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We analyze the role of spatial electronic correlations and, in particular, of the magnetic fluctuations in Mott
insulators. A half-filled Hubbard model is solved at large strength of the repulsion U on a two-dimensional
square lattice using an advanced diagrammatic non-perturbative approach capable of going beyond Hartree-
Fock and single-site dynamical mean-field theories. We show that at high temperatures the magnetic fluctuations
are weak, and the electronic self-energy of the system is mainly local and is well reproduced by the atomic
(Hubbard-I) approximation. Lowering the temperature toward the low-temperature magnetically ordered phase,
the non-locality of the self-energy becomes crucial in determining the momentum-dispersion of the Hubbard
bands and the Green’s function zeros. We therefore establish a precise link between Luttinger surface, non-local
correlations and spectral properties of the Hubbard bands.

Mott insulators are incompressible states of matter in which
collective charge excitations cost an energy proportional to
the strength of the electron-electron repulsion [1]. A well-
established description of these systems is based on the single-
orbital Hubbard Hamiltonian consisting of electrons hopping
on a lattice and reciprocally interacting with a local repul-
sion U. This model represents the simplest description of
the parent compounds of high-temperature superconducting
copper-oxides [2, 3]. Despite its simplicity, getting a com-
plete physical picture of Mott insulators remains a challenge.
This is true even if one restricts to comparatively high temper-
atures, i.e. above the antiferromagnetic transition and, even
more surprisingly, to zero doping. The insurgence of local
magnetic moments, responsible for the Hubbard satellites in
the spectrum of Mott insulators, is indeed a many-body phe-
nomenon that cannot be captured by conventional perturbative
approaches [4–8] and requires non-trivial analysis [9, 10].

In the last years, Mott insulators have been put under spe-
cial scrutiny for the classification of their topological proper-
ties [11–15]. In the large-U limit, one-electron wave functions
are not a valid starting point, jeopardizing the conventional
analysis of band-structure-based topology [16–18]. Some
suggestions of appropriate four-point correlators as a proxy to
the topology of interacting systems have been made [19, 20],
but their handling gets rapidly highly complex. Recently,
it has been argued that the simpler level of two-point T -
products, i.e. the single-particle Green’s function G, can em-
body the topological nature of Mott insulators [21–23]. The
well-known generalized topological invariant proposed sepa-
rately by Volovik, Gurarie and Zhang [24–28] comprises spec-
ular terms and derivatives of G and G−1. By itself, this struc-
ture indicates how poles and zeros of G can both change the
value of the invariant. In the strong-coupling limit the poles
of G are pushed away from the Fermi level while the Green’s
function zeros (GFZ), defined as vanishing eigenvalues of G
or equivalently as a divergence of the self-energy, form the
Luttinger surface at low energy [29–37].

Hence, the existence and the properties of the Luttinger sur-

face crucially depend on the momentum dependence of the
self-energy. Deep in the Mott phase, the level of knowledge
considered to be sufficient has typically stopped at the crude
description of dispersionless GFZ, with a few notable excep-
tions [31, 38–40]. These works have not only added tempo-
ral fluctuations from single-site dynamical mean field theory
(DMFT) [5] but they have also considered the k-dependence
of the self-energy by means of its cluster as well as dia-
grammatic extensions. The full momentum structure of the
self-energy is analytically known only in the special case of
the exactly solvable local-in-k Hatsugai-Kohmoto interaction
[22, 41–43]. For the Hubbard repulsion, which is instead lo-
cal in real space, various approximate forms in the Mott in-
sulating case have been previously proposed [44–46]. Yet,
the main focus so far has primarily been on the properties of
the Luttinger surface and on the pseudogap formation at finite
doping [31, 39, 47]. We want instead to gain knowledge on
the entire energy spectrum, from the Luttinger surface at low
frequencies all the way up to the region of the Hubbard bands.

