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Abstract—A link stream is a set of possibly weighted triplets
(t, u, v) modeling that u and v interacted at time t. Link streams
offer an effective model for datasets containing both temporal
and relational information, making their proper analysis crucial
in many applications. They are commonly regarded as sequences
of graphs or collections of time series. Yet, a recent seminal
work demonstrated that link streams are more general objects
of which graphs are only particular cases. It therefore started
the construction of a dedicated formalism for link streams by
extending graph theory. In this work, we contribute to the
development of this formalism by showing that link streams also
generalize time series. In particular, we show that a link stream
corresponds to a time-series extended to a relational dimension,
which opens the door to also extend the framework of signal
processing to link streams. We therefore develop extensions of
numerous signal concepts to link streams: from elementary ones
like energy, correlation, and differentiation, to more advanced
ones like Fourier transform and filters.

Index Terms—Link streams, temporal networks, dynamic
graphs, time-series, graph theory, signal processing.

I. INTRODUCTION

Numerous systems generate data as time-stamped interac-
tions between individuals. Such time-stamped interactions may
represent a computer transmitting a packet to another computer
at a given time, a person calling another person at a given time,
or a bank account transferring money to another bank account
at a given time, to list a few examples. Such data can be
very well modeled as a link stream [1]–[5]: a set of possibly
weighted triplets (t, u, v) indicating that u and v interacted
at time t. The proper study of link streams is crucial for a
better understanding of the systems generating the data and
for the timely identification of potentially harmful events, like
network attacks or monetary frauds [6]–[10]. As a result, the
development of techniques allowing a precise understanding
of the properties and events contained withins a link stream is
a subject of utmost importance.

Link streams are traditionally studied as collections of
graphs (one per time-stamp t) or time series (one per pair
u, v). These perspectives allow to readily employ graph or
time-series methods to study them, however at the cost of
not allowing to study their structure and dynamics jointly.
The work of [11] proposed to address this issue through a
change of perspective: a link stream should not be considered
a collection of graphs or time series but rather an individual

mathematical object of study. Indeed, [11] shows that, rather
than being a graph sequence, a link stream corresponds to
a more general entity of which graphs are only arise as a
particular case: a graph is a link stream with no dynamics.
Based on this observation, [11] and subsequent works [12]–
[17] have extended numerous concepts from graph theory to
link streams in order to lay the foundations of a dedicated
formalism which aims to be for link streams what graph theory
is for graphs. The formalism includes link stream versions
of concepts such as density, neighborhood, cliques, clustering
coefficient, paths, etc. The characterizing property of these
extensions is that they all reduce to their classical graph
version when the link stream has no dynamics [11].

In this work, we complement this vision by showing that
link streams also generalize time series. In particular, we show
that a link stream can be seen as a time series extended to a
relational dimension, implying that classical time-series corre-
spond to link streams lacking structure. The main difference
between our approach and the one of [11] is that the latter rep-
resents link streams as a set of time-stamped edges, while we
represent them as an indicator (or weight) function supported
on time-stamped relations. These two representations encode
for the same information but admit different mathematical
analyses. In particular, by representing a link stream through
a function, we open the door to do signal processing directly
on them. This is, we bring the possibility to measure their
variability, to compare link streams, to decompose a complex
link stream into a combination of simpler ones, or to filter-
out undesired information from them, to list some cases.
These concepts exploit the vector space nature of the signals
and therefore are not easy to derive from the set-theoretical
perspective employed in [11]. The aim of this work is to
develop extensions of the core concepts from signal processing
to link streams.

The paper is structured as follows. Section II briefly reviews
the perspective of link streams as a generalization of graphs. In
particular, it presents the core link stream formalism that has
been developed by extending graph theory. Then, Section III
addresses their vision as a generalization of time-series. The
section develops extensions of some of the most used concepts
in signal processing: from simple ones like product, shifting
and differentiation, to more advanced ones like decomposition
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and filtering. Lastly, Section IV concludes the work.

