al., 1984 has so far
been used to calculate ordering temperatures of materi-
als and to map out magnon dispersions (via adiabatic ap-
proaches or in spin-dynamics simulations via the dynamic
structure factor, e.g as reviewed in Ref. Eriksson et al.,
2017). It has also been used to address ultra fast mag-
netisation phenomena observed in pump probe measure-
ments (Evans et al., 2015) as well as to analyze topolog-
ical magnetic states (Pereiro et al., 2014) and spin glass
formation (Kamber et al., 2020; Verlhac et al., 2022), to
name a few12.

It is foreseeable that the method of Ref. Liechtenstein
et al., 1984 will continue to be developed, to enable a
more detailed and deeper understanding of the mecha-
nisms that govern the properties of a magnetic material.
An example here is the coupling of spin- and lattice de-
grees of freedom, where initial steps have been taken. In a
recent work (Mankovsky et al., 2022) spin-lattice param-
eters were calculated from an extension of the formalism
of Ref. Liechtenstein et al., 1984. Hence coupled motion,
e.g. involving magnons and phonons, are now possible to
consider in combined spin-lattice simulations (Antropov
et al., 1995; Hellsvik et al., 2019). It is foreseeable that
these developments will continue to be developed, so that
a natural output from electronic structure calculations
are a set of interaction parameters that enable simula-
tions of all relevant collective modes and the coupling
between them.

The theories reviewed here have focused on bilinear ef-
fects, such as the ones expressed in Eq. (1.1). This is
natural in the spirit of the LKAG approach with per-
turbations corresponding to small rotations of the local
moments. As the perturbations all can be considered in-
finitesimal, higher order than two make little sense. How-
ever, perturbational approaches (Brinker et al., 2019)
that start with a non-magnetic reference state and where
the perturbations then have to be larger, the convergence

12 Developments in electronic structure theory in Uppsala with
can be found here: https://www.physics.uu.se/research/
materials-theory/ongoing-research/code-development/
developments-in-electronic-structure-theory/. In addition,
OpenMX, https://www.openmx-square.org from Tokyo,
AMULET from Ekaterinburg, http://www.amulet-code.org,
Artaios from Hamburg, https://github.com/molspintron, and
TB2J, a python package for computing magnetic interaction
parameters, https://github.com/mailhexu/TB2J should be
mentioned. As we mentioned before, the exchange interaction
parameters can be calculated by KKR codes as well. A corre-
sponding link of the group of Samir Lounis is available here:
https://iffgit.fz-juelich.de/kkr/jukkr. Assuming that calcula-
tions with the code dealing with periodic structures are intended,
the wiki page for the calculation of exchange coupling constants
can be found here: https://iffgit.fz-juelich.de/kkr/jukkr/-
/wikis/jumu/jijdij.
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is slower and higher order terms do play a large role
(Brinker et al., 2020; Grytsiuk et al., 2020). These multi-
spin and multi-site interactions become cumbersome to
calculate systematically in general so in most cases the
interaction parameters are instead determined through
fitting of the total energies. As these two perturbational
approaches lead to different descriptions and interpreta-
tion, their complementarity, discussed in Section V.J, will
hopefully in the future be utilized in order to increase the
understanding of complex magnetic systems.

In these extensions, that one can expect will become
under focus in the years to come, it would be of interest
to also analyse the interaction terms in an orbital com-
posed fashion, in the same way as was done for bilinear
exchange (Kvashnin et al., 2016) as shown here in Fig. 12.
In connection to this analysis we mention that a similar
analysis of the DM interaction is not straight forward
since spin-orbit coupling mixes orbitals that otherwise
would belong to separate irreducible representations. Or-
bital decomposed DM interaction hence becomes an is-
sue of which basis is the most natural to use, which most
likely will depend from material to material, given that
spin-orbit coupling is either the weakest (for the 3d tran-
sition metals) or equal in size to other interactions of the
electronic Hamiltonian (e.g. for the actinides).

The primary focus of this review is on the magnetic
dipole of an atom, as calculated from the expectation
value of a spin-operator. This is natural since for the
majority of materials it is the most commonly observed
order parameter. However, for some solids other order
parameters are of relevance, e.g. the rank 5 or triakon-
tadipole order that has been observed in NpO2 (Santini
et al., 2009). It would be valuable if this method could
be generalised from calculations of interactions between
rank 1 spin moments, to the case of calculations of inter-
actions of multipoles of rank r. This would require ex-
tensions. For instance the method of small rotations, as
shown in Figs. 5 and 6 would have to be generalised to be
appropriate for these multipoles and instead of the three
independent type of interaction parameters of Eq. (5.40)
one has derived expressions for 2r+1 independent types
of interaction parameters.

To illustrate that the research field reviewed here is
very much a living, developing activity, we note a recent
set of publications regarding details of the spin Hamil-
tonian in Eq. (1.4). In Refs. Cardias et al., 2020 and
Cardias et al., 2020 it was suggested that DM-like inter-
action terms can be realized for non-collinear magnetic
structures, even if spin-orbit interaction is neglected (or
is vanishingly small). This interpretation was criticized
in Ref. dos Santos Dias et al., 2021, who suggested that
fundamental interactions of DM character have to rely
on an electronic Hamiltonian with spin-orbit coupling
included. Further elaborations on non-relativistic DM
interaction were published in Refs. Cardias et al., 2022
and dos Santos Dias et al., 2022 without a firm consensus

being reached.
Alternative ways to extract exchange parameters have

recently been suggested (Streib et al., 2022), e.g., from
tight-binding electronic structure theory and adiabatic
spin-dynamics simulations, where the local Weiss field
is evaluated from the so-called constraining field. In this
work it was suggested that effective interatomic exchange
can be evaluated (dynamically) from the energy curva-
ture tensor of any magnetic configuration. It was demon-
strated in Ref. Streib et al., 2022 that both moment
lengths and effective exchange interactions can depend
quite strongly on the magnetic configuration. Terms ob-
tained from such an approach, that goes beyond the weak
relativistic limit, contribute to (isotropic) exchange (Sec-
chi et al., 2013) and their relation to non-local crystal
field excitations can be the subject of further studies.

Apart from magnetism of electrons in solids, there are
very interesting magnetic phenomena related to ordering
of nuclear spins in solid helium-3 (Roger et al., 1983).
In this case, the exchange interactions cannot be de-
scribed by bilinear spin Hamiltonians, and three- and
four-spin exchange interactions turn out to be highly im-
portant (Ceperley, 1995; Roger et al., 1983). Apart from
solid helium-3, monolayers of helium-3 on graphite is the
other example of a system with complicated nuclear-spin-
based magnetism (Fukuyama, 2008). Applications of the
methods presented here to such systems seems to be an
interesting direction of further development.

The last three sections of the review (VIII, IX, and X)
present an alternative approach to the theory of exchange
interactions, in light of contemporary quantum-many
body theory with its mathematically more advanced
tools, like path integrals and Feynman diagrams. Chang-
ing the language allows one to go much further than
the initial formulation considering the systems out-of-
equilibrium (Section VIII), nonmagnetic collective phe-
nomena such as charge ordering and superconductivity
(Section X), and giving a full derivation of equations of
spin dynamics for itinerant-electron systems, including
not only exchange interaction-related term but also dy-
namical, spin-precession term (Section IX). These new
developments are relatively recent, and their potential for
applications is far from being unveiled completely. Espe-
cially, a systematic study of laser-induced nonlinear mag-
netic phenomena within the developed formalism seems
to be an extremely promising direction.

As a final remark of the outlook section, we note that
equations of the form of Eq. (1.3) (and extensions of it)
have been used for research outside of materials science,
or even natural science. In the Ising approximation of
the classical Heisenberg Hamiltonian, the atomic spins
are arranged in a z graph, usually a lattice, that can
be in one of two states (+1 or -1) (Ising, 1925) and the
strength of the interaction is given by Jij in Eq. (1.3).
This inspired the so-called classical voter model, and
its extensions, which represents an idealized description
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for the evolution of opinions in a population (Clifford
and Sudbury, 1973; Gleeson, 2013; Holley and Liggett,
1975). In the classic voter model, similar to the Ising
model, each voter can assume two states, -1 or +1. A
voter at site i is selected at random and copies the state
of a randomly chosen neighbor voter j. Another exam-
ple where the Ising-model (and percolation theory) can
be used is epidemics as it is shown in a comprehensive
review focused on Covid-19 (Mello et al., 2021). The
work of Giorgio Parisi on the hidden patterns in spin
glasses (Mézard et al., 1987) should also be mentioned,
since it gave an extremely important contribution to the
theory of complex system, which is a quantitative, predic-
tive and experimentally verifiable science (Thurner et al.,
2018). In case of complex systems a macroscopic pattern
can emerge of the mutual influence of a large number of
individuals (Anderson, 1972; Bagrov et al., 2020; Principi
and Katsnelson, 2016) and it makes it possible to under-
stand phenomena, not only in physics but also in other,
very different areas, such as mathematics, biology, neu-
roscience and machine learning (Baity-Jesi et al., 2018;
Castellano et al., 2009; Wolf et al., 2018).

Acknowledgements Valuable discussions with V.
Antropov, A. Bergman, V. Borisov, R. Cardias, A. Delin,
E. Delzceg, I. Di Marco, J. Fransson, O. Grånaäs, J.
Hellsvik, H. Herper, J. Jonsson, A. Katanin, A. Klau-
tau, V. Mazurenko, I. Miranda, C. S. Ong, M. Pereiro,
L. Pourovskii, A. Ruban, B. Sanyal, S. Savrasov, I.
Solovyev, S. Streib, D. Thonig, P. Thunsträm, R. Vieira,
and A. Vishina are acknowledged. In particular, the crit-
ical reading and the many useful comments by A. Ruban
are acknowledged. E. A. S. acknowledges support from
the European Union’s Horizon 2020 research and innova-
tion program under the Marie Skłodowska Curie Grant
Agreement No. 839551– 2DMAGICS. O. E., A. I. L.,
and M. I. K. acknowledge sup- port from the European
Research Council via Synergy Grant No. 854843 (the
FASTCORR project). O. E. and L. N acknowledge sup-
port from the Swedish Research Council (VR), and O.
E. also acknowledges support from the Swedish Foun-
dation for Strategic Research (SSF), the Swedish En-
ergy Agency (STEM), the Wallenberg Initiative Materi-
als Science for Sustainability (WISE) funded by the Knut
and Alice Wallenberg Foundation (KAW), eSSENCE,
and STandUP. A. I.L. acknowledges support from the
German Research Foundation through the research unit
QUAST, FOR 5249, Project No. 449872909.

REFERENCES

Abrikosov, A A (1988), Fundamentals of the Theory of Metals
(North Holland).

Acharya, Swagata, Dimitar Pashov, Brian Cunningham,
Alexander N. Rudenko, Malte Rösner, Myrta Grüning,
Mark van Schilfgaarde, and Mikhail I. Katsnelson (2021a),

“Electronic structure of chromium trihalides beyond den-
sity functional theory,” Phys. Rev. B 104, 155109.

Acharya, Swagata, Dimitar Pashov, Alexander N. Rudenko,
Malte Rösner, Mark van Schilfgaarde, and Mikhail I. Kat-
snelson (2021b), “Importance of charge self-consistency in
first-principles description of strongly correlated systems,”
npj Computational Materials 7 (1), 208.

Aharoni, A (2000), Introduction to the Theory of Ferromag-
netism (Clarendon Press).

Akhiezer, A I, V. G. Bar’yakhtar, and S. V. Peletminskii
(1968), Spin Waves (North-Holland, Amsterdam).

Alling, B, A. V. Ruban, A. Karimi, L. Hultman, and
I. A. Abrikosov (2011), “Unified cluster expansion method
applied to the configurational thermodynamics of cubic
Ti1−xAlxN,” Phys. Rev. B 83, 104203.

Andersen, O K, and O. Jepsen (1984), “Explicit, First-
Principles Tight-Binding Theory,” Phys. Rev. Lett. 53,
2571–2574.

Andersen, O K, H. L. Skriver, H. Nohl, and B. Johans-
son (1980), “Electronic structure of transition metal com-
pounds; ground-state properties of the 3d-monoxides in the
atomic sphere approximation,” Pure and Applied Chem-
istry 52 (1), 93–118.

Anderson, P W (1959), “New Approach to the Theory of Su-
perexchange Interactions,” Phys. Rev. 115, 2–13.

Anderson, Philip W (1972), “More is different,” Science
177 (4047), 393–396.

Anisimov, Vladimir I, Jan Zaanen, and Ole K. Andersen
(1991), “Band theory and Mott insulators: Hubbard U in-
stead of Stoner I,” Phys. Rev. B 44, 943–954.

Antropov, V P (2003), “The exchange coupling and spin waves
in metallic magnets: removal of the long-wave approxi-
mation,” Journal of Magnetism and Magnetic Materials
262 (2), L192–L197.

Antropov, V P, M. I. Katsnelson, B. N. Harmon, M. van Schil-
fgaarde, and D. Kusnezov (1996), “Spin dynamics in mag-
nets: Equation of motion and finite temperature effects,”
Phys. Rev. B 54, 1019–1035.

Antropov, V P, M. I. Katsnelson, and A. I. Liechtenstein
(1997), “Exchange interactions in magnets,” Physica B:
Condensed Matter 237, 336–340.

Antropov, V P, M. I. Katsnelson, M. van Schilfgaarde, and
B. N. Harmon (1995), “AbInitio Spin Dynamics in Mag-
nets,” Phys. Rev. Lett. 75, 729–732.

Antropov, Vladimir (2005), “Magnetic short-range order
above the Curie temperature of Fe and Ni,” Phys. Rev.
B 72, 140406.

Antropov, VP, B.N Harmon, and A.N Smirnov (1999), “As-
pects of spin dynamics and magnetic interactions,” Journal
of Magnetism and Magnetic Materials 200 (1), 148–166.

Aoki, Hideo, Naoto Tsuji, Martin Eckstein, Marcus Kollar,
Takashi Oka, and Philipp Werner (2014), “Nonequilibrium
dynamical mean-field theory and its applications,” Rev.
Mod. Phys. 86, 779–837.

Arguello, C J, S. P. Chockalingam, E. P. Rosenthal, L. Zhao,
C. Gutiérrez, J. H. Kang, W. C. Chung, R. M. Fernan-
des, S. Jia, A. J. Millis, R. J. Cava, and A. N. Pasupathy
(2014), “Visualizing the charge density wave transition in
2H-NbSe2 in real space,” Phys. Rev. B 89, 235115.

Aryasetiawan, F, M. Imada, A. Georges, G. Kotliar, S. Bier-
mann, and A. I. Lichtenstein (2004), “Frequency-dependent
local interactions and low-energy effective models from elec-
tronic structure calculations,” Phys. Rev. B 70, 195104.

Auerbach, Assa (1994), Interacting Electrons and Quantum

https://doi.org/10.1103/PhysRevB.104.155109
https://doi.org/10.1038/s41524-021-00676-5
https://doi.org/10.1103/PhysRevB.83.104203
https://doi.org/10.1103/PhysRevLett.53.2571
https://doi.org/10.1103/PhysRevLett.53.2571
https://doi.org/doi:10.1351/pac198052010093
https://doi.org/doi:10.1351/pac198052010093
https://doi.org/10.1103/PhysRev.115.2
https://doi.org/10.1103/PhysRevB.44.943
https://doi.org/https://doi.org/10.1016/S0304-8853(03)00206-3
https://doi.org/https://doi.org/10.1016/S0304-8853(03)00206-3
https://doi.org/10.1103/PhysRevB.54.1019
https://doi.org/10.1103/PhysRevLett.75.729
https://doi.org/10.1103/PhysRevB.72.140406
https://doi.org/10.1103/PhysRevB.72.140406
https://doi.org/https://doi.org/10.1016/S0304-8853(99)00425-4
https://doi.org/https://doi.org/10.1016/S0304-8853(99)00425-4
https://doi.org/10.1103/RevModPhys.86.779
https://doi.org/10.1103/RevModPhys.86.779
https://doi.org/10.1103/PhysRevB.89.235115
https://doi.org/10.1103/PhysRevB.70.195104


64

Magnetism (Springer, New York).
Auslender, M I, and M. I. Katsnel’son (1982), “Effective spin

Hamiltonian and phase separation in the almost half-filled
Hubbard model and the narrow-band s− f model,” Theor.
Math. Phys. 51 (3), 436–444.

Auslender, M I, and M. I. Katsnelson (1982), “The effective
spin hamiltonian and phase separation instability of the
almost half-filled hubbard model and the narrow-band s-ƒ
model,” Solid State Communications 44 (3), 387–389.

Ayral, T, S. Biermann, and P. Werner (2013), “Screening and
nonlocal correlations in the extended Hubbard model from
self-consistent combined GW and dynamical mean field
theory,” Phys. Rev. B 87, 125149.

Ayral, T, S. Biermann, P. Werner, and L. Boehnke (2017),
“Influence of Fock exchange in combined many-body per-
turbation and dynamical mean field theory,” Phys. Rev. B
95, 245130.

Badrtdinov, D I, S. A. Nikolaev, M. I. Katsnelson, and
V. V. Mazurenko (2016), “Spin-orbit coupling and mag-
netic interactions in Si(111):{C,Si,Sn,Pb},” Phys. Rev. B
94, 224418.

Badrtdinov, Danis I, Sergey A. Nikolaev, Alexander N.
Rudenko, Mikhail I. Katsnelson, and Vladimir V.
Mazurenko (2018), “Nanoskyrmion engineering with sp-
electron materials: Sn monolayer on a SiC(0001) surface,”
Phys. Rev. B 98, 184425.

Bagrov, Andrey A, Ilia A. Iakovlev, Askar A. Iliasov,
Mikhail I. Katsnelson, and Vladimir V. Mazurenko (2020),
“Multiscale structural complexity of natural patterns,” Pro-
ceedings of the National Academy of Sciences 117 (48),
30241–30251.

Baibich, M N, J. M. Broto, A. Fert, F. Nguyen Van Dau,
F. Petroff, P. Etienne, G. Creuzet, A. Friederich,
and J. Chazelas (1988), “Giant Magnetoresistance of
(001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett.
61, 2472–2475.

Baier, Tobias, Eike Bick, and Christof Wetterich (2004),
“Temperature dependence of antiferromagnetic order in the
Hubbard model,” Phys. Rev. B 70, 125111.

Baity-Jesi, Marco, Levent Sagun, Mario Geiger, Stefano
Spigler, Gérard Ben Arous, Chiara Cammarota, Yann Le-
Cun, Matthieu Wyart, and Giulio Biroli (2018), “Com-
paring dynamics: Deep neural networks versus glassy sys-
tems,” in International Conference on Machine Learning,
Vol. 80 (PMLR) pp. 314–323.

Balashov, T, P. Buczek, L. Sandratskii, A. Ernst, and
W. Wulfhekel (2014), “Magnon dispersion in thin mag-
netic films,” Journal of Physics: Condensed Matter 26 (39),
394007.

Barbeau, M M S, M. Eckstein, M. I. Katsnelson, and J. H.
Mentink (2019), “Optical control of competing exchange in-
teractions and coherent spin-charge coupling in two-orbital
Mott insulators,” SciPost Phys. 6, 27.

Barker, Joseph, and Roy W. Chantrell (2015), “Higher-order
exchange interactions leading to metamagnetism in FeRh,”
Phys. Rev. B 92, 094402.

Barker, Joseph, Dimitar Pashov, and Jerome Jackson (2020),
“Electronic structure and finite temperature magnetism of
yttrium iron garnet,” Electronic Structure 2 (4), 044002.

Bauer, Bela, Lukasz Cincio, Brendan P Keller, Michele
Dolfi, Guifre Vidal, Simon Trebst, and Andreas WW Lud-
wig (2014), “Chiral spin liquid and emergent anyons in a
Kagome lattice Mott insulator,” Nature communications
5 (1), 1–8.

Baym, Gordon, and Leo P. Kadanoff (1961), “Conservation
Laws and Correlation Functions,” Phys. Rev. 124, 287–
299.

Beaurepaire, E, J.-C. Merle, A. Daunois, and J.-Y. Bigot
(1996), “Ultrafast Spin Dynamics in Ferromagnetic Nickel,”
Phys. Rev. Lett. 76, 4250–4253.

Belavin, AA, and AM Polyakov (1975), “Metastable states
of two-dimensional isotropic ferromagnets,” JETP lett
22 (10), 245–248.

Belozerov, A S, A. A. Katanin, and V. I. Anisimov (2017),
“Momentum-dependent susceptibilities and magnetic ex-
change in bcc iron from supercell dynamical mean-field the-
ory calculations,” Phys. Rev. B 96, 075108.

Berger, E, P. Valášek, and W. von der Linden (1995), “Two-
dimensional Hubbard-Holstein model,” Phys. Rev. B 52,
4806–4814.

Bergman, Anders, Lars Nordström, Angela Burlamaqui Klau-
tau, Sonia Frota-Pessôa, and Olle Eriksson (2007), “Mag-
netic structures of small Fe, Mn, and Cr clusters sup-
ported on Cu(111): Noncollinear first-principles calcula-
tions,” Phys. Rev. B 75, 224425.

Bergqvist, Lars (2005), Electronic structure and statistical
methods applied to nanomagnetism, diluted magnetic semi-
conductors and spintronics, Ph.D. thesis (Acta Universi-
tatis Upsaliensis).

Bergqvist, Lars, Andrea Taroni, Anders Bergman, Corina
Etz, and Olle Eriksson (2013), “Atomistic spin dynamics
of low-dimensional magnets,” Phys. Rev. B 87, 144401.

Besbes, Omar, Sergey Nikolaev, Noureddine Meskini, and
Igor Solovyev (2019), “Microscopic origin of ferromag-
netism in the trihalides CrCl3 and CrI3,” Phys. Rev. B
99, 104432.

Bezerra-Neto, Manoel M, Marcelo S Ribeiro, Biplab Sanyal,
Anders Bergman, Roberto B Muniz, Olle Eriksson, and
Angela B Klautau (2013), “Complex magnetic structure of
clusters and chains of Ni and Fe on Pt (111),” Scientific
Reports 3 (1), 1–8.

Binasch, G, P. Grünberg, F. Saurenbach, and W. Zinn (1989),
“Enhanced magnetoresistance in layered magnetic struc-
tures with antiferromagnetic interlayer exchange,” Phys.
Rev. B 39, 4828–4830.

Binder, Kurt, and Dieter W. Heermann (2010), “Theoretical
foundations of the Monte Carlo method and its applica-
tions in statistical physics,” in Monte Carlo Simulation in
Statistical Physics (Springer) pp. 5–67.

Bogani, Lapo, and Wolfgang Wernsdorfer (2008), “Molecular
spintronics using single-molecule magnets,” Nature Mate-
rials 7 (3), 179–186.

Bogolyubov, N N (1958), “On a variational principle in the
many-body problem,” Sov. Phys. Dokl. 3 (2), 292–294.

Borisov, Vladislav, Yaroslav O. Kvashnin, Nikolaos Ntallis,
Danny Thonig, Patrik Thunström, Manuel Pereiro, An-
ders Bergman, Erik Sjöqvist, Anna Delin, Lars Nordström,
and Olle Eriksson (2021), “Heisenberg and anisotropic ex-
change interactions in magnetic materials with correlated
electronic structure and significant spin-orbit coupling,”
Phys. Rev. B 103, 174422.

Bose, S K, and J. Kudrnovský (2010), “Exchange interac-
tions and Curie temperatures in Cr-based alloys in the zinc
blende structure: Volume- and composition-dependence
from first-principles calculations,” Phys. Rev. B 81, 054446.

