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ABSTRACT

We present a new method of removing point spread function (PSF) artifacts and improving the resolution of multidimensional data
sources, including imagers and spectrographs. Rather than deconvolution, which is translationally invariant, the method we present
is based on sparse matrix solvers. This allows it to be applied to spatially varying PSFs as well as to combined observations from
instruments with radically different spatial, spectral, or thermal response functions (e.g., SDO/AIA and RHESSI). The method was
developed to correct PSF artifacts in Solar Orbiter Spectral Imaging of the Coronal Environment, so the motivation, presentation of
the method, and the results revolve around this type of application. However, it can be used as a more robust (e.g., with respect to
spatially varying PSFs) alternative to deconvolution of 2D image data, as well as similar problems, and is also relevant to more general
linear inversion problems.

Key words. line: profiles – techniques: imaging spectroscopy – instrumentation: spectrographs –
techniques: high angular resolution – Sun: abundances – Sun: corona

1. Introduction

The Spectral Imaging of the Coronal Environment (SPICE;
Spice Consortium 2020; Fludra et al. 2021) is an extreme ultra-
violet (EUV) slit scanning spectrograph on board the Solar
Orbiter spacecraft (García Marirrodriga et al. 2021). It was made
to discriminate between current models of the slow solar wind
source region by using compositional signatures of the wind to
identify in situ wind streams with particular outflowing regions
on the solar disk. SPICE has a unique capability to produce
(comparatively) high resolution time resolved maps of outflow
velocity and ionic composition that, compared with a relatively
large field of view (nearly 1024 pixels along the slit with 1 arc-
second plate scale, or the equivalent of roughly 0.3 arcsec from
Earth when Solar Orbiter is at 0.3 AU perihelion; see below for
more detailed instrument specifics), uniquely enable tracing of
individual wind streams from the surface of the Sun to in situ
measurements from the Solar Orbiter spacecraft by using the
wind’s variability and compositional signature to identify each
stream.

Despite decades of study, the origin of the slow solar wind
is still not known. Several widely disparate models of the
slow wind’s origin exist, including the boundary between coro-
nal holes and streamers, small transient open regions in the
quiet Sun, diffusion through streamer tops, or plasmoid ejection
into the streamer belt (e.g., Suess et al. 1998; Fisk & Zurbuchen
2006; Woo & Martin 1997; Wang et al. 1999). Existing static
ultraviolet Dopplergrams of the quiet transition region and
low corona show many regions that are blue-shifted by

roughly 10 km s−1 and nearly as many red-shifted regions (e.g.,
Popescu & Doyle 2005; Hassler et al. 1999). Thus, in order to
identify the features that are relevant to the solar wind, more
detailed time-resolved studies and association with in situ mea-
surements are required.

Slow wind streams vary strongly in speed and density,
with correlated variations in ionization temperature, concen-
tration of elements with a low first ionization potential (FIP)
of each element, and mass-to-charge ratio (M/q) fractionation.
With the point spread function (PSF) correction we introduce
in this paper, SPICE is able to produce images of outflow
in the lower solar atmosphere with a sensitivity of 5 km s−1

(Spice Consortium 2020) and simultaneous compositional sig-
natures in the in situ-relevant ion sequences. This allows tem-
poral sequences and compositional and kinetic signatures on the
Sun (in the chromosphere and low corona) to be compared with
with plasma properties observed in situ, which in turn enables
unambiguous mapping of solar wind packets (observed in situ)
and their corresponding solar origins (remotely sensed on the
Sun).

A primary design objective of SPICE is to trace how
plasma outflows in the photosphere and the low corona con-
nect to the heliosphere at large – primarily by connecting
abundances observed in situ by various spacecraft with those
sensed remotely by SPICE. This relies on accurate identifica-
tion of particular emission lines at a variety of temperatures,
lines which have varying susceptibility to ionization (i.e., the
FIP effect; see Spice Consortium 2020; Fludra et al. 2021, for
more detail). An additional important feature of SPICE for
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Fig. 1. Context images of the primary IRIS and SPICE observations used for demonstration and testing in this paper. Left panel a: Context image
of the SPICE-IRIS coordinated observation data. The image was made from one of the full-size SPICE rasters. It is a spectral sum over the C III
977 Å window. The detailed comparisons in this paper focus on the smaller region outlined in this image. Upper-right panel b: Spectral line fit
amplitude image of the smaller region from IRIS. Lower-right panel c: Spectral line fit amplitude image of the smaller region from SPICE.

diagnosing connectedness is the use of the Doppler effect to
discriminate upflows from downflows and to identify potential
solar wind outflow regions deep in the corona and transition
region.

Although SPICE is not a high-resolution instrument by
design, these and other observables, along with their driv-
ing science objectives, require resolution within the limits
of its design (given the mission’s nominal requirements; see
Spice Consortium 2020). Degraded resolution beyond the design
limits will impact the ability of SPICE to achieve its science
goals. This paper reports on some issues that degrade SPICE’s
resolution and discusses a novel data processing methodology
that will remove the degradation.

We use a set of coordinated SPICE and high spectral and
spatial resolution Interface Region Imaging Spectrograph (IRIS;
De Pontieu et al. 2014) data for the examples and demonstra-
tions in this paper, with IRIS data used as “ground truth” to
assess the quality of the PSF correction and constrain the effec-
tive SPICE PSF. IRIS observes spectral lines that sample the
same regions of the corona as SPICE, with very similar tem-
perature response, and its high resolution makes a good starting
point for degrading resolution to that of SPICE. The observation
data were taken on March 7, 2022, when SPICE’s orbit placed
it on the Earth-Sun line, with the same perspective as IRIS. We
compare the SPICE C III 977 Å observations with IRIS Si IV
1394 Å observations. These two lines have very close formation
temperatures, log T [K] of 4.78 and 4.81, when in ionization

equilibrium (e.g., Table 1 of Peter et al. 2006). An image show-
ing the larger context of this region is shown in Fig. 1.

2. Overview of SPICE point spread function
problem and possible solution

2.1. Point spread function issues and need for correction

SPICE has an approximately 1.1 arcsec per pixel spatial plate
scale along the slit and several slit widths ranging from 2 to
3 arcsec, while the spectral plate scale is about 0.009 nm per
pixel. The focal plane has two detector arrays of 1024× 1024
pixels each covering two spectral bands – one from 70.4 to
79.0 nm and the other from 97.3 to 104.9 nm. The slit scan-
ning mechanism can cover up to 16 arcmin, while the slit covers
14 arcmin on the detector plane. The overall raster image dimen-
sions are up to 960 × 840 arcsec. SPICE’s observing distance
varies between about 0.3 and 1.0 AU, which must be considered
when comparing these numbers with Earth-based instruments.
Since SPICE is a scanning slit spectrograph, its observables
are in three dimensions: spectral (λ), slit-aligned (y), and slit-
perpendicular (x, the scanning direction). (There is actually a
fourth time dimension, but we do not consider it here because
we assume the source and PSF do not change with time.) The
SPICE PSF is similarly three-dimensional, extending in all three
of these directions. The issue this paper addresses is caused by a
PSF that is both elongated and rotated with respect to these axes,
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Fig. 2. Spectra from a particular slit position in the SPICE and IRIS data. This slit position was chosen for good agreement between SPICE and
IRIS, and it passes through the middle of the green circled region in Fig. 1. Panel a: IRIS spectra. Panel b: Proposed SPICE PSF with SPICE
pixelization. Panel c: IRIS data (“synthetic SPICE”) with this PSF and pixelization. Panel d: Actual observed SPICE data. The elongation and
apparent rotation of the PSF are evident, as is the agreement between (synthetic) IRIS and SPICE.

rather than being aligned with them. We have observed that the
SPICE PSF is rotated both within the slit plane (i.e., y − λ) and,
in some cases, in the scanning plane as well. This is shown for
an example slit plane in Fig. 2. This slit plane passes through
the middle of the green circled region in Fig. 1. A rotation on
the detector (i.e., y − λ) plane of ∼15◦ is evident. This angle will
appear different if the pixels are not square and can vary with the
different slit width. We note that this paper focuses on the 2 arc-
sec slit. We believe the PSF issue is caused by a combination of
astigmatism on the primary mirror and defocus. The suggested
PSF shown in Fig. 2 was chosen through trial and error to best
match the appearance of the SPICE data. We discuss it in more
detail in subsequent sections.