II. LINK STREAMS AS A GENERALIZATION OF GRAPHS

We now briefly review the formalism for link streams
that has been constructed by generalizing graph theory. We
mainly focus on the developments of [11], albeit we recall
that newer works continue to enrich the formalism [12]–
[17]. Throughout this section, we consider continuous-time
undirected and unweighted link streams, which are defined as
the triplet L = (T, V,E), where V denotes a set of nodes
of size n = |V |, T is an interval of R+ representing a set
of times, and E ⊆ T × V ⊗ V corresponds to a set of
time-stamped undirected edges 1. As mentioned above, link
streams are considered to generalize graphs. This relationship
is established as follows. Let G(L) = (V,E(L)) be the
graph induced by L, where E(L) = {uv : (t, uv) ∈ E}.
Then, if E = T × E(L), we have that L is called a graph-
equivalent stream. A graph-equivalent stream is therefore a
link stream in which edges have no dynamics, meaning that
it can be entirely recovered from its induced graph, which
aggregates all links that appear at some point. This is the
crucial equivalence that the formalism of [11] aims to exploit:
it aims to propose extensions of graph concepts to link streams
so that the concept reduces to the graph one when it is applied
to a graph-equivalent stream.

One of the most elementary properties of a graph is its
number of edges. In link streams, it is not as trivial to
determine their number of edges due to the continuous nature
of the time domain. Thus, it is crucial to begin the extension
of graph theory from such fundamental concepts, as more
elaborate ones depend on them. The definition proposed by
[11] is that the number of links of L is given as:

m =
|E|
|T |

. (1)

The interpretation of (1) is that each pair uv contributes to the
number of links proportionally to the time it is active. This is
a sound extension as, in a graph-equivalent stream, it holds
that m = |T×E(L)|

|T | = |E(L)|, which is the classical definition
for graphs.

In graphs, a concept that is tightly related to the number
of edges is the one of density. The density of a graph can be
interpreted as the probability that, when a pair uv is selected
at random, the pair exists in the edge-set of the graph. The
density of a link stream is therefore defined as the probability
of randomly selecting a triplet (t, uv) ∈ T × V ⊗ V and that
the triplet is included in E. This is expressed as:

δ(L) =
|E|

|T × V ⊗ V |
(2)

Since |V ⊗ V | = n(n−1)
2 , we have that (2) can be written as

δ(L) = 2m
n(n−1) . Therefore, it can be clearly seen that for a

graph-equivalent stream (2) reduces to the classical definition
of density for undirected unweighted graphs.

1V ⊗ V denotes the unordered pairs of distinct elements of V , that we
denote by uv ∈ V ⊗ V .

In graphs, the concept of density is useful to define certain
sub-structures, like cliques. This is extended to link streams
as follows. Let T ′ ⊆ T , V ′ ⊆ V and C = T ′ × V ′ denote
a cluster of temporal nodes. Moreover, let L′ = (T ′, V ′, E ∩
{T ′ × V ′ ⊗ V ′}) denote the sub-link stream of L induced by
the restrictions T ′ and V ′. Then, we say that the cluster C is a
clique of L if δ(L′) = 1. Notice that if L is a graph-equivalent
stream and T ′ × V ′ is a clique of L, then V ′ is necessarily a
clique in the graph induced by L.

In a graph, the degree of a node depends on the size of
its neighborhood. In link streams, it is less clear to define the
degree of nodes as the concept of neighborhood must now
take into account the temporal dimension. In particular, [11]
defines the neighborhood of a node v ∈ V as the following
cluster:

N(v) = {(t, u) : (t, uv) ∈ E } (3)

The degree of v is thus defined as the number of links it has
with its neighbors:

d(v) =
|N(v)|
|T |

(4)

Similarly, it is natural to define instantaneous neighborhood
and degree by letting Nt(v) = {u : (t, uv) ∈ E} be the
instantaneous neighborhood of v at time t and dt(v) = |Nt(v)|
denote the instantaneous degree of v at time t. Observe that
if L is a graph-equivalent stream, then the neighborhood of
v can be expressed as N(v) = T × V ′ and V ′ is indeed the
neighborhood of v in the graph induced by L. Moreover, in
a graph-equivalent stream the degree reduces to d(v) = |V ′|,
which is the same degree that v has in the induced graph. The
same argumentation applies for the instantaneous degrees.