Boukhvalov, D W, V. V. Dobrovitski, M. I. Katsnelson, A. I.
Lichtenstein, B. N. Harmon, and P. Kögerler (2004), “Elec-
tronic structure and exchange interactions in V15 magnetic

https://doi.org/https://doi.org/10.1016/0038-1098(82)90876-6
https://doi.org/10.1103/PhysRevB.87.125149
https://doi.org/10.1103/PhysRevB.95.245130
https://doi.org/10.1103/PhysRevB.95.245130
https://doi.org/10.1103/PhysRevB.94.224418
https://doi.org/10.1103/PhysRevB.94.224418
https://doi.org/10.1103/PhysRevB.98.184425
https://doi.org/10.1103/PhysRevLett.61.2472
https://doi.org/10.1103/PhysRevLett.61.2472
https://doi.org/10.1103/PhysRevB.70.125111
https://doi.org/10.1088/0953-8984/26/39/394007
https://doi.org/10.1088/0953-8984/26/39/394007
https://doi.org/10.21468/SciPostPhys.6.3.027
https://doi.org/10.1103/PhysRevB.92.094402
https://doi.org/10.1088/2516-1075/abd097
https://doi.org/10.1103/PhysRev.124.287
https://doi.org/10.1103/PhysRev.124.287
https://doi.org/10.1103/PhysRevLett.76.4250
https://doi.org/10.1103/PhysRevB.96.075108
https://doi.org/10.1103/PhysRevB.52.4806
https://doi.org/10.1103/PhysRevB.52.4806
https://doi.org/10.1103/PhysRevB.75.224425
https://doi.org/10.1103/PhysRevB.87.144401
https://doi.org/10.1103/PhysRevB.99.104432
https://doi.org/10.1103/PhysRevB.99.104432
https://doi.org/10.1103/PhysRevB.39.4828
https://doi.org/10.1103/PhysRevB.39.4828
https://doi.org/10.1038/nmat2133
https://doi.org/10.1038/nmat2133
https://doi.org/10.1103/PhysRevB.103.174422
https://doi.org/10.1103/PhysRevB.81.054446


65

molecules: LDA+U results,” Phys. Rev. B 70, 054417.
Boukhvalov, D W, A. I. Lichtenstein, V. V. Dobrovitski, M. I.

Katsnelson, B. N. Harmon, V. V. Mazurenko, and V. I.
Anisimov (2002), “Effect of local Coulomb interactions on
the electronic structure and exchange interactions in Mn12

magnetic molecules,” Phys. Rev. B 65, 184435.
Boust, James, Alex Aubert, Bahar Fayyazi, Konstantin P.

Skokov, Yurii Skourski, Oliver Gutfleisch, and Leonid V.
Pourovskii (2022), “Ce and Dy substitutions in Nd2Fe14B:
Site-specific magnetic anisotropy from first principles,”
Phys. Rev. Materials 6, 084410.

Bowen, M, Vicent Cros, F. Petroff, Albert Fert,
C. Martınez Boubeta, José Luis Costa-Krämer, José Vir-
gilio Anguita, Alfonso Cebollada, F. Briones, J. M.
De Teresa, L. Morellón, M. R. Ibarra, F. Güell,
F. Peiró, and A. Cornet (2001), “Large magnetoresis-
tance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on
GaAs(001),” Applied Physics Letters 79 (11), 1655–1657.

Bramwell, Steven T, and Michel J. P. Gingras (2001), “Spin
Ice State in Frustrated Magnetic Pyrochlore Materials,”
Science 294 (5546), 1495–1501.

Brener, Sergey, Evgeny A. Stepanov, Alexey N. Rubtsov,
Mikhail I. Katsnelson, and Alexander I. Lichtenstein
(2020), “Dual fermion method as a prototype of generic
reference-system approach for correlated fermions,” Annals
of Physics 422, 168310.

Brinker, Sascha, Manuel dos Santos Dias, and Samir Lou-
nis (2019), “The chiral biquadratic pair interaction,” New
journal of physics 21 (8), 083015.

Brinker, Sascha, Manuel dos Santos Dias, and Samir Lounis
(2020), “Prospecting chiral multisite interactions in proto-
typical magnetic systems,” Phys. Rev. Research 2, 033240.

Bruno, P (2003), “Exchange Interaction Parameters and Adi-
abatic Spin-Wave Spectra of Ferromagnets: A “Renor-
malized Magnetic Force Theorem”,” Phys. Rev. Lett. 90,
087205.

Bruno, P, J. Kudrnovský, M. Pajda, V. Drchal, and
I. Turek (2002), “Oscillatory Curie temperature of 2D-
ferromagnets,” Journal of Magnetism and Magnetic Ma-
terials 240 (1), 346–348, 4th International Symposium on
Metallic Multilayers.

Buchelnikov, V D, P. Entel, S. V. Taskaev, V. V. Sokolovskiy,
A. Hucht, M. Ogura, H. Akai, M. E. Gruner, and S. K.
Nayak (2008), “Monte Carlo study of the influence of an-
tiferromagnetic exchange interactions on the phase transi-
tions of ferromagnetic Ni-Mn-X alloys (X = In, Sn,Sb),”
Phys. Rev. B 78, 184427.

Buchelnikov, V D, V. V. Sokolovskiy, H. C. Herper, H. Ebert,
M. E. Gruner, S. V. Taskaev, V. V. Khovaylo, A. Hucht,
A. Dannenberg, M. Ogura, H. Akai, M. Acet, and P. Entel
(2010), “First-principles and Monte Carlo study of mag-
netostructural transition and magnetocaloric properties of
Ni2+xMn1−xGa,” Phys. Rev. B 81, 094411.

Buczek, Paweł, Arthur Ernst, and Leonid M. Sandratskii
(2011), “Different dimensionality trends in the Landau
damping of magnons in iron, cobalt, and nickel: Time-
dependent density functional study,” Phys. Rev. B 84,
174418.

Buividovich, Pavel, Dominik Smith, Maksim Ulybyshev,
and Lorenz von Smekal (2017), “Competing order in the
fermionic Hubbard model on the hexagonal graphene lat-
tice,” in Proceedings of 34th annual International Sympo-
sium on Lattice Field Theory — PoS(LATTICE2016), Vol.
256, p. 244.

Bukov, Marin, Luca D’Alessio, and Anatoli Polkovnikov
(2015), “Universal high-frequency behavior of periodically
driven systems: from dynamical stabilization to Floquet
engineering,” Advances in Physics 64 (2), 139–226.

Bukov, Marin, Michael Kolodrubetz, and Anatoli Polkovnikov
(2016), “Schrieffer-Wolff Transformation for Periodically
Driven Systems: Strongly Correlated Systems with Arti-
ficial Gauge Fields,” Phys. Rev. Lett. 116, 125301.

Bulik, Ireneusz W, Giovanni Scalmani, Michael J. Frisch, and
Gustavo E. Scuseria (2013), “Noncollinear density func-
tional theory having proper invariance and local torque
properties,” Phys. Rev. B 87, 035117.

Bultmark, Fredrik, Francesco Cricchio, Oscar Grånäs, and
Lars Nordström (2009), “Multipole decomposition of
LDA+u energy and its application to actinide compounds,”
Phys. Rev. B 80, 035121.

Burch, Kenneth S, David Mandrus, and Je-Geun Park (2018),
“Magnetism in two-dimensional van der Waals materials,”
Nature 563 (7729), 47–52.

Buschow, Kurt Heinz Jürgen, and Frank R. Boer (2003),
Physics of magnetism and magnetic materials, Vol. 7
(Springer).

Butler, W H (1985), “Theory of electronic transport in ran-
dom alloys: Korringa-Kohn-Rostoker coherent-potential
approximation,” Phys. Rev. B 31, 3260–3277.

Bychkov, Y A, and E. I. Rashba (1984), “Properties of a 2D
electron gas with lifted spectral degeneracy,” JETP Lett.
39, 78, [Pis’ma Zh. Eksp. Teor. Fiz. 39, 66-69 (1984)].

Callaway, J, C. S. Wang, and D. G. Laurent (1981), “Mag-
netic susceptibility and spin waves in ferromagnetic met-
als,” Phys. Rev. B 24, 6491–6496.

Cannella, V, and J. A. Mydosh (1972), “Magnetic Ordering
in Gold-Iron Alloys,” Phys. Rev. B 6, 4220–4237.

Capelle, K, and B. L. Gyorffy (2003), “Exploring dynamical
magnetism with time-dependent density-functional theory:
From spin fluctuations to Gilbert damping,” Europhysics
Letters (EPL) 61 (3), 354–360.

Capelle, K, G. Vignale, and B. L. Györffy (2001), “Spin
Currents and Spin Dynamics in Time-Dependent Density-
Functional Theory,” Phys. Rev. Lett. 87, 206403.

Capellmann, H (1979), “Theory of itinerant ferromagnetism
in the 3-d transition metals,” Zeitschrift für Physik B Con-
densed Matter 34 (1), 29–35.

Cardias, R, M. M. Bezerra-Neto, M. S. Ribeiro, A. Bergman,
A. Szilva, O. Eriksson, and A. B. Klautau (2016), “Mag-
netic and electronic structure of Mn nanostructures on
Ag(111) and Au(111),” Phys. Rev. B 93, 014438.

Cardias, R, A. Szilva, A. Bergman, I. Di Marco, M. I. Kat-
snelson, A. I. Lichtenstein, L. Nordström, A. B. Klautau,
O. Eriksson, and Y. O. Kvashnin (2017), “The Bethe-Slater
curve revisited; new insights from electronic structure the-
ory,” Scientific Reports 7 (1), 4058.

Cardias, Ramon, Anders Bergman, Attila Szilva, Yaroslav O.
Kvashnin, Jonas Fransson, Angela B. Klautau, Olle
Eriksson, and Lars Nordström (2020), “Dzyaloshinskii-
Moriya interaction in absence of spin-orbit coupling,”
arXiv:2003.04680 [cond-mat.mtrl-sci].

Cardias, Ramon, Attila Szilva, Anders Bergman, Yaroslav
Kvashnin, Jonas Fransson, Simon Streib, Anna Delin,
Mikhail I. Katsnelson, Danny Thonig, Angela Burlamaqui
Klautau, Olle Eriksson, and Lars Nordström (2022), “Com-
ment on “Proper and improper chiral magnetic interac-
tions”,” Phys. Rev. B 105, 026401.

Cardias, Ramon, Attila Szilva, MM Bezerra-Neto,

https://doi.org/10.1103/PhysRevB.70.054417
https://doi.org/10.1103/PhysRevB.65.184435
https://doi.org/10.1103/PhysRevMaterials.6.084410
https://doi.org/10.1063/1.1404125
https://doi.org/10.1126/science.1064761
https://doi.org/https://doi.org/10.1016/j.aop.2020.168310
https://doi.org/https://doi.org/10.1016/j.aop.2020.168310
https://doi.org/10.1103/PhysRevResearch.2.033240
https://doi.org/10.1103/PhysRevLett.90.087205
https://doi.org/10.1103/PhysRevLett.90.087205
https://doi.org/https://doi.org/10.1016/S0304-8853(01)00796-X
https://doi.org/https://doi.org/10.1016/S0304-8853(01)00796-X
https://doi.org/10.1103/PhysRevB.78.184427
https://doi.org/10.1103/PhysRevB.81.094411
https://doi.org/10.1103/PhysRevB.84.174418
https://doi.org/10.1103/PhysRevB.84.174418
https://doi.org/10.22323/1.256.0244
https://doi.org/10.22323/1.256.0244
https://doi.org/10.1080/00018732.2015.1055918
https://doi.org/10.1103/PhysRevLett.116.125301
https://doi.org/10.1103/PhysRevB.87.035117
https://doi.org/10.1103/PhysRevB.80.035121
https://doi.org/10.1038/s41586-018-0631-z
https://doi.org/10.1103/PhysRevB.31.3260
https://doi.org/10.1103/PhysRevB.24.6491
https://doi.org/10.1103/PhysRevB.6.4220
https://doi.org/10.1209/epl/i2003-00181-4
https://doi.org/10.1209/epl/i2003-00181-4
https://doi.org/10.1103/PhysRevLett.87.206403
https://doi.org/10.1103/PhysRevB.93.014438
https://doi.org/10.1038/s41598-017-04427-9
https://arxiv.org/abs/2003.04680
https://doi.org/10.1103/PhysRevB.105.026401


66

MS Ribeiro, Anders Bergman, Yaroslav O Kvashnin,
Jonas Fransson, AB Klautau, Olle Eriksson, and Lars
Nordström (2020), “First-principles dzyaloshinskii–moriya
interaction in a non-collinear framework,” Scientific
Reports 10 (1), 1–13.

Carpinelli, J M, H. H. Weitering, M. Bartkowiak, R. Stumpf,
and E. W. Plummer (1997), “Surface charge ordering tran-
sition: α phase of sn/ge(111),” Phys. Rev. Lett. 79, 2859–
2862.

Carvalho, P C, I. P. Miranda, A. B. Klautau, A. Bergman,
and H. M. Petrilli (2021), “Complex magnetic textures in
Ni/Irn/Pt(111) ultrathin films,” Phys. Rev. Materials 5,
124406.

Castellano, Claudio, Santo Fortunato, and Vittorio Loreto
(2009), “Statistical physics of social dynamics,” Rev. Mod.
Phys. 81, 591–646.

Castro, A, J. Werschnik, and E. K. U. Gross (2012), “Con-
trolling the Dynamics of Many-Electron Systems from First
Principles: A Combination of Optimal Control and Time-
Dependent Density-Functional Theory,” Phys. Rev. Lett.
109, 153603.

Ceperley, D M (1995), “Path integrals in the theory of con-
densed helium,” Rev. Mod. Phys. 67, 279–355.

Chakravarty, Sudip, Bertrand I. Halperin, and David R. Nel-
son (1989), “Two-dimensional quantum Heisenberg antifer-
romagnet at low temperatures,” Phys. Rev. B 39, 2344–
2371.

Chakraverty, B K (1980), “Charge ordering in Fe3O4, Ti4O7

and bipolarons,” Philosophical Magazine B 42 (3), 473–
478.

Chalupa, P, T. Schäfer, M. Reitner, D. Springer, S. Ander-
gassen, and A. Toschi (2021), “Fingerprints of the Local
Moment Formation and its Kondo Screening in the Gener-
alized Susceptibilities of Many-Electron Problems,” Phys.
Rev. Lett. 126, 056403.

Chao, K A, J. Spałek, and Oleś A. M. (1977a), “Degener-
ate perturbation theory and its application to the Hubbard
model,” Physics Letters A 64 (2), 163 – 166.

Chao, K A, J. Spałek, and A. M. Oleś (1977b), “Kinetic ex-
change interaction in a narrow S-band,” Journal of Physics
C: Solid State Physics 10 (10), L271–L276.

Chen, Lebing, Jae-Ho Chung, Bin Gao, Tong Chen,
Matthew B. Stone, Alexander I. Kolesnikov, Qingzhen
Huang, and Pengcheng Dai (2018), “Topological Spin Ex-
citations in Honeycomb Ferromagnet CrI3,” Phys. Rev. X
8, 041028.

Chico, Jonathan, Samara Keshavarz, Yaroslav Kvashnin,
Manuel Pereiro, Igor Di Marco, Corina Etz, Olle Eriks-
son, Anders Bergman, and Lars Bergqvist (2016), “First-
principles studies of the Gilbert damping and exchange in-
teractions for half-metallic Heuslers alloys,” Phys. Rev. B
93, 214439.

Chimata, R, E. K. Delczeg-Czirjak, A. Szilva, R. Cardias,
Y. O. Kvashnin, M. Pereiro, S. Mankovsky, H. Ebert,
D. Thonig, B. Sanyal, A. B. Klautau, and O. Eriksson
(2017), “Magnetism and ultrafast magnetization dynamics
of Co and CoMn alloys at finite temperature,” Phys. Rev.
B 95, 214417.

Chiorescu, I, W. Wernsdorfer, A. Müller, H. Bögge, and
B. Barbara (2000), “Butterfly Hysteresis Loop and Dissipa-
tive Spin Reversal in the S = 1/2, V15 Molecular Complex,”
Phys. Rev. Lett. 84, 3454–3457.

Chuang, T-H, Kh. Zakeri, A. Ernst, Y. Zhang, H. J. Qin,
Y. Meng, Y.-J. Chen, and J. Kirschner (2014), “Magnetic

properties and magnon excitations in Fe(001) films grown
on Ir(001),” Phys. Rev. B 89, 174404.

Claassen, Martin, Hong-Chen Jiang, Brian Moritz, and
Thomas P Devereaux (2017), “Dynamical time-reversal
symmetry breaking and photo-induced chiral spin liquids in
frustrated Mott insulators,” Nature communications 8 (1),
1–9.

Clifford, Peter, and Aidan Sudbury (1973), “A model for spa-
tial conflict,” Biometrika 60 (3), 581–588.

Coey, John M D (2010), Magnetism and magnetic materials
(Cambridge university press).

Colarieti-Tosti, M, S. I. Simak, R. Ahuja, L. Nordström,
O. Eriksson, D. Åberg, S. Edvardsson, and M. S. S. Brooks
(2003), “Origin of Magnetic Anisotropy of Gd Metal,” Phys.
Rev. Lett. 91, 157201.

Comtesse, Denis, Benjamin Geisler, Peter Entel, Peter
Kratzer, and László Szunyogh (2014), “First-principles
study of spin-dependent thermoelectric properties of half-
metallic Heusler thin films between platinum leads,” Phys.
Rev. B 89, 094410.

Connolly, J W D, and A. R. Williams (1983), “Density-
functional theory applied to phase transformations in
transition-metal alloys,” Phys. Rev. B 27, 5169–5172.

Cooke, J F, J. A. Blackman, and T. Morgan (1985), “New In-
terpretation of Spin-Wave Behavior in Nickel,” Phys. Rev.
Lett. 54, 718–721.

Costa, A T, R. B. Muniz, and D. L. Mills (2005), “Ground
State of Magnetic Dimers on Metal Surfaces,” Phys. Rev.
Lett. 94, 137203.

Cricchio, F, O. GrĂĽnĂ¤s, and L. NordstrĂśm (2011), “Po-
larization of an open shell in the presence of spin-orbit cou-
pling,” Europhysics Letters 94 (5), 57009.

Croat, John J, Jan F Herbst, Robert W Lee, and Frederick E
Pinkerton (1984), “High-energy product nd-fe-b permanent
magnets,” Applied Physics Letters 44 (1), 148–149.

Delczeg-Czirjak, E K, L. Bergqvist, O. Eriksson, Z. Gercsi,
P. Nordblad, L. Szunyogh, B. Johansson, and L. Vitos
(2012), “Microscopic theory of magnetism in the magne-
tocaloric material fe2p1−xtx (T = B and si),” Phys. Rev. B
86, 045126.

Dillon, J F, and C. E. Olson (1965), “Magnetization, Reso-
nance, and Optical Properties of the Ferromagnet CrI3,”
Journal of Applied Physics 36 (3), 1259–1260.

Dmitrienko, V E, E. N. Ovchinnikova, S. P. Collins, G. Nis-
bet, G. Beutier, Y. O. Kvashnin, V. V. Mazurenko, A. I.
Lichtenstein, and M. I. Katsnelson (2014), “Measuring the
Dzyaloshinskii-Moriya interaction in a weak ferromagnet,”
Nature Physics 10 (3), 202–206.

Dobrovitski, V V, M. I. Katsnelson, and B. N. Harmon (2000),
“Mechanisms of Decoherence in Weakly Anisotropic Molec-
ular Magnets,” Phys. Rev. Lett. 84, 3458–3461.

Dong, Zhihua, Stephan Schönecker, Dengfu Chen, Wei Li,
Mujun Long, and Levente Vitos (2017), “Elastic proper-
ties of paramagnetic austenitic steel at finite temperature:
Longitudinal spin fluctuations in multicomponent alloys,”
Phys. Rev. B 96, 174415.

Drautz, R, and M. Fähnle (2004), “Spin-cluster expansion:
Parametrization of the general adiabatic magnetic energy
surface with ab initio accuracy,” Phys. Rev. B 69, 104404.

Ducastelle, F, and F. Ducastelle (1991), Order and phase sta-
bility in alloys (North-Holland Amsterdam).

Ducastelle, F, and F. Gautier (1976), “Generalized perturba-
tion theory in disordered transitional alloys: Applications
to the calculation of ordering energies,” Journal of Physics

https://doi.org/10.1103/PhysRevLett.79.2859
https://doi.org/10.1103/PhysRevLett.79.2859
https://doi.org/10.1103/PhysRevMaterials.5.124406
https://doi.org/10.1103/PhysRevMaterials.5.124406
https://doi.org/10.1103/RevModPhys.81.591
https://doi.org/10.1103/RevModPhys.81.591
https://doi.org/10.1103/PhysRevLett.109.153603
https://doi.org/10.1103/PhysRevLett.109.153603
https://doi.org/10.1103/RevModPhys.67.279
https://doi.org/10.1103/PhysRevB.39.2344
https://doi.org/10.1103/PhysRevB.39.2344
https://doi.org/10.1080/01418638008221888
https://doi.org/10.1080/01418638008221888
https://doi.org/10.1103/PhysRevLett.126.056403
https://doi.org/10.1103/PhysRevLett.126.056403
https://doi.org/https://doi.org/10.1016/0375-9601(77)90702-2
https://doi.org/10.1088/0022-3719/10/10/002
https://doi.org/10.1088/0022-3719/10/10/002
https://doi.org/10.1103/PhysRevX.8.041028
https://doi.org/10.1103/PhysRevX.8.041028
https://doi.org/10.1103/PhysRevB.93.214439
https://doi.org/10.1103/PhysRevB.93.214439
https://doi.org/10.1103/PhysRevB.95.214417
https://doi.org/10.1103/PhysRevB.95.214417
https://doi.org/10.1103/PhysRevLett.84.3454
https://doi.org/10.1103/PhysRevB.89.174404
https://doi.org/10.1103/PhysRevLett.91.157201
https://doi.org/10.1103/PhysRevLett.91.157201
https://doi.org/10.1103/PhysRevB.89.094410
https://doi.org/10.1103/PhysRevB.89.094410
https://doi.org/10.1103/PhysRevB.27.5169
https://doi.org/10.1103/PhysRevLett.54.718
https://doi.org/10.1103/PhysRevLett.54.718
https://doi.org/10.1103/PhysRevLett.94.137203
https://doi.org/10.1103/PhysRevLett.94.137203
https://doi.org/10.1209/0295-5075/94/57009
https://doi.org/10.1103/PhysRevB.86.045126
https://doi.org/10.1103/PhysRevB.86.045126
https://doi.org/10.1063/1.1714194
https://doi.org/10.1038/NPHYS2859
https://doi.org/10.1103/PhysRevLett.84.3458
https://doi.org/10.1103/PhysRevB.96.174415
https://doi.org/10.1103/PhysRevB.69.104404


67

F: Metal Physics 6 (11), 2039.
Ducastelle, F, and G. Treglia (1980), “Thermodynamic deriva-

tion of the coherent potential approximation and ordering
processes in transition alloys,” Journal of Physics F: Metal
Physics 10 (10), 2137–2146.

Dumas, J, C. Schlenker, and R. Buder (1980), “The vanadium
bronzes NaxV2O5-β,” Philosophical Magazine B 42 (3),
485–486.

Dupont, M, Y. O. Kvashnin, M. Shiranzaei, J. Fransson,
N. Laflorencie, and A. Kantian (2021), “Monolayer CrCl3
as an Ideal Test Bed for the Universality Classes of 2D
Magnetism,” Phys. Rev. Lett. 127, 037204.

Dupuis, N (2001), “A new approach to strongly correlated
fermion systems: the spin–particle–hole coherent-state
path integral,” Nuclear Physics B 618 (3), 617 – 649.

Dupuis, N, and S. Pairault (2000), “A Strong-coupling Ex-
pansion for the Hubbard Model,” International Journal of
Modern Physics B 14 (24), 2529–2560.

Dutreix, C, and M. I. Katsnelson (2017), “Dynamical control
of electron-phonon interactions with high-frequency light,”
Phys. Rev. B 95, 024306.

Dutreix, C, E. A. Stepanov, and M. I. Katsnelson (2016),
“Laser-induced topological transitions in phosphorene with
inversion symmetry,” Phys. Rev. B 93, 241404(R).

Ebert, H, D. Ködderitzsch, and J. Minár (2011), “Calculat-
ing condensed matter properties using the KKR-Green's
function method—recent developments and applications,”
Reports on Progress in Physics 74 (9), 096501.

Ebert, H, and S. Mankovsky (2009), “Anisotropic exchange
coupling in diluted magnetic semiconductors: Ab initio
spin-density functional theory,” Phys. Rev. B 79, 045209.

Ebert, Hubert, Sergiy Mankovsky, and Sebastian Wimmer
(2021), Handbook of Magnetism and Magnetic Materials,
edited by J. M. D. Coey and Stuart S.P. Parkin (Springer
International Publishing, Cham).

Eckardt, André (2017), “Colloquium: Atomic quantum gases
in periodically driven optical lattices,” Rev. Mod. Phys. 89,
011004.

Economou, Eleftherios N (2006), Green’s functions in quan-
tum physics, Vol. 7 (Springer Science & Business Media).

Edwards, D M (1982), “The paramagnetic state of itinerant
electron systems with local magnetic moments. I. Static
properties,” J. Phys. F: Met. Phys. 12 (8), 1789–1810.