In particular, we pin down the influence of the momen-
tum structure of the GFZ on the dispersion of the Hubbard
bands. This allows us to disentangle a “trivial” momentum
dependence of the latter, present even with k-independent
GFZ, from the one given by genuine non-local correlations.
We derive a general expression of the self-energy that not
only describes Mott insulators beyond the DMFT level in an
accurate way, but also offers a clear interpretation of their
physics: spatial magnetic excitations turn out to be essen-
tial, not only for the ground state but also for the spectral
properties of Mott insulators. Using many-particle Feynman
diagrammatics based on the dual triply irreducible local ex-
pansion (D-TRILEX) [48–50], we start from the atomic prob-
lem and, upon treating this as a reference system, we account
for the leading spatial magnetic fluctuations. Our main find-
ing is that these fluctuations accounted for beyond the simple
DMFT level affect the low- as well as the high-energy scales
of the system. In particular, we establish a one-to-one connec-
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FIG. 1. The modulus of the Green’s function for a half-filled 2D Hubbard model on a square lattice with the NN hoping t = 0.25 obtained
in the Mott phase (U = 4.5) as the function of energy E along the high-symmetry Γ-X-M-Γ path in the BZ. Panels (a) and (c) correspond to
the numerical D-TRILEX calculations performed at T = 1/5 (a) and T = 1/16 (c). Panels (b) and (d) show the result that corresponds to the
analytical expression (4) for the self-energy plotted for T = 1/5 (b) and T = 1/16 (d). Brighter colors correspond to larger intensities. The
GFZ are shown in green color. Dashed lines in panels (a) and (b) correspond to the atomic limit approximation for the Hubbard bands (3).
Dotted lines in panels (c) and (d) correspond to the low-frequency approximation for the self-energy (5) leading to the analytical expression
for the dispersion of the Hubbard bands (7) and of the GFZ (6).

tion between the renormalization of the GFZ and the Hubbard
bands by strong magnetic fluctuations.

Even though our results are general, i.e. they are not limited
to a specific model, for the sake of definiteness we start from
a half-filled 2D Hubbard Hamiltonian on a square lattice:

Ĥ =
∑

j j′,σ

t j j′c
†
jσc j′σ + U

∑

i

n j↑n j↓ (1)

written in terms of annihilation (creation) operators c(†)
j(′)σ of

electrons on lattice sites j and j′ with the spin projection
σ ∈ {↑, ↓}. n jσ = c†jσc jσ is the electronic density operator, t j j′

is the hopping amplitude between j and j′, and U is the lo-
cal Coulomb interaction. Further, we consider a particle-hole
symmetric dispersion of electrons determined by the nearest-
neighbor (NN) hopping amplitude t. The non-particle-hole-
symmetric case is considered as well in the Supplemental
Material (SM) [51] by additionally introducing the next-NN
hopping amplitude t′. We observe that the derived analyt-
ical expression for the self-energy accurately describes the
momentum dispersion of the Green’s function in both, high-
and low-temperatures regimes of the strong-coupling param-
agnetic phase. Since our approach can be applied also to
multi-orbital electronic structures [50, 52–56], we propose the
use of our analytical expression as a basis for the investigation
of topological properties of interacting systems [21].

We solve the model (1) in the framework of the dual pertur-
bation expansion. The key idea of the method is to replace the
non-interacting starting point for the weak-coupling diagram-
matic expansion by a suitable interacting reference system.
After that, a non-perturbative at large U diagrammatic expan-
sion in terms of original degrees of freedom is transformed to
a perturbative one in the dual space. A rigorous derivation of

the diagrammatic expansion on the basis of an arbitrary ref-
erence system [57] has been introduced in the context of the
dual fermion (DF) [58–62], the dual boson (DB) [63–69], and
the D-TRILEX [48–50, 52–56, 70–72] methods.

The advantage of the dual scheme is that it does not re-
sult in the double-counting of correlation effects between the
reference and remaining problems. It can be shown, that the
total self-energy of the system consists of the two contribu-
tions Σ = Σref + Σ (see, e.g., Ref. 50). The first term in this ex-
pression corresponds to the self-energy of the reference prob-
lem Σref . The second term is the contribution obtained be-
yond the reference problem using the following exact rela-
tion Σ = Σ̃

[
1 + gΣ̃

]−1
, where g is the exact Green’s function

of the reference problem and Σ̃ is the self-energy calculated
diagrammatically in the dual space (see SM [51]).

In this work, all numerical calculations are performed us-
ing the D-TRILEX approach with the impurity problem of
DMFT [73] taken as the reference system. The leading spa-
tial collective electronic fluctuations are treated diagrammati-
cally beyond DMFT [74, 75] in the GW-like fashion [76–78]
via the renormalized interaction W̃ch/sp in the charge and spin
channels [48–50]. This approach was inspired by the TRILEX
method [79, 80]. D-TRILEX has a much simpler diagram-
matic structure but operates at the same level of accuracy as
compared to the other dual theories [49]. As we demonstrate
below, this approach allows us to derive an analytical expres-
sion for the self-energy in the strong-coupling regime.