In a graph, the clustering coefficient of a node indicates
the probability that two of its neighbors chosen at random
are connected. In a link stream, the clustering coefficient of
a node v is therefore defined as the probability that two of
its neighbors chosen at random and at the same time are
connected. To formalize this, let Et(N(v)) = {vw : (t, uw) ∈
E, (t, u) ∈ N(v), (t, w) ∈ N(v)} be the edges between the
neighbors of v at time t. The clustering coefficient of v is thus
defined as:

cc(v) =

∫
t∈T

|Et|dt∫
t∈T

|Nt(v)⊗Nt(v)|
(5)

Notice that in a graph-equivalent stream Et and Nt(v) are
constant over time, thus they go out of the integrals making
cc(v) coincide with the clustering coefficient of the graph
induced by L.

A closely related notion in graphs is the k-core, which refers
to the largest cluster of nodes satisfying the property that all
the vertices in the subgraph induced by the cluster have a
degree no less than k. The concept of k-core extends to a link
stream L as the largest cluster Ck = T ′ × V ′, where T ′ ⊆ T
and V ′ ⊆ V , such that, for all (t, v) ∈ Ck, dt(v) ≥ k in
L′ = (T ′, V ′, E ∩ {T ′ × V ′ ⊗ V ′}), where L′ is the sub-
link stream of L induced by the restrictions T ′ and V ′. If
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Ck = T ′ × V ′ is the k-core in a graph-equivalent stream L,
then we have that V ′ is the k-core in the graph induced by L
as dt(v) is independent of time.

In graphs, a path refers to an sequence of edges that respect
the adjacency of vertices. It is an important concept upon
which numerous others depend, such as connectedness, di-
ameter, cycles, random walks, centralities, etc. In link streams
the extension is not trivial, as there are two degrees of freedom
to define the order: by respecting the order of the time axis
or by respecting the adjacency of vertices. In [11], paths in
link stream L = (V, T,E) are defined as follows. A path
P from (α, u) ∈ T × V to (ω, v) ∈ T × V is a sequence
(t0, u0, v0), (t1, u1, v1), . . . , (tk, uk, vk) of elements in E such
that u0 = u, vk = v, t0 ≥ α, tk ≤ ω, ti ≤ ti+1 for all i, and
vi = ui+1. From this definition, then paths in link streams
have both a length k + 1 (the number of triplets in the path)
and a duration tk − t0 (the time delay from start to finish).
This makes paths in link streams radically different to paths
in graphs which only have the notion of length. The following
definitions formalize these differences.

Consider a path P from (α, u) to (ω, v). Then, P is said to
be a shortest path if it has minimal length and the length of the
shortest path between (α, u) to (ω, v) defines their distance.
Additionally, P is said to be a fastest path if it has minimal
duration and the duration of the fastest path between (α, u) to
(ω, v) defines their latency. If ω ≤ t is the minimal value of
time such that there is a path from (α, u) to (ω, v) then P is
said to be a foremost path between (α, u) to (t, v) and ω−α
defines the time to reach v from (α, u). Lastly, a link stream
L is said to be strongly connected if for all (α, u) ∈ T × V
and (ω, v) ∈ T ×V there is a path from (α, u) to (ω, v) in L.
Observe that in a graph-equivalent stream L, all the reachable
vertices can be attained with zero latency. Hence, this implies
that there is a path between two vertices in L if an only if
such path exists in the graph induced by L. This also implies
that shortest paths in L have the same length as shortest paths
in its induced graph.