Edwards, D M (1983), “Iron above the curie temperature,” J.
Magn. Magn. Mater. 36 (3), 213–216.

Eich, F G, and E. K. U. Gross (2013), “Transverse
Spin-Gradient Functional for Noncollinear Spin-Density-
Functional Theory,” Phys. Rev. Lett. 111, 156401.

Eich, F G, S. Pittalis, and G. Vignale (2013), “Transverse and
longitudinal gradients of the spin magnetization in spin-
density-functional theory,” Phys. Rev. B 88, 245102.

Ekholm, M, H. Zapolsky, A. V. Ruban, I. Vernyhora,
D. Ledue, and I. A. Abrikosov (2010), “Influence of the
Magnetic State on the Chemical Order-Disorder Transition
Temperature in Fe-Ni Permalloy,” Phys. Rev. Lett. 105,
167208.

Elliott, R J, J. A. Krumhansl, and P. L. Leath (1974), “The
theory and properties of randomly disordered crystals and
related physical systems,” Rev. Mod. Phys. 46, 465–543.

Englert, F, and R. Brout (1964), “Broken Symmetry and the
Mass of Gauge Vector Mesons,” Phys. Rev. Lett. 13, 321–
323.

Eriksson, Olle, Anders Bergman, Lars Bergqvist, and Johan
Hellsvik (2017), Atomistic spin dynamics: foundations and

applications (Oxford university press).
Eroles, J, C. D. Batista, S. B. Bacci, and E. R.

Gagliano (1999), “Magnetic Raman scattering of insulat-
ing cuprates,” Phys. Rev. B 59, 1468–1473.

Eschrig, Helmut (2010), “T > 0 ensemble-state density func-
tional theory via legendre transform,” Phys. Rev. B 82,
205120.

Etz, C, I. V. Maznichenko, D. Böttcher, J. Henk, A. N.
Yaresko, W. Hergert, I. I. Mazin, I. Mertig, and A. Ernst
(2012), “Indications of weak electronic correlations in
SrRuO3 from first-principles calculations,” Phys. Rev. B
86, 064441.

Etz, Corina, Lars Bergqvist, Anders Bergman, Andrea Ta-
roni, and Olle Eriksson (2015), “Atomistic spin dynamics
and surface magnons,” Journal of Physics: Condensed Mat-
ter 27 (24), 243202.

Evans, R F L, U. Atxitia, and R. W. Chantrell (2015), “Quan-
titative simulation of temperature-dependent magnetiza-
tion dynamics and equilibrium properties of elemental fer-
romagnets,” Phys. Rev. B 91, 144425.

Evans, R F L, W. J. Fan, P. Chureemart, T. A. Ostler,
M. O. A. Ellis, and R. W. Chantrell (2014), “Atomistic spin
model simulations of magnetic nanomaterials,” Journal of
Physics: Condensed Matter 26 (10), 103202.

Eyert, V. and Schwingenschlögl, U. and Eckern, U., (2004),
“Charge order, orbital order, and electron localization
in the Magnéli phase Ti4O7,” Chemical Physics Letters
390 (1), 151 – 156.

Fazekas, Patrik (1999), Lecture notes on electron correlation
and magnetism, Vol. 5 (World scientific).

Fedorova, Natalya S, Claude Ederer, Nicola A. Spaldin, and
Andrea Scaramucci (2015), “Biquadratic and ring exchange
interactions in orthorhombic perovskite manganites,” Phys.
Rev. B 91, 165122.

Feynman, R P (1972), Statistical mechanics: A set of lectures
(Reading, Mass: Benjamin/Cummings).

Fischer, Guntram, Markus Däne, Arthur Ernst, Patrick
Bruno, Martin Lüders, Zdzislawa Szotek, Walter Temmer-
man, and Wolfram Hergert (2009), “Exchange coupling in
transition metal monoxides: Electronic structure calcula-
tions,” Phys. Rev. B 80, 014408.

Floreano, L, D. Cvetko, G. Bavdek, M. Benes, and A. Mor-
gante (2001), “Order-disorder transition of the (3 × 3)
Sn/Ge(111) phase,” Phys. Rev. B 64, 075405.

Fransson, J, D. Thonig, P. F. Bessarab, S. Bhattacharjee,
J. Hellsvik, and L. Nordström (2017), “Microscopic theory
for coupled atomistic magnetization and lattice dynamics,”
Phys. Rev. Materials 1, 074404.

Frey, E, and F. Schwabl (1994), “Critical dynamics of mag-
nets,” Advances in Physics 43 (5), 577–683.

Frota-Pessôa, S, R. B. Muniz, and J. Kudrnovský (2000), “Ex-
change coupling in transition-metal ferromagnets,” Phys.
Rev. B 62, 5293–5296.

Fukutome, Hideo (1981), “Unrestricted Hartree–Fock theory
and its applications to molecules and chemical reactions,”
International Journal of Quantum Chemistry 20 (5), 955–
1065.

Fukuyama, Hiroshi (2008), “Nuclear magnetism in two-
dimensional solid helium three on graphite,” J. Phys. Soc.
Japan 77, 111013.

Fulde, P, B. Schmidt, and P. Thalmeier (1995), “Theoreti-
cal Model for the Semi-Metal Yb4As3,” EPL (Europhysics
Letters) 31 (5-6), 323.

Furuno, T, K. Ando, S. Kunii, A. Ochiai, H. Suzuki, M. Fu-

https://doi.org/10.1088/0305-4608/10/10/011
https://doi.org/10.1088/0305-4608/10/10/011
https://doi.org/10.1080/01418638008221890
https://doi.org/10.1080/01418638008221890
https://doi.org/10.1103/PhysRevLett.127.037204
https://doi.org/https://doi.org/10.1016/S0550-3213(01)00465-5
https://doi.org/10.1142/S0217979200002430
https://doi.org/10.1142/S0217979200002430
https://doi.org/10.1103/PhysRevB.95.024306
https://doi.org/10.1103/PhysRevB.93.241404
https://doi.org/10.1088/0034-4885/74/9/096501
https://doi.org/10.1103/PhysRevB.79.045209
https://doi.org/10.1007/978-3-030-63210-6_4
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1088/0305-4608/12/8/020
https://doi.org/https://doi.org/10.1016/0304-8853(83)90117-8
https://doi.org/https://doi.org/10.1016/0304-8853(83)90117-8
https://doi.org/10.1103/PhysRevLett.111.156401
https://doi.org/10.1103/PhysRevB.88.245102
https://doi.org/10.1103/PhysRevLett.105.167208
https://doi.org/10.1103/PhysRevLett.105.167208
https://doi.org/10.1103/RevModPhys.46.465
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevB.59.1468
https://doi.org/10.1103/PhysRevB.82.205120
https://doi.org/10.1103/PhysRevB.82.205120
https://doi.org/10.1103/PhysRevB.86.064441
https://doi.org/10.1103/PhysRevB.86.064441
https://doi.org/10.1088/0953-8984/27/24/243202
https://doi.org/10.1088/0953-8984/27/24/243202
https://doi.org/10.1103/PhysRevB.91.144425
https://doi.org/10.1088/0953-8984/26/10/103202
https://doi.org/10.1088/0953-8984/26/10/103202
https://doi.org/10.1016/j.cplett.2004.04.015
https://doi.org/10.1016/j.cplett.2004.04.015
https://doi.org/10.1103/PhysRevB.91.165122
https://doi.org/10.1103/PhysRevB.91.165122
https://doi.org/10.1103/PhysRevB.80.014408
https://doi.org/10.1103/PhysRevB.64.075405
https://doi.org/10.1103/PhysRevMaterials.1.074404
https://doi.org/10.1080/00018739400101535
https://doi.org/10.1103/PhysRevB.62.5293
https://doi.org/10.1103/PhysRevB.62.5293
https://doi.org/10.1143/JPSJ.77.111013
https://doi.org/10.1143/JPSJ.77.111013
http://iopscience.iop.org/0295-5075/31/5-6/013
http://iopscience.iop.org/0295-5075/31/5-6/013


68

jioka, T. Suzuki, W. Sasaki, and T. Kasuya (1988), “Phys-
ical properties of Sm3Se4 at low temperatures,” Journal of
Magnetism and Magnetic Materials 76-77, 117 – 118.

Gatteschi, Dante, Andrea Caneschi, Luca Pardi, and Roberta
Sessoli (1994), “Large Clusters of Metal Ions: The Transi-
tion from Molecular to Bulk Magnets,” Science 265 (5175),
1054–1058.

Gautier, F, F. Ducastelle, and J. Giner (1975a), “Ordering
and segregation processes in transition metal alloys in rela-
tion to their electronic structures,” The Philosophical Mag-
azine: A Journal of Theoretical Experimental and Applied
Physics 31 (6), 1373–1390.

Gautier, F, J. van der Rest, and F. Brouers (1975b), “Energy
of formation, band structure and local environment effects
in transitional binary alloys,” Journal of Physics F: Metal
Physics 5 (10), 1884–1894.

Gazit, Snir, Fakher F. Assaad, and Subir Sachdev (2020),
“Fermi Surface Reconstruction without Symmetry Break-
ing,” Phys. Rev. X 10, 041057.

Georges, Antoine, Gabriel Kotliar, Werner Krauth, and
Marcelo J. Rozenberg (1996), “Dynamical mean-field the-
ory of strongly correlated fermion systems and the limit of
infinite dimensions,” Rev. Mod. Phys. 68, 13–125.

Getzlaff, Mathias (2008), “Magnetism in Reduced Dimen-
sions – Nanoparticles,” in Fundamentals of Magnetism
(Springer) pp. 175–210.

Ghosh, Ram Krishna, Ashna Jose, and Geetu Kumari (2021),
“Intrinsic spin-dynamical properties of two-dimensional
half-metallic FeX2 (X = Cl, Br, I) ferromagnets: Insight
from density functional theory calculations,” Phys. Rev. B
103, 054409.

Gibertini, M, M. Koperski, A. F. Morpurgo, and K. S.
Novoselov (2019), “Magnetic 2D materials and heterostruc-
tures,” Nature Nanotechnology 14 (5), 408–419.

Giner, J, J. van der Rest, F. Brouers, and F. Gautier (1976),
“Charge transfer and ordering energy in a model binary
alloy,” Journal of Physics F: Metal Physics 6 (7), 1281–
1296.

Giuliani, G, and G. Vignale (2005), Quantum Theory of the
Electron Liquid (Cambridge University Press).

Glass, S, G. Li, F. Adler, J. Aulbach, A. Fleszar, R. Thomale,
W. Hanke, R. Claessen, and J. Schäfer (2015), “Triangular
Spin-Orbit-Coupled Lattice with Strong Coulomb Corre-
lations: Sn Atoms on a SiC(0001) Substrate,” Phys. Rev.
Lett. 114, 247602.

Gleeson, James P (2013), “Binary-State Dynamics on Com-
plex Networks: Pair Approximation and Beyond,” Phys.
Rev. X 3, 021004.

Gong, Cheng, Lin Li, Zhenglu Li, Huiwen Ji, Alex Stern,
Yang Xia, Ting Cao, Wei Bao, Chenzhe Wang, Yuan
Wang, Z. Q. Qiu, R. J. Cava, Steven G. Louie, Jing Xia,
and Xiang Zhang (2017), “Discovery of intrinsic ferromag-
netism in two-dimensional van der Waals crystals,” Nature
546 (7657), 265–269.

Gong, Qihua, Min Yi, Richard F. L. Evans, Bai-Xiang Xu,
and Oliver Gutfleisch (2019), “Calculating temperature-
dependent properties of Nd2Fe14B permanent magnets
by atomistic spin model simulations,” Phys. Rev. B 99,
214409.

Gonis, A, X. G. Zhang, A. J. Freeman, P. Turchi, G. M.
Stocks, and D. M. Nicholson (1987), “Configurational en-
ergies and effective cluster interactions in substitutionally
disordered binary alloys,” Phys. Rev. B 36, 4630–4646.

Goodenough, John B (1955), “Theory of the Role of Covalence

in the Perovskite-Type Manganites [La,M(II)]MnO3,”
Phys. Rev. 100, 564–573.

Goodenough, John B (1963), “Magnetism and the Chemical
Bond,” J. Phys. Chem. Solids 10, 87.

Gorbatov, O I, G. Johansson, A. Jakobsson, S. Mankovsky,
H. Ebert, I. Di Marco, J. Minár, and C. Etz (2021), “Mag-
netic exchange interactions in yttrium iron garnet: A fully
relativistic first-principles investigation,” Phys. Rev. B 104,
174401.

Gorni, Tommaso, Iurii Timrov, and Stefano Baroni (2018),
“Spin dynamics from time-dependent density functional
perturbation theory,” The European Physical Journal B
91 (10), 1–13.

Goto, T, and B. Lüthi (2003), “Charge ordering, charge fluc-
tuations and lattice effects in strongly correlated electron
systems,” Advances in Physics 52 (2), 67–118.

Grånäs, Oscar, Igor Di Marco, Patrik Thunström, Lars Nord-
ström, Olle Eriksson, Torbjörn Björkman, and JM Wills
(2012), “Charge self-consistent dynamical mean-field the-
ory based on the full-potential linear muffin-tin orbital
method: Methodology and applications,” Computational
Materials Science 55, 295–302.

Grytsiuk, Sergii, J-P Hanke, Markus Hoffmann, Juba
Bouaziz, Olena Gomonay, Gustav Bihlmayer, Samir
Lounis, Yuriy Mokrousov, and Stefan Blügel (2020),
“Topological–chiral magnetic interactions driven by emer-
gent orbital magnetism,” Nature communications 11 (1),
1–7.

Gukelberger, Jan, Evgeny Kozik, and Hartmut Hafermann
(2017), “Diagrammatic Monte Carlo approach for diagram-
matic extensions of dynamical mean-field theory: Conver-
gence analysis of the dual fermion technique,” Phys. Rev.
B 96, 035152.

Gull, Emanuel, Andrew J. Millis, Alexander I. Lichtenstein,
Alexey N. Rubtsov, Matthias Troyer, and Philipp Werner
(2011), “Continuous-time Monte Carlo methods for quan-
tum impurity models,” Rev. Mod. Phys. 83, 349–404.

Guralnik, G S, C. R. Hagen, and T. W. B. Kibble (1964),
“Global Conservation Laws and Massless Particles,” Phys.
Rev. Lett. 13, 585–587.

Gutfleisch, Oliver, Matthew A. Willard, Ekkes Brück,
Christina H. Chen, S. G. Sankar, and J. Ping Liu (2011),
“Magnetic materials and devices for the 21st century:
stronger, lighter, and more energy efficient,” Advanced ma-
terials 23 (7), 821–842.

Gyorffy, B L, A. J. Pindor, J. Staunton, G. M. Stocks, and
H. Winter (1985), “A first-principles theory of ferromag-
netic phase transitions in metals,” Journal of Physics F:
Metal Physics 15 (6), 1337–1386.

Gyorffy, B L, and G. M. Stocks (1980), “Momentum distribu-
tion of electrons in concentrated random alloys,” Journal
of Physics F: Metal Physics 10 (12), L321.

Hafermann, H, G. Li, A. N. Rubtsov, M. I. Katsnelson, A. I.
Lichtenstein, and H. Monien (2009), “Efficient Perturba-
tion Theory for Quantum Lattice Models,” Phys. Rev. Lett.
102, 206401.

Halilov, S V, H. Eschrig, A. Y. Perlov, and P. M. Oppe-
neer (1998), “Adiabatic spin dynamics from spin-density-
functional theory: Application to Fe, Co, and Ni,” Phys.
Rev. B 58, 293–302.

Hamann, D R (1967), “New Solution for Exchange Scattering
in Dilute Alloys,” Phys. Rev. 158, 570–580.

Han, Myung Joon, Taisuke Ozaki, and Jaejun Yu (2004),
“Electronic structure, magnetic interactions, and the role of

https://doi.org/10.1016/0304-8853(88)90333-2
https://doi.org/10.1016/0304-8853(88)90333-2
https://doi.org/10.1126/science.265.5175.1054
https://doi.org/10.1126/science.265.5175.1054
https://doi.org/10.1080/00318087508228689
https://doi.org/10.1080/00318087508228689
https://doi.org/10.1080/00318087508228689
https://doi.org/10.1088/0305-4608/5/10/011
https://doi.org/10.1088/0305-4608/5/10/011
https://doi.org/10.1103/PhysRevX.10.041057
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevB.103.054409
https://doi.org/10.1103/PhysRevB.103.054409
https://doi.org/10.1038/s41565-019-0438-6
https://doi.org/10.1088/0305-4608/6/7/010
https://doi.org/10.1088/0305-4608/6/7/010
https://doi.org/10.1103/PhysRevLett.114.247602
https://doi.org/10.1103/PhysRevLett.114.247602
https://doi.org/10.1103/PhysRevX.3.021004
https://doi.org/10.1103/PhysRevX.3.021004
https://doi.org/10.1038/nature22060
https://doi.org/10.1038/nature22060
https://doi.org/10.1103/PhysRevB.99.214409
https://doi.org/10.1103/PhysRevB.99.214409
https://doi.org/10.1103/PhysRevB.36.4630
https://doi.org/10.1103/PhysRev.100.564
https://doi.org/10.1103/PhysRevB.104.174401
https://doi.org/10.1103/PhysRevB.104.174401
https://doi.org/10.1080/0001873021000057114
https://doi.org/https://doi.org/10.1016/j.commatsci.2011.11.032
https://doi.org/https://doi.org/10.1016/j.commatsci.2011.11.032
https://doi.org/10.1103/PhysRevB.96.035152
https://doi.org/10.1103/PhysRevB.96.035152
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1088/0305-4608/15/6/018
https://doi.org/10.1088/0305-4608/15/6/018
https://doi.org/10.1103/PhysRevLett.102.206401
https://doi.org/10.1103/PhysRevLett.102.206401
https://doi.org/10.1103/PhysRevB.58.293
https://doi.org/10.1103/PhysRevB.58.293
https://doi.org/10.1103/PhysRev.158.570


69

ligands in Mnn(n = 4, 12) single-molecule magnets,” Phys.
Rev. B 70, 184421.

Han, Myung Joon, Xiangang Wan, and Sergej Y. Savsavr-
rasov (2008), “Competition between Kondo and RKKY ex-
change couplings in Pu1−xAmx alloys: Density functional
theory with static Hartree-Fock and dynamic Hubbard-I
approximations,” Phys. Rev. B 78, 060401.

Hansmann, P, R. Arita, A. Toschi, S. Sakai, G. Sangiovanni,
and K. Held (2010), “Dichotomy between Large Local and
Small Ordered Magnetic Moments in Iron-Based Supercon-
ductors,” Phys. Rev. Lett. 104, 197002.

Hansmann, P, T. Ayral, L. Vaugier, P. Werner, and S. Bier-
mann (2013a), “Long-Range Coulomb Interactions in Sur-
face Systems: A First-Principles Description within Self-
Consistently Combined GW and Dynamical Mean-Field
Theory,” Phys. Rev. Lett. 110, 166401.

Hansmann, Philipp, Loïg Vaugier, Hong Jiang, and Silke Bier-
mann (2013b), “What about U on surfaces? Extended
Hubbard models for adatom systems from first principles,”
J. Phys. Condens. Matter 25 (9), 094005.

Harkov, V, M. Vandelli, S. Brener, A. I. Lichtenstein, and
E. A. Stepanov (2021), “Impact of partially bosonized col-
lective fluctuations on electronic degrees of freedom,” Phys.
Rev. B 103, 245123.

Harland, Malte, Sergey Brener, Alexander I. Lichtenstein,
and Mikhail I. Katsnelson (2019), “Josephson lattice model
for phase fluctuations of local pairs in copper oxide super-
conductors,” Phys. Rev. B 100, 024510.

Hasegawa, H (1983), “A spin fluctuation theory of degener-
ate narrow bands-finite-temperature magnetism of iron,” J.
Phys. F: Met. Phys. 13 (9), 1915–1929.

Hasegawa, Hideo (1979a), “Single-site functional-integral ap-
proach to itinerant-electron ferromagnetism,” Journal of
the Physical Society of Japan 46 (5), 1504–1514.

Hasegawa, Hideo (1979b), “Single-Site Functional-Integral
Approach to Itinerant-Electron Ferromagnetism,” Journal
of the Physical Society of Japan 46 (5), 1504–1514.

Hasegawa, Hideo (1980a), “Single-Siet Spin Fluctuation The-
ory of Itinerant-Electron Systems with Narrow Bands,” J.
Phys. Soc. Japan 49 (1), 178–188.

Hasegawa, Hideo (1980b), “Single-Site Spin Fluctuation The-
ory of Itinerant-Electron Systems with Narrow Bands. II.
Iron and Nickel,” J. Phys. Soc. Japan 49 (3), 963–971.

Haydock, R, V. Heine, and M. J. Kelly (1975), “Electronic
structure based on the local atomic environment for tight-
binding bands. II,” Journal of Physics C: Solid State
Physics 8 (16), 2591–2605.

He, Xu, Nicole Helbig, Matthieu J. Verstraete, and Eric Bous-
quet (2021), “TB2J: A python package for computing mag-
netic interaction parameters,” Computer Physics Commu-
nications 264, 107938.

Hedin, Lars (1965a), “New Method for Calculating the One-
Particle Green’s Function with Application to the Electron-
Gas Problem,” Phys. Rev. 139, A796–A823.

Hedin, Lars (1965b), “New Method for Calculating the One-
Particle Green’s Function with Application to the Electron-
Gas Problem,” Phys. Rev. 139, A796–A823.

Heine, V, and J. H. Samson (1983), “Magnetic, chemical and
structural ordering in transition metals,” Journal of Physics
F: Metal Physics 13 (10), 2155–2168.

Heinze, Stefan, Kirsten von Bergmann, Matthias Menzel,
Jens Brede, André Kubetzka, Roland Wiesendanger, Gus-
tav Bihlmayer, and Stefan Blügel (2011a), “Spontaneous
atomic-scale magnetic skyrmion lattice in two dimensions,”

Nature Physics 7 (9), 713–718.
Heinze, Stefan, Kirsten Von Bergmann, Matthias Menzel,

Jens Brede, André Kubetzka, Roland Wiesendanger, Gus-
tav Bihlmayer, and Stefan Blügel (2011b), “Spontaneous
atomic-scale magnetic skyrmion lattice in two dimensions,”
Nature Physics 7 (9), 713–718.

Heitler, W, and F. London (1927), “Wechselwirkung neu-
traler Atome und homöopolare Bindung nach der Quan-
tenmechanik,” Zeitschrift für Physik 44 (6), 455–472.

Hellsvik, Johan, Danny Thonig, Klas Modin, Diana Iuşan,
Anders Bergman, Olle Eriksson, Lars Bergqvist, and Anna
Delin (2019), “General method for atomistic spin-lattice
dynamics with first-principles accuracy,” Phys. Rev. B 99,
104302.

Hennion, M (1983), “Chemical SRO effects in ferromagnetic
Fe alloys in relation to electronic band structure,” Journal
of Physics F: Metal Physics 13 (11), 2351.

Herbst, J F, J. J. Croat, F. E. Pinkerton, and W. B. Yelon
(1984), “ Relationships between crystal structure and mag-
netic properties in Nd2Fe14B,” Phys. Rev. B 29, 4176–4178.

Hewson, A C (1993), The Kondo Problem to Heavy Fermions
(Cambridge University Press, Cambridge).

Higgs, P W (1964a), “Broken symmetries, massless particles
and gauge fields,” Physics Letters 12 (2), 132–133.

Higgs, Peter W (1964b), “Broken Symmetries and the Masses
of Gauge Bosons,” Phys. Rev. Lett. 13, 508–509.

Hirschmeier, Daniel, Hartmut Hafermann, Emanuel Gull,
Alexander I. Lichtenstein, and Andrey E. Antipov (2015),
“Mechanisms of finite-temperature magnetism in the three-
dimensional Hubbard model,” Phys. Rev. B 92, 144409.

Hoffmann, M, J. Weischenberg, B. Dupé, F. Freimuth, P. Fer-
riani, Y. Mokrousov, and S. Heinze (2015), “Topological or-
bital magnetization and emergent hall effect of an atomic-
scale spin lattice at a surface,” Phys. Rev. B 92, 020401.

Hohenadler, M, F. Parisen Toldin, I. F. Herbut, and F. F.
Assaad (2014), “Phase diagram of the Kane-Mele-Coulomb
model,” Phys. Rev. B 90, 085146.

Hohenberg, P, and W. Kohn (1964), “Inhomogeneous Electron
Gas,” Phys. Rev. 136, B864–B871.