The elongation and rotation of the SPICE spectro-spatial
PSF impacts its ability to diagnose connectedness and other
important instrument capabilities in a variety of ways. For
instance, it can reduce the definition with which SPICE can
resolve boundaries of regions with differing connectedness. The
degradation also hampers its ability to resolve fainter spectral
lines when there are neighboring bright spectral lines. This is
especially critical because the selection of lines that adequately
sample both abundance and temperature is very limited (the
aforementioned spectral blends are a case in point).

Even more challenging is that the tilt of the PSF between the
spatial and spectral directions causes a bright feature at one loca-
tion, creating the illusion of a neighboring dim feature, which
is Doppler shifted relative to the true feature (i.e., bright fea-

tures appear to have Doppler shift lobes next to them). Together
with Doppler fitting, the elongated and rotated “effective” PSF
in the y − λ plane acts as an edge detection filter, causing bright
features to be “aliased” from intensity into Doppler. (As previ-
ously mentioned, we believe this issue is ultimately caused by a
combination of astigmatism on the primary mirror and defocus.)
This PSF artifact confounds attempts to understand connected-
ness and dynamics by looking at Doppler shifts, and we have
seen this kind of feature in the SPICE data.

To illustrate the issue, we show (in the lower panels of Fig. 3)
the Doppler fits to the IRIS data, the IRIS data degraded with the
SPICE PSF, and the actual SPICE data for the region of inter-
est already highlighted by Fig. 1. We note that before fitting, the
IRIS data on the left were first binned down 2×2 to better match
the SPICE pixel size. Strong Doppler features are evident in the
IRIS data degraded with SPICE PSF and the SPICE data, which
are not present in the original IRIS data. In the figure, we have
circled three of the most prominent Doppler features in the map.
Each of these coincide with bright features (e.g., ridges) in inten-
sity, as can be seen in the lower panels of Fig. 3. Because the fea-
tures are absent from the original (plus down-binning) IRIS data,
their appearance in the IRIS with the SPICE PSF clearly impli-
cates the PSF in creating these artifacts. A similar effect and arti-
facts have been previously noted for the Hinode EUV Imaging
Spectrometer (EIS; Culhane et al. 2007). This is primarily dis-
cussed in an online EIS software note (Ugarte-Urra 2016) but is
also alluded to in other papers, such as Young et al. (2012).
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Fig. 3. Amplitude (upper row) and Doppler (lower row) fits to the IRIS (panel a), IRIS with SPICE PSF and pixelization (“IRIS synthetic SPICE”;
panel b), and SPICE (panel c). Before fitting, the IRIS data on the left were first binned down 2 × 2 to better match the SPICE pixel size. Both
the “synthetic SPICE” and real SPICE Doppler (panels b and c) show clear ridge artifacts that are absent from the IRIS Doppler (panel a). Some
specific artifacts are highlighted. Comparison with the amplitudes in the upper row shows that these artifacts are associated with bright features in
intensity. The elongated, rotated effective y − λ PSF causes bright intensity features to alias into Doppler, as further discussed in the text.

The Doppler shift artifacts have fortunately been reduced
thanks to the efforts of the SPICE team. This was done by adjust-
ing the SPICE focus position and checking the results during
instrument calibration campaigns. Consequently, the team has
determined a focus position where the aberrations are signifi-
cantly reduced. The results shown here use data that takes advan-
tage of this improved focus position.

2.2. Solution method: General linear (sparse) solvers and
why we are using them

These examples sufficiently illustrate that this PSF effect seri-
ously degrades the quality of Doppler data observed by SPICE.
A means of removing it is highly desirable, and the objective of
this work is to develop a method that could ultimately be applied
to all data at some level of its data pipeline. The conventional
way of removing PSFs is via convolution (e.g., Poduval et al.
2013). Convolution in this context is the translationally invariant
special case of the general linear transform, and it usually also
assumes that the input and output of the transform have the same
dimensions (e.g., nx by ny pixels). Rather than treating the prob-

lem under this special case, however, we instead treat it as an
example of the full general linear transform. There are a number
of reasons for this choice, including:

– Pragmatically, we expect these PSF artifacts to vary over the
image plane, which a convolution cannot represent.

– The general transform provides a somewhat more straight-
forward framework for applying other constraints, such as
positivity and regularization. We have already had success
with this framework in other contexts (Plowman & Caspi
2020; Plowman 2021).

– The general full linear problem is far more broadly applica-
ble than the (de)convolution problem. Once properly devel-
oped, the same tools used for this problem with SPICE can
be applied to almost every other coronal remote sensing
problem, to similarly good effect. See Plowman (2021) for
an early example. We return to this point at the end of the
paper.

– The tools for tackling the inverse part of this problem have
already been extensively developed by the computer sci-
ence communities in the form of high performance sparse
matrix solvers. All we need to do, therefore, is implement
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the forward transform in the appropriate fashion (i.e., as a
sparse matrix).
The reason we use a sparse matrix approach, as opposed to

some more complex method (e.g., a deep learning approach), on
the other hand, is because the forward problem is inherently a
linear matrix operator. Sparse matrix inversions are specifically
designed to solve linear inverse problems, and the most direct
and straightforward approach that captures the problem well is
often the best. A wide variety of problems in remote sensing fall
under the linear category, and the utility of direct sparse solvers
to this domain is underappreciated. The large size of the corre-
sponding full matrices may give the impression that the problem
is intractable by this approach, but this is not the case, as the sub-
sequent examples will show. In this paper, we add the nonlinear
mapping from Plowman & Caspi (2020), which enables the use
of a positivity constraint and some additional flexibility in terms
of regularization.

We turn next to our implementation of this method. The
derivation shown next presupposes a 3D PSF as a function of
x, y, and λ (the most general case for SPICE). In practice, our
understanding of the problem is that it can be represented by
two PSFs. The first blurs in x and y but does not affect λ. There-
fore, this PSF does not contribute to the Doppler artifacts we are
trying to correct. The other “effective” y − λ PSF is assumed to
affect y and λ but not x. This is the PSF that is elongated in λ and
rotated approximately 15◦, and which causes the Doppler arti-
facts. We have done a variety of tests with 2D and 3D PSFs and
found that correcting this effective PSF sufficiently removes the
Doppler artifacts, working as well as the 3D correction while
also being much faster. We wrote the derivation in 3D since
it seemed that a 3D method may be necessary. In the event it
appears a 2D correction will suffice, we retain the 3D derivation
since it is more general. The code for the correction is written to
be agnostic to the dimensionality of the problem, as the 1D and
2D examples demonstrate.