III. LINK STREAMS AS A GENERALIZATION OF SIGNALS

In this section, we enrich the toolkit of Section II by
showing that link streams also generalize time series. In
particular, we leverage such insight to extend signal processing
concepts to link streams. We highlight that some of these
extensions have already been presented in [18] for the discrete
time case. Here, we target the continuous time case. Therefore,
this section considers the following extended definition of a
link stream: a quintuplet L = (T, V,R,L, I), where T and V
are defined as above, R ⊆ V × V is an arbitrary subset of M
directed relations, L : T × R → R is a function assigning a
weight to time-stamped relations, and I : R → [0,M − 1] is
a function that orders the elements of R. Thus, there are two
essential differences between our definition and the used in
Section II: (i) we do not model temporal interactions through
the set E but rather through the function L; and (ii) we
incorporate R and I as means to have control over the domain
of L. For the sake of notation lightness, throughout this section

we refer to a link stream L = (V, T,R,L, I) through its
weight function L unless there is need to specify the other
elements of the quintuplet.

The main advantage of representing L through L rather
than E is that L lives in a vector space. In this work, we
assume this space to be restricted to all square integrable
functions supported on T × R: this is, of all link streams
whose sum of squared weights is finite (essentially all link
streams that appear in practice) and that share T and R in
their definitions. The fact that link streams form a vector
space means that we can perform algebraic operations to
and between them: scalings, addition, products, expansions,
approximations, change of basis, etc. For instance, we may
take two link streams and add/multiply them in order to
produce a new one; or we may define a set of link streams
that form a basis and use them to form any other link stream
defined on the same set of times and relations. These are
concepts that do not naturally arise from the perspective of
graphs used in Section II, yet they naturally do from the
perspective of signal processing which meaningfully defines
them for time series. Notably, L corresponds to a time series
extended to a relational dimension: from L : T → R being
a classical time series to L : T × R → R being a link
stream. Thus, classical time series are indeed link streams
with no structure. This motivate us to extend signal processing
concepts to link streams by making them take into account the
new dimension. As a design principle, we aim that a proposed
extension reduces to the classical definition for time series
when it is applied to a link stream with no structure.

It is important to mention that the signal processing frame-
work contains numerous concepts that exploit the ordered
nature of the time dimension. Yet, in a link stream, the
relational dimension has no natural order and extending such
concepts to an unordered domain is not very significant. The
introduction of R and I address this situation. Particularly,
I allows us to set an order to relations and R allows us to
choose the structure in which it is meaningful to apply such
order. For example, we may choose R to be the outgoing
relations of a node and I to rank such relations according to
their probability of observation. Another example may be that
R is chosen to represent the relations within a community and
that I ranks them according to their importance. It can also
be that R denotes a path and I captures the order in which
relations appear in the path. During the section, we discuss
various choices of R and I that may be interesting in a given
application scenario.

A. Extension of elementary concepts

We begin our extension by stressing that signal processing
concepts can be readily applied to a link stream by using
them relation-wise. Namely, suppose that o refers to a signal
processing concept that modifies a time-series x into a new
one x′ through some transformation of the form x′(t) =∫
c(τ)x(t− τ)dτ , where t ∈ T . We have that o can be readily

applied to a link stream L by fixing e ∈ R and letting t
run as L′(t, e) =

∫
c(τ)L(t − τ, e)dτ , which is done for all
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e ∈ R. Therefore, to extend o to the relational dimension two
options arise. The first one is to define a relational analog
of o, called g, that is now applied by fixing t and letting e
run, which is done for all t. The link stream extension thus
consists in the combined application of o and g: the former
addressing the temporal dimension and the latter the relational
one. The second option consists in revamping the definition
of o to consider both variables t and e jointly. In this work,
we address the former, which allows us to focus in finding
meaningful ways to leverage the relational information while
letting raw signal processing concepts handle the temporal
one. We leave the extension of concepts based on the second
approach as future work.