The DMFT impurity problem cannot be solved analytically.
In order to derive an analytical expression for the self-energy,
we require a simpler reference system that, nevertheless, cap-
tures the main effects of local correlations. If the system
lies deep in the Mott insulating phase, a sufficient choice
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for the reference system is an atomic problem, given by the
second term in the Hubbard Hamiltonian (1). In the single-
orbital case this reference system can be solved exactly, which
gives the following expression for the atomic self-energy
Σat = U2/(4iν) (see, e.g., Ref. [81]), where ν is the fermionic
Matsubara frequency. The lattice Green’s function dressed in
the atomic self-energy corresponds to the Hubbard-I approxi-
mation [82] and reads:

Gkν =
iν

(iν)2 − iνεk − U2/4
, (2)

where εk is the dispersion relation defined by the hopping am-
plitudes t j j′ . The poles of this Green’s function define the en-
ergy spectrum of the Hubbard bands:

E = εk/2 ±
√
ε2

k/4 + U2/4 = (εk ± U) /2 + O
(
ε2

k/U
)
, (3)

and the GFZ Ezeros = 0 are given by the numerator of Eq. (2).
In Fig. 1 (a) we show the numerical result for the mod-

ulus of the Green’s function obtained for the dispersion
εk = −2t

(
cos kx + cos ky

)
defined by the NN hopping t = 0.25

on a square lattice. The calculations are performed at a rather
high temperature T = 1/5 deep in the Mott insulating phase
U = 4.5 along the high-symmetry path in the Brillouin zone
(BZ) that consists of the Γ = (0, 0), X = (π, 0), and M = (π, π)
points. The GFZ are plotted in green color. They are nearly
dispersiveless and can be described by the Hubbard-I approx-
imation Ezeros = 0. The same approximation for the energy
spectrum (3) is plotted in white dashed lines. As expected, it
reproduces well the shape of the Hubbard bands in the high-
temperature regime of a Mott insulator.

The electronic Green’s function changes substantially upon
decreasing the temperature. Fig. 1 (c) shows the modulus of
the Green’s function calculated numerically for the same set
of model parameters as in Fig. 1 (a) but at the low tempera-
ture T = 1/16. By the low temperature we mean the regime
of significant magnetic fluctuations, whose strength enhances
upon reducing the temperature. The strength of the magnetic
fluctuations can be assessed by the leading eigenvalue (LE)
of the Bethe-Salpeter equation (BSE) for the spin susceptibil-
ity [50]. At T = 1/5 the LE is equal to 0.22, which means
that the magnetic fluctuations do not play an important role in
this high-temperature regime. At T = 1/16 the LE is equal to
0.83, which is already close to unity indicating that the mag-
netic fluctuations are very strong. Fig. 1 (c) demonstrates that
in the presence of strong magnetic fluctuations the Hubbard
bands look different compared to the high-temperature regime
of the Mott insulator. Indeed, the momentum dispersion of the
Hubbard bands is no longer described by the Hubbard-I ap-
proximation (3) and instead exhibits a mirror-symmetric form
with respect to the Fermi energy (E = 0) at every k-point. In
turn, the GFZ (green color) become very dispersive and their
amplitude in energy is several times larger than the amplitude
of each Hubbard band. It is worth noting that behaviors sim-
ilar to those reported in Fig. 1 have been observed within a

FIG. 2. The static (ω = 0) spin susceptibility Xsp(q) calculated along
the high-symmetry path of the BZ in the Mott phase (U = 4.5) for
the two temperatures T = 1/5 (blue) and T = 1/16 (red). The curve
of the high T is multiplied by a factor of 10 in order to approach the
scale of the low T one. This huge difference of an order of magnitude
is due to the effect of strong magnetic fluctuations at low T . In this
regime, it is valid to assume that the value of Q = M dominates the
entire susceptibility.

completely different approach, namely the Composite Oper-
ator Method [83] (see Refs. 84 and 85 for the two-pole ex-
pansion and Refs. 86 and 87 for a combination with the non-
crossing approximation).

In order to account for the effect of magnetic fluctuations
we first look at the behavior of the spin susceptibility at dif-
ferent temperatures. Fig. 2 shows that in the high temper-
ature regime (T = 1/5, blue curve) the spin susceptibility is
very small and is not particularly dispersive (in the plot it
is even multiplied by a factor of 10 in order to facilitate a
comparison with the low-T data). Once the temperature is
lowered, the spin susceptibility becomes strongly peaked at
the Q = M point (T = 1/16, red curve), which indicates that
the leading collective electronic fluctuations in the spin chan-
nel are antiferromagnetic (AFM), and the fluctuations at other
wave vectors are substantially weaker. We point out, that,
although the spin susceptibility at T = 1/5 also exhibits a
maximum at the M point, the difference of this maximum
value from the minimum one at the Γ point is evidently small.
These observations suggest a simple approximation that can
be used in the regime of strong magnetic fluctuations. In-
deed, one can approximate the momentum- and frequency-
dependent renormalized interaction W̃sp(q, ω) (which is pro-
portional to the spin susceptibility) that enters the D-TRILEX
expression for the self-energy, by it’s static AFM part, namely
W̃sp(q, ω) ≃ W̃sp(q, ω)δq,Qδω,0.