3. Introducing our solution method (formalism)

3.1. SPICE point spread function as instance of general
linear forward problem

3.1.1. The SPICE forward problem

To begin, we suppose that SPICE observes some static (mean-
ing it does not change over the time of observation) cube in the
sky with spectral radiance L(xs, ys, λs) as a function of sky lon-
gitude and latitude (which we write as xs, ys) and wavelength
λs. These are projected onto the detector plane by the PSF,
P(xd, yd, λd, xs, ys, λs), which is a function of both sky coordi-
nates (xs, ys, λs) and detector plane coordinates (xd, yd, λd). In
reality, xd and λd are time multiplexed onto the same surface
(although not necessarily the same axis) by the grating, slit, and
scanning mechanism, but we treat them as independent for clar-
ity of our demonstration. The flux density E(xd, yd, λd) on the
detector plane observed for this cube is the integral of the cube
against the PSF overall sky angles:

E(xd, yd, λd) =

∫
P(xd, yd, λd, xs, ys, λs)L(xs, ys, λs)dxsdysdλs,

(1)

where we have made the small angle approximation and placed
the Sun at the equator of the coordinate system, which allows us
to set the cos ys weight in the integral to one. The sensors divide
the detector plane into pixels, which we index by i, j, and k,

each of which have weight functions (typically nonoverlapping
“bins”) θi jk(xd, yd, λd). The fluxes Φi jk into each of these pixels
are the integrals of the detector plane flux densities against each
of these weight functions:

φi jk =

∫
θi jk(xd, yd, λd)E(xd, yd, λd)dxddyddλd. (2)

At this point, we point out what we call the overall response
function of the {i jk}th pixel of the instrument,

Ri jk(xs, ys, λs) =

∫
θi jk(xd, yd, λd)P(xd, yd, λd, xs, ys, λs)dxddyddλd.

(3)

The name of the game is to find the spectral radiance, L,
which is an unknown continuous function and therefore has
an infinite number of degrees of freedom. To limit the num-
ber of degrees of freedom without loss of generality (in prac-
tice, if not in principle), we can define L in terms of a linear
combination of a set of appropriately chosen basis functions,
Blmn(xs, ys, λs):

L(xs, ys, λs) =
∑
lmn

clmnBlmn(xs, ys, λs), (4)

where clmn are the coefficients of the linear combination. The set
of basis functions ought to be linearly independent (i.e., no basis
function can be expressed as a linear combination of the oth-
ers). It is useful for our present purpose if each basis function is
spatially compact and does not overlap much (or at all) with the
other basis functions. The basis functions should also cover the
sky plane at least as well as the pixels cover the detector plane. A
set of pixel-like “bins” in {xs, ys, λs} with equivalent (or denser)
spacing to the pixels is sufficient and is what we used in this
paper. The indices {l,m, n} are intended to reflect the identifica-
tion of the bins with the coordinate axes. In terms of this, the
pixel fluxes are:

φi jk =
∑
lmn

clmn

∫
Ri jk(xs, ys, λs)Blmn(xs, ys, λs)dxsdysdλs. (5)

If we recognize an array of what might be called “response cou-
pling terms” (i.e., the coefficients that define how each source
element is coupled to each detector element and how the detec-
tor elements respond to the source elements),

ri jk,lmn ≡

∫
Ri jk(xs, ys, λs)Blmn(xs, ys, λs)dxsdysdλs, (6)

(the constituents of this are all known and computable, being
composed of the basis functions and the principlally known
instrument response functions) we are left with the following lin-
ear equation relating the unknowns (clmn) to the knowns (φi jk):

φi jk =
∑
lmn

ri jk,lmnclmn. (7)

We used three indices each of the coefficients and the observ-
ables, but this is simply a notational convenience that allows
us to identify each of the coordinate axes with its own index.
Mathematically, we can “flatten” all the indices down to a pair
of indices (one for the coefficients and one for the observables)
by relabeling according to the following one-to-one correspon-
dence:

in jnk + jnk + k → i, and (8)
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Fig. 4. One-dimensional example of the linear process relating a source model to observations. The input to the model (panel a) is a set of
coefficients. These are multiplied by a set of basis functions at various wavelengths (one is shown in panel b), and the result is added to produce a
spectrum (panel c). The spectrum in turn is multiplied by the PSF at each wavelength (panel d), and the result is added to produce a detector plane
spectrum (panel e). Lastly, each of the sensor response functions (panel f) are integrated against the detector plane spectrum to produce count rates
in each detector element (panel g).

lnmnn + mnn + n→ j. (9)

Our linear equation then becomes

φi =
∑

j

Fi jc j, (10)

which we recognize as a familiar matrix equation, with the
array of coupling terms becoming a “forward response matrix”.
Any N-dimensional linear discrete or integral transform can
be similarly treated, and nonlinear ones may be amenable
to a linearization and iteration approach, so this can be a
very powerful and general method for dealing with these
problems.

3.1.2. One- and two-dimensional examples

In this section, we present a pair of lower dimensional exam-
ples using “dummy” data to illustrate our approach. The first
example is the spectrum for a single pixel, that is, a function
only of (for example) wavelength. This spectrum is equivalent
to the differential emission measure (DEM) problem presented
by Plowman & Caspi (2020), with the only difference being that
instead of the instrument temperature response functions found
there, we have a combination of the wavelength PSF and pixel

bin functions:

Ri(λd) =

∫
θi(λd)P(λd, λs)dλd. (11)

The forward matrix is

Fi j =
∑

j

∫ ∫
θi(λd)P(λd, λs)dλdB j(λs)dλsc j. (12)

This is illustrated graphically in Figs. 4 and 5. The only differ-
ence between them is that the individual steps are depicted in
Fig. 4, whereas all of these steps are combined into the forward
matrix in Fig. 5. Combining the steps is possible because all of
the individual steps are linear operations.

Figures 6 and 7 are of the same format and show how the
same treatment can be scaled up to two dimensions (spatial,
in this example, although it makes no difference in the mathe-
matical treatment). Essentially, the additional dimension in the
source and the detector are simply multiplexed down to the one
“input” (conventionally, the columns) and one “output” dimen-
sion of the forward matrix. Mathematically, the only difference
is the addition of a multiplexing (e.g., by “flattening” in numpy
or reforming to a 1D vector in the Interactive Data Language
– IDL) step at the beginning and, if desired, a demultiplexing
step at the end (e.g., by using reform in IDL or reshape in

A52, page 6 of 19



Plowman, J. E., et al.: A&A 678, A52 (2023)

Fig. 5. One-dimensional example of the linear process applied using a matrix in a single step. Input (source coefficients; panel a) and outputs
(detector count rates; panel c) in this figure are identical to Fig. 4 but with all of the intermediate operations carried out by a single matrix
(panel b). This figure is specifically constructed so that the vertical axis of the matrix is aligned with the source element index, while the horizontal
axis is aligned with the detector element index in order to make the matrix nature of the operation visually apparent.

numpy), but these are trivial 1-to-1 operations. The additional
multiplexing step is shown in the top-left and bottom-center pan-
els of Fig. 7, which is otherwise identical in format to the one-
dimensional example in Fig. 5. The output resolution of these
examples differs from the input because, in general, the resolu-
tions of the solar sources are different from those of our detec-
tors, which enables us to demonstrate that this framework can
accommodate such resolution differences.