Holley, Richard A, and Thomas M Liggett (1975), “Ergodic
theorems for weakly interacting infinite systems and the
voter model,” The annals of probability , 643–663.

Honda, Y, Y. Kuramoto, and T. Watanabe (1993), “Effects
of cyclic four-spin exchange on the magnetic properties of
the CuO2 plane,” Phys. Rev. B 47, 11329–11336.

Hong, Tao, Masashige Matsumoto, Yiming Qiu, Wangchun
Chen, Thomas R. Gentile, Shannon Watson, Firas F.
Awwadi, Mark M. Turnbull, Sachith E. Dissanayake, Har-
ish Agrawal, Rasmus Toft-Petersen, Bastian Klemke, Kris
Coester, Kai P. Schmidt, and David A. Tennant (2017),
“Higgs amplitude mode in a two-dimensional quantum an-
tiferromagnet near the quantum critical point,” Nature
Physics 13 (7), 638–642.

Huang, Bevin, Genevieve Clark, Efrén Navarro-Moratalla,
Dahlia R. Klein, Ran Cheng, Kyle L. Seyler, Ding Zhong,
Emma Schmidgall, Michael A. McGuire, David H. Cob-
den, Wang Yao, Di Xiao, Pablo Jarillo-Herrero, and Xi-
aodong Xu (2017), “Layer-dependent ferromagnetism in a
van der Waals crystal down to the monolayer limit,” Nature
546 (7657), 270–273.

Hubbard, J (1959), “Calculation of Partition Functions,”
Phys. Rev. Lett. 3, 77–78.

Hubbard, J (1979a), “The magnetism of iron,” Phys. Rev. B
19, 2626–2636.

https://doi.org/10.1103/PhysRevB.70.184421
https://doi.org/10.1103/PhysRevB.70.184421
https://doi.org/10.1103/PhysRevB.78.060401
https://doi.org/10.1103/PhysRevLett.104.197002
https://doi.org/10.1103/PhysRevLett.110.166401
https://doi.org/10.1088/0953-8984/25/9/094005
https://doi.org/10.1103/PhysRevB.103.245123
https://doi.org/10.1103/PhysRevB.103.245123
https://doi.org/10.1103/PhysRevB.100.024510
https://doi.org/10.1088/0305-4608/13/9/016
https://doi.org/10.1088/0305-4608/13/9/016
https://doi.org/10.1143/JPSJ.46.1504
https://doi.org/10.1143/JPSJ.46.1504
https://doi.org/10.1143/JPSJ.49.178
https://doi.org/10.1143/JPSJ.49.178
https://doi.org/10.1143/JPSJ.49.963
https://doi.org/10.1088/0022-3719/8/16/011
https://doi.org/10.1088/0022-3719/8/16/011
https://doi.org/https://doi.org/10.1016/j.cpc.2021.107938
https://doi.org/https://doi.org/10.1016/j.cpc.2021.107938
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1088/0305-4608/13/10/025
https://doi.org/10.1088/0305-4608/13/10/025
https://doi.org/10.1038/nphys2045
https://doi.org/10.1007/BF01397394
https://doi.org/10.1103/PhysRevB.99.104302
https://doi.org/10.1103/PhysRevB.99.104302
http://stacks.iop.org/0305-4608/13/i=11/a=017
http://stacks.iop.org/0305-4608/13/i=11/a=017
https://doi.org/10.1103/PhysRevB.29.4176
https://doi.org/https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevB.92.144409
https://doi.org/10.1103/PhysRevB.92.020401
https://doi.org/10.1103/PhysRevB.90.085146
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRevB.47.11329
https://doi.org/10.1038/nature22391
https://doi.org/10.1038/nature22391
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1103/PhysRevB.19.2626
https://doi.org/10.1103/PhysRevB.19.2626


70

Hubbard, J (1979b), “Magnetism of iron. II,” Phys. Rev. B
20, 4584–4595.

Hubbard, J (1981a), “The magnetism of iron and nickel,”
Journal of Applied Physics 52 (3), 1654–1657.

Hubbard, J (1981b), “Magnetism of nickel,” Phys. Rev. B 23,
5974–5977.

Huebsch, M-T, T. Nomoto, M.-T. Suzuki, and R. Arita
(2021), “Benchmark for ab initio prediction of magnetic
structures based on cluster-multipole theory,” Phys. Rev.
X 11, 011031.

Igarashi, R N, A. B. Klautau, R. B. Muniz, B. Sanyal, and
H. M. Petrilli (2012), “First-principles studies of complex
magnetism in Mn nanostructures on the Fe(001) surface,”
Phys. Rev. B 85, 014436.

Igoshev, P A, A. V. Efremov, and A. A. Katanin (2015),
“Magnetic exchange in α-iron from ab initio calculations in
the paramagnetic phase,” Phys. Rev. B 91, 195123.

Inomata, A, H. Kuratsui, and C. C. Gerry (1992), Path In-
tegrals and Coherent States of SU(2) and SU(1,1) (World
Scientific, Singapore).

Inoue, Michiko, and Tôru Moriya (1967), “Interaction be-
tween localized moments in metals,” Progress of Theoreti-
cal Physics 38 (1), 41–60.

Irkhin, V Yu, A. A. Katanin, and M. I. Katsnelson (1999),
“Self-consistent spin-wave theory of layered Heisenberg
magnets,” Phys. Rev. B 60, 1082–1099.

Irkhin, V Yu, and M. I. Katsnelson (1990), “RVB-type
states in systems with charge and spin degrees of freedom:
Sm3Se4, Y1−xScxMn2 etc.” Physics Letters A 150 (1), 47
– 50.

Isaev, E I, L. V. Pourovskii, A. M. N. Niklasson, Yu. Kh. Vek-
ilov, B. Johansson, and I. A. Abrikosov (2001), “Magnetic
properties of a Co/Cu/Ni trilayer on the Cu(100) surface,”
Phys. Rev. B 65, 024435.

Ising, Ernst (1925), “Contribution to the theory of ferromag-
netism,” Z. Phys 31 (1), 253–258.

Iskakov, Sergei, Andrey E. Antipov, and Emanuel Gull
(2016), “Diagrammatic Monte Carlo for dual fermions,”
Phys. Rev. B 94, 035102.

Iskakov, Sergei, Hanna Terletska, and Emanuel Gull (2018),
“Momentum-space cluster dual-fermion method,” Phys.
Rev. B 97, 125114.

Itin, A P, and M. I. Katsnelson (2015), “Effective Hamilto-
nians for Rapidly Driven Many-Body Lattice Systems: In-
duced Exchange Interactions and Density-Dependent Hop-
pings,” Phys. Rev. Lett. 115, 075301.

Itin, A P, and A. I. Neishtadt (2014), “Effective Hamiltonians
for fastly driven tight-binding chains,” Physics Letters A
378 (10), 822–825.

Jaeckel, Joerg (2002), “Understanding the Fierz Ambiguity of
Partially Bosonized Theories,” arXiv:hep-ph/0205154 [hep-
ph].

Jaeckel, Joerg, and Christof Wetterich (2003), “Flow equa-
tions without mean field ambiguity,” Phys. Rev. D 68,
025020.

Jain, A, M. Krautloher, J. Porras, G. H. Ryu, D. P. Chen,
D. L. Abernathy, J. T. Park, A. Ivanov, J. Chaloupka,
G. Khaliullin, B. Keimer, and B. J. Kim (2017), “Higgs
mode and its decay in a two-dimensional antiferromagnet,”
Nature Physics 13 (7), 633.

Jakobsson, A, P. Mavropoulos, E. Şaşıoğlu, S. Blügel,
M. Ležaić, B. Sanyal, and I. Galanakis (2015), “First-
principles calculations of exchange interactions, spin waves,
and temperature dependence of magnetization in inverse-

Heusler-based spin gapless semiconductors,” Phys. Rev. B
91, 174439.

Jang, Seung Woo, Min Yong Jeong, Hongkee Yoon, Siheon
Ryee, and Myung Joon Han (2019), “Microscopic under-
standing of magnetic interactions in bilayer CrI3,” Phys.
Rev. Materials 3, 031001.

Jang, Seung Woo, Do Hoon Kiem, Juhyeok Lee, Yoon-
Gu Kang, Hongkee Yoon, and Myung Joon Han (2021),
“Hund’s physics and the magnetic ground state of CrOX
(X = Cl, Br),” Phys. Rev. Materials 5, 034409.

Jang, Seung Woo, Siheon Ryee, Hongkee Yoon, and
Myung Joon Han (2018), “Charge density functional plus
U theory of LaMnO3: Phase diagram, electronic structure,
and magnetic interaction,” Phys. Rev. B 98, 125126.

Jang, Seung Woo, Hongkee Yoon, Min Yong Jeong, Si-
heon Ryee, Heung-Sik Kim, and Myung Joon Han (2020),
“Origin of ferromagnetism and the effect of doping on
Fe3GeTe2,” Nanoscale 12, 13501–13506.

Jaswal, S S (1990), “Electronic structure and magnetism of
R2Fe14B (R=Y,Nd) compounds,” Phys. Rev. B 41, 9697–
9700.

Jensen, Jens, and Allan R. Mackintosh (1991), Rare earth
magnetism (Clarendon Press Oxford).

Jodlauk, S, P. Becker, J. A. Mydosh, D. I. Khomskii,
T. Lorenz, S. V. Streltsov, D. C. Hezel, and L. Bohatý
(2007), “Pyroxenes: a new class of multiferroics,” Journal
of Physics: Condensed Matter 19 (43), 432201.

Kadanoff, L P, and G. Baym (1962), Quantum Statistical
Mechanics: Green’s Function Methods in Equilibrium and
Nonequilibrium Problems, 1st ed. (CRC Press).

Kakehashi, Y (1992), “Monte carlo approach to the dynamical
coherent-potential approximation in metallic magnetism,”
Phys. Rev. B 45, 7196–7204.

Kamber, Umut, Anders Bergman, Andreas Eich, Diana Iuşan,
Manuel Steinbrecher, Nadine Hauptmann, Lars Nordström,
Mikhail I Katsnelson, Daniel Wegner, Olle Eriksson, et al.
(2020), “Self-induced spin glass state in elemental and crys-
talline neodymium,” Science 368 (6494).

Kamenev, Alex (2011), Field Theory of Non-Equilibrium Sys-
tems (Cambridge University Press).

Kampert, Erik, Femke F. B. J. Janssen, Danil W. Boukhvalov,
Jaap C. Russcher, Jan M. M. Smits, René de Gelder, Bas
de Bruin, Peter C. M. Christianen, Uli Zeitler, Mikhail I.
Katsnelson, Jan C. Maan, and Alan E. Rowan (2009),
“Ligand-Controlled Magnetic Interactions in Mn4 Clus-
ters,” Inorganic Chemistry 48 (24), 11903–11908.

Kanamori, Junjiro (1959), “Superexchange interaction and
symmetry properties of electron orbitals,” Journal of
Physics and Chemistry of Solids 10 (2), 87–98.

Kashin, I V, V V Mazurenko, M I Katsnelson, and A N
Rudenko (2020), “Orbitally-resolved ferromagnetism of
monolayer CrI3,” 2D Materials 7 (2), 025036.

Katsnelson, M I, and V. P. Antropov (2003), “Spin angular
gradient approximation in the density functional theory,”
Phys. Rev. B 67, 140406.

Katsnelson, M I, V. Yu. Irkhin, L. Chioncel, A. I. Lichten-
stein, and R. A. de Groot (2008), “Half-metallic ferromag-
nets: From band structure to many-body effects,” Rev.
Mod. Phys. 80, 315–378.

Katsnelson, M I, and A. I. Lichtenstein (2000), “First-
principles calculations of magnetic interactions in corre-
lated systems,” Phys. Rev. B 61, 8906–8912.

Katsnelson, M I, and A. I. Lichtenstein (2004), “Magnetic sus-
ceptibility, exchange interactions and spin-wave spectra in

https://doi.org/10.1103/PhysRevB.20.4584
https://doi.org/10.1103/PhysRevB.20.4584
https://doi.org/10.1103/PhysRevB.23.5974
https://doi.org/10.1103/PhysRevB.23.5974
https://doi.org/10.1103/PhysRevX.11.011031
https://doi.org/10.1103/PhysRevX.11.011031
https://doi.org/10.1103/PhysRevB.85.014436
https://doi.org/10.1103/PhysRevB.91.195123
https://doi.org/10.1103/PhysRevB.60.1082
https://doi.org/10.1016/0375-9601(90)90058-V
https://doi.org/10.1016/0375-9601(90)90058-V
https://doi.org/10.1103/PhysRevB.65.024435
https://doi.org/10.1103/PhysRevB.94.035102
https://doi.org/10.1103/PhysRevB.97.125114
https://doi.org/10.1103/PhysRevB.97.125114
https://doi.org/10.1103/PhysRevLett.115.075301
https://doi.org/https://doi.org/10.1016/j.physleta.2014.01.007
https://doi.org/https://doi.org/10.1016/j.physleta.2014.01.007
https://arxiv.org/abs/hep-ph/0205154
https://arxiv.org/abs/hep-ph/0205154
https://doi.org/10.1103/PhysRevD.68.025020
https://doi.org/10.1103/PhysRevD.68.025020
https://doi.org/10.1103/PhysRevB.91.174439
https://doi.org/10.1103/PhysRevB.91.174439
https://doi.org/10.1103/PhysRevMaterials.3.031001
https://doi.org/10.1103/PhysRevMaterials.3.031001
https://doi.org/10.1103/PhysRevMaterials.5.034409
https://doi.org/10.1103/PhysRevB.98.125126
https://doi.org/10.1039/C9NR10171C
https://doi.org/10.1103/PhysRevB.41.9697
https://doi.org/10.1103/PhysRevB.41.9697
https://doi.org/10.1088/0953-8984/19/43/432201
https://doi.org/10.1088/0953-8984/19/43/432201
https://doi.org/10.1201/9780429493218
https://doi.org/10.1201/9780429493218
https://doi.org/10.1201/9780429493218
https://doi.org/10.1103/PhysRevB.45.7196
https://doi.org/10.1017/CBO9781139003667
https://doi.org/10.1017/CBO9781139003667
https://doi.org/10.1021/ic901930w
https://doi.org/https://doi.org/10.1016/0022-3697(59)90061-7
https://doi.org/https://doi.org/10.1016/0022-3697(59)90061-7
https://doi.org/10.1088/2053-1583/ab72d8
https://doi.org/10.1103/PhysRevB.67.140406
https://doi.org/10.1103/RevModPhys.80.315
https://doi.org/10.1103/RevModPhys.80.315
https://doi.org/10.1103/PhysRevB.61.8906


71

the local spin density approximation,” Journal of Physics:
Condensed Matter 16 (41), 7439–7446.

Katsnelson, MI, YO Kvashnin, VV Mazurenko, and AI Licht-
enstein (2010), “Correlated band theory of spin and orbital
contributions to Dzyaloshinskii-Moriya interactions,” Phys-
ical Review B 82 (10), 100403.

Ke, Liqin, and Mikhail I. Katsnelson (2021), “Electron corre-
lation effects on exchange interactions and spin excitations
in 2D van der Waals materials,” npj Computational Mate-
rials 7 (1), 4.

Keshavarz, S, Y. O. Kvashnin, I. Di Marco, A. Delin, M. I.
Katsnelson, A. I. Lichtenstein, and O. Eriksson (2015),
“Layer-resolved magnetic exchange interactions of surfaces
of late 3d elements: Effects of electronic correlations,” Phys.
Rev. B 92, 165129.

Keshavarz, Samara, Johan Schött, Andrew J. Millis, and
Yaroslav O. Kvashnin (2018), “Electronic structure, mag-
netism, and exchange integrals in transition-metal oxides:
Role of the spin polarization of the functional in DFT+U
calculations,” Phys. Rev. B 97, 184404.

Khmelevskyi, S, T Khmelevska, A V Ruban, and P Mohn
(2007), “Magnetic exchange interactions in the paramag-
netic state of hcp Gd,” Journal of Physics: Condensed Mat-
ter 19 (32), 326218.

Khmelevskyi, Sergii (2012), “Antiferromagnetic ordering on
the frustrated fcc lattice in the intermetallic compound
GdPtBi,” Phys. Rev. B 86, 104429.

Khmelevskyi, Sergii, Eszter Simon, and László Szun-
yogh (2015), “Antiferromagnetism in Ru2MnZ (Z =
Sn, Sb, Ge, Si) full Heusler alloys: Effects of magnetic frus-
tration and chemical disorder,” Phys. Rev. B 91, 094432.

Kirilyuk, Andrei, Alexey V. Kimel, and Theo Rasing (2010),
“Ultrafast optical manipulation of magnetic order,” Rev.
Mod. Phys. 82, 2731–2784.

Kitaev, Alexei (2006), “Anyons in an exactly solved model
and beyond,” Annals of Physics 321 (1), 2–111.

Kitamura, Sota, and Hideo Aoki (2016), “η-pairing superfluid
in periodically-driven fermionic Hubbard model with strong
attraction,” Phys. Rev. B 94, 174503.

Kleinman, Leonard (1999), “Density functional for non-
collinear magnetic systems,” Phys. Rev. B 59, 3314–3317.

Kohn, W, and N. Rostoker (1954), “Solution of the
Schrödinger Equation in Periodic Lattices with an Appli-
cation to Metallic Lithium,” Phys. Rev. 94, 1111–1120.

Kohn, W, and L. J. Sham (1965), “Self-Consistent Equations
Including Exchange and Correlation Effects,” Phys. Rev.
140, A1133–A1138.

Korenman, V, J. L. Murray, and R. E. Prange (1977a), “Local-
band theory of itinerant ferromagnetism. I. Fermi-liquid
theory,” Phys. Rev. B 16, 4032–4047.

Korenman, V, J. L. Murray, and R. E. Prange (1977b),
“Local-band theory of itinerant ferromagnetism. II. Spin
waves,” Phys. Rev. B 16, 4048–4057.

Korenman, V, J. L. Murray, and R. E. Prange (1977c), “Local-
band theory of itinerant ferromagnetism. III. Nonlinear
Landau-Lifshitz equations,” Phys. Rev. B 16, 4058–4062.

Korotin, Dm M, V. V. Mazurenko, V. I. Anisimov, and S. V.
Streltsov (2015), “Calculation of exchange constants of the
Heisenberg model in plane-wave-based methods using the
Green’s function approach,” Phys. Rev. B 91, 224405.

Korringa, J (1947), “On the calculation of the energy of a
Bloch wave in a metal,” Physica 13 (6), 392–400.

Korzhavyi, P A, A. V. Ruban, J. Odqvist, J.-O. Nilsson, and
B. Johansson (2009), “Electronic structure and effective

chemical and magnetic exchange interactions in bcc Fe-Cr
alloys,” Phys. Rev. B 79, 054202.

Kotani, Takao, and Mark van Schilfgaarde (2008), “Spin wave
dispersion based on the quasiparticle self-consistent GW
method: NiO, MnO and α-MnAs,” Journal of Physics:
Condensed Matter 20 (29), 295214.

Kotliar, G, S. Y. Savrasov, K. Haule, V. S. Oudovenko,
O. Parcollet, and C. A. Marianetti (2006), “Electronic
structure calculations with dynamical mean-field theory,”
Rev. Mod. Phys. 78 (3), 865–951.

Kramers, H A (1934), “L’interaction entre les atomes magné-
togènes dans un cristal paramagnétique,” Physica 1 (1-6),
182–192.

Krönlein, Andreas, Martin Schmitt, Markus Hoffmann, Jean-
nette Kemmer, Nicolai Seubert, Matthias Vogt, Julia
Küspert, Markus Böhme, Bandar Alonazi, Jens Kügel,
Hamad A. Albrithen, Matthias Bode, Gustav Bihlmayer,
and Stefan Blügel (2018), “Magnetic Ground State Stabi-
lized by Three-Site Interactions: Fe/Rh(111),” Phys. Rev.
Lett. 120, 207202.

Kruglyak, V V, S. O. Demokritov, and D. Grundler (2010),
“Magnonics,” Journal of Physics D: Applied Physics
43 (26), 264001.

Kübler, J, K.-H. Hock, J. Sticht, and A. R. Williams (1988),
“Density functional theory of non-collinear magnetism,”
Journal of Physics F: Metal Physics 18 (3), 469.

Kübler, Jürgen (2017), Theory of itinerant electron mag-
netism, Vol. 106 (Oxford University Press).

Kudrnovský, J, V. Drchal, and P. Bruno (2008), “Magnetic
properties of fcc Ni-based transition metal alloys,” Phys.
Rev. B 77, 224422.

Kudrnovský, Josef, Franti šek Máca, Ilja Turek, and Josef
Redinger (2009), “Substrate-induced antiferromagnetism of
a Fe monolayer on the Ir(001) surface,” Phys. Rev. B 80,
064405.

Kurtulus, Yasemin, Richard Dronskowski, German D.
Samolyuk, and Vladimir P. Antropov (2005), “Electronic
structure and magnetic exchange coupling in ferromagnetic
full Heusler alloys,” Phys. Rev. B 71, 014425.

Kvashnin, Y O, A. Bergman, A. I. Lichtenstein, and M. I.
Katsnelson (2020), “Relativistic exchange interactions in
CrX3 (X = Cl, Br, I) monolayers,” Phys. Rev. B 102,
115162.

Kvashnin, Y O, R. Cardias, A. Szilva, I. Di Marco, M. I. Kat-
snelson, A. I. Lichtenstein, L. Nordström, A. B. Klautau,
and O. Eriksson (2016), “Microscopic Origin of Heisenberg
and Non-Heisenberg Exchange Interactions in Ferromag-
netic bcc Fe,” Phys. Rev. Lett. 116, 217202.

Kvashnin, Y O, O. Grånäs, I. Di Marco, M. I. Katsnelson, A. I.
Lichtenstein, and O. Eriksson (2015a), “Exchange parame-
ters of strongly correlated materials: Extraction from spin-
polarized density functional theory plus dynamical mean-
field theory,” Phys. Rev. B 91, 125133.

Kvashnin, Y O, S. Khmelevskyi, J. Kudrnovský, A. N.
Yaresko, L. Genovese, and P. Bruno (2012), “Noncollinear
magnetic ordering in compressed FePd3 ordered alloy: A
first principles study,” Phys. Rev. B 86, 174429.

Kvashnin, Y O, W. Sun, I. Di Marco, and O. Eriksson (2015b),
“Electronic topological transition and noncollinear mag-
netism in compressed hcp Co,” Phys. Rev. B 92, 134422.

Lacour-Gayet, P, and M. Cyrot (1974), “Magnetic properties
of the Hubbard model,” Journal of Physics C: Solid State
Physics 7 (2), 400.

Landau, L D, and E. M. Lifshitz (1980), Statistical Physics

https://doi.org/10.1088/0953-8984/16/41/023
https://doi.org/10.1088/0953-8984/16/41/023
https://doi.org/10.1038/s41524-020-00469-2
https://doi.org/10.1038/s41524-020-00469-2
https://doi.org/10.1103/PhysRevB.92.165129
https://doi.org/10.1103/PhysRevB.92.165129
https://doi.org/10.1103/PhysRevB.97.184404
https://doi.org/10.1088/0953-8984/19/32/326218
https://doi.org/10.1088/0953-8984/19/32/326218
https://doi.org/10.1103/PhysRevB.86.104429
https://doi.org/10.1103/PhysRevB.91.094432
https://doi.org/10.1103/RevModPhys.82.2731
https://doi.org/10.1103/RevModPhys.82.2731
https://doi.org/https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevB.94.174503
https://doi.org/10.1103/PhysRevB.59.3314
https://doi.org/10.1103/PhysRev.94.1111
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevB.16.4032
https://doi.org/10.1103/PhysRevB.16.4048
https://doi.org/10.1103/PhysRevB.16.4058
https://doi.org/10.1103/PhysRevB.91.224405
https://doi.org/https://doi.org/10.1016/0031-8914(47)90013-X
https://doi.org/10.1103/PhysRevB.79.054202
https://doi.org/10.1088/0953-8984/20/29/295214
https://doi.org/10.1088/0953-8984/20/29/295214
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/PhysRevLett.120.207202
https://doi.org/10.1103/PhysRevLett.120.207202
https://doi.org/10.1103/PhysRevB.77.224422
https://doi.org/10.1103/PhysRevB.77.224422
https://doi.org/10.1103/PhysRevB.80.064405
https://doi.org/10.1103/PhysRevB.80.064405
https://doi.org/10.1103/PhysRevB.71.014425
https://doi.org/10.1103/PhysRevB.102.115162
https://doi.org/10.1103/PhysRevB.102.115162
https://doi.org/10.1103/PhysRevLett.116.217202
https://doi.org/10.1103/PhysRevB.91.125133
https://doi.org/10.1103/PhysRevB.86.174429
https://doi.org/10.1103/PhysRevB.92.134422


72

(Pergamon, Oxford).
Lebègue, S, T. Björkman, M. Klintenberg, R. M. Nieminen,

and O. Eriksson (2013), “Two-Dimensional Materials from
Data Filtering and Ab Initio Calculations,” Phys. Rev. X
3, 031002.