Using this approximation in the D-TRILEX diagrammatic
expansion together with the atomic problem as a reference
system gives us the following expression for the self-energy
(see SM [51] for a detailed derivation):

Σk,ν =
U2/4 + iνεk+Q (1 − λν)

iν − λνεk+Q
, (4)

where λν = ν2+w
ν2+U2/4 and w = 3W̃sp(Q, 0). The energy spec-
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trum of the system is defined by the poles of the Green’s
function, which is obtained via the usual Dyson equation
Gk,ν =

[
iν − εk − Σk,ν

]−1. The GFZ are given by the denom-
inator of Eq. (4). The modulus of the Green’s function corre-
sponding to the self-energy (4) is plotted in Fig. 1 for the two
temperatures T = 1/5 (b) and T = 1/16 (d). In these plots the
value of w that enters λν is deduced from the amplitude of
the GFZ (green color in Fig. 1 (a) and (c)) obtained numer-
ically. We observe that the analytical expression (4) for the
self-energy perfectly reproduces the momentum dispersion of
the Hubbard bands and of the GFZ in both regimes.

When magnetic fluctuations are small (λν → 0) the self-
energy (4) reduces to the one of the atomic problem, and the
relation for the energy spectrum coincides with the Hubbard-I
approximation (3) plotted in dashed lines in Fig. 1 (a) and
(b). Consequently, the GFZ are nearly dispersiveless. On
the contrary, in the low-temperature regime of strong mag-
netic fluctuations the GFZ are very dispersive. In order
to get an analytical expression for the GFZ, one can make
use of a low-frequency approximation ν2 ≪ U2 for the self-
energy (4), which leads to the following results for the self-
energy (λν → λ = 4w/U2):

Σk,ν ≃
U2/4 + iνεk+Q (1 − λ)

iν − λεk+Q
(5)

and the dispersion of the GFZ:

Ezeros = λεk+Q. (6)

The low-frequency approximation for the self-energy (5) also
allows one to obtain an analytical expression for the energy:

E =
(
εk + εk+Q

)

2
±
√(εk + εk+Q

2

)2
+ U2/4 − λεkεk+Q. (7)

Note that, since Eq. 7 is justified for ν2 ≪ U2 only, we will
apply it cautiously whenever we deal with high-energy Hub-
bard bands. Yet, this expression turns out to be useful in some
illustrative cases also outside its range of validity.

We note that the form of the derived expression for the
self-energy (4) is different from previous works [21, 44, 45]
on strong-coupling Hubbard models or quantum spin liquids
and disordered spin density wave systems. In particular, our
expression has an additional contribution to the numerator.
We find that this contribution is crucial in leading to the
mirror-symmetry form of the Hubbard bands, which cannot be
achieved without it. Indeed, in the case of the Hubbard model
on a square lattice with the nearest-neighbor hopping ampli-
tude the electronic dispersion satisfies εk+Q = −εk, and one
gets the following expressions for the energy spectrum (7):

E = ±
√

U2/4 + λε2
k. The relation for the GFZ (6) also sim-

plifies and reads: Ezeros = −λεk. It is important to note, that
the renormalization of the energy spectrum and of the GFZ by
magnetic fluctuations are related to each other, because they
are determined by the same parameter λ. To illustrate this
point, we estimate λ from the amplitude of the GFZ (green

color in Fig. 1 (c)). Then, we use this value of λ when plot-
ting the dispersion of the Hubbard bands without any further
fitting of parameters. The analytical result for the energy
spectrum (7) and for the dispersion of the GFZ (6) is plot-
ted in dotted lines Fig. 1 (c) and (d). We observe an excellent
agreement between the analytically and numerically obtained
results for both the GFZ and the Hubbard bands. We find
that the strong magnetic fluctuations alter the behaviour of the
Hubbard bands, which now exactly follow the dotted lines de-
picting the analytical expression (7). Moreover, the GFZ, and
especially their momentum-dependence, are perfectly repro-
duced by Eq. (6). Therefore, we find that the dispersion of the
Hubbard bands is directly linked to the one of the GFZ.

An advantage of the derived analytical expression for the
self-energy (4) is that it is not restricted to a particular form
of the electronic dispersion and it does not rely on the rela-
tion εk+Q = −εk, that is not satisfied in a general case. To
illustrate this point, in the SM [51] we show the results for
a more realistic model with a finite next-nearest-neighbor
(NNN) hoping t′ = −0.3t. Note, that the corresponding dis-
persion relation εk = −2t

(
cos kx + cos ky

)
+ 4t′ cos kx cos ky is

not particle-hole symmetric and that εk+Q , −εk in this case.
We find that although the dispersion of the GFZ and of the
Hubbard bands differs from the particle-hole-symmetric case
considered above, their renormalization is still related to each
other through the parameter λ.