Scaling, addition and product. Most signal processing
concepts rely on the fact that signals can be scaled, added
and multiplied. We now formalize these operations for link
streams. Let L denote a link stream, we define its scaling
by a constant c as the link stream (cL)(t, e) = cL(t, e). Let
L1 and L2 be link streams defined on the same T and R,
we define their addition as the link stream (L1 + L2)(t, e) =
L1(t, e)+L2(t, e). Let L1 and L2 be link streams defined on
the same T and R, we define their product as the link stream
(L1 · L2)(t, e) = L1(t, e) · L2(t, e). These definitions trivially
follow from the fact that link streams sharing T and R form a
vector space. Moreover, it can be straightforwardly seen that
they reduce to the classical time-series definition when R is a
singleton.

Correlation, energy, distance. These concepts are com-
monly employed to characterize and compare time series. We
now define them for link streams. Let L1 and L2 be link
streams defined on the same T and R, we define their zero-
lag correlation as the scalar:

corr(L1,L2) =
∑
e∈R

∫
t∈T

(L1 · L2)(e, t)dt (6)

In signal processing, the zero-lag correlation is a measure
of the similarity between two signals. Notice that (6) admits
the same interpretation for link streams and that, in the case
L1 and L2 are unweighted, the following interesting property
holds: corr(L1,L2) = 2|E1 ∩ E2|, where E1, E2 are the set
equivalents of L1 and L1 used in Section II. Moreover, we
have that when R is a singleton, (6) reduces to the standard
definition of zero-lag correlation for time series.

In signal processing, the energy of a signal is the zero-lag
correlation of a signal with itself. Thus, given a link stream
L, we define its energy as:

energy(L) = corr(L,L) (7)

Interestingly, the following property holds when L is un-
weighted: energy(L) = 2|E|. This indicates that the energy
of a link stream is a measure of the amount of information
contained in it, which is the same interpretation that energy
has for time series. Moreover, this property shows that the
energy of an unweighted link stream is 2|T | times its number
of links m (see Equation (1)). Thus, this opens the door to

use (7) as a means to extend the definition of m to weighted
link streams.

In signal processing, the distance between two time series is
measured as the square root of the energy of their difference.
Thus, given two link streams L1 and L2 defined on the same
T and R, we define their distance as

d(L1,L2) = energy(L1 − L2)
1/2 (8)

Interestingly, when L1 and L2 are unweighted, the following
property holds: d(L1,L2) =

√
2|E1△E2|, where △ denotes

to the geometric difference operator. Thus, the distance of
two unweighted link streams is strongly related to their edit
distance (number of different links). This opens the door to
consider (8) as an extension of the edit distance in a weighted
scenario.

Regularity, shift, cross-correlation. These are basic con-
cepts in signal processing that exploit the ordered nature of the
time domain. Therefore, we extend them to link streams by
leveraging the order of R provided by I. In signal processing,
the Lipschitz regularity constant of a time series x gives an
indication of how much x varies. Formally, it is defined as the
smallest constant r for which the following inequality holds:
|x(t1) − x(t2)| ≤ r|t1 − t2| for all t1, t2 ∈ R. We extend
this concept to link streams as follows. For a link stream L,
we define its T -based Lipschitz regularity constant at point
(ti, ek) ∈ T × R, where k is the index associated to e by I,
as the minimum constant rT (ti, ek) for which the following
inequality holds:

|L(ti, ek)− L(tj , ek)| ≤ rT (tj , ek)|ti − tj | ∀tj ∈ T (9)

Similarly, we define the R-based Lipschitz regularity constant
of L at point (ti, ek), as the minimum constant rR(ti, ek) for
which the following inequality holds:

|L(ti, ek)− L(ti, eℓ)| ≤ rR(ti, ek)|k − ℓ| ∀eℓ ∈ R (10)

Then, we define the total Lipschitz regularity constant of L at
point (ti, ek) as:

r(ti, ek) = max{rT (ti, ek), rR(ti, ek)} (11)

Lastly, we define the Lipschitz regularity constant of L as:

reg(L) = max
(t,ek)∈T×R

r(t, ek) (12)