Lee, Inhee, Franz G. Utermohlen, Daniel Weber, Kyusung
Hwang, Chi Zhang, Johan van Tol, Joshua E. Goldberger,
Nandini Trivedi, and P. Chris Hammel (2020), “Fundamen-
tal Spin Interactions Underlying the Magnetic Anisotropy
in the Kitaev Ferromagnet CrI3,” Phys. Rev. Lett. 124,
017201.

Leonov, I, A. N. Yaresko, V. N. Antonov, U. Schwingen-
schlögl, V. Eyert, and V. I. Anisimov (2006), “Charge or-
der and spin-singlet pair formation in Ti4O7,” Journal of
Physics: Condensed Matter 18 (48), 10955.

Ležaić, M, Ph. Mavropoulos, and S. Blügel (2007), “First-
principles prediction of high Curie temperature for ferro-
magnetic bcc-Co and bcc-FeCo alloys and its relevance
to tunneling magnetoresistance,” Applied Physics Letters
90 (8), 082504.

Li, Gang (2015), “Hidden physics in the dual-fermion ap-
proach: A special case of a nonlocal expansion scheme,”
Phys. Rev. B 91, 165134.

Li, Gang, Philipp Höpfner, Jörg Schäfer, Christian Blumen-
stein, Sebastian Meyer, Aaron Bostwick, Eli Rotenberg,
Ralph Claessen, and Werner Hanke (2013), “Magnetic or-
der in a frustrated two-dimensional atom lattice at a semi-
conductor surface,” Nat. Commun. 4 (1), 1620.

Li, Gang, Manuel Laubach, Andrzej Fleszar, and Werner
Hanke (2011), “Geometrical frustration and the competing
phases of the Sn/Si(111)

√
3 ×

√
3R30

◦
surface systems,”

Phys. Rev. B 83, 041104.
Li, Tingxin, Shengwei Jiang, Nikhil Sivadas, Zefang Wang,

Yang Xu, Daniel Weber, Joshua E. Goldberger, Kenji
Watanabe, Takashi Taniguchi, Craig J. Fennie, Kin
Fai Mak, and Jie Shan (2019), “Pressure-controlled inter-
layer magnetism in atomically thin CrI3,” Nature Materials
18 (12), 1303–1308.

Lichtenstein, A I, and M. I. Katsnelson (1998), “Ab initio
calculations of quasiparticle band structure in correlated
systems: LDA++ approach,” Phys. Rev. B 57, 6884–6895.

Lichtenstein, A I, and M. I. Katsnelson (2000), “Antiferro-
magnetism and d-wave superconductivity in cuprates: A
cluster dynamical mean-field theory,” Phys. Rev. B 62,
R9283–R9286.

Lichtenstein, A I, and M. I. Katsnelson (2001), “Mag-
netism of Correlated Systems: Beyond LDA,” in Band-
Ferromagnetism, edited by Klaus Baberschke, Wolfgang
Nolting, and Markus Donath (Springer, Berlin, Heidel-
berg) pp. 75–93.

Liechtenstein, A I, V. I. Anisimov, and J. Zaanen (1995),
“Density-functional theory and strong interactions: Orbital
ordering in Mott-Hubbard insulators,” Phys. Rev. B 52,
R5467–R5470.

Liechtenstein, A I, M. I. Katsnelson, V. P. Antropov, and
V. A. Gubanov (1987), “Local spin density functional ap-
proach to the theory of exchange interactions in ferromag-
netic metals and alloys,” Journal of Magnetism and Mag-
netic Materials 67 (1), 65–74.

Liechtenstein, A I, M. I. Katsnelson, and V. A. Gubanov
(1984), “Exchange interactions and spin-wave stiffness in
ferromagnetic metals,” Journal of Physics F: Metal Physics
14 (7), L125.

Liechtenstein, A I, M. I. Katsnelson, and V. A. Gubanov
(1985), “Local spin excitations and Curie temperature of
iron,” Solid State Communications 54 (4), 327–329.

Liu, K L, and S. H. Vosko (1989), “A time-dependent spin
density functional theory for the dynamical spin suscepti-
bility,” Canadian journal of physics 67 (11), 1015–1021.

Liu, S H (1961), “Exchange Interaction between Conduction
Electrons and Magnetic Shell Electrons in Rare-Earth Met-
als,” Phys. Rev. 121, 451–455.

Liu, X, M. M. Steiner, R. Sooryakumar, G. A. Prinz, R. F. C.
Farrow, and G. Harp (1996), “Exchange stiffness, magne-
tization, and spin waves in cubic and hexagonal phases of
cobalt,” Phys. Rev. B 53, 12166–12172.

Liu, X B, and Z. Altounian (2010), “Exchange interaction
in GdT2 (T=Fe,Co,Ni) from first-principles,” Journal of
Applied Physics 107 (9), 09E117.

Liu, Y, S. K. Bose, and J. Kudrnovský (2010), “First-
principles theoretical studies of half-metallic ferromag-
netism in CrTe,” Phys. Rev. B 82, 094435.

Lloyd, P (1967), “Wave propagation through an assembly of
spheres: II. The density of single-particle eigenstates,” Pro-
ceedings of the Physical Society 90 (1), 207.

Lobo, J, A. Tejeda, A. Mugarza, and E. G. Michel (2003),
“Electronic structure of Sn/Si(111)-(

√
3 ×

√
3)R30◦ as a

function of Sn coverage,” Phys. Rev. B 68, 235332.
Locht, I L M, Y. O. Kvashnin, D. C. M. Rodrigues, M. Pereiro,

A. Bergman, L. Bergqvist, A. I. Lichtenstein, M. I. Katsnel-
son, A. Delin, A. B. Klautau, B. Johansson, I. Di Marco,
and O. Eriksson (2016), “Standard model of the rare earths
analyzed from the Hubbard I approximation,” Phys. Rev.
B 94, 085137.

Logemann, R, A N Rudenko, M I Katsnelson, and A Kirilyuk
(2017), “Exchange interactions in transition metal oxides:
the role of oxygen spin polarization,” Journal of Physics:
Condensed Matter 29 (33), 335801.

Logemann, R, A. N. Rudenko, M. I. Katsnelson, and A. Kir-
ilyuk (2018), “Non-heisenberg covalent magnetism in iron
oxide clusters,” Phys. Rev. Materials 2, 073001.

van Loon, E G C P, M. Schüler, M. I. Katsnelson, and T. O.
Wehling (2016), “Capturing nonlocal interaction effects in
the Hubbard model: Optimal mappings and limits of ap-
plicability,” Phys. Rev. B 94, 165141.

van Loon, Erik G C P, Alexander I. Lichtenstein, Mikhail I.
Katsnelson, Olivier Parcollet, and Hartmut Hafermann
(2014), “Beyond extended dynamical mean-field theory:
Dual boson approach to the two-dimensional extended
Hubbard model,” Phys. Rev. B 90, 235135.

van Loon, Erik G C P, Malte Rösner, Mikhail I. Katsnelson,
and Tim O. Wehling (2021), “Random phase approxima-
tion for gapped systems: Role of vertex corrections and
applicability of the constrained random phase approxima-
tion,” Phys. Rev. B 104, 045134.

Lorenzana, J, J. Eroles, and S. Sorella (1999), “Does the
Heisenberg Model Describe the Multimagnon Spin Dynam-
ics in Antiferromagnetic CuO Layers?” Phys. Rev. Lett. 83,
5122–5125.

Lounis, S, A. T. Costa, R. B. Muniz, and D. L. Mills (2010),
“Dynamical Magnetic Excitations of Nanostructures from
First Principles,” Phys. Rev. Lett. 105, 187205.

Lounis, Samir, and Peter H. Dederichs (2010), “Mapping
the magnetic exchange interactions from first principles:
Anisotropy anomaly and application to Fe, Ni, and Co,”
Phys. Rev. B 82, 180404.

Luttinger, J M, and J. C. Ward (1960), “Ground-State Energy

https://doi.org/10.1103/PhysRevX.3.031002
https://doi.org/10.1103/PhysRevX.3.031002
https://doi.org/10.1103/PhysRevLett.124.017201
https://doi.org/10.1103/PhysRevLett.124.017201
http://stacks.iop.org/0953-8984/18/i=48/a=022
http://stacks.iop.org/0953-8984/18/i=48/a=022
https://doi.org/10.1063/1.2710181
https://doi.org/10.1063/1.2710181
https://doi.org/10.1103/PhysRevB.91.165134
https://doi.org/10.1038/ncomms2617
https://doi.org/10.1103/PhysRevB.83.041104
https://doi.org/10.1038/s41563-019-0506-1
https://doi.org/10.1038/s41563-019-0506-1
https://doi.org/10.1103/PhysRevB.57.6884
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/https://doi.org/10.1016/0038-1098(85)90007-9
https://doi.org/10.1103/PhysRev.121.451
https://doi.org/10.1103/PhysRevB.53.12166
https://doi.org/10.1063/1.3365594
https://doi.org/10.1063/1.3365594
https://doi.org/10.1103/PhysRevB.82.094435
https://doi.org/10.1103/PhysRevB.68.235332
https://doi.org/10.1103/PhysRevB.94.085137
https://doi.org/10.1103/PhysRevB.94.085137
https://doi.org/10.1088/1361-648x/aa7b00
https://doi.org/10.1088/1361-648x/aa7b00
https://doi.org/10.1103/PhysRevMaterials.2.073001
https://doi.org/10.1103/PhysRevB.94.165141
https://doi.org/10.1103/PhysRevB.90.235135
https://doi.org/10.1103/PhysRevB.104.045134
https://doi.org/10.1103/PhysRevLett.83.5122
https://doi.org/10.1103/PhysRevLett.83.5122
https://doi.org/10.1103/PhysRevLett.105.187205
https://doi.org/10.1103/PhysRevB.82.180404


73

of a Many-Fermion System. II,” Phys. Rev. 118, 1417–1427.
MacDonald, A H, S. M. Girvin, and D. Yoshioka (1988), “ t

U
expansion for the Hubbard model,” Phys. Rev. B 37, 9753–
9756.

Mackintosh, A R, and O. K. Andersen (1980), Electrons at
the Fermi surface (Cambridge Univ. Press, London).

MacLaren, J M, T. C. Schulthess, W. H. Butler, Roberta Sut-
ton, and Michael McHenry (1999), “Electronic structure,
exchange interactions, and Curie temperature of FeCo,”
Journal of Applied Physics 85 (8), 4833–4835.

Mahan, G D (2000), Many-Particle Physics (Springer Science
& Business Media).

Mankovsky, S, S. Bornemann, J. Minár, S. Polesya, H. Ebert,
J. B. Staunton, and A. I. Lichtenstein (2009), “Effects
of spin-orbit coupling on the spin structure of deposited
transition-metal clusters,” Phys. Rev. B 80, 014422.

Mankovsky, S, and H. Ebert (2017), “Accurate scheme to
calculate the interatomic Dzyaloshinskii-Moriya interaction
parameters,” Phys. Rev. B 96, 104416.

Mankovsky, S, S. Polesya, and H. Ebert (2020a), “Exchange
coupling constants at finite temperature,” Phys. Rev. B
102, 134434.

Mankovsky, S, S. Polesya, and H. Ebert (2020b), “Extension
of the standard heisenberg hamiltonian to multispin ex-
change interactions,” Phys. Rev. B 101, 174401.

Mankovsky, Sergiy, Svitlana Polesya, Hannah Lange, Markus
Weißenhofer, Ulrich Nowak, and Hubert Ebert (2022), “An-
gular momentum transfer via relativistic spin-lattice cou-
pling from first principles,” Phys. Rev. Lett. 129, 067202.

Mannini, Matteo, Francesco Pineider, Philippe Sainctavit,
Chiara Danieli, Edwige Otero, Corrado Sciancalepore,
Anna Maria Talarico, Marie-Anne Arrio, Andrea Cornia,
Dante Gatteschi, and Roberta Sessoli (2009), “Magnetic
memory of a single-molecule quantum magnet wired to a
gold surface,” Nature Materials 8 (3), 194–197.

Marzari, Nicola, Arash A. Mostofi, Jonathan R. Yates, Ivo
Souza, and David Vanderbilt (2012), “Maximally localized
Wannier functions: Theory and applications,” Rev. Mod.
Phys. 84, 1419–1475.

Mazurenko, V V, and V. I. Anisimov (2005), “Weak ferro-
magnetism in antiferromagnets: α−Fe2O3 and La2CuO4,”
Phys. Rev. B 71, 184434.

Mazurenko, V V, S. N. Iskakov, A. N. Rudenko, I. V. Kashin,
O. M. Sotnikov, M. V. Valentyuk, and A. I. Lichtenstein
(2013), “Correlation effects in insulating surface nanostruc-
tures,” Phys. Rev. B 88, 085112.

Mazurenko, V V, Y. O. Kvashnin, Fengping Jin, H. A.
De Raedt, A. I. Lichtenstein, and M. I. Katsnelson
(2014), “First-principles modeling of magnetic excitations
in Mn12,” Phys. Rev. B 89, 214422.

Mazurenko, V V, F. Mila, and V. I. Anisimov (2006), “Elec-
tronic structure and exchange interactions of Na2V3O7,”
Phys. Rev. B 73, 014418.

Mazurenko, V V, A. N. Rudenko, S. A. Nikolaev, D. S.
Medvedeva, A. I. Lichtenstein, and M. I. Katsnelson (2016),
“Role of direct exchange and Dzyaloshinskii-Moriya inter-
actions in magnetic properties of graphene derivatives: C2F
and C2H,” Phys. Rev. B 94, 214411.

Mazurenko, V V, S. L. Skornyakov, V. I. Anisimov, and
F. Mila (2008), “First-principles investigation of symmetric
and antisymmetric exchange interactions of SrCu2(BO3)2,”
Phys. Rev. B 78, 195110.

Mazurenko, V V, S. L. Skornyakov, A. V. Kozhevnikov,
F. Mila, and V. I. Anisimov (2007), “Wannier functions

and exchange integrals: The example of LiCu2O2,” Phys.
Rev. B 75, 224408.

Mello, Isys F, Lucas Squillante, Gabriel O. Gomes, Antonio C.
Seridonio, and Mariano de Souza (2021), “Epidemics, the
Ising-model and percolation theory: A comprehensive re-
view focused on Covid-19,” Physica A: Statistical Mechan-
ics and its Applications 573, 125963.

Melnikov, A, I. Radu, U. Bovensiepen, O. Krupin, K. Starke,
E. Matthias, and M. Wolf (2003), “Coherent Optical
Phonons and Parametrically Coupled Magnons Induced by
Femtosecond Laser Excitation of the Gd(0001) Surface,”
Phys. Rev. Lett. 91, 227403.

Meng, Y, Kh. Zakeri, A. Ernst, T.-H. Chuang, H. J. Qin, Y.-J.
Chen, and J. Kirschner (2014), “Direct evidence of antifer-
romagnetic exchange interaction in Fe(001) films: Strong
magnon softening at the high-symmetry M point,” Phys.
Rev. B 90, 174437.

Mentink, J H (2017), “Manipulating magnetism by ultrafast
control of the exchange interaction,” Journal of Physics:
Condensed Matter 29 (45), 453001.

Mentink, J H, Karsten Balzer, and Martin Eckstein (2015),
“Ultrafast and reversible control of the exchange interaction
in mott insulators,” Nature communications 6 (1), 1–8.

Merchant, P, B. Normand, K. W. Krämer, M. Boehm, D. F.
McMorrow, and Ch. Rüegg (2014), “Quantum and clas-
sical criticality in a dimerized quantum antiferromagnet,”
Nature physics 10 (5), 373–379.

Mermin, N D, and H. Wagner (1966), “Absence of Ferromag-
netism or Antiferromagnetism in One- or Two-Dimensional
Isotropic Heisenberg Models,” Phys. Rev. Lett. 17, 1133–
1136.

Mermin, N David (1965), “Thermal properties of the inhomo-
geneous electron gas,” Phys. Rev. 137, A1441–A1443.

Methfessel, M, and J. Kübler (1982), “Bond analysis of heats
of formation: application to some group VIII and IB hy-
drides,” Journal of Physics F: Metal Physics 12 (1), 141–
161.

Mézard, Marc, Giorgio Parisi, and Miguel Angel Virasoro
(1987), Spin glass theory and beyond: An Introduction to
the Replica Method and Its Applications, Vol. 9 (World Sci-
entific Publishing Company).

Mikhaylovskiy, R V, Euan Hendry, A. Secchi, Johan H.
Mentink, Martin Eckstein, A. Wu, R. V. Pisarev, V. V.
Kruglyak, M. I. Katsnelson, Th. Rasing, and A. V. Kimel
(2015), “Ultrafast optical modification of exchange interac-
tions in iron oxides,” Nature communications 6 (1), 1–9.

Modesti, S, L. Petaccia, G. Ceballos, I. Vobornik, G. Panac-
cione, G. Rossi, L. Ottaviano, R. Larciprete, S. Lizzit,
and A. Goldoni (2007), “Insulating Ground State of
Sn/Si(111)−(

√
3×

√
3)R30◦,” Phys. Rev. Lett. 98, 126401.

Mohn, P, and K Schwarz (1993), “Supercell calculations
for transition metal impurities in palladium,” Journal of
Physics: Condensed Matter 5 (29), 5099.

Mohn, Peter (2006), Magnetism in the solid state: an intro-
duction, Vol. 134 (Springer Science & Business Media).

Monnier, R (1997), “First-principles approaches to surface
segregation,” Philosophical Magazine B 75 (1), 67–144.

Mook, H A, J. W. Lynn, and R. M. Nicklow (1973), “Temper-
ature Dependence of the Magnetic Excitations in Nickel,”
Phys. Rev. Lett. 30, 556–559.

Mook, H A, and D. McK. Paul (1985), “Neutron-Scattering
Measurement of the Spin-Wave Spectra for Nickel,” Phys.
Rev. Lett. 54, 227–229.

Moon, S J, H. Jin, K. W. Kim, W. S. Choi, Y. S. Lee,

https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRevB.37.9753
https://doi.org/10.1103/PhysRevB.37.9753
https://doi.org/10.1063/1.370036
https://doi.org/10.1103/PhysRevB.80.014422
https://doi.org/10.1103/PhysRevB.96.104416
https://doi.org/10.1103/PhysRevB.102.134434
https://doi.org/10.1103/PhysRevB.102.134434
https://doi.org/10.1103/PhysRevB.101.174401
https://doi.org/10.1103/PhysRevLett.129.067202
https://doi.org/10.1038/nmat2374
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/PhysRevB.71.184434
https://doi.org/10.1103/PhysRevB.88.085112
https://doi.org/10.1103/PhysRevB.89.214422
https://doi.org/10.1103/PhysRevB.73.014418
https://doi.org/10.1103/PhysRevB.94.214411
https://doi.org/10.1103/PhysRevB.78.195110
https://doi.org/10.1103/PhysRevB.75.224408
https://doi.org/10.1103/PhysRevB.75.224408
https://doi.org/https://doi.org/10.1016/j.physa.2021.125963
https://doi.org/https://doi.org/10.1016/j.physa.2021.125963
https://doi.org/10.1103/PhysRevLett.91.227403
https://doi.org/10.1103/PhysRevB.90.174437
https://doi.org/10.1103/PhysRevB.90.174437
https://doi.org/10.1088/1361-648x/aa8abf
https://doi.org/10.1088/1361-648x/aa8abf
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1088/0305-4608/12/1/013
https://doi.org/10.1088/0305-4608/12/1/013
https://doi.org/10.1103/PhysRevLett.98.126401
http://stacks.iop.org/0953-8984/5/i=29/a=007
http://stacks.iop.org/0953-8984/5/i=29/a=007
https://doi.org/10.1080/13642819708205703
https://doi.org/10.1103/PhysRevLett.30.556
https://doi.org/10.1103/PhysRevLett.54.227
https://doi.org/10.1103/PhysRevLett.54.227


74

J. Yu, G. Cao, A. Sumi, H. Funakubo, C. Bernhard, and
T. W. Noh (2008), “Dimensionality-Controlled Insulator-
Metal Transition and Correlated Metallic State in 5d Tran-
sition Metal Oxides Srn+1IrnO3n+1 (n = 1, 2, and ∞),”
Phys. Rev. Lett. 101, 226402.

Morán, S, C. Ederer, and M. Fähnle (2003), “Ab initio elec-
tron theory for magnetism in fe: Pressure dependence of
spin-wave energies, exchange parameters, and curie tem-
perature,” Phys. Rev. B 67, 012407.

Moriya, T (1981), Magnetism in Narrow Band System, Vol.
2197-4179 (Springer Berlin, Heidelberg).

Moriya, Toru (2012), Spin fluctuations in itinerant electron
magnetism, Vol. 56 (Springer Science & Business Media).

Mott, N F (1974), Metal-insulator transitions (London: Tay-
lor & Francis).

Mryasov, O N, A I Liechtenstein, L M Sandratskii, and V A
Gubanov (1991), “Magnetic structure of FCC iron,” Jour-
nal of Physics: Condensed Matter 3 (39), 7683–7690.

Mryasov, Oleg N (2004), “Magnetic interactions in 3d–5d lay-
ered ferromagnets,” Journal of magnetism and magnetic
materials 272, 800–801.

Mryasov, Oleg N (2005), “Magnetic interactions and phase
transformations in FeM, M=(Pt,Rh) ordered alloys,” Phase
Transitions 78 (1-3), 197–208.

Muniz, R B, and D. L. Mills (2002), “Theory of spin excita-
tions in Fe(110) monolayers,” Phys. Rev. B 66, 174417.

Ney, A, F. Wilhelm, M. Farle, P. Poulopoulos, P. Srivastava,
and K. Baberschke (1999), “Oscillations of the Curie tem-
perature and interlayer exchange coupling in magnetic tri-
layers,” Phys. Rev. B 59, R3938–R3940.

Niklasson, Anders M N, John M. Wills, Mikhail I. Katsnel-
son, Igor A. Abrikosov, Olle Eriksson, and Börje Johansson
(2003), “Modeling the actinides with disordered local mo-
ments,” Phys. Rev. B 67, 235105.

Nordström, L, B Johansson, and M S S Brooks (1993), “Cal-
culation of the electronic structure and the magnetic mo-
ments of Nd2Fe14B,” Journal of Physics: Condensed Mat-
ter 5 (42), 7859.

Nordström, L, and A. Mavromaras (2000), “Magnetic order-
ing of the heavy rare earths,” Europhysics Letters 49 (6),
775.

Nordström, Lars, and David J. Singh (1996), “Noncollinear
Intra-atomic Magnetism,” Phys. Rev. Lett. 76, 4420–4423.

Norman, M R (2016), “Colloquium: Herbertsmithite and the
search for the quantum spin liquid,” Rev. Mod. Phys. 88,
041002.

Oguchi, T, K. Terakura, and A. R. Williams (1983a), “Band
theory of the magnetic interaction in MnO, MnS, and NiO,”
Phys. Rev. B 28, 6443–6452.

Oguchi, Tamio, Kiyoyuki Terakura, and Noriaki Hamada
(1983b), “Magnetism of iron above the Curie temperature,”
Journal of Physics F: Metal Physics 13 (1), 145.

Otsuki, Junya, Kazuyoshi Yoshimi, Hiroshi Shinaoka, and
Yusuke Nomura (2019), “Strong-coupling formula for
momentum-dependent susceptibilities in dynamical mean-
field theory,” Phys. Rev. B 99, 165134.

Owerre, S A (2017), “Topological thermal Hall effect in frus-
trated kagome antiferromagnets,” Phys. Rev. B 95, 014422.

Pachos, Jiannis K, and Martin B. Plenio (2004), “Three-Spin
Interactions in Optical Lattices and Criticality in Cluster
Hamiltonians,” Phys. Rev. Lett. 93, 056402.