To conclude, we have studied the momentum-dispersion of
the energy spectrum and the GFZ in the Mott phase of the
Hubbard model. We have derived analytical expressions for
the self-energy, which can be applied to systems with arbi-
trary electronic dispersion. This fact is confirmed by achiev-
ing excellent agreement between analytical and numerical re-
sults obtained, both with and without next-nearest-neighbor
hopping. The generality of the formulas is also manifested
in the possibility of calculating a frequency- and momentum-
dependent Green’s function for further considerations for the
energy spectrum. Our rigorously derived equations unveil that
a “parallel” part of the Hubbard bands comes from the trivial
momentum-independent GFZ, while the “mirror-symmetric”
one arising at lower temperatures is intimately related to the
form of the Luttinger surface. An important remark that
emerges from our study is that the amplitudes of the GFZ and
the Hubbard bands are governed by the same parameter. This
is a further confirmation of the consistency of our calculations.
This deeper understanding of the behavior of both the energy
spectrum and the GFZ can be employed in studies of topolog-
ical order in correlated systems, and the analytical formulas
can be used in an analogous way to the single-particle quanti-
ties typically utilized in the study of non-interacting problems.
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Unruh and R. Schützhold (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007) pp. 31–73, series Title: Lecture Notes in
Physics.

[25] Z. Wang, X.-L. Qi, and S.-C. Zhang, Topological Order Pa-
rameters for Interacting Topological Insulators, Phys. Rev. Lett.
105, 256803 (2010).

[26] V. Gurarie, Single-particle Green’s functions and interacting
topological insulators, Phys. Rev. B 83, 085426 (2011).

[27] S. R. Manmana, A. M. Essin, R. M. Noack, and V. Gu-
rarie, Topological invariants and interacting one-dimensional
fermionic systems, Phys. Rev. B 86, 205119 (2012).

[28] Z. Wang and S.-C. Zhang, Simplified Topological Invariants for
Interacting Insulators, Phys. Rev. X 2, 031008 (2012).

[29] B. L. Altshuler, A. V. Chubukov, A. Dashevskii, A. M.
Finkel’stein, and D. K. Morr, Luttinger theorem for a spin-
density-wave state, Europhysics Letters (EPL) 41, 401 (1998).

[30] I. Dzyaloshinskii, Some consequences of the Luttinger theo-
rem: The Luttinger surfaces in non-Fermi liquids and Mott in-
sulators, Physical Review B 68, 085113 (2003).

[31] T. D. Stanescu, P. Phillips, and T.-P. Choy, Theory of the
Luttinger surface in doped Mott insulators, Phys. Rev. B 75,
104503 (2007).

[32] A. Rosch, Breakdown of Luttinger’s theorem in two-orbital
Mott insulators, The European Physical Journal B 59, 495
(2007).

[33] K. B. Dave, P. W. Phillips, and C. L. Kane, Absence of Lut-
tinger’s Theorem due to Zeros in the Single-Particle Green
Function, Phys. Rev. Lett. 110, 090403 (2013).

[34] M. Fabrizio, Emergent quasiparticles at Luttinger surfaces, Nat.
Commun. 13, 1561 (2022).

[35] P. Worm, M. Reitner, K. Held, and A. Toschi, Fermi
and Luttinger arcs: two concepts, one surface, Preprint
arXiv:2312.17700 (2023).

[36] A. Blason and M. Fabrizio, Unified role of green’s function
poles and zeros in correlated topological insulators, Phys. Rev.
B 108, 125115 (2023).

[37] M. Fabrizio, Spin-Liquid Insulators Can Be Landau’s Fermi
Liquids, Phys. Rev. Lett. 130, 156702 (2023), publisher: Amer-
ican Physical Society.

[38] S. Sakai, Y. Motome, and M. Imada, Evolution of Electronic
Structure of Doped Mott Insulators: Reconstruction of Poles
and Zeros of Green’s Function, Phys. Rev. Lett. 102, 056404
(2009).



6

[39] S. Sakai, Y. Motome, and M. Imada, Doped high-Tc cuprate
superconductors elucidated in the light of zeros and poles of the
electronic Green’s function, Phys. Rev. B 82, 134505 (2010).
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ANALYTICAL EXPRESSION FOR THE SELF-ENERGY

In the framework of dual theories, which are the diagram-
matic expansions based on a reference system, the lattice self-
energy has the following exact form (see, e.g., Refs. [1–3]):

Σk,ν = Σ
ref
ν +

Σ̃k,ν

1 + gνΣ̃k,ν
, (1)

where Σref
ν and gν are the exact self-energy and the Green’s

function of the reference system, respectively. Σ̃k,ν is the self-
energy in the dual space that accounts for the correlation effect
beyond the reference problem. k and ν are respectively the
momentum and fermionic Matsubara frequencies. The impor-
tance of the denominator in the second term in this expression
is discussed in Ref. 4.