As it can be seen, rT (ti, ek) measures variations of L(ti, ek)
across T , while rR(ti, ek) does it across R. Interestingly,
by properly choosing I, rR(ti, ek) can provide as equally
meaningful insights about L(ti, ek) as rT (ti, ek). For example,
suppose that R represents the internet backbone links and
that I indexes the elements of R in decreasing order of their
bandwidth capacity. Thus, if the link stream weights represent
the amount of traffic flowing through those links over time,
then we have that a large value of rR(ti, ek) indicates that ek
at time t is being under or over utilized with respect to other
links having similar bandwidth. This is a type of variability
not measured by rT (ti, ek) which, on the other hand, would
allow to identify if the traffic flowing through ek is stable over

4



time. Hence, rR(ti, ek) and rT (ti, ek) supplement each other.
Additionally, notice that rR(ti, ek) = 0 when R is a singleton,
showing that our extension reduces to the time series one when
the link stream has no structure.

In signal processing, shifting refers to the movement of a
time series in time. For a time series x and a shift amount of
τ ∈ R units, x′(t) = x(t− τ) defines the shifting of x by τ .
Therefore, we extend shifting to link streams by moving them
across both the time and relational axes. We stress that for a
link stream defined on a bounded interval T , moving it in time
may send it outside the interval for which it is defined. Thus,
when dealing when shifts, we assume the temporal domain
of the concerned link stream to be extended to R and that
it is filled with zeros on such extended region. Namely, if L
is originally defined on T × R, we assume it is extended to
R× R such that L(t, e) = 0 for all t ∈ R \ T . Based on this
extended link stream, we define shifting as follows. Given a
link stream L and shift amounts τ ∈ R and η ∈ Z, we define
the shifting of L by τ and η as the link stream

Sτ,η(L)(ti, ek) = L(ti − τ, ek′) (13)

where k′ = |k− η| mod M if k ≥ η and k′ =M − (|k− η|
mod M) otherwise. Thus, by shifting in time we are delaying
or advancing the time-stamp of interactions while by shifting
in relations we are transferring the information of one relation
ek into another one e′k. Interestingly, this may provide a useful
approach to model the flow of information in link streams. For
example, suppose that node u transmits a message to node v at
time t and that there is a link stream L that is only registering
this interaction. Namely, L(t, ek) = 1 if ek = (u, v) and
zero otherwise. Now, suppose that node v, after processing the
message, sends a message to node w at some future time t+τ .
Interestingly, if (v, w) has index k+η in R, then we have that
the link stream representing this new interaction corresponds
to Sτ,η(L). Hence, the flow of information corresponds to a
time and relational shifting of a seed interaction. This seems
particularly promising as a modeling technique for the case in
which R represents a path. Also, notice that (13) reduces to
the classical time series definition when L has no structure,
as it not possible to move across relations in such case.

Equation (6) defined the zero-lag correlation between link
streams. Based on our definition of shift, we can extend it to
define the full cross-correlation function. In signal processing,
the cross-correlation function is used to spot if two time series
are similar even if they are out of phase. This is done by
measuring the correlation between the two signals when one
of them is shifted for all possible time lags. We thus define this
concept for link streams as follows. Let L1 and L2 be two link
streams defined on the same T and R. The cross-correlation
function between L1 and L2 is defined as:

(L1 ⋆L2)(τ, η) = corr(L1,Sτ,η(L2)) ∀ τ ∈ R, η ∈ Z. (14)

The cross-correlation function can be useful to identify peri-
odicities within a link stream. For example, suppose that R
represents the outgoing links of a router and that I ranks
them in decreasing order of their bandwidth. It is normal that

a router sends traffic via its large bandwidth links, albeit at
peak hours it may rather do it via the small bandwidth ones
in order to avoid congestions. Interestingly, if L models such
traffic, then its redirection at peak times can be modeled as the
shifting L(ti + τ ′, ek+η′) = L(ti, ek), where (ti, ek) denotes
the high bandwidth link at a normal time and (ti + τ ′, ek+η′)
the small bandwidth one at a congestion time. As a result,
(L ⋆ L)(τ, η) peaks when τ = τ ′ and η = η′, thus revealing
the congestion times and redirection of traffic. Moreover, if
such event occurs periodically, then (L ⋆ L)(τ, η) also peaks
at multiples of τ . Since correlation and shifting reduce to the
time series definitions when applied on link streams with no
structure, then (14) does it too.