Pajda, M, J. Kudrnovský, I. Turek, V. Drchal, and
P. Bruno (2000), “Oscillatory Curie Temperature of Two-
Dimensional Ferromagnets,” Phys. Rev. Lett. 85, 5424–

5427.
Pajda, M, J. Kudrnovský, I. Turek, V. Drchal, and P. Bruno

(2001), “Ab initio calculations of exchange interactions,
spin-wave stiffness constants, and Curie temperatures of
Fe, Co, and Ni,” Phys. Rev. B 64, 174402.

Paki, Joseph, Hanna Terletska, Sergei Iskakov, and Emanuel
Gull (2019), “Charge order and antiferromagnetism in the
extended Hubbard model,” Phys. Rev. B 99, 245146.

Panda, S K, Y. O. Kvashnin, B. Sanyal, I. Dasgupta, and
O. Eriksson (2016), “Electronic structure and exchange in-
teractions of insulating double perovskite La2CuRuO6,”
Phys. Rev. B 94, 064427.

Park, Kyungwha, Mark R. Pederson, and C. Stephen Hellberg
(2004), “Properties of low-lying excited manifolds in Mn12

acetate,” Phys. Rev. B 69, 014416.
Paul, Souvik, Soumyajyoti Haldar, Stephan von Malottki,

and Stefan Heinze (2020), “Role of higher-order exchange
interactions for skyrmion stability,” Nature communica-
tions 11 (1), 1–12.

Pauthenet, R (1982), “Experimental verification of spin-wave
theory in high fields,” Journal of Applied Physics 53 (11),
8187–8192.

Peierls, R (1938), “On a Minimum Property of the Free En-
ergy,” Phys. Rev. 54, 918–919.

Pekker, David, and C. M. Varma (2015), “Amplitude/Higgs
Modes in Condensed Matter Physics,” Annual Review of
Condensed Matter Physics 6 (1), 269–297.

Peralta, Juan E, Gustavo E. Scuseria, and Michael J. Frisch
(2007), “Noncollinear magnetism in density functional cal-
culations,” Phys. Rev. B 75, 125119.

Pereiro, Manuel, Dmitry Yudin, Jonathan Chico, Corina Etz,
Olle Eriksson, and Anders Bergman (2014), “Topological
excitations in a kagome magnet,” Nature communications
5 (1), 1–11.

Perlov, A Y, S. V. Halilov, and H. Eschrig (2000), “Rare-earth
magnetism and adiabatic magnon spectra,” Phys. Rev. B
61, 4070–4081.

Peronaci, Francesco, Olivier Parcollet, and Marco Schiró
(2020), “Enhancement of local pairing correlations in pe-
riodically driven Mott insulators,” Phys. Rev. B 101,
161101(R).

Peters, L, I. Di Marco, P. Thunström, M. I. Katsnelson,
A. Kirilyuk, and O. Eriksson (2014), “Treatment of 4f
states of the rare earths: The case study of TbN,” Phys.
Rev. B 89, 205109.

Peters, L, E. G. C. P. van Loon, A. N. Rubtsov, A. I. Licht-
enstein, M. I. Katsnelson, and E. A. Stepanov (2019),
“Dual boson approach with instantaneous interaction,”
Phys. Rev. B 100, 165128.

Phariseau, Pierre, and B. L. Gyorffy (2012), Electrons in Dis-
ordered Metals and at Metallic Surfaces, Vol. 42 (Springer
Science & Business Media).

Pickart, S J, H. A. Alperin, V. J. Minkiewicz, R. Nathans,
G. Shirane, and O. Steinsvoll (1967), “Spin-Wave Disper-
sion in Ferromagnetic Ni and fcc Co,” Phys. Rev. 156, 623–
626.

Pindor, A J, J. Staunton, G. M. Stocks, and H. Winter (1983),
“Disordered local moment state of magnetic transition met-
als: a self-consistent KKR CPA calculation,” J. Phys. F:
Met. Phys. 13 (5), 979–989.

Pittalis, S, C. R. Proetto, A. Floris, A. Sanna, C. Bersier,
K. Burke, and E. K. U. Gross (2011), “Exact conditions in
finite-temperature density-functional theory,” Phys. Rev.
Lett. 107, 163001.

https://doi.org/10.1103/PhysRevLett.101.226402
https://doi.org/10.1103/PhysRevB.67.012407
https://doi.org/10.1088/0953-8984/3/39/013
https://doi.org/10.1088/0953-8984/3/39/013
https://doi.org/10.1080/01411590412331316591
https://doi.org/10.1080/01411590412331316591
https://doi.org/10.1103/PhysRevB.66.174417
https://doi.org/10.1103/PhysRevB.59.R3938
https://doi.org/10.1103/PhysRevB.67.235105
https://doi.org/10.1088/0953-8984/5/42/008
https://doi.org/10.1088/0953-8984/5/42/008
https://doi.org/10.1209/epl/i2000-00218-2
https://doi.org/10.1209/epl/i2000-00218-2
https://doi.org/10.1103/PhysRevLett.76.4420
https://doi.org/10.1103/RevModPhys.88.041002
https://doi.org/10.1103/RevModPhys.88.041002
https://doi.org/10.1103/PhysRevB.28.6443
https://doi.org/10.1103/PhysRevB.99.165134
https://doi.org/10.1103/PhysRevB.95.014422
https://doi.org/10.1103/PhysRevLett.93.056402
https://doi.org/10.1103/PhysRevLett.85.5424
https://doi.org/10.1103/PhysRevLett.85.5424
https://doi.org/10.1103/PhysRevB.64.174402
https://doi.org/10.1103/PhysRevB.99.245146
https://doi.org/10.1103/PhysRevB.94.064427
https://doi.org/10.1103/PhysRevB.69.014416
https://doi.org/10.1103/PhysRev.54.918
https://doi.org/10.1146/annurev-conmatphys-031214-014350
https://doi.org/10.1146/annurev-conmatphys-031214-014350
https://doi.org/10.1103/PhysRevB.75.125119
https://doi.org/10.1103/PhysRevB.61.4070
https://doi.org/10.1103/PhysRevB.61.4070
https://doi.org/10.1103/PhysRevB.101.161101
https://doi.org/10.1103/PhysRevB.101.161101
https://doi.org/10.1103/PhysRevB.89.205109
https://doi.org/10.1103/PhysRevB.89.205109
https://doi.org/10.1103/PhysRevB.100.165128
https://doi.org/10.1103/PhysRev.156.623
https://doi.org/10.1103/PhysRev.156.623
https://doi.org/10.1088/0305-4608/13/5/012
https://doi.org/10.1088/0305-4608/13/5/012
https://doi.org/10.1103/PhysRevLett.107.163001
https://doi.org/10.1103/PhysRevLett.107.163001


75

Polesya, S, S. Mankovsky, D. Ködderitzsch, J. Minár, and
H. Ebert (2016), “Finite-temperature magnetism of FeRh
compounds,” Phys. Rev. B 93, 024423.

Polesya, S, S. Mankovsky, O. Sipr, W. Meindl, C. Strunk,
and H. Ebert (2010), “Finite-temperature magnetism of
FexPd1−x and CoxPt1−x alloys,” Phys. Rev. B 82, 214409.

Poluektov, Mikhail, Olle Eriksson, and Gunilla Kreiss (2016),
“Scale transitions in magnetisation dynamics,” Communi-
cations in Computational Physics 20 (4), 969–988.

Poluektov, Mikhail, Olle Eriksson, and Gunilla Kreiss (2018),
“Coupling atomistic and continuum modelling of mag-
netism,” Computer Methods in Applied Mechanics and En-
gineering 329, 219–253.

Postnikov, Andrei V, Jens Kortus, and Mark R. Pederson
(2006), “Density functional studies of molecular magnets,”
physica status solidi (b) 243 (11), 2533–2572.

Pourovskii, L V (2016), “Two-site fluctuations and multipolar
intersite exchange interactions in strongly correlated sys-
tems,” Phys. Rev. B 94, 115117.

Pourovskii, L V, J. Boust, R. Ballou, G. Gomez Eslava, and
D. Givord (2020), “Higher-order crystal field and rare-earth
magnetism in rare-earth–Co5 intermetallics,” Phys. Rev. B
101, 214433.

Pourovskii, Leonid V, and Sergii Khmelevskyi (2019),
“Quadrupolar superexchange interactions, multipolar or-
der, and magnetic phase transition in UO2,” Phys. Rev.
B 99, 094439.

Pourovskii, Leonid V, and Sergii Khmelevskyi (2021), “Hid-
den order and multipolar exchange striction in a correlated
f-electron system,” Proceedings of the National Academy
of Sciences 118 (14), 10.1073/pnas.2025317118.

Principi, Alessandro, and Mikhail I. Katsnelson (2016), “Self-
Induced Glassiness and Pattern Formation in Spin Systems
Subject to Long-Range Interactions,” Phys. Rev. Lett. 117,
137201.

Rammer, J, and H. Smith (1986), “Quantum field-theoretical
methods in transport theory of metals,” Rev. Mod. Phys.
58, 323–359.

Ribeiro, M S, G. B. Corrêa, A. Bergman, L. Nordström,
O. Eriksson, and A. B. Klautau (2011), “From collinear
to vortex magnetic structures in Mn corrals on Pt(111),”
Phys. Rev. B 83, 014406.

Ritschel, T, J. Trinckauf, K. Koepernik, B. Büchner, M. v.
Zimmermann, H. Berger, Y. I. Joe, P. Abbamonte, and
J. Geck (2015), “Orbital textures and charge density waves
in transition metal dichalcogenides,” Nature physics 11 (4),
328.

Roger, M, J. H. Hetherington, and J. M. Delrieu (1983),
“Magnetism in solid 3Helium,” Rev. Mod. Phys. 55, 1–64.

Rohringer, G, and A. Toschi (2016), “Impact of nonlocal cor-
relations over different energy scales: A dynamical vertex
approximation study,” Phys. Rev. B 94, 125144.

Rosengaard, N M, and Börje Johansson (1997), “Finite-
temperature study of itinerant ferromagnetism in Fe, Co,
and Ni,” Phys. Rev. B 55, 14975–14986.

Ruban, A V, and I. A. Abrikosov (2008), “Configurational
thermodynamics of alloys from first principles: effective
cluster interactions,” Reports on Progress in Physics 71 (4),
046501.

Ruban, A V, M. I. Katsnelson, W. Olovsson, S. I. Simak, and
I. A. Abrikosov (2005), “Origin of magnetic frustrations in
Fe−Ni Invar alloys,” Phys. Rev. B 71, 054402.

Ruban, A V, S. Khmelevskyi, P. Mohn, and B. Johans-
son (2007), “Temperature-induced longitudinal spin fluc-

tuations in Fe and Ni,” Phys. Rev. B 75, 054402.
Ruban, A V, and V. I. Razumovskiy (2012), “Spin-wave

method for the total energy of paramagnetic state,” Phys.
Rev. B 85, 174407.

Ruban, A V, S. Shallcross, S. I. Simak, and H. L. Skriver
(2004), “Atomic and magnetic configurational energetics by
the generalized perturbation method,” Phys. Rev. B 70,
125115.

Ruban, A V, S. I. Simak, P. A. Korzhavyi, and H. L. Skriver
(2002), “Screened Coulomb interactions in metallic alloys.
II. Screening beyond the single-site and atomic-sphere ap-
proximations,” Phys. Rev. B 66, 024202.

Rubtsov, A N, M. I. Katsnelson, and A. I. Lichtenstein (2008),
“Dual fermion approach to nonlocal correlations in the
Hubbard model,” Phys. Rev. B 77, 033101.

Rubtsov, A N, M. I. Katsnelson, and A. I. Lichtenstein (2012),
“Dual boson approach to collective excitations in correlated
fermionic systems,” Annals of Physics 327 (5), 1320 – 1335.

Rubtsov, A N, M. I. Katsnelson, A. I. Lichtenstein, and
A. Georges (2009), “Dual fermion approach to the two-
dimensional Hubbard model: Antiferromagnetic fluctua-
tions and Fermi arcs,” Phys. Rev. B 79, 045133.

Rubtsov, A N, V. V. Savkin, and A. I. Lichtenstein
(2005), “Continuous-time quantum Monte Carlo method
for fermions,” Phys. Rev. B 72, 035122.

Rudenko, A N, F. J. Keil, M. I. Katsnelson, and A. I.
Lichtenstein (2013), “Exchange interactions and frustrated
magnetism in single-side hydrogenated and fluorinated
graphene,” Phys. Rev. B 88, 081405.

Ruderman, M A, and C. Kittel (1954), “Indirect Exchange
Coupling of Nuclear Magnetic Moments by Conduction
Electrons,” Phys. Rev. 96, 99–102.

Rüegg, Ch, B. Normand, M. Matsumoto, A. Furrer, D. F.
McMorrow, K. W. Krämer, H. U. Güdel, S. N. Gvasaliya,
H. Mutka, and M. Boehm (2008), “Quantum Magnets
under Pressure: Controlling Elementary Excitations in
TlCuCl3,” Phys. Rev. Lett. 100, 205701.

Ruelle, David (1999), Statistical mechanics: Rigorous results
(World Scientific).

Ruiz, Eliseo, Joan Cano, and Santiago Alvarez (2005), “Den-
sity Functional Study of Exchange Coupling Constants in
Single-Molecule Magnets: The Fe8 Complex,” Chemistry –
A European Journal 11 (16), 4767–4771.

Runge, Erich, and E. K. U. Gross (1984), “Density-Functional
Theory for Time-Dependent Systems,” Phys. Rev. Lett. 52,
997–1000.

Rusz, J, L. Bergqvist, J. Kudrnovský, and I. Turek
(2006), “Exchange interactions and Curie temperatures in
Ni2−xMnSb alloys: First-principles study,” Phys. Rev. B
73, 214412.

Rusz, J, I. Turek, and M. Diviš (2005), “Random-phase
approximation for critical temperatures of collinear mag-
nets with multiple sublattices: GdX compounds (X =
Mg,Rh,Ni,Pd),” Phys. Rev. B 71, 174408.

Sachdev, Subir (2008), “Quantum magnetism and criticality,”
Nature Physics 4 (3), 173–185.

Sadhukhan, Banasree, Anders Bergman, Yaroslav O. Kvash-
nin, Johan Hellsvik, and Anna Delin (2022), “Spin-lattice
couplings in two-dimensional CrI3 from first-principles
computations,” Phys. Rev. B 105, 104418.

Sagawa, Masato, Setsuo Fujimura, Norio Togawa, Hitoshi Ya-
mamoto, and Yutaka Matsuura (1984), “New material for
permanent magnets on a base of nd and fe,” Journal of
Applied Physics 55 (6), 2083–2087.

https://doi.org/10.1103/PhysRevB.93.024423
https://doi.org/10.1103/PhysRevB.82.214409
https://doi.org/https://doi.org/10.1002/pssb.200541490
https://doi.org/10.1103/PhysRevB.94.115117
https://doi.org/10.1103/PhysRevB.101.214433
https://doi.org/10.1103/PhysRevB.101.214433
https://doi.org/10.1103/PhysRevB.99.094439
https://doi.org/10.1103/PhysRevB.99.094439
https://doi.org/10.1073/pnas.2025317118
https://doi.org/10.1073/pnas.2025317118
https://doi.org/10.1103/PhysRevLett.117.137201
https://doi.org/10.1103/PhysRevLett.117.137201
https://doi.org/10.1103/RevModPhys.58.323
https://doi.org/10.1103/RevModPhys.58.323
https://doi.org/10.1103/PhysRevB.83.014406
https://doi.org/10.1103/RevModPhys.55.1
https://doi.org/10.1103/PhysRevB.94.125144
https://doi.org/10.1103/PhysRevB.55.14975
http://stacks.iop.org/0034-4885/71/i=4/a=046501
http://stacks.iop.org/0034-4885/71/i=4/a=046501
https://doi.org/10.1103/PhysRevB.71.054402
https://doi.org/10.1103/PhysRevB.75.054402
https://doi.org/10.1103/PhysRevB.85.174407
https://doi.org/10.1103/PhysRevB.85.174407
https://doi.org/10.1103/PhysRevB.70.125115
https://doi.org/10.1103/PhysRevB.70.125115
https://doi.org/10.1103/PhysRevB.66.024202
https://doi.org/10.1103/PhysRevB.77.033101
https://doi.org/10.1016/j.aop.2012.01.002
https://doi.org/10.1103/PhysRevB.79.045133
https://doi.org/10.1103/PhysRevB.72.035122
https://doi.org/10.1103/PhysRevB.88.081405
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRevLett.100.205701
https://doi.org/https://doi.org/10.1002/chem.200500041
https://doi.org/https://doi.org/10.1002/chem.200500041
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevB.73.214412
https://doi.org/10.1103/PhysRevB.73.214412
https://doi.org/10.1103/PhysRevB.71.174408
https://doi.org/10.1103/PhysRevB.105.104418


76

Sakuma, Akimasa (1999), “First principles study on the ex-
change constants of the 3d transition metals,” Journal of
the Physical Society of Japan 68 (2), 620–624.

Sakuma, Akimasa (2000), “First-Principles Study on the Non-
Collinear Magnetic Structures of Disordered Alloys,” Jour-
nal of the Physical Society of Japan 69 (9), 3072–3083.

Salpeter, E E, and H. A. Bethe (1951), “A Relativistic Equa-
tion for Bound-State Problems,” Phys. Rev. 84, 1232–1242.

Sandratskii, L M (1991), “Symmetry analysis of electronic
states for crystals with spiral magnetic order. II. Connec-
tion with limiting cases,” Journal of Physics: Condensed
Matter 3 (44), 8587–8596.

Sandratskii, L M (1998), “Noncollinear magnetism in
itinerant-electron systems: Theory and applications,” Ad-
vances in Physics 47 (1), 91–160.

Sandratskii, L M, and P. Bruno (2002), “Exchange interac-
tions and Curie temperature in (Ga,Mn)As,” Phys. Rev. B
66, 134435.

Sangiovanni, G, M. Capone, C. Castellani, and M. Grilli
(2005), “Electron-Phonon Interaction Close to a Mott Tran-
sition,” Phys. Rev. Lett. 94, 026401.

Santini, Paolo, Stefano Carretta, Giuseppe Amoretti, Roberto
Caciuffo, Nicola Magnani, and Gerard H. Lander (2009),
“Multipolar interactions in f -electron systems: The
paradigm of actinide dioxides,” Rev. Mod. Phys. 81, 807–
863.

dos Santos Dias, Manuel, Sascha Brinker, András Lászlóffy,
Bendegúz Nyári, Stefan Blügel, László Szunyogh, and
Samir Lounis (2021), “Proper and improper chiral mag-
netic interactions,” Phys. Rev. B 103, L140408.

dos Santos Dias, Manuel, Sascha Brinker, András Lászlóffy,
Bendegúz Nyári, Stefan Blügel, László Szunyogh, and
Samir Lounis (2022), “Reply to “Comment on ‘Proper and
improper chiral magnetic interactions’ ”,” Phys. Rev. B
105, 026402.

Sanyal, B, L. Bergqvist, and O. Eriksson (2003), “Ferromag-
netic materials in the zinc-blende structure,” Phys. Rev. B
68, 054417.

Sato, K, L. Bergqvist, J. Kudrnovský, P. H. Ded-
erichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar,
H. Katayama-Yoshida, V. A. Dinh, T. Fukushima,
H. Kizaki, and R. Zeller (2010), “First-principles theory
of dilute magnetic semiconductors,” Rev. Mod. Phys. 82,
1633–1690.

Sato, Masahiro (2007), “Four-spin-exchange- and magnetic-
field-induced chiral order in two-leg spin ladders,” Phys.
Rev. B 76, 054427.

Savrasov, S Y (1998), “Linear Response Calculations of Spin
Fluctuations,” Phys. Rev. Lett. 81, 2570–2573.

Sayad, Mohammad, and Michael Potthoff (2015), “Spin dy-
namics and relaxation in the classical-spin Kondo-impurity
model beyond the Landau–Lifschitz–Gilbert equation,”
New Journal of Physics 17 (11), 113058.

Sayad, Mohammad, Roman Rausch, and Michael Potthoff
(2016), “Relaxation of a Classical Spin Coupled to a
Strongly Correlated Electron System,” Phys. Rev. Lett.
117, 127201.

Scalmani, Giovanni, and Michael J. Frisch (2012), “A New
Approach to Noncollinear Spin Density Functional The-
ory beyond the Local Density Approximation,” Journal of
Chemical Theory and Computation 8 (7), 2193–2196.

Schäfer, Thomas, Nils Wentzell, Fedor Šimkovic, Yuan-
Yao He, Cornelia Hille, Marcel Klett, Christian J. Eck-
hardt, Behnam Arzhang, Viktor Harkov, François-Marie

Le Régent, Alfred Kirsch, Yan Wang, Aaram J. Kim,
Evgeny Kozik, Evgeny A. Stepanov, Anna Kauch, Sabine
Andergassen, Philipp Hansmann, Daniel Rohe, Yuri M.
Vilk, James P. F. LeBlanc, Shiwei Zhang, A.-M. S.
Tremblay, Michel Ferrero, Olivier Parcollet, and Antoine
Georges (2021), “Tracking the Footprints of Spin Fluctua-
tions: A MultiMethod, MultiMessenger Study of the Two-
Dimensional Hubbard Model,” Phys. Rev. X 11, 011058.

Schapere, A, and F. Wilczek (1989), Geometric Phases in
Physics (World Scientific, Singapore).

Scheurer, Mathias S, Shubhayu Chatterjee, Wei Wu, Michel
Ferrero, Antoine Georges, and Subir Sachdev (2018),
“Topological order in the pseudogap metal,” Proceedings of
the National Academy of Sciences 115 (16), E3665–E3672.

Schiffer, P, A. P. Ramirez, W. Bao, and S-W. Cheong (1995),
“Low Temperature Magnetoresistance and the Magnetic
Phase Diagram of La1−xCaxMnO3,” Phys. Rev. Lett. 75,
3336–3339.

van Schilfgaarde, M, and V. P. Antropov (1999), “First-
principles exchange interactions in Fe, Ni, and Co,” Journal
of Applied Physics 85 (8), 4827–4829.

van Schilfgaarde, Mark, I. A. Abrikosov, and B. Johansson
(1999), “Origin of the Invar effect in iron–nickel alloys,”
Nature 400 (6739), 46–49.

Schlenker, C, and M. Marezio (1980), “The order–disorder
transition of Ti3+-Ti3+ pairs in Ti4O7 and (Ti1−xVx)4O7,”
Philosophical Magazine B 42 (3), 453–472.

Schrieffer, J R (1999), Theory of Superconducctivity (Avalon
Publishing).

Schüler, M, M. Rösner, T. O. Wehling, A. I. Lichtenstein,
and M. I. Katsnelson (2013), “Optimal Hubbard Models for
Materials with Nonlocal Coulomb Interactions: Graphene,
Silicene, and Benzene,” Phys. Rev. Lett. 111, 036601.

Schulz, H J (1990), “Effective action for strongly correlated
fermions from functional integrals,” Phys. Rev. Lett. 65,
2462–2465.

Schuwalow, Sergej, Daniel Grieger, and Frank Lechermann
(2010), “Realistic modeling of the electronic structure and
the effect of correlations for Sn/Si(111) and Sn/Ge(111)
surfaces,” Phys. Rev. B 82, 035116.

Secchi, A, S. Brener, A. I. Lichtenstein, and M. I. Katsnelson
(2013), “Non-equilibrium magnetic interactions in strongly
correlated systems,” Annals of Physics 333, 221–271.

Secchi, A, A. I. Lichtenstein, and M. I. Katsnelson (2016a),
“Nonequilibrium itinerant-electron magnetism: A time-
dependent mean-field theory,” Phys. Rev. B 94, 085153.

Secchi, A, A. I. Lichtenstein, and M. I. Katsnelson (2016b),
“Spin and orbital exchange interactions from Dynamical
Mean Field Theory,” J. Magn. Magn. Mater. 400, 112.

Shallcross, S, A. E. Kissavos, V. Meded, and A. V. Ruban
(2005), “An ab initio effective Hamiltonian for magnetism
including longitudinal spin fluctuations,” Phys. Rev. B 72,
104437.

Sharma, S, J. K. Dewhurst, C. Ambrosch-Draxl, S. Kurth,
N. Helbig, S. Pittalis, S. Shallcross, L. Nordström, and
E. K. U. Gross (2007), “First-Principles Approach to Non-
collinear Magnetism: Towards Spin Dynamics,” Phys. Rev.
Lett. 98, 196405.

Sharma, S, E. K. U. Gross, A. Sanna, and J. K. De-
whurst (2018), “Source-Free Exchange-Correlation Mag-
netic Fields in Density Functional Theory,” Journal of
Chemical Theory and Computation 14 (3), 1247–1253.