The SPICE forward problem for the effective (y − λ) PSF is
equivalent to this 2D correction, while the full forward problem
follows the same trend from 1D to 2D to 3D – the same multi-
plexing and demultiplexing operations suffice for converting the
problem into matrix form. The practical implementation of the
construction of this forward matrix can be conceptually thorny

due to the arbitrary number of dimensions, the need to avoid
aliasing if the source and detector resolution do not match, and
the need to avoid evaluating the PSFs where their contributions
are negligible (in higher dimensions the computational penalty
can be extreme). Nevertheless, we have developed a general
N-Dimensional, coordinate-aware framework in Python for com-
puting these matrices. This is described in more detail in Sect. 3.4,
and the framework is also available for download (see Sect. 3.4).

3.1.3. Sparse matrix algorithms

As is clear from the examples provided above, the forward
matrix is very large, even for images of modest size. How-
ever, only detector elements within the PSF range of the source
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Fig. 6. Two-dimensional example of the linear process relating a source model to observations. Identical to Fig. 4 except that in this case, the
source and observations are two-dimensional. The output resolution of these examples differs from the input because, in general, the resolution of
solar sources differs from that of our detectors, demonstrating that this framework can accommodate such resolution differences.

elements have non-zero entries, and the PSF is much smaller
than the overall image. Therefore, this matrix is sparse. There are
a wide variety of specialized sparse matrix algorithms that exist
to work with such matrices, and they drastically reduce the real-
world memory and processing requirements of working with
these matrices. Standard examples can be found in Press et al.
(2002), for instance. Additionally, solving linear problems based
on sparse matrices is a well-developed field in computer science,
and by casting the problem in this form, we can avail ourselves
of the tools that have been developed. Our framework for com-

puting the forward matrices is built on these algorithms. Specifi-
cally, we make use of the scipy.sparse sparse matrix package.

3.2. Solving the SPICE forward problem

The fundamentals of this solution method have also been
recently discussed in Plowman & Caspi (2020), Plowman
(2021), but we also cover them in order to show how they apply
to this case. We begin by considering the forward problem in the
linear least squares framework (Press et al. 2002).
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Fig. 7. Two-dimensional example of the linear process applied using a matrix in a single step. The input source coefficient image (panel a) and
outputs (detector count rates image; panel e) in this figure are identical to Fig. 6, but all the intermediate operations were carried out by a single
matrix (shown as an image at top right; panel c). The vertical axis of this matrix is aligned with the source element index, while the horizontal axis
is aligned with the detector element index. This two-dimensional case is equivalent to the 1D example except that there is a multiplexing step that
“flattens” the 2D input to 1D (panel b) prior to multiplication by the forward matrix (top right). The result of this multiplication (panel d) can then
be demultiplexed to produce the output image (panel e).

We seek the “best fit” coefficient vector (c j in Eq. (10))
that minimizes the sum of squares (hence, the “least squares”)
of the deviation of our model prediction for the data – Φi
from Eq. (10) – with the data, di. These squared deviations are
weighted by the inverse of the square of the errors in the data,
σi. This weighted sum is also known as a χ2 statistic:

χ2 =
∑

i

(φi − di)2

σ2
i

. (13)

The above equation assumes that the errors in the data are nor-
mally distributed, which can be seen by noting that the log like-
lihood is −χ2. Because this merit function is convex, it has
only one minimum that occurs where the gradient of χ2 with
respect to the coefficient vector is zero. Better yet, because χ2 is

quadratic, its derivative is linear. The best fit coefficient vector is
therefore found by solving the following matrix equation (cf. the
chapter in Press et al. 2002, on Linear Least Squares):

AT · b = AT · A · c, (14)

where

A jk =
F jk

σ j
, and b j =

d j

σ j
. (15)

This is the standard form for matrix problems in linear algebra,
and in principle the linear least squares best fit solution is

c = [AT A]−1
· AT · b. (16)
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Reality is never quite so simple, of course. Thus, we need to
apply some additional constraints to ensure a well-posed solu-
tion, which we discuss next.

3.3. Positivity constraint and regularization

The AT A matrix is likely to be poorly conditioned even if it is
not outright singular. The blurring caused by the PSF means that
details we want to resolve are degraded by the forward trans-
form – it loses information – even if the number of data points is
equal to the number of coefficients. In this case, AT A would be
poorly conditioned, and detector noise would lead to instabilities
in the reconstruction. If the number of data points is less than the
number of coefficients, then AT A would be singular, and simply
inverting Eq. (14) would not be possible. To resolve this issue,
we apply a positivity constraint and regularization.

3.3.1. Regularization

Regularization typically takes the form of adding a term to χ2

and minimizing their sum instead of χ2 alone. In this derivation,
we took this added term to be of the form

ε
∑

i j

ciXi jc j. (17)

In other words, instead of minimizing χ2 by itself, we seek to
minimize the merit function

M ≡ χ2 + ε
∑

i j

ciXi jc j, (18)

where X is a matrix specifying the regularization. This matrix
can be as simple as the identity matrix, in which case the reg-
ularization makes the solver prefer solutions with a smaller l2
norm (i.e., c · c). Exactly how much smaller depends on the size
of the ε parameter, which tunes the strength of the regularization.
In Plowman & Caspi (2020), the operator was composed of the
derivatives (i.e., WRT temperature) of the basis functions inte-
grated against each of the other basis functions. This results in
a regularization operator that makes the solver prefer solutions
with smaller derivatives, specifically the log of the derivative in
that case.

The addition of the regularization term changes the matrix
equation we wish to solve from Eq. (14) to

AT · b = AT · A · c + εX · c. (19)

In other words, the matrix that needs to be inverted simply
has the regularization matrix times the tunable parameter (εX)
added to it.

For this class of problem, ε is often chosen to make each of
the residuals of the fit to be some number χ0 (typically equal to
the number of data points, or “reduced” χ2 of order unity). Not-
ing that the residuals are b−A ·c and with a slight rearrangement
of Eq. (19), this requirement is equivalent to

ε
∑

j

Xi jc j − χ0

∑
j

F ji

σ j
= 0. (20)

We want to solve this for ε. But this is just one parameter, and it
cannot satisfy each component of this vector equation. Instead,
we minimize the RMS of the LHS of this equation over ε. The
result is

ε = χ0

∑
i(
∑

j Xi jc j)(
∑

j Fi j/σ j)∑
i(
∑

j Xi jc j)2 . (21)

But we do not know c either. Therefore, we use an initial
guess for c to determine our ε. We will need a guess later on
when we introduce the positivity constraint.

It turns out that a simple initial guess can be formed using
FT · d. An analogy can be made to upscaling an image by an
integer factor. More generally, the results of this procedure are
roughly a model that has been subjected to the source response
function twice. Such a model will be much smoother, but fea-
tures will be in the right place. This is desirable for regular-
ization since it is more conservative than regularization using a
sharper guess and therefore avoids overfitting. It does result in an
over-smoothed solution as well; however, the amount of which
depends on how much sharper the source is than the results of the
instrument resolution degradation. To mitigate this, we apply a
final correction factor to scale ε. The SPICE sources are signifi-
cantly sharper than the SPICE PSF, so this final scaling factor
for ε is about 0.1 (i.e., ε is reduced by a factor of ten com-
pared with Eq. (21)). Multiplying another factor in this way is of
course not ideal, but a priori estimation of regularization param-
eters has something of a circular dependence since one does not
mathematically know the sharpness of the source prior to recon-
structing it. This final factor is a way of instructing the code
regarding how sharp the source is likely to be, while initial ε esti-
mate allows the code to automatically adjust for varying intensity
and error levels in the data.