As discussed in the main text, for the case studied in the
current work the reference system can be approximated by
the atomic problem. The self-energy and the Green’s function
of this problem are following:

Σref
ν =

U2/4
iν
, gν =

−iν
ν2 + U2/4

. (2)

Upon substituting these quantities in Eq. (1) one gets:

Σk,ν =
U2/4 + iν Σ̃k,ν

ν2

ν2+U2/4

iν + Σ̃k,ν
ν2

ν2+U2/4

. (3)

The diagrammatic expression for the dual self-energy in the
D-TRILEX approximation reads:

Σ̃k,ν =
∑

q,ω,ς
Λςν,ωG̃k+q,ν+ωW̃ςq,ωΛ

ς
ν+ω,−ω. (4)

Note that this expression has the opposite sign compared
to the one introduced in Refs. [5–7]. The “−” sign is ab-
sorbed in the renormalized interaction so that in the current
work W̃ςq,ω > 0. Λν,ω is the three-point (fermion-boson) ver-
tex function of the reference system in the charge (ς = ch)
and spin (ς = sp ∈ {x, y, z}) channels. G̃k,ν is the renormalized
(dressed) dual fermion Green’s function. For the sake of de-
riving an analytical expression for the self-energy, we approx-
imate it by the bare (undressed) dual Green’s function G̃k,ν

that has the following form:

G̃k,ν = gν
[
(εk − ∆ν)−1 − gν

]−1
gν. (5)

Here, εk is the dispersion of electrons that in the case of a 2D
square lattice with nearest-neighbor hoppings is given by:

εk = −2t
(
cos kx + cos ky

)
. (6)

We set t = 0.25 so that the half bandwidth D = 1 defines the
energy scale of the system. In the atomic limit the fermionic
hybridization function ∆ν is identically zero, so one gets:

G̃k,ν =
gνεkgν

1 − εkgν
. (7)

One can assume that the main contribution to the dual self-
energy comes from the static (ω = 0) part of the renormal-
ized interaction in the spin channel W̃sp

q,ω taken at the mo-
mentum q = Q, corresponding to the leading magnetic fluc-
tuation (Q = M = {π, π} in our case). In Fig. 1 the interaction
W̃sp

q,0 is plotted along the high symmetry path Γ-X-M-Γ in the
Mott insulating regime (U = 4.5) for three different tempera-
tures. Decreasing T (from left to right in Fig. 1) increases the
strength of magnetic fluctuations, leading to the progressive
increase of the peak at the M point. The right panel in Fig. 1
thus justifies the above made assumption. With this approxi-
mation the D-TRILEX self-energy simplifies to:

Σ̃k,ν = 3Λsp
ν,0W̃sp

Q,0Λ
sp
ν,0g2
ν

εk+Q

1 − εk+Qgν
. (8)

The coefficient “3” comes from the sum over the three spin
components that are all equal in the paramagnetic case.

The three-point vertex and the susceptibility of the atomic
problem are given by the following expressions [8]:

Λ
ch/sp
ν,ω =

1

1 + Uch/spχ
ch/sp
ω

[
1 +

U2/4
iν(iν + iω)

+
U
2

(
1 +

U2/4
ν2

)
β

2

(
tanh

{
βU
4

}
∓ 1

)
δiω

]
, (9)

χ
ch/sp
ω = −β

2
e∓βU/4

cosh βU/4
δiω = ±β2

(
tanh

{
βU
4

}
∓ 1

)
δiω. (10)

Note that our definition for the susceptibility differs by a fac-
tor of “-2” from the definition used in Ref. [8]. Thus, the

ar
X

iv
:2

40
2.

02
81

4v
2 

 [
co

nd
-m

at
.s

tr
-e

l]
  1

6 
Fe

b 
20

24



2

X MΓ Γ
20

22

24

26

28

30

32

34

X MΓ Γ
30

40

50

60

70

80

90

100

110

X MΓ Γ
0

50

100

150

200

250

300

350

400

450

500

FIG. 1. The renormalized interaction in the spin channel W̃sp
q,0 obtained using D-TRILEX for U = 4.5 and three different temperatures T = 1/5

(left), T = 1/10 (middle) and T = 1/16 (right). As the temperature is decreased the magnetic fluctuations become stronger the renormalized
interaction gets larger and more peaked at the Q = M = (π, π) point.

vertex function in the spin channel taken at the zeroth bosonic
frequency reads:

Λ
sp
ν,0 =

1
1 + Uspχ

sp
0

[
1 − U2/4

ν2
− U

2
χ

sp
0

(
1 +

U2/4
ν2

)]

=
1

1 + Uspχ
sp
0

[
1 − U2/4

ν2
+ Uspχ

sp
0

(
1 +

U2/4
ν2

)]

≃ ν
2 + U2/4
ν2

. (11)

The dual self-energy becomes:

Σ̃k,ν = −
3W̃sp

Q,0

ν2
εk+Q

1 − gνεk+Q
. (12)

Upon substituting this relation for the dual self-energy into
Eq. (3) and introducing w = 3W̃sp

Q,0, one gets the expression
for the lattice self-energy shown in the main text:

Σk,ν =
U2

4iν
− wεk+Q

ν2 + iνεk+Q
ν2+w
ν2+U2/4

=
U2/4 + iνεk+Q

(
1 − ν2+w

ν2+U2/4

)

iν − εk+Q
ν2+w
ν2+U2/4

=
U2/4 + iνεk+Q (1 − λν)

iν − λνεk+Q
, (13)

where λν = ν2+w
ν2+U2/4 . The low-frequency approximation for the

self-energy can be obtained assuming that ν2 ≪ U2, which
gives the following result for the lattice self-energy:

Σk,ν ≃
U2/4 + iνεk+Q (1 − λ)

iν − λεk+Q
, (14)

where we introduced λ = 4w/U2. We note that, up to a con-
stant contribution, the renormalized interaction W̃q,ω can be
rewritten through the lattice susceptibility Xςq,ω as:

W̃ςq,ω ≃ UςXςq,ωUς, (15)

where Uch/sp = ±U/2. This results in λ ≃ 3Xsp
Q,0.

EFFECT OF THE RENORMALIZED GREEN’S FUNCTION

The above derivation for the self-energy has been per-
formed based on the bare dual Green’s function. For com-
parison, the numerical results shown in the main text are
obtained within single-shot (non-self-consistent) D-TRILEX
calculations, where for a decreasing temperature (T = 1/16)
we found an excellent agreement between the numerical re-
sults and our analytical expressions. However, by further de-
creasing the temperature to T = 1/18 the magnetic fluctua-
tions become very large (LE = 0.95) and they lead to GFZ
with large dispersion that push the Hubbard bands to higher
energies at the Γ and M points. This effect can be seen in

5.0

3.0

3.5

2.5

2.0

1.5

1.0

0.5

0
Γ ΓX M

-4

-3

-2

-1

0

1

2

3

4

Ε

4.0

4.5

9

8

7

6

5

4

3

2

1

0-4

-3

-2

-1

0

1

2

3

4

Ε

Γ ΓX M

FIG. 2. Comparison between single-shot (top panel) and self-
consistent (bottom panel) calculations for the modulus of the Green’s
function obtained at T = 1/18.
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the top panel of Fig. 2. As a result, the derived analytical
expression for the energy spectrum (white lines) does not ac-
curately reproduce the Hubbard bands at these k-points. Nev-
ertheless, in this regime one cannot expect single-shot calcu-
lations to be accurate, because strong magnetic fluctuations
renormalize the Green’s function via the self-energy. To illus-
trate this point, we perform self-consistent D-TRILEX calcu-
lations for the same temperature T = 1/18, which leads to a
decreased LE = 0.83. This value is now similar to the one for
the single-shot calculation at T = 1/16 discussed in the main
text. A self-consistent renormalization of the Green’s func-
tion decreases the amplitude of the GFZ, and the renormal-
ized Hubbard bands remind of those found at T = 1/16 via
single-shot D-TRILEX calculations (bottom panel in Fig. 2).
Consequently, the analytical expression for the energy spec-
trum with the λ parameter deduced from the amplitude of the
remormalized GFZ again accurately reproduces the renormal-
ized Hubbard bands.

RELATION TO THE PREVIOUSLY INTRODUCED
ANSÄTZE FOR THE SELF-ENERGY

It is interesting to explore how our derived expression for
the self-energy can be connected to the ansätze derived based
on the two-pole t/U expansion [9–11]:

Σt/U =
U2/4

iν + H̃0
. (16)

In dual theories, a similar expression for the self-energy is
given by Eq. (3). These equations show that the dual self-
energy Σ̃ plays a role of the renormalized dispersion of the
GFZ, namely H̃0 ≃ Σ̃k,ν

ν2

ν2+U2/4 . Note that Eqs. (3) and (16)
are not identically the same. In particular, Eq. (3) contains an
additional contribution in the numerator, which is important
for a correct description of the Hubbard bands (see main text).