Shirane, G, V. J. Minkiewicz, and R. Nathans (1968), “Spin
Waves in 3d Metals,” Journal of Applied Physics 39 (2),

https://doi.org/10.1143/JPSJ.69.3072
https://doi.org/10.1143/JPSJ.69.3072
https://doi.org/10.1103/PhysRev.84.1232
https://doi.org/10.1088/0953-8984/3/44/005
https://doi.org/10.1088/0953-8984/3/44/005
https://doi.org/10.1080/000187398243573
https://doi.org/10.1080/000187398243573
https://doi.org/10.1103/PhysRevB.66.134435
https://doi.org/10.1103/PhysRevB.66.134435
https://doi.org/10.1103/PhysRevLett.94.026401
https://doi.org/10.1103/RevModPhys.81.807
https://doi.org/10.1103/RevModPhys.81.807
https://doi.org/10.1103/PhysRevB.103.L140408
https://doi.org/10.1103/PhysRevB.105.026402
https://doi.org/10.1103/PhysRevB.105.026402
https://doi.org/10.1103/PhysRevB.68.054417
https://doi.org/10.1103/PhysRevB.68.054417
https://doi.org/10.1103/RevModPhys.82.1633
https://doi.org/10.1103/RevModPhys.82.1633
https://doi.org/10.1103/PhysRevB.76.054427
https://doi.org/10.1103/PhysRevB.76.054427
https://doi.org/10.1103/PhysRevLett.81.2570
https://doi.org/10.1088/1367-2630/17/11/113058
https://doi.org/10.1103/PhysRevLett.117.127201
https://doi.org/10.1103/PhysRevLett.117.127201
https://doi.org/10.1021/ct300441z
https://doi.org/10.1021/ct300441z
https://doi.org/10.1103/PhysRevX.11.011058
https://doi.org/10.1073/pnas.1720580115
https://doi.org/10.1073/pnas.1720580115
https://doi.org/10.1103/PhysRevLett.75.3336
https://doi.org/10.1103/PhysRevLett.75.3336
https://doi.org/10.1063/1.370495
https://doi.org/10.1063/1.370495
https://doi.org/10.1038/21848
https://doi.org/10.1080/01418638008221887
https://doi.org/10.1103/PhysRevLett.111.036601
https://doi.org/10.1103/PhysRevLett.65.2462
https://doi.org/10.1103/PhysRevLett.65.2462
https://doi.org/10.1103/PhysRevB.82.035116
https://doi.org/https://doi.org/10.1016/j.aop.2013.03.006
https://doi.org/10.1103/PhysRevB.94.085153
https://doi.org/10.1016/j.jmmm.2015.07.048
https://doi.org/10.1103/PhysRevB.72.104437
https://doi.org/10.1103/PhysRevB.72.104437
https://doi.org/10.1103/PhysRevLett.98.196405
https://doi.org/10.1103/PhysRevLett.98.196405
https://doi.org/10.1021/acs.jctc.7b01049
https://doi.org/10.1021/acs.jctc.7b01049
https://doi.org/10.1063/1.2163453


77

383–390.
Shirinyan, Albert A, Valerii K. Kozin, Johan Hellsvik, Manuel

Pereiro, Olle Eriksson, and Dmitry Yudin (2019), “Self-
organizing maps as a method for detecting phase transi-
tions and phase identification,” Phys. Rev. B 99, 041108.

Simon, E, L. Rózsa, K. Palotás, and L. Szunyogh (2018),
“Magnetism of a Co monolayer on Pt(111) capped by over-
layers of 5d elements: A spin-model study,” Phys. Rev. B
97, 134405.

Simon, E, J. Gy. Vida, S. Khmelevskyi, and L. Szunyogh
(2015), “Magnetism of ordered and disordered Ni2MnAl full
Heusler compounds,” Phys. Rev. B 92, 054438.

Singer, R, F. Dietermann, and M. Fähnle (2011), “Spin Inter-
actions in bcc and fcc Fe beyond the Heisenberg Model,”
Phys. Rev. Lett. 107, 017204.

Singer, R, M. Fähnle, and G. Bihlmayer (2005), “Constrained
spin-density functional theory for excited magnetic config-
urations in an adiabatic approximation,” Phys. Rev. B 71,
214435.

Singh, N, P. Elliott, T. Nautiyal, J. K. Dewhurst, and
S. Sharma (2019), “Adiabatic generalized gradient approxi-
mation kernel in time-dependent density functional theory,”
Phys. Rev. B 99, 035151.

Sivadas, Nikhil, Satoshi Okamoto, Xiaodong Xu, Craig. J.
Fennie, and Di Xiao (2018), “Stacking-Dependent Mag-
netism in Bilayer CrI3,” Nano Letters 18 (12), 7658–7664.

Skomski, R, and J.M.D Coey (1999), Permanent Magnetism
(CRC Press).

Skomski, Ralph (2021), Handbook of Magnetism and Magnetic
Materials, edited by J. M. D. Coey and Stuart S.P. Parkin
(Springer International Publishing, Cham).

Skomski, Ralph, and J. M. D. Coey (1993), “Giant energy
product in nanostructured two-phase magnets,” Phys. Rev.
B 48, 15812–15816.

Slater, J C (1951), “Magnetic Effects and the Hartree-Fock
Equation,” Phys. Rev. 82, 538–541.

Slezák, J, P. Mutombo, and V. Cháb (1999), “STM study of a
Pb/Si(111) interface at room and low temperatures,” Phys.
Rev. B 60, 13328–13330.

Snowball, Ian, Lovisa Zillén, and Per Sandgren (2002), “Bac-
terial magnetite in Swedish varved lake-sediments: a po-
tential bio-marker of environmental change,” Quaternary
International 88 (1), 13–19.

Söderlind, P, A. Landa, I. L. M. Locht, D. Åberg, Y. Kvash-
nin, M. Pereiro, M. Däne, P. E. A. Turchi, V. P. Antropov,
and O. Eriksson (2017), “Prediction of the new efficient
permanent magnet SmCoNiFe3,” Phys. Rev. B 96, 100404.

Solovyev, I V (2002), “Electronic structure and stability of the
ferrimagnetic ordering in double perovskites,” Phys. Rev.
B 65, 144446.

Solovyev, I V (2006), “Lattice distortion and magnetism of
3d− t2g perovskite oxides,” Phys. Rev. B 74, 054412.

Solovyev, I V (2021), “Exchange interactions and magnetic
force theorem,” Phys. Rev. B 103, 104428.

Solovyev, I V, P. H. Dederichs, and I. Mertig (1995), “Origin
of orbital magnetization and magnetocrystalline anisotropy
in TX ordered alloys (where T=Fe,Co and X=Pd,Pt),”
Phys. Rev. B 52, 13419–13428.

Solovyev, I V, I. V. Kashin, and V. V. Mazurenko (2015),
“Mechanisms and origins of half-metallic ferromagnetism
in CrO2,” Phys. Rev. B 92, 144407.

Solovyev, I V, and K. Terakura (1998), “Effective single-
particle potentials for MnO in light of interatomic magnetic
interactions: Existing theories and perspectives,” Phys.

Rev. B 58, 15496–15507.
Solovyev, I V, and K. Terakura (1999a), “Magnetic Spin Ori-

gin of the Charge-Ordered Phase in Manganites,” Phys.
Rev. Lett. 83, 2825–2828.

Solovyev, I V, and K. Terakura (1999b), “Zone Boundary
Softening of the Spin-Wave Dispersion in Doped Ferromag-
netic Manganites,” Phys. Rev. Lett. 82, 2959–2962.

Solovyev, Igor (2009), “Long-Range Magnetic Interactions In-
duced by the Lattice Distortions and the Origin of the E-
Type Antiferromagnetic Phase in the Undoped Orthorhom-
bic Manganites,” Journal of the Physical Society of Japan
78 (5), 054710.

Solovyev, Igor, Noriaki Hamada, and Kiyoyuki Terakura
(1996a), “Crucial Role of the Lattice Distortion in the Mag-
netism of LaMnO3,” Phys. Rev. Lett. 76, 4825–4828.

Solovyev, Igor, Noriaki Hamada, and Kiyoyuki Terakura
(1996b), “t2g versus all 3d localization in LaMO3 per-
ovskites (M=Ti–Cu): First-principles study,” Phys. Rev.
B 53, 7158–7170.

Song, Tiancheng, Zaiyao Fei, Matthew Yankowitz, Zhong
Lin, Qianni Jiang, Kyle Hwangbo, Qi Zhang, Bosong Sun,
Takashi Taniguchi, Kenji Watanabe, Michael A. McGuire,
David Graf, Ting Cao, Jiun-Haw Chu, David H. Cobden,
Cory R. Dean, Di Xiao, and Xiaodong Xu (2019), “Switch-
ing 2D magnetic states via pressure tuning of layer stack-
ing,” Nature Materials 18 (12), 1298–1302.

Soriano, D, A. N. Rudenko, M. I. Katsnelson, and M. Rösner
(2021), “Environmental screening and ligand-field effects to
magnetism in CrI3 monolayer,” npj Computational Mate-
rials 7 (1), 162.

Sotnikov, O M, V. V. Mazurenko, J. Colbois, F. Mila, M. I.
Katsnelson, and E. A. Stepanov (2021), “Probing the topol-
ogy of the quantum analog of a classical skyrmion,” Phys.
Rev. B 103, L060404.

Souliou, Sofia-Michaela and Chaloupka, Jiří and Khaliullin,
Giniyat and Ryu, Gihun and Jain, Anil and Kim, B. J.
and Le Tacon, Matthieu and Keimer, Bernhard, (2017),
“Raman Scattering from Higgs Mode Oscillations in the
Two-Dimensional Antiferromagnet Ca2RuO4,” Phys. Rev.
Lett. 119, 067201.

Soven, Paul (1967), “Coherent-Potential Model of Substitu-
tional Disordered Alloys,” Phys. Rev. 156, 809–813.

Spałek, J (2007), “t-J Model Then and Now: a Personal
Perspective from the Pioneering Times,” Acta Physica
Polonica A 111 (4), 409–424.

Spišák, D, and J. Hafner (1997), “Theory of bilinear and bi-
quadratic exchange interactions in iron: Bulk and surface,”
Journal of Magnetism and Magnetic Materials 168 (3),
257–268.

Staub, U, M. Shi, C. Schulze-Briese, B. D. Patterson,
F. Fauth, E. Dooryhee, L. Soderholm, J. O. Cross, D. Man-
nix, and A. Ochiai (2005), “Temperature dependence of the
crystal structure and charge ordering in Yb4As3,” Phys.
Rev. B 71, 075115.

Staunton, J, B L Gyorffy, A J Pindor, G M Stocks, and
H Winter (1985), “Electronic structure of metallic ferro-
magnets above the curie temperature,” Journal of Physics
F: Metal Physics 15 (6), 1387–1404.

Staunton, J, B. L. Gyorffy, G. M. Stocks, and J. Wadsworth
(1986), “The static, paramagnetic, spin susceptibility of
metals at finite temperatures,” J. Phys. F: Met. Phys.
16 (11), 1761–1788.

Staunton, J, B.L. Gyorffy, A.J. Pindor, G.M. Stocks, and
H. Winter (1984), “The "disordered local moment" picture

https://doi.org/10.1063/1.2163453
https://doi.org/10.1103/PhysRevB.99.041108
https://doi.org/10.1103/PhysRevB.97.134405
https://doi.org/10.1103/PhysRevB.97.134405
https://doi.org/10.1103/PhysRevB.92.054438
https://doi.org/10.1103/PhysRevLett.107.017204
https://doi.org/10.1103/PhysRevB.71.214435
https://doi.org/10.1103/PhysRevB.71.214435
https://doi.org/10.1103/PhysRevB.99.035151
https://doi.org/10.1021/acs.nanolett.8b03321
https://doi.org/10.1007/978-3-030-63210-6_2
https://doi.org/10.1007/978-3-030-63210-6_2
https://doi.org/10.1103/PhysRevB.48.15812
https://doi.org/10.1103/PhysRevB.48.15812
https://doi.org/10.1103/PhysRev.82.538
https://doi.org/10.1103/PhysRevB.60.13328
https://doi.org/10.1103/PhysRevB.60.13328
https://doi.org/https://doi.org/10.1016/S1040-6182(01)00069-6
https://doi.org/https://doi.org/10.1016/S1040-6182(01)00069-6
https://doi.org/10.1103/PhysRevB.96.100404
https://doi.org/10.1103/PhysRevB.65.144446
https://doi.org/10.1103/PhysRevB.65.144446
https://doi.org/10.1103/PhysRevB.74.054412
https://doi.org/10.1103/PhysRevB.103.104428
https://doi.org/10.1103/PhysRevB.52.13419
https://doi.org/10.1103/PhysRevB.92.144407
https://doi.org/10.1103/PhysRevB.58.15496
https://doi.org/10.1103/PhysRevB.58.15496
https://doi.org/10.1103/PhysRevLett.83.2825
https://doi.org/10.1103/PhysRevLett.83.2825
https://doi.org/10.1103/PhysRevLett.82.2959
https://doi.org/10.1143/JPSJ.78.054710
https://doi.org/10.1143/JPSJ.78.054710
https://doi.org/10.1103/PhysRevLett.76.4825
https://doi.org/10.1103/PhysRevB.53.7158
https://doi.org/10.1103/PhysRevB.53.7158
https://doi.org/10.1038/s41563-019-0505-2
https://doi.org/10.1038/s41524-021-00631-4
https://doi.org/10.1038/s41524-021-00631-4
https://doi.org/10.1103/PhysRevB.103.L060404
https://doi.org/10.1103/PhysRevB.103.L060404
https://doi.org/10.1103/PhysRevLett.119.067201
https://doi.org/10.1103/PhysRevLett.119.067201
https://doi.org/10.1103/PhysRev.156.809
https://doi.org/https://doi.org/10.1016/S0304-8853(96)00700-7
https://doi.org/https://doi.org/10.1016/S0304-8853(96)00700-7
https://doi.org/10.1103/PhysRevB.71.075115
https://doi.org/10.1103/PhysRevB.71.075115
https://doi.org/10.1088/0305-4608/15/6/019
https://doi.org/10.1088/0305-4608/15/6/019
https://doi.org/10.1088/0305-4608/16/11/016
https://doi.org/10.1088/0305-4608/16/11/016


78

of itinerant magnetism at finite temperatures,” Journal of
Magnetism and Magnetic Materials 45 (1), 15–22.

Staunton, J B, and B. L. Gyorffy (1992), “Onsager cavity
fields in itinerant-electron paramagnets,” Phys. Rev. Lett.
69, 371–374.

Staunton, J B, L. Szunyogh, A. Buruzs, B. L. Gyorffy, S. Os-
tanin, and L. Udvardi (2006), “Temperature dependence of
magnetic anisotropy: An ab initio approach,” Phys. Rev.
B 74, 144411.

Steenbock, Torben, Jos Tasche, Alexander I. Lichtenstein,
and Carmen Herrmann (2015), “A Green’s-Function Ap-
proach to Exchange Spin Coupling As a New Tool for
Quantum Chemistry,” Journal of Chemical Theory and
Computation 11 (12), 5651–5664.

Stefanucci, Gianluca, and Robert van Leeuwen (2013),
Nonequilibrium Many-Body Theory of Quantum Systems:
A Modern Introduction (Cambridge University Press).

Stepanov, E A, S. Brener, V. Harkov, M. I. Katsnelson,
and A. I. Lichtenstein (2022a), “Spin dynamics of itinerant
electrons: Local magnetic moment formation and Berry
phase,” Phys. Rev. B 105, 155151.

Stepanov, E A, S. Brener, F. Krien, M. Harland, A. I. Licht-
enstein, and M. I. Katsnelson (2018), “Effective Heisenberg
Model and Exchange Interaction for Strongly Correlated
Systems,” Phys. Rev. Lett. 121, 037204.

Stepanov, E A, C. Dutreix, and M. I. Katsnelson (2017), “Dy-
namical and Reversible Control of Topological Spin Tex-
tures,” Phys. Rev. Lett. 118, 157201.

Stepanov, E A, V. Harkov, and A. I. Lichtenstein (2019a),
“Consistent partial bosonization of the extended Hubbard
model,” Phys. Rev. B 100, 205115.

Stepanov, E A, V. Harkov, M. Rösner, A. I. Lichtenstein,
M. I. Katsnelson, and A. N. Rudenko (2022b), “Coexist-
ing charge density wave and ferromagnetic instabilities in
monolayer InSe,” npj Comput. Mater. 8, 118.

Stepanov, E A, A. Huber, A. I. Lichtenstein, and M. I. Kat-
snelson (2019b), “Effective Ising model for correlated sys-
tems with charge ordering,” Phys. Rev. B 99, 115124.

Stepanov, E A, A. Huber, E. G. C. P. van Loon, A. I. Lichten-
stein, and M. I. Katsnelson (2016a), “From local to nonlocal
correlations: The Dual Boson perspective,” Phys. Rev. B
94, 205110.

Stepanov, E A, E. G. C. P. van Loon, A. A. Katanin, A. I.
Lichtenstein, M. I. Katsnelson, and A. N. Rubtsov (2016b),
“Self-consistent dual boson approach to single-particle and
collective excitations in correlated systems,” Phys. Rev. B
93, 045107.

Stepanov, E A, S. A. Nikolaev, C. Dutreix, M. I. Katsnel-
son, and V. V. Mazurenko (2019c), “Heisenberg-exchange-
free nanoskyrmion mosaic,” Journal of Physics: Condensed
Matter 31 (17), 17LT01.

Stöhr, J, and H. C. Siegmann (2006), Magnetism. From Fun-
damentals to Nanoscale Dynamics, Solid State Sciences Se-
ries (Springer).

Stratonovich, R L (1957), “On a method of calculating quan-
tum distribution functions,” in Soviet Physics Doklady,
Vol. 2, p. 416.

Streib, Simon, Ramon Cardias, Manuel Pereiro, Anders
Bergman, Erik Sjöqvist, Cyrille Barreteau, Anna Delin,
Olle Eriksson, and Danny Thonig (2022), “Adiabatic spin
dynamics and effective exchange interactions from con-
strained tight-binding electronic structure theory: Beyond
the heisenberg regime,” Phys. Rev. B 105, 224408.

Streib, Simon, Attila Szilva, Vladislav Borisov, Manuel

Pereiro, Anders Bergman, Erik Sjöqvist, Anna Delin,
Mikhail I. Katsnelson, Olle Eriksson, and Danny Thonig
(2021), “Exchange constants for local spin hamiltonians
from tight-binding models,” Phys. Rev. B 103, 224413.

Stringfellow, M W (1968), “Observation of spin-wave renor-
malization effects in iron and nickel,” Journal of Physics C:
Solid State Physics 1 (4), 950–965.

Subkhangulov, R R, A. B. Henriques, P. H. O. Rappl,
E. Abramof, Th. Rasing, and A. V. Kimel (2014), “All-
optical manipulation and probing of the d–f exchange in-
teraction in EuTe,” Scientific reports 4 (1), 1–5.

Szczech, Yolande H, Michael A Tusch, and David E Logan
(1998), “Spin interactions in an Anderson-Hubbard model,”
Journal of Physics: Condensed Matter 10 (3), 639–655.

Szilva, A, M. Costa, A. Bergman, L. Szunyogh, L. Nordström,
and O. Eriksson (2013), “Interatomic Exchange Interac-
tions for Finite-Temperature Magnetism and Nonequilib-
rium Spin Dynamics,” Phys. Rev. Lett. 111, 127204.

Szilva, A, D. Thonig, P. F. Bessarab, Y. O. Kvashnin,
D. C. M. Rodrigues, R. Cardias, M. Pereiro, L. Nord-
ström, A. Bergman, A. B. Klautau, and O. Eriksson (2017),
“Theory of noncollinear interactions beyond Heisenberg ex-
change: Applications to bcc Fe,” Phys. Rev. B 96, 144413.

Tegus, O, E. Brück, K. H. J. Buschow, and F. R. De Boer
(2002), “Transition-metal-based magnetic refrigerants for
room-temperature applications,” Nature 415 (6868), 150–
152.

Temmerman, W M, A. Svane, L. Petit, M. Lüders, P. Strange,
and Z. Szotek (2007), “Pressure induced valence transitions
in f -electron systems,” Phase Transitions 80 (4-5), 415–
443, https://doi.org/10.1080/01411590701228703.

Temmerman, W M, Z. Szotek, and H. Winter (1993), “Band-
structure method for 4f electrons in elemental pr metal,”
Phys. Rev. B 47, 1184–1189.

Terletska, H, T. Chen, and E. Gull (2017), “Charge ordering
and correlation effects in the extended Hubbard model,”
Phys. Rev. B 95, 115149.

Terletska, Hanna, Tianran Chen, Joseph Paki, and Emanuel
Gull (2018), “Charge ordering and nonlocal correlations in
the doped extended Hubbard model,” Phys. Rev. B 97,
115117.

Thiele, M, E. K. U. Gross, and S. Kümmel (2008), “Adia-
batic Approximation in Nonperturbative Time-Dependent
Density-Functional Theory,” Phys. Rev. Lett. 100, 153004.

Thoene, Jan, Stanislav Chadov, Gerhard Fecher, Claudia
Felser, and Jürgen Kübler (2009), “Exchange energies,
Curie temperatures and magnons in Heusler compounds,”
Journal of Physics D: Applied Physics 42 (8), 084013.

Thomson, Alex, and Subir Sachdev (2018), “Fermionic Spinon
Theory of Square Lattice Spin Liquids near the Néel State,”
Phys. Rev. X 8, 011012.

Thurner, Stefan, Rudolf Hanel, and Peter Klimek (2018), In-
troduction to the theory of complex systems (Oxford Uni-
versity Press).

Tiablikov, SV (2013), Methods in the Quantum Theory of
Magnetism (Springer US).

Tie-song, Zhao, Jin Han-min, Guo Guang-hua, Han Xiu-feng,
and Chen Hong (1991), “Magnetic properties of R ions in
RCo5 compounds (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, and
Er),” Phys. Rev. B 43, 8593–8598.

Toschi, A, R. Arita, P. Hansmann, G. Sangiovanni, and
K. Held (2012), “Quantum dynamical screening of the lo-
cal magnetic moment in Fe-based superconductors,” Phys.
Rev. B 86, 064411.

https://doi.org/https://doi.org/10.1016/0304-8853(84)90367-6
https://doi.org/https://doi.org/10.1016/0304-8853(84)90367-6
https://doi.org/10.1103/PhysRevLett.69.371
https://doi.org/10.1103/PhysRevLett.69.371
https://doi.org/10.1103/PhysRevB.74.144411
https://doi.org/10.1103/PhysRevB.74.144411
https://doi.org/10.1021/acs.jctc.5b00349
https://doi.org/10.1021/acs.jctc.5b00349
https://doi.org/10.1017/CBO9781139023979
https://doi.org/10.1017/CBO9781139023979
https://doi.org/10.1103/PhysRevB.105.155151
https://doi.org/10.1103/PhysRevLett.121.037204
https://doi.org/10.1103/PhysRevLett.118.157201
https://doi.org/10.1103/PhysRevB.100.205115
https://doi.org/10.1038/s41524-022-00798-4
https://doi.org/10.1103/PhysRevB.99.115124
https://doi.org/10.1103/PhysRevB.94.205110
https://doi.org/10.1103/PhysRevB.94.205110
https://doi.org/10.1103/PhysRevB.93.045107
https://doi.org/10.1103/PhysRevB.93.045107
https://doi.org/10.1088/1361-648x/ab02b9
https://doi.org/10.1088/1361-648x/ab02b9
https://doi.org/10.1103/PhysRevB.105.224408
https://doi.org/10.1103/PhysRevB.103.224413
https://doi.org/10.1088/0022-3719/1/4/315
https://doi.org/10.1088/0022-3719/1/4/315
https://doi.org/10.1088/0953-8984/10/3/015
https://doi.org/10.1103/PhysRevLett.111.127204
https://doi.org/10.1103/PhysRevB.96.144413
https://doi.org/10.1080/01411590701228703
https://doi.org/10.1080/01411590701228703
https://arxiv.org/abs/https://doi.org/10.1080/01411590701228703
https://doi.org/10.1103/PhysRevB.47.1184
https://doi.org/10.1103/PhysRevB.95.115149
https://doi.org/10.1103/PhysRevB.97.115117
https://doi.org/10.1103/PhysRevB.97.115117
https://doi.org/10.1103/PhysRevLett.100.153004
https://doi.org/10.1088/0022-3727/42/8/084013
https://doi.org/10.1103/PhysRevX.8.011012
https://books.google.se/books?id=kBTyBwAAQBAJ
https://books.google.se/books?id=kBTyBwAAQBAJ
https://doi.org/10.1103/PhysRevB.43.8593
https://doi.org/10.1103/PhysRevB.86.064411
https://doi.org/10.1103/PhysRevB.86.064411


79

Toth, S, and B Lake (2015), “Linear spin wave theory for
single-q incommensurate magnetic structures,” Journal of
Physics: Condensed Matter 27 (16), 166002.