The amplitude needs to be rescaled (since F is not normal-
ized). We choose this scaling factor to be the one that minimizes
the χ2 in the initial guess compared with the data, resulting in
the following initial guess for c:

c0 ≡ FT · d
[d · A · AT · d
|A · FT · d|2

]
. (22)

The framework, as currently constructed, uses regularization
based on the l2 norm. The derivative-based regularization used
in Plowman & Caspi (2020) could also be employed here, but
it would require constructing gradient operator matrices with
respect to image position and wavelength, which is doable but
too involved to include in the present publication. However, it
will be implemented in future work, which will open up a vari-
ety of possibilities for including more physical constraints on
inversions using this framework, as well as some other intrinsic
benefits.

3.3.2. Positivity constraint: Nonlinear mapping

One condition that the sources of these data must satisfy is
positivity, as spectral radiances cannot be negative. This is a
nonlinear constraint that cannot be directly captured by linear
formalism. Instead, we use the same nonlinear mapping on the
coefficients as in Plowman & Caspi (2020). We express c j in
terms of a second set of parameters, s j, such that

c j = g(s j). (23)

We then choose the mapping function, g, to be one whose range
is limited to the non-negative numbers. Two such examples are
es j and s2

j . We use the former (exponential) mapping here, as
it seems to produce better convergence properties. We then lin-
earize and iterate beginning from an initial guess. The results
of this are described in more detail in Plowman & Caspi (2020),
and we do not repeat all the steps of the derivation here, although
we have changed the notation somewhat in an attempt at better
clarity. The one difference is that in Plowman & Caspi (2020),
only the case where the regularization acts on the s j, rather than
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the c j, was considered. If the regularization acts on the c j instead,
there are additional terms (shown below). The result is the fol-
lowing matrix equation∑

j

αi jc j = βi, (24)

where

αi j ≡ g
′(s0

i )
∑

k

FikF jk

σ2
i

g′(s0
j ) + εh′(si

0)Xi jh′(s j
0), (25)

and

βi ≡
∑

j

g′(s0
i )

F ji

σ2
j

[
d j −

∑
k

F jk(g(s0
k) − s0

kg
′(s0

k))
]

− εh′(s0
i )Xi j

[
h(s0

j ) − s0
jh
′(s0

j )
]
, (26)

where h(si) is the mapping function for the regularization. It is
also equal to g(si) if the regularization is with respect to c and to
h(si) = si if it is with respect to s. The primes on g or h represent
their derivatives with respect to their arguments. The coefficient
parameters from the previous step of the iteration are represented
by s0

j . There is no reason the regularization could not use some
other mapping function of s, but we do not consider that pos-
sibility further here. We use the same mapping for both χ2 and
the regularization (h(x) = g(x)). The regularization strength, ε,
likewise changes to

ε = χ0

∑
i(h′(s0

i )
∑

j Xi jh(s0
j ))(

∑
j g
′(s0

i )F ji/σ j)∑
i(h′(s0

i )
∑

j Xi jh(s0
j ))

2
. (27)

These equations suffice to ensure positivity, which in addi-
tion to being required by the physics, makes the solutions more
well-posed in many situations. It does require an iteration, but
the convergence is generally good, provided the mapping func-
tions are monotonic (this makes the overall optimization prob-
lem convex, so the figure of merit has a single global minimum).

3.3.3. Summary of derivation

In summary, given input data of variable dimensions (which
may be a cube Di jk or spectral-spatial image Di j), instrument
PSF P (which depends on sky coordinates, wavelength, and
detector plane coordinates), pixel binning functions θ (which
depend only on detector plane coordinates), and basis functions
B (which depend only on sky coordinates and wavelength), the
PSF correction is defined by the following equations. The source
luminosity to be estimated (compare to Eq. (4)) is a linear com-
bination of the basis functions:

L =
∑

i

ciBi ≡
∑

i

e(si)Bi. (28)

In the second part of the equation, we express the nonlin-
ear exponential mapping (ci ≡ e(si)) that enforces positivity. We
take the basis functions to be top hat functions in the variables
(e.g., x, y, and/or λ. In the standard application we perform in
this paper, the variables are y and λ). As a result of this choice of
basis functions, these coefficients behave analogously to pixels.
They can be interpreted as the corrected data, though technically
the basis functions must also be remembered to be fully correct.

The overall response of a given pixel in the instrument to a
given source is the integral of the product of basis function, PSF,
and pixel binning function over sky angle and detector plane. In

full generality, this can be written (see Eqs. (3) and (5)) in terms
of the following array of response coupling terms:

φi jk =
∑
lmn

clmnri jk,lmn, (29)

where

ri jk,lmn =

∫
θi jk(xd, yd, λd)

∫
P(xd, yd, λd, xs, ys, λs) ×

Blmn(xs, ys, λs)dxsdysdλsdxddyddλd. (30)

This is the three-variable form of the equation, but in prac-
tice we omit the x direction (and i and l indices), performing the
inversion only in y and λ. We also “flatten” the multiple source
and detector indices into a single pair of indices, turning the
overall pixel response into a standard matrix equation:

φi =
∑

j

ri jc j ≡
∑

j

Fi jc j. (31)

The one index terms here are identical to their multi-index
versions above, following the index relabeling described in
Sect. 3.1.1.

Given these definitions, an initial guess s0
j and the mapped

coefficients s j (and therefore the coefficients themselves, which
are what we seek) are solved by inverting

βi =
∑

j

αi js j, (32)

where

αi j ≡ g
′(s0

i )
∑

k

FikF jk

σ2
i

g′(s0
j ) + εh′(si

0)Xi jh′(s j
0), (33)

and

βi ≡
∑

j

g′(s0
i )

F ji

σ2
j

[
d j −

∑
k

F jk(g(s0
k) − s0

kg
′(s0

k))
]

−εh′(s0
i )Xi j

[
h(s0

j ) − s0
jh
′(s0

j )
]
. (34)

The mapping functions are represented by h(s) for the regular-
ization and g(s) for the forward problem. The derivatives of these
functions are h′(s) and g′(s), respectively. In our case, they are
both es, and so h′ and g′ are also both es. The regularization
matrix Xi j is the identity matrix, and the regularization parame-
ter ε is

ε = χ0

∑
i(h′(s0

i )
∑

j Xi jh(s0
j ))(

∑
j g
′(s0

i )F ji/σ j)∑
i(h′(s0

i )
∑

j Xi jh(s0
j ))

2
. (35)

Lastly, the initial guess for the coefficients c is

c0 ≡ FT · d
[d · A · AT · d
|A · FT · d|2

]
, (36)

where the A matrix is just the forward matrix modulated by the
measurement errors σ j:

A jk =
F jk

σ j
. (37)
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Fig. 8. Reconstruction of the one-dimensional example case previously shown in Fig. 4 using our method. Panel a: Original “source” model. Panel
b: Data corresponding to source model (including PSF, pixelization, and noise). Panel c: Reconstruction of the source model.

3.3.4. Solvers: GMRes and Bicstab

Since these forward matrices are very large and sparse (though
they would not be solvable if they were not sparse), they
require sparse solvers. These generally rely on some sort of
iterative process in order to avoid dealing with the fully popu-
lated matrix. The code for applying these corrections was devel-
oped in Python, so we have been using the solver algorithms
included in the sparse package of SciPy (Virtanen et al. 2020b).
Specifically, the stabilized biconjugate gradient (bicgstab;
van der Vorst 1992) and the “loose” generalized minimal resid-
ual (lgmres; Baker et al. 2005) algorithms. Both of these algo-
rithms have a long heritage. They are variants of algorithms
mentioned in the 1992 edition of Press et al. (2002), namely,
the biconjugate gradient and generalized minimal residual meth-
ods. We tested both algorithms and found their convergence and
performance to be comparable and more than acceptable for the
problem at hand.