One can also connect H̃0 obtained in the D-TRILEX ap-
proach to the static magnetic susceptibility. To this aim we do
not restrict ourselves to the leading momentum q = Q in the
static renormalized interaction W̃sp

q,0, but instead approximate
the dual Green’s function by a numerator in Eq. (7):

G̃k,ν ≃ g2
νεk =

−εkν
2

(ν2 + U2/4)2 . (17)

Then, the dual self-energy (4) reduces to:

Σ̃k,ν = − 3
ν2

∑

q
εk+qW̃sp

q,0. (18)

Upon using Eq. (15), the renormalized dispersion of the GFZ
becomes:

H̃0 = Σ̃k,ν
ν2

ν2 + U2/4
= −3

U2/4
ν2 + U2/4

∑

q
εk+qXsp

q,0

≃ −3
∑

q
εk+qXsp

q,0, (19)

where we used a low-frequency approximation to get the last
line. This expression reminds of the relation for H̃0 obtained
within the two-pole t/U expansion shown in the Supplemental
Material of Ref. [11].

EFFECT OF THE NEXT-NEAREST-NEIGHBOR HOPPING

The derived above analytical expression for the self-energy
is not restricted to a particular form of the electronic dis-
persion. To illustrate this point, let us consider the elec-
tronic dispersion εk = −2t

(
cos kx + cos ky

)
+ 4t′ cos kx cos ky

corresponding to the nearest-neighbor t = 0.25 and the next-
nearest-neighbor (NNN) t′ = −0.3t hoppings on a square lat-
tice. The case of t′ = 0 is considered in the main text.

The presence of the NNN hoping term suppresses the
strength of magnetic fluctuations [12–15] and also leads to an
increased critical value of the Coulomb interaction Uc for the
Mott transition [16–18]. In order to rigorously compare with
the results displayed in the main text one needs to perform
calculations for a slightly larger value of U and lower temper-
ature. We find that at U = 5.5 and T = 1/22 the system lies
in a region of considerable magnetic fluctuations defined by
the same leading eigenvalue LE = 0.83 as in the t′ = 0 case.
Fig. 3 illustrates the modulus of the Green’s function obtained
using D-TRILEX for this choice of model parameters. As in
the t′ = 0 case, we estimate the parameter λ from the ampli-
tude of the GFZ and use this value in the analytical expres-
sion for the energy spectrum (Eq. (7) in the main text). The
result is plotted in solid white lines. We again find an excel-
lent agreement between the derived analytical expression for
the energy spectrum and the numerical data, although in this
case the lower and upper Hubbard bands are no longer mirror-
symmetric with respect to the Fermi energy at every k-point

FIG. 3. The modulus of the Green’s function for a half-filled 2D Hub-
bard model on a square lattice with the NNN hoping t′ = 0.3t. The
result is calculated along the high-symmetry path using D-TRILEX
for U = 5.5 and T = 1/22. The GFZ are shown in green. The an-
alytical expressions are plotted in solid white lines. The horizontal
dashed line at E = 0 indicates the Fermi energy.
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and have different forms due to εk+Q , −εk.
Estimating λ from the amplitude of the GFZ uncovers yet

another interesting effect. We find that the dispersion of the
GFZ is actually not fully described by Eq. (6) in the main text.
This is clear from the fact that the X point of the GFZ disper-
sion is attracted to the Fermi energy, which corresponds to a
bit different value of the NNN hopping t′ = −0.11t. We at-
tribute this feature to the effect of electronic correlations that
usually tend to attract and even pin the van Hove singular-
ity of the quasi-particle band to the Fermi energy (see, e.g.,
Refs. [19–23]). Remarkably, although in the Mott insulating
case the quasi-particle band is not present at the Fermi en-
ergy, it is replaced by the GFZ for which, apparently, a similar
renormalization by the electronic correlations holds.

The attraction of the van Hove singularity to the Fermi
energy can be captured, e.g., by the fluctuation-exchange
(FLEX) theory [19]. We note that the D-TRILEX self-energy
has the FLEX-like diagrammatic form that additionally ac-
counts for the vertex corrections [5–7]. Furthermore, the
D-TRILEX self-energy Σ̃k,ν gives the dispersion of the GFZ,
as discussed in the previous section below Eq. (3). These facts
allow us to argue that the observed attraction of the van Hove
singularity of the GFZ to the Fermi energy is induced by the
same electronic correlations as in the case of the electronic
dispersion. Since Eq. (6) in the main text does not reproduce
the shift of the van Hove singularity seen in the numerical re-
sult, this effect goes beyond the static approximation for the
renormalized interaction W̃. Therefore, for a more accurate
description of the GFZ one could use Eq. (3) that, however, is
much more complex than Eq. (13) due to the presence of the
dual self-energy Σ̃k,ν.
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