Treglia, G, F. Ducastelle, and F. Gautier (1978), “Generalised
perturbation theory in disordered transition metal alloys:
application to the self-consistent calculation of ordering en-
ergies,” Journal of Physics F: Metal Physics 8 (7), 1437–
1456.

Tresca, C, C. Brun, T. Bilgeri, G. Menard, V. Cherkez,
R. Federicci, D. Longo, F. Debontridder, M. D’angelo,
D. Roditchev, G. Profeta, M. Calandra, and T. Cren
(2018), “Chiral Spin Texture in the Charge-Density-Wave
Phase of the Correlated Metallic Pb/Si(111) Monolayer,”
Phys. Rev. Lett. 120, 196402.

Tresca, Cesare, and Matteo Calandra (2021), “Charge density
wave in single-layer Pb/Ge(111) driven by Pb-substrate ex-
change interaction,” Phys. Rev. B 104, 045126.

Tsubokawa, Ichiro (1960), “On the Magnetic Properties of a
CrBr3 Single Crystal,” Journal of the Physical Society of
Japan 15 (9), 1664–1668.

Turek, I, J. Kudrnovsk, G. Bihlmayer, and S. Blügel (2003a),
“Ab initio theory of exchange interactions and the Curie
temperature of bulk Gd,” Journal of Physics: Condensed
Matter 15 (17), 2771–2782.

Turek, I, J. Kudrnovský, V. Drchal, and P. Bruno (2006),
“Exchange interactions, spin waves, and transition tem-
peratures in itinerant magnets,” Philosophical Magazine
86 (12), 1713–1752.

Turek, I, J. Kudrnovský, V. Drchal, P. Bruno, and S. Blügel
(2003b), “Ab initio theory of exchange interactions in itin-
erant magnets,” physica status solidi (b) 236 (2), 318–324.

Turek, I, J. Kudrnovský, M. Diviš, P. Franek, G. Bihlmayer,
and S. Blügel (2003c), “First-principles study of the elec-
tronic structure and exchange interactions in bcc eu-
ropium,” Phys. Rev. B 68, 224431.

Turzhevskii, S, A. I. Liechtenstein, and M.I. Katsnelson
(1990), “Degree of localization of magnetic moments and
the non-Heisenberg nature of exchange interactions in met-
als and alloys,” Soviet Physics-Solid State 32 (7), 1138–
1142.

Udvardi, L, L. Szunyogh, K. Palotás, and P. Weinberger
(2003), “First-principles relativistic study of spin waves in
thin magnetic films,” Phys. Rev. B 68, 104436.

Udvardi, L. and Szunyogh, L., (2009), “Chiral Asymmetry of
the Spin-Wave Spectra in Ultrathin Magnetic Films,” Phys.
Rev. Lett. 102, 207204.

Ugeda, M M, A. J. Bradley, Y. Zhang, S. Onishi, Y. Chen,
W. Ruan, C. Ojeda-Aristizabal, H. Ryu, M. T. Edmonds,
H.-Z. Tsai, Alexander Riss, Sung-Kwan Mo, Dunghai Lee,
Alex Zettl, Zahid Hussain, Zhi-Xun Shen, and Michael F.
Crommie (2016), “Characterization of collective ground
states in single-layer NbSe2,” Nature Physics 12 (1), 92.

Ullrich, Carsten A (2018), “Density-functional theory for sys-
tems with noncollinear spin: Orbital-dependent exchange-
correlation functionals and their application to the Hub-
bard dimer,” Phys. Rev. B 98, 035140.

Upton, M H, T. Miller, and T.-C. Chiang (2005), “Unusual
band dispersion in Pb films on Si(111),” Phys. Rev. B 71,
033403.

Valmispild, V N, C. Dutreix, M. Eckstein, M. I. Katsnel-
son, A. I. Lichtenstein, and E. A. Stepanov (2020), “Dy-
namically induced doublon repulsion in the Fermi-Hubbard
model probed by a single-particle density of states,” Phys.
Rev. B 102, 220301.

van Loon, Erik G C P, Malte Rösner, Gunnar Schön-
hoff, Mikhail I. Katsnelson, and Tim O. Wehling (2018),
“Competing Coulomb and electron-phonon interactions in
NbS2,” npj Quantum Mater. 3 (1), 1–8.

Vandelli, M, V. Harkov, E. A. Stepanov, J. Gukelberger,
E. Kozik, A. Rubio, and A. I. Lichtenstein (2020), “Dual
boson diagrammatic Monte Carlo approach applied to the
extended Hubbard model,” Phys. Rev. B 102, 195109.

Vandelli, Matteo, Anna Galler, Angel Rubio, Alexander I.
Lichtenstein, Silke Biermann, and Evgeny A. Stepanov
(2023), “Doping-dependent charge- and spin-density wave
orderings in a monolayer of Pb adatoms on Si(111),”
Preprint arXiv:2301.07162.

Vandelli, Matteo, Josef Kaufmann, Mohammed El-Nabulsi,
Viktor Harkov, Alexander I. Lichtenstein, and Evgeny A.
Stepanov (2022), “Multi-band D-TRILEX approach to ma-
terials with strong electronic correlations,” .

Vaz, C A F, J. A. C. Bland, and G. Lauhoff (2008), “Mag-
netism in ultrathin film structures,” Reports on Progress in
Physics 71 (5), 056501.

Verlhac, B, L. Niggli, A. Bergman, U. Kamber, A. Bagrov,
D. Iuşan, L. Nordström, M. I. Katsnelson, D. Wegner,
O. Eriksson, and A. A. Khajetoorians (2022), “ Ther-
mally induced magnetic order from glassiness in elemental
neodymium,” Nature Physics 18 (6), 905–911.

Verschuur, Gerrit L (1996), Hidden attraction: the history
and mystery of magnetism (Oxford University Press on De-
mand).

Verwey, E J W, and P. W. Haayman (1941), “Electronic con-
ductivity and transition point of magnetite Fe3O4,” Physica
8 (9), 979 – 987.

Verwey, E J W, P. W. Haayman, and F. C. Romeijn (1947),
“Physical Properties and Cation Arrangement of Oxides
with Spinel Structures II. Electronic Conductivity,” The
Journal of Chemical Physics 15 (4), 181–187.

Vida, Gy J, E. Simon, L. Rózsa, K. Palotás, and L. Szunyogh
(2016), “Domain-wall profiles in Co/Irn/Pt(111) ultrathin
films: Influence of the Dzyaloshinskii-Moriya interaction,”
Phys. Rev. B 94, 214422.

Vishina, Alena, Olle Eriksson, Olga Yu. Vekilova, Anders
Bergman, and Heike C. Herper (2021), “Ab-initio study
of the electronic structure and magnetic properties of
Ce2Fe17,” Journal of Alloys and Compounds 888, 161521.

Vollmer, R, M. Etzkorn, P. S. Anil Kumar, H. Ibach, and
J. Kirschner (2003), “Spin-Polarized Electron Energy Loss
Spectroscopy of High Energy, Large Wave Vector Spin
Waves in Ultrathin fcc Co Films on Cu(001),” Phys. Rev.
Lett. 91, 147201.

Vollmer, R, M. Etzkorn, P. S. Anil Kumar, H. Ibach, and
J. Kirschner (2004), “Spin-wave excitation in ultrathin Co
and Fe films on Cu(001) by spin-polarized electron en-
ergy loss spectroscopy,” Journal of Applied Physics 95 (11),
7435–7440.

Vonsovskii, S V (1974), Magnetism, Vol. 2 (New York: J.
Wiley & Sons).

Vonsovsky, S V, Yu. A. Izyumov, and E. Z. Kurmaev (1982),
Superconductivity of Transition Metals, their Alloys and
Compounds (Springer-Verlag).

Wachter, P (1980), “Physics of Eu3S4 and Sm3S4,” Philosoph-
ical Magazine B 42 (3), 497–498.

Wan, Xiangang, Jinming Dong, and Sergej Y. Savrasov
(2011), “Mechanism of magnetic exchange interactions in
europium monochalcogenides,” Phys. Rev. B 83, 205201.

Wan, Xiangang, Quan Yin, and Sergej Y. Savrasov (2006),

https://doi.org/10.1088/0953-8984/27/16/166002
https://doi.org/10.1088/0953-8984/27/16/166002
https://doi.org/10.1088/0305-4608/8/7/017
https://doi.org/10.1088/0305-4608/8/7/017
https://doi.org/10.1103/PhysRevLett.120.196402
https://doi.org/10.1103/PhysRevB.104.045126
https://doi.org/10.1143/JPSJ.15.1664
https://doi.org/10.1143/JPSJ.15.1664
https://doi.org/10.1088/0953-8984/15/17/327
https://doi.org/10.1088/0953-8984/15/17/327
https://doi.org/10.1080/14786430500504048
https://doi.org/10.1080/14786430500504048
https://doi.org/https://doi.org/10.1002/pssb.200301671
https://doi.org/10.1103/PhysRevB.68.224431
https://doi.org/10.1103/PhysRevB.68.104436
https://doi.org/10.1103/PhysRevLett.102.207204
https://doi.org/10.1103/PhysRevLett.102.207204
https://doi.org/10.1103/PhysRevB.98.035140
https://doi.org/10.1103/PhysRevB.71.033403
https://doi.org/10.1103/PhysRevB.71.033403
https://doi.org/10.1103/PhysRevB.102.220301
https://doi.org/10.1103/PhysRevB.102.220301
https://doi.org/10.1103/PhysRevB.102.195109
https://doi.org/10.48550/ARXIV.2301.07162
https://doi.org/10.48550/ARXIV.2301.07162
https://doi.org/10.48550/ARXIV.2301.07162
https://doi.org/10.21468/SciPostPhys.13.2.036
https://doi.org/10.21468/SciPostPhys.13.2.036
https://doi.org/10.1088/0034-4885/71/5/056501
https://doi.org/10.1088/0034-4885/71/5/056501
https://doi.org/https://doi.org/10.1016/S0031-8914(41)80005-6
https://doi.org/https://doi.org/10.1016/S0031-8914(41)80005-6
https://doi.org/10.1063/1.1746466
https://doi.org/10.1063/1.1746466
https://doi.org/10.1103/PhysRevB.94.214422
https://doi.org/https://doi.org/10.1016/j.jallcom.2021.161521
https://doi.org/10.1103/PhysRevLett.91.147201
https://doi.org/10.1103/PhysRevLett.91.147201
https://doi.org/10.1063/1.1689774
https://doi.org/10.1063/1.1689774
https://doi.org/10.1080/01418638008221893
https://doi.org/10.1080/01418638008221893
https://doi.org/10.1103/PhysRevB.83.205201


80

“Calculation of Magnetic Exchange Interactions in Mott-
Hubbard Systems,” Phys. Rev. Lett. 97, 266403.

Wang, C S, R. E. Prange, and V. Korenman (1982), “Mag-
netism in iron and nickel,” Phys. Rev. B 25, 5766–5777.

Wang, Duo, and Biplab Sanyal (2021), “Systematic Study of
Monolayer to Trilayer CrI3: Stacking Sequence Dependence
of Electronic Structure and Magnetism,” The Journal of
Physical Chemistry C 125 (33), 18467–18473.

Wang, Kangying, Sergey Nikolaev, Wei Ren, and Igor
Solovyev (2019), “Giant contribution of the ligand states
to the magnetic properties of the Cr2Ge2Te6 monolayer,”
Phys. Chem. Chem. Phys. 21, 9597–9604.

Watzenböck, C, M. Edelmann, D. Springer, G. Sangiovanni,
and A. Toschi (2020), “Characteristic Timescales of the Lo-
cal Moment Dynamics in Hund’s Metals,” Phys. Rev. Lett.
125, 086402.

Webster, Lucas, and Jia-An Yan (2018), “Strain-tunable mag-
netic anisotropy in monolayer CrCl3, CrBr3, and CrI3,”
Phys. Rev. B 98, 144411.

Weng, Z Y, C. S. Ting, and T. K. Lee (1991), “Path-integral
approach to the Hubbard model,” Phys. Rev. B 43, 3790–
3793.

Werner, Philipp, Armin Comanac, Luca de’ Medici, Matthias
Troyer, and Andrew J. Millis (2006), “Continuous-Time
Solver for Quantum Impurity Models,” Phys. Rev. Lett.
97, 076405.

Werner, Philipp, and Andrew J. Millis (2007), “Efficient Dy-
namical Mean Field Simulation of the Holstein-Hubbard
Model,” Phys. Rev. Lett. 99, 146404.

Werner, Philipp, and Andrew J. Millis (2010), “Dynamical
Screening in Correlated Electron Materials,” Phys. Rev.
Lett. 104, 146401.

White, Robert M, and Bradford Bayne (1983), Quantum the-
ory of magnetism, Vol. 1 (Springer).

Wiltschko, Wolfgang, Ursula Munro, Hugh Ford, and
Roswitha Wiltschko (2006), “Bird navigation: what type
of information does the magnetite-based receptor provide?”
Proceedings of the Royal Society B: Biological Sciences
273 (1603), 2815–2820.

Wolf, Yuri I, Mikhail I. Katsnelson, and Eugene V. Koonin
(2018), “Physical foundations of biological complexity,”
Proceedings of the National Academy of Sciences 115 (37),
E8678–E8687.

Wolf, S. A. and Awschalom, D. D. and Buhrman, R. A. and
Daughton, J. M. and von Molnár, S. and Roukes, M. L.
and Chtchelkanova, A. Y. and Treger, D. M., (2001), “Spin-
tronics: A Spin-Based Electronics Vision for the Future,”
Science 294 (5546), 1488–1495.

Wollmann, Lukas, Stanislav Chadov, Jürgen Kübler, and
Claudia Felser (2014), “Magnetism in cubic manganese-rich
Heusler compounds,” Phys. Rev. B 90, 214420.

Wu, Wei, Mathias S. Scheurer, Shubhayu Chatterjee, Subir
Sachdev, Antoine Georges, and Michel Ferrero (2018),
“Pseudogap and Fermi-Surface Topology in the Two-
Dimensional Hubbard Model,” Phys. Rev. X 8, 021048.

Wu, Wei, and A.-M. S. Tremblay (2014), “Phase diagram and
Fermi liquid properties of the extended Hubbard model on
the honeycomb lattice,” Phys. Rev. B 89, 205128.

Wysocki, A L, J. K. Glasbrenner, and K. D. Belashchenko
(2008), “Thermodynamics of itinerant magnets in a classi-
cal spin-fluctuation model,” Phys. Rev. B 78, 184419.

Wysocki, Aleksander L, Kirill D Belashchenko, and
Vladimir P Antropov (2011), “Consistent model of mag-
netism in ferropnictides,” Nature Physics 7 (6), 485–489.

Yang, Hongxin, Jinghua Liang, and Qirui Cui (2022), “First-
principles calculations for Dzyaloshinskii–Moriya interac-
tion,” Nature Reviews Physics.

Yildirim, T, A. B. Harris, Amnon Aharony, and O. Entin-
Wohlman (1995), “Anisotropic spin Hamiltonians due to
spin-orbit and Coulomb exchange interactions,” Phys. Rev.
B 52, 10239–10267.

Ying, T, K. P. Schmidt, and S. Wessel (2019), “Higgs Mode
of Planar Coupled Spin Ladders and its Observation in
C9H18N2CuBr4,” Phys. Rev. Lett. 122, 127201.

Yoon, Hongkee, Seung Woo Jang, Jae-Hoon Sim, Takao
Kotani, and Myung Joon Han (2019), “Magnetic force
theory combined with quasi-particle self-consistent GW
method,” Journal of Physics: Condensed Matter 31 (40),
405503.

Yoon, Hongkee, Taek Jung Kim, Jae-Hoon Sim, and
Myung Joon Han (2020), “Jx: An open-source software for
calculating magnetic interactions based on magnetic force
theory,” Computer Physics Communications 247, 106927.

Yoon, Hongkee, Taek Jung Kim, Jae-Hoon Sim, Seung Woo
Jang, Taisuke Ozaki, and Myung Joon Han (2018), “Reli-
ability and applicability of magnetic-force linear response
theory: Numerical parameters, predictability, and orbital
resolution,” Phys. Rev. B 97, 125132.

Yosida, K (1996), Theory of Magnetism (Springer-Verlag,
Berlin Heidelberg).

You, M V, V. Heine, A. J. Holden, and P. J. Lin-Chung
(1980), “Magnetism in Iron at High Temperatures,” Phys.
Rev. Lett. 44, 1282–1284.

Zabala-Lekuona, Andoni, José Manuel Seco, and Enrique Co-
lacio (2021), “Single-Molecule Magnets: From Mn12-ac to
dysprosium metallocenes, a travel in time,” Coordination
Chemistry Reviews 441, 213984.

Zakeri, Kh, T.-H. Chuang, A. Ernst, L. M. Sandratskii,
P. Buczek, H. J. Qin, Y. Zhang, and J. Kirschner (2013),
“Direct probing of the exchange interaction at buried in-
terfaces,” Nature Nanotechnology 8 (11), 853–858.

Zakeri, Kh, Y. Zhang, J. Prokop, T.-H. Chuang, N. Sakr,
W. X. Tang, and J. Kirschner (2010), “Asymmetric Spin-
Wave Dispersion on Fe(110): Direct Evidence of the
Dzyaloshinskii-Moriya Interaction,” Phys. Rev. Lett. 104,
137203.

Zakeri, Khalil, Huajun Qin, and Arthur Ernst (2021), “Uncon-
ventional magnonic surface and interface states in layered
ferromagnets,” Communications Physics 4 (1), 18.

Zein, N E (1984), “Density functional calculations of crystal
elastic moduli and phonon spectra,” Fiz. Tverd. Tela 26,
3028–3034, [Sov. Phys. Solid State 26, 1825 (1984)].

Zener, Clarence (1951), “Interaction between the d-Shells in
the Transition Metals. II. Ferromagnetic Compounds of
Manganese with Perovskite Structure,” Phys. Rev. 82, 403–
405.

Czyżyk, M T, and G. A. Sawatzky (1994), “Local-density
functional and on-site correlations: The electronic struc-
ture of La2CuO4 and LaCuO3,” Phys. Rev. B 49, 14211–
14228.

Zhang, Li-chuan, Dongwook Go, Jan-Philipp Hanke,
Patrick M Buhl, Sergii Grytsiuk, Stefan Blügel, Fabian R
Lux, and Yuriy Mokrousov (2020), “Imprinting and driving
electronic orbital magnetism using magnons,” Communica-
tions Physics 3 (1), 1–8.

Zhang, Tong, Peng Cheng, Wen-Juan Li, Yu-Jie Sun, Guang
Wang, Xie-Gang Zhu, Ke He, Lili Wang, Xucun Ma,
Xi Chen, Yayu Wang, Ying Liu, Hai-Qing Lin, Jin-Feng Jia,

https://doi.org/10.1103/PhysRevLett.97.266403
https://doi.org/10.1103/PhysRevB.25.5766
https://doi.org/10.1021/acs.jpcc.1c04311
https://doi.org/10.1021/acs.jpcc.1c04311
https://doi.org/10.1039/C9CP01034C
https://doi.org/10.1103/PhysRevLett.125.086402
https://doi.org/10.1103/PhysRevLett.125.086402
https://doi.org/10.1103/PhysRevB.98.144411
https://doi.org/10.1103/PhysRevB.43.3790
https://doi.org/10.1103/PhysRevB.43.3790
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.99.146404
https://doi.org/10.1103/PhysRevLett.104.146401
https://doi.org/10.1103/PhysRevLett.104.146401
https://doi.org/10.1098/rspb.2006.3651
https://doi.org/10.1098/rspb.2006.3651
https://doi.org/10.1126/science.1065389
https://doi.org/10.1103/PhysRevB.90.214420
https://doi.org/10.1103/PhysRevX.8.021048
https://doi.org/10.1103/PhysRevB.89.205128
https://doi.org/10.1103/PhysRevB.78.184419
https://doi.org/10.1103/PhysRevB.52.10239
https://doi.org/10.1103/PhysRevB.52.10239
https://doi.org/10.1103/PhysRevLett.122.127201
https://doi.org/10.1088/1361-648x/ab2b7e
https://doi.org/10.1088/1361-648x/ab2b7e
https://doi.org/https://doi.org/10.1016/j.cpc.2019.106927
https://doi.org/10.1103/PhysRevB.97.125132
https://doi.org/10.1103/PhysRevLett.44.1282
https://doi.org/10.1103/PhysRevLett.44.1282
https://doi.org/https://doi.org/10.1016/j.ccr.2021.213984
https://doi.org/https://doi.org/10.1016/j.ccr.2021.213984
https://doi.org/10.1038/nnano.2013.188
https://doi.org/10.1103/PhysRevLett.104.137203
https://doi.org/10.1103/PhysRevLett.104.137203
https://doi.org/10.1038/s42005-021-00521-7
https://doi.org/10.1103/PhysRev.82.403
https://doi.org/10.1103/PhysRev.82.403
https://doi.org/10.1103/PhysRevB.49.14211
https://doi.org/10.1103/PhysRevB.49.14211


81

and Qi-Kun Xue (2010), “Superconductivity in one-atomic-
layer metal films grown on Si(111),” Nat. Phys. 6 (2), 104–
108.

Zheng, Fawei, and Ping Zhang (2021), “Maggene: A ge-
netic evolution program for magnetic structure prediction,”
Computer Physics Communications 259, 107659.

Zhu, Xiangzhou, Alexander Edström, and Claude Ederer
(2020), “Magnetic exchange interactions in SrMnO3,” Phys.

Rev. B 101, 064401.
Zimmermann, Bernd, Gustav Bihlmayer, Marie Böttcher,

Mohammed Bouhassoune, Samir Lounis, Jairo Sinova, Ste-
fan Heinze, Stefan Blügel, and Bertrand Dupé (2019),
“Comparison of first-principles methods to extract mag-
netic parameters in ultrathin films: Co/Pt(111),” Phys.
Rev. B 99, 214426.

https://doi.org/10.1038/nphys1499
https://doi.org/10.1038/nphys1499
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107659
https://doi.org/10.1103/PhysRevB.101.064401
https://doi.org/10.1103/PhysRevB.101.064401
https://doi.org/10.1103/PhysRevB.99.214426
https://doi.org/10.1103/PhysRevB.99.214426

	Quantitative theory of magnetic interactions in solids
	Abstract
	Contents
	Introduction
	A short description of the early history of magnetism
	On magnetic materials and magnetic phenomena
	Recent trends in magnetism
	Early theories of interatomic exchange
	A comment on nomenclature

	Linear response theory of the susceptibility
	Mapping electronic energies to an effective spin Hamiltonian
	Basic assumptions
	The mapping scheme
	Excitation of the spin model

	Basic concepts of electronic structure theory
	Grand canonical potential at zero temperature
	Green function
	Grand canonical potential at finite temperature

	Detailed derivation of the exchange formulas
	Magnetic local force theorem
	Energy variation from non-collinear Kohn-Sham Hamiltonian
	Perturbation to first order
	A sum rule
	Further decomposition of Green function and their physical interpretation
	Bilinear interaction parameters due to one-site spin rotation
	Bilinear interaction parameters due to two-site spin rotations
	Explicit symmetric or asymmetric interactions
	Comparison the interaction parameters obtained from one- and two-site variations
	Local versus global spin models
	Exchange interactions in correlated system

	Beyond kinetic exchange
	Numerical examples of interatomic exchange
	Elemental transition metals
	Itinerant magnets based on 3d metal alloys and compounds
	Alloys with 4d and 5d elements
	Results from the disordered local moment approximation
	Multilayers and atoms on metallic surfaces
	Influence of spin-orbit coupling
	Clusters of atoms on surfaces
	f-electron systems
	Transition metal oxides
	Novel 2D magnets
	sp-magnets
	Molecular magnets

	Out of equilibrium exchange
	Local moment formation and spin-dynamics
	Derivation of the bosonic action for the fermionic problem
	Exchange interactions in many-body theory and relation to other approaches
	Equation of motion for the local magnetic moment
	Local magnetic moment formation

	Non-magnetic analogues of exchange interaction
	Summary and outlook
	References