3.4. Implementation details and practical considerations

To accompany this formalism, we have developed a flexible
coordinate-aware Python framework that can compute basis
functions, PSF, and response matrices for arbitrary sources and
detector dimensions. It contains the following components:

– Basis functions: Rectilinear N-Dimensional “bin” and “tri-
angle” functions are provided as examples, and others can
easily be added.

– Point spread functions: These are functions specifying how
an N-Dimensional detector plane is illuminated by a point
source at a particular location. A Gaussian-based “boiler-
plate” PSF is included as an example (see Sect. 3.5 below).

– Coordinate grids: These represent the standard notion of an
N-Dimensional array of coordinate points indexed to a grid.
They are defined in terms of a coordinate system and a trans-
form from grid indices to a set of coordinate points. The
transform may be defined in terms of an origin (the loca-
tion of the center of the element with all indices equaling
zero), a set of sizes (∆x, ∆y, etc.), and the dimensions of the
array, but more complex transforms are also possible. This
transform must be one-to-one.

– Source and detector element grids: These represent the stan-
dard notion of a gridded array of elements and can be either
a set of source basis elements or detector elements (pixels).
Source and detector element grids are defined in terms of the

coordinate grids and registered to them, but they add code
for returning the coordinates and amplitude of a particular
basis element and for returning the response of all detector
elements to a particular point source. Sources and detectors
are independent and each have their own coordinate system.

– Coordinate transform: These are a transformation operator
from the coordinate system of the source model to the coor-
dinate system of the detector. This is built to interface with
the coordinate grids and is also setup with the astropy
(Astropy Collaboration 2013, 2018) and sunpy (SunPy et al.
2020) coordinate systems in mind, but for these exam-
ples, we used a trivial identity transform, leaving the source
defined in terms of detector units, and registered to the same
grid. This transform does not need to be one-to-one (i.e., it
can map from a set of 3D spatial points on the sky to a 2D
detector plane).

This framework should be able to accommodate detectors whose
elements are not gridded in the usual way. The Reuven Ramaty
High Energy Solar Spectroscopic Imager (Lin et al. 2002) could
be an example of this, but we do not explore the possibility
further in this paper. Likewise, we leave providing a detailed
description of the framework to its code base and example usage
software, which will be made available along with the published
paper.

3.5. Boilerplate point spread function model

For the work shown next, we used a “boilerplate” model of the
PSF that consists of a two-component, 2D Gaussian where each
component can be raised by an additional exponent to weight
it more toward its wings or its core. We found that setting this
exponent to approximately 1.5 made for a closer match between
the IRIS line profiles (with our PSF added) and the SPICE line
profiles, although the effect on the corrected Doppler shifts was
very small. The mathematical expression for these Gaussians is:

P(∆r) = exp
[
−

1
2
(
∆rT Σ−1∆r

)γ]
, (38)

where ∆r is the difference between the coordinate vector of the
source and the coordinate vector on the image plane (for the x −
y−λ PSF case, this would be {xd− xs, yd−ys, λd−λs} in Eq. (1)).
The covariance matrix of the Gaussian is represented by Σ, and
γ is the exponent (an exponent of one is a standard Gaussian).
We specify the covariance matrix in terms of a set of initial axis
lengths (the uncertainties of the principal axes without rotation)
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Fig. 9. Reconstruction of the two-dimensional example case previously shown in Fig. 6 using our method. Panel a: Original “source” model. Panel
b: Data corresponding to source model (including PSF, pixelization, and noise). Panel c: Reconstruction of the source model.

Fig. 10. Two-dimensional example reconstructions with spatially varying PSF. Upper row: Test pattern of dots to show how the PSF appear.
Panel a: Original pattern of dots. Panel b: Pattern with the PSF applied. Panel c: Pattern with the PSF and our correction algorithm. Here our
algorithm is called “Sparse NLMap”, with “NL” standing for “nonlinear”. Panel d: Attempt to correct the data with a standard Richardson-Lucy
(R–L) deconvolution. This approach does not incorporate a spatially varying PSF. With no noise and well-isolated features, resolution comparable
to the original can be restored with our Sparse NLMap algorithm, but R–L fails to recover the original test pattern. Lower row: Application to AIA
image also shown in Fig. 9 except at full rather than half AIA resolution. Panel e: Original image. Panel f: Image with varying PSF (same as upper
panels) and noise applied. Panel g: Sparse NLMAP correction applied. Panel h: Attempt to correct with R-L. The reconstruction of AIA is much
sharper and closer to the original source than the “data” is, although it is inevitably impacted somewhat by noise. The R–L deconvolution, on the
other hand, shows many obvious artifacts of the variation and elongation of the PSF.

and rotation angles, in which case one begins with a diagonal
covariance matrix that has the principal axis uncertainties on the
diagonals and then rotates the matrix to its final position with
a succession of rotation matrices(s) – one in the 2D case and
three in the 3D case. Our implementation includes an example
implementation of this PSF that works in both 2D and 3D.

4. Testing and application

To begin, we show the method applied to the one- and two-
dimensional examples shown earlier. Figure 8 shows a recon-
struction of the example shown in Fig. 4, while Fig. 9 shows a
reconstruction of the example in Fig. 6. In both cases, the recon-
struction recovers most of the features of the source that are not
evident in the data, despite the presence of PSF, noise, and (in the
2D example) a lower pixel resolution. Apparent noise is ampli-
fied by this process, but this is an inevitable consequence of the

flow of information in this problem, as below some threshold,
noise and features cannot be distinguished.

To illustrate the capability to recover an arbitrarily spatially
varying PSF, we also show a reconstruction of the same field
of view presented in Fig. 9 but with a PSF that is increas-
ingly larger when it is farther from the center of the field of
view and that rotates about it. This is shown in Fig. 10. In
this figure, our method is called the Sparse NLMap (for “non-
linear map”) reconstruction. The figure also shows a standard
Richardson-Lucy (R–L) deconvolution that does not capture spa-
tial variation of the PSF for comparison. We used the aver-
age of the PSFs in the field for the R–L deconvolution. The
specific R–L algorithm used is the Python skimage package’s
restoration.richardson_lucy code.

Since the exact shape of the PSF can be difficult to dis-
cern from a complex Solar Dynamics Observatory Atmospheric
Imaging Assembly (AIA; Lemen et al. 2012) image, Fig. 10 also
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Table 1. Parameters of the PSF used for the correction of the two regions.

Parameter Region 1 value Region 2 value Description

Fy0,c 2.0 arcsec 2.0 arcsec PSF core y axis FWHM before rotation or any
non-Gaussian exponentiation.

Fλ0,c 0.95 Å 0.95 Å PSF core λ axis FWHM before rotation or any
non-Gaussian exponentiation.

θc 15◦ 20◦ PSF core rotation angle in degrees.
γc 1.5 1.5 PSF core non-Gaussian exponent.
Fy0,w 10.0 arcsec 10.0 arcsec PSF wing y axis FWHM before rotation or any

non-Gaussian exponentiation.
Fλ0,w 2.5 Å 2.5 Å PSF wing λ axis FWHM before rotation or any

non-Gaussian exponentiation.
γw 1.0 1.0 PSF wing non-Gaussian exponent (1 means Gaus-

sian).
ww 0.2 0.2 Wing weight (core weight is 1.0 − ww).

Notes. “Region 2” is the second region discussed in Sect. 4.2 (Region 1 is shown in Fig. 1 and Region 2 in Fig. 15). The PSF size parameters
had to be converted to natural detector plane units (microns) before the PSF was evaluated; otherwise, they are dimensionally inconsistent. The
conversion factors are 18/1.1 microns per arcsecond and 200 microns per Å (i.e., Å in wavelength).

Fig. 11. High-resolution “raw” corrected spectra from the same slit position as shown in Fig. 2. Panel a: IRIS data. Panel b: SPICE data. Panel c:
Correction applied to the degraded IRIS data. Panel d: Correction applied to SPICE data. The last two panels are at a higher spectral resolution
than the input SPICE data. The higher resolution was necessary to resolve the spectral line. This over-resolution results in some noise-induced
ringing and other ripples in the SPICE data, which we resolved by returning the image to SPICE pixel scale plus a “nominal” PSF, shown in
Fig. 12. Otherwise, the original IRIS line width was recovered, while the elongation and tilt of the SPICE PSF was removed.

shows an application to a much simpler image that is a grid of
“dots”. Unlike in Fig. 9, the source image in Fig. 10 is at the
full AIA resolution, rather than being binned down 2 × 2. We
also made the detector gridding the same as the source gridding,
since the R-L algorithm does not incorporate differing source
and detector sampling grids. Simulated instrument noise was

added for the AIA example as before but not for the test pattern
of dots. For the test pattern of dots, the reconstruction demon-
strates that sharpness close to the original is achievable. The
reconstruction of AIA is much sharper and closer to the origi-
nal source than the “data” is, although it is inevitably impacted
somewhat by noise.
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Fig. 12. Corrected spectra from the same slit position as shown in Fig. 2. Panel a: IRIS data. Panel b: SPICE data. Panel c: Correction applied
to the degraded IRIS data. Panel d: Correction applied to SPICE. The last two panels have the same pixel scale as the input SPICE data with a
“nominal” PSF applied as well. The “raw” corrected data (Fig. 11) is at a higher resolution, which is necessary to resolve the spectral line. This
over-resolution results in some noise-induced ringing and other ripples in the SPICE data. These effects were resolved in the figure by returning
the image to SPICE pixel scale plus a “nominal” PSF. The original IRIS line width was recovered, while the elongation and tilt of the SPICE PSF
was removed.

4.1. Application to SPICE data and comparison with
coordinated IRIS data

We show next an application to the example SPICE data shown
earlier. As previously mentioned, we are treating the overall
SPICE spatio-spectral response function as an x − y response
function representing (primarily) the main (spatial focusing)
mirror followed by a y − λ “effective” response function repre-
senting the elements that contribute to the spectral PSF, includ-
ing the grating and final pixelization. To reduce the size of the
inverse problem, this example incorporates the downsampling in
y, including a 2-pixel binning in that direction, into the x − y
response function. This is not strictly required, although it does
also help to increase the S/N. The wavelength resolution change,
of course, all happens as part of the response function.

The correction uses the full IRIS resolution in wavelength.
Even though this is considerably higher than the SPICE res-
olution, it is necessary to properly resolve the spectral line.
The combination of positivity constraint, regularization, and the
fact that the modulation transfer function of the PSF does not
completely go to zero means that the correction can somewhat
exceed the standard Airy/Nyquist criteria, especially since the
spectral direction is mostly composed of a near-zero amplitude
signal. This super resolution can result in some ringing and
overfitting features due to noise, however, so we applied a new
forward matrix that applies a “nominal”-sized SPICE PSF and
returns the pixel scale to that of the original data. The size of
this “nominal” PSF is based on the resolutions described in the

SPICE instrument paper (Spice Consortium 2020). The parame-
ters of the PSF used are shown in Table 1, along with the slightly
different parameters (just the PSF angle in this case) used for the
correction of the region discussed in Sect. 4.2. These parameters
were developed by trial and error, looking for the set which best
fits the visual appearance of the SPICE data while best improv-
ing the resolution of SPICE and providing the largest reduction
in the Doppler artifacts. The same PSF is shown as the “sug-
gested SPICE PSF” in Fig. 2.

Figure 11 shows the same slit position as Fig. 2, with the
higher spectral resolution, while Fig. 12 shows our final correc-
tion with this nominal (or “ideal”) SPICE PSF and pixelization.
Each figure shows correction of both the SPICE data and the
IRIS-based “synthetic” SPICE data (IRIS with proposed SPICE
PSF and pixelization). All show good removal of the rotation
artifacts of the PSF, and the degraded then corrected IRIS data
show a good match to the originals (though not exact, which is to
be expected considering the much lower resolution). The high-
resolution correction for SPICE (Fig. 11) shows the ringing and
noise features mentioned, but these are absent when the resolu-
tion is reduced back the nominal SPICE values (Fig. 12).

More importantly, the PSF correction does remove the
Doppler artifacts, both in the degraded then corrected IRIS data
and in the SPICE data. This is shown in Fig. 13. This figure shows
the degraded then corrected IRIS Doppler data, the degraded
IRIS Doppler data, and the corrected SPICE data (for the origi-
nal IRIS and SPICE data, see Fig. 3). The degraded then corrected
IRIS data is essentially identical to the original (plus binned down)

A52, page 15 of 19



Plowman, J. E., et al.: A&A 678, A52 (2023)

Fig. 13. Corrected Doppler shifts for both the degraded IRIS data and the SPICE data. Panel a: Binned down IRIS data. Panel b: Original SPICE
data (for comparison). Panel c: Degraded, then corrected IRIS Doppler data. The data shown is essentially identical to the original (with down
binning) IRIS data, which demonstrates that the correction is formally sound. Panel d: Degraded, noise added, and then corrected IRIS data. The
read noise data were set to 0.75 SPICE L2 data units, while the shot noise data were both set to 0.75 SPICE L2 data units times the square root of
the data level at each pixel. Panel e: Corrected SPICE data. The data looks very similar to the degraded, noise added IRIS data (for the degraded
IRIS data, see Fig. 3). This demonstrates that the correction also works on the real SPICE data.

IRIS data, and the SPICE data is quite similar to the IRIS data.
The artifacts previously seen at the circled locations are no longer
present. There is some extra coarseness in the SPICE data due to
noise. There are also some artifacts in low signal regions that are
likely due to a combination of noise and the interpolation applied
to the SPICE L2 data, which we used. The interpolation can be
mitigated by the use of an intermediate data product (with dark
correction and flat fielding but no interpolation), but the same can-
not be done for the low noise limit, since the noise results in a loss
of information that cannot be recovered.

To further investigate the quality of the correction, we show
the difference between the corrected “synthetic” IRIS Doppler
data and the IRIS Doppler data without the degradation and cor-
rection in Fig. 14. In the figure, we still applied the “nominal”
PSF previously mentioned so that the two images should be
equivalent in resolution and pixel dimension. Except in areas
with a very low signal (also shown in the figure for refer-
ence), the degraded then corrected IRIS Doppler data match

the artifact PSF-free IRIS Doppler data to within 3 km s−1, well
under the 5 km s−1 mentioned in the SPICE instrument paper
(Spice Consortium 2020). Detector noise, of course, adds scatter
to the Doppler shifts.

4.2. Correction applied to second region

Last, we show correction to a second part of the coordinated IRIS
and SPICE observing campaign. This region is more character-
istic of the quiet Sun, as it does not show bright extended EUV
features and only has a couple of isolated bright features, which
are nevertheless significantly dimmer than in the other region.
The maximum intensities in the blue, orange, and green circled
regions shown in Fig. 15 are 19.8, 6.4, and 7.3 W m−2 sr−1nm−1s,
respectively, compared with 15.9, 23.2, and 44.7 for the brightest
features in the other region, shown in Fig. 1.

Removal of artifacts from these features is another good test
of the PSF correction. A context image for these observations

A52, page 16 of 19



Plowman, J. E., et al.: A&A 678, A52 (2023)

Fig. 14. Doppler residuals for the “synthetic” SPICE data made from IRIS observations. Residuals are compared with data with the “nominal”
symmetric SPICE PSF and detector scale applied – free of the PSF artifacts. Panel a: Original IRIS amplitude (for context). Panel b: Magnitude
of the difference between the corrected Doppler and the Doppler with only the “nominal” symmetric SPICE PSF and detector scale applied. This
image is free of PSF artifacts and looks essentially identical to panel a of Fig. 13 except for the smaller pixel size, so it is not shown. Panel c:
Difference between the uncorrected Doppler and the same nominal Doppler in panel b. Except for areas with a very low signal (see panel a), the
corrected Doppler is within 3 km s−1 of the nominal, whereas the uncorrected Doppler is essentially above 3 km s−1 everywhere.

Fig. 15. Panel a: Context image of the SPICE-IRIS coordinated observation data for the second considered region. This image is made from one
of the full-size SPICE rasters. It is a spectral sum over the C III 977 Å window. Panel b: Detailed image of the line fit amplitudes in the region
from IRIS. Panel c: Detailed image of the line fit amplitudes in the region from SPICE. Doppler fits are shown in Fig. 16.
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Fig. 16. Doppler shifts for a second region (see Fig. 15 for context) of the coordinated SPICE and IRIS observations. Panel a: IRIS data. Panel b:
SPICE data. Panel c: Corrected SPICE data. This second region has a lower signal compared to the first region and a small, highly complex region
(blue circle at top left of each image) that shows a strong (likely artifact) feature in SPICE but not in IRIS. Generally, the correction removes the
artifacts, although the agreement with IRIS is less strong than in the first region (Fig. 13). See text for further discussion.

is shown in Fig. 15, while Doppler images for the region are
shown in Fig. 16. The correction removed almost all the artifacts
and results in a Doppler image similar to the IRIS data, although
somewhat less so than before. An exception to this is the small,
relatively bright region (circled in blue) in the upper left of
Fig. 16. The feature appears to still have some strong Doppler
signals that are not present in the IRIS data. The mean Doppler
shift in this region is largely unchanged, going from 17.8 to
18.1 km s−1. However, this region has a highly complex spec-
tral structure and varies rapidly both spatially and temporally in
IRIS, so a close match between SPICE and IRIS is not expected
here. The corrected “synthetic” SPICE data (IRIS degraded with
noise added) do not show this artifact, so it would not seem to
be an issue with the correction method itself. Nevertheless, it
appears as if the “corrected” SPICE data may not be fully cor-
rected in that location. Other differences can be attributed to the
lower signal in the region and possibly also to more dissimilari-
ties between the region, as seen through comparison of the IRIS
data with the SPICE data. For instance, the intensities appear
more different than in the previous region, and the mean absolute
difference between the SPICE and the “synthetic” SPICE inten-
sities, after scaling the synthetic ones so that the overall means
match, is 0.46 times the mean intensity in this case, compared to
0.29 for the previous one. We also had to increase the rotation
angle of the PSF from 15◦ to 20◦ to best remove the artifacts.
The rotation angle does appear to change across the field. We
tried a variety of PSF rotation angles for both regions, and the
ones that best reduced the Doppler artifacts are shown. The cor-
rection can account for per-pixel and/or field-wide variation in
the PSF; however, it is just a (perhaps not so simple) matter of
quantifying that variation.

5. Conclusions

We have shown the presence of Doppler artifacts in the SPICE
data and demonstrated that their likely cause is an elongated and
rotated effective (i.e., y − λ) PSF. We have further demonstrated
a novel method for correcting these artifacts by representing the
forward transformation as a sparse matrix and then performing

a regularized inversion of this matrix with a method based on
minimizing χ2 and the L2 norm with a positivity constraint.

The correction methods described in this paper appear to
work well. They accurately reproduce the IRIS Doppler shifts
when applied to “synthetic” data (IRIS data with SPICE-like
PSF and pixelization applied) and quantitatively reproduce the
IRIS Doppler shifts in most places when applied to real SPICE
data. There are some regions where the S/N is too low to cor-
rect the PSF, and the reconstruction fails for that reason. There
are fundamental information limitations regarding the ability to
recover a high-resolution source from a blurred signal, but they
do not appear to preclude correction of the Doppler artifacts and
restoration of SPICE’s nominal effective PSF. Other issues that
presently affect the reconstruction include interpolation of the L2
data and uncertainty in the SPICE PSF, which we hope to rectify
using modified data products and further coordinated observa-
tions with IRIS and Hinode EIS.

The correction method is also interesting in its applicability
to a variety of other problems. The positivity constraint and reg-
ularization affords a degree of super-resolution capability, espe-
cially when the data being inverted have a high contrast, and so
the method may also be useful for improving the sharpness of
high-resolution imagery. Unlike many sharpening methods, this
method returns a true, improved resolution version of its source,
maintaining photometry, because its inversion remains consis-
tent with the forward problem and original data. It should also be
capable of inverting data from multiple instruments simultane-
ously, even from those with differing resolutions. We may inves-
tigate reapplying the method to the DEM problem, for exam-
ple, for computing DEMs using data from AIA and the Hinode
X-Ray Telescope (Golub et al. 2007) simultaneously. Plowman
(2021) applies a similar method to 3D reconstruction of the
corona, demonstrating the method’s flexibility.

In subsequent papers on this topic for SPICE, we intend to
work on determining the best characterization of the PSF. Par-
ticular attention will be paid to determining how the PSF varies
over the detector planes and with scan position. Further coor-
dinated observation campaigns with IRIS along those lines are
already in progress. We hope to produce, as a result, a map
of the SPICE PSF at each point on the detector plane. Future
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work will also include a survey of the results of PSF correc-
tion for each spectral window, including effectiveness of the cor-
rection for the spectral windows and for various signal-to-noise
ratios.

The corrections shown in this work were all done on a lap-
top computer with a 2.6 GHz 6 core Intel Core i7. Although
the results shown have been reduced in size, we also car-
ried out correction of full resolution data on the same laptop.
These took approximately 2 h, considerably less than the aver-
age acquisition rate of the SPICE data set as a whole (the
cropped and binned down regions we showed took approxi-
mately 6 min). Therefore, the CPU load is easily within the
capacity of a central server to reprocess the data as well as of
individual users who would reprocess the data on their own.
Currently, the code base has been provided to other members
of the SPICE team for beta testing. Once this is finished, the
code will be made publicly available. In the meantime, the
code will be provided upon request, pending approval of the
SPICE team. The code was written in Python, making use
of Numpy (Harris et al. 2020), Astropy (Astropy Collaboration
2013, 2018), SciPy (Virtanen et al. 2020b), and (optionally)
SunPy (SunPy et al. 2020).
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