Differentiation, gradient, Laplacian. Differentiation is an-
other key concept in signal processing, permitting to measure
the local variability of a time series. We extend this concept
to link streams by measuring their local variability across the
time and relational dimensions. Namely, let L be a link stream.
We define its temporal differentiation as:

∂L
∂t

= lim
τ→0

S−τ,0(L)− L
τ

(15)

Similarly, we define the relational differentiation of L as:

∂L
∂e

= S0,−1(L)− L (16)

Notice that (15) and (16) are link streams, therefore we can
combine them into a time-relational derivative as:

∂2L
∂e∂t

=
∂

∂e

(
∂L
∂t

)
=

∂

∂t

(
∂L
∂e

)
(17)

Equation (17) can be interpreted as a measure of the extent to
which similarly ranked edges in a link stream evolve similarly.
For example, by retaking the case in which the link stream
represents traffic in the internet backbone whose links have
been ordered according to their bandwidth, we have that
(17) applied to it would measure (i) if links having similar
bandwidths are handling similar amounts of traffic; and (ii) if
the traffic in those links is evolving similarly.

In signal processing, when a signal is supported in more
than one dimension (e.g., an image) its directional derivatives
are stacked into a gradient vector. This vector is then leveraged
to define a measure of the total variation of the signal and its
Laplacian. We extend these concepts as follows. Given a link
stream L, we define its gradient vector as:

(∇L)(t, e) =
[
∂L
∂t

(t, e),
∂L
∂e

(t, e)

]
(18)

The gradient therefore is a vector function supported on T×R
containing the point-wise variation of L in each direction. As a
result, if we compute the norm of such vector function (point-
wise), we obtain a link stream summarizing the (point-wise)
variation of L in both directions. Let ∥∇L∥ refer to the point-
wise vector norm of the gradient. We have that the aggregation
of all values in ∥∇L∥ produces a measure of the total variation
of L. Thus, we define the total variation of L as:

TV(L) = energy(∥∇L∥) (19)
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The Laplacian of a function is defined as the divergence of its
gradient. We thus define the Laplacian of a link stream as the
divergence of its gradient, given as:

∆L =
∂2L
∂t2

+
∂2L
∂e2

(20)

Notice that ∂L
∂e (t, e) = 0 for all t when R is a singleton.

Therefore, for link streams with no structure, (19) reduces
to the classical Sobolev prior-based total variation measure
used in time series, which also coincides with the definition of
Dirichlet energy functional. Similarly, the Laplacian definition
in (20) trivially reduces to the classical one for time series
when the link stream has no structure.

B. A Fourier-Structure transform for link streams

The Fourier decomposition is a technique that permits to
express an arbitrary time series as a weighted combination of
sine and cosine waveforms oscillating at different frequencies.
The weighting coefficients, known as the Fourier transform,
reveal the importance of each frequency in the time series.
Our goal here is to develop an extension of the Fourier
decomposition to link streams. This is, we aim to identify a
set of elementary link streams that allow us to express a link
stream as the weighted combination of them. Notice that we
can readily apply the Fourier decomposition to a link stream
L (with T extended to R) relation-wise as:

L(ti, ek) =
∫
R
cf (ek)ψf (ti)df, (21)

where ψf (ti) = exp{j2πtif}, j is the unit imaginary number,

cf (ek) =

∫
R
L(t, ek)ψ∗

f (t)dt (22)

denotes the Fourier transform coefficient associated to fre-
quency f for relation ek ∈ R, and ψ∗ refers to the complex
conjugate of ψ. Since the waveforms ψf are independent of L,
equation (21) allows us to represent all the information of L
through the coefficients cf (ek). These coefficients summarize
temporal information but not relational one, reason for which
cf , for a fixed f , remains a function of ek. Therefore, to extend
the Fourier transform to a relational dimension, we must make
the coefficients aware of such information.

We address this problem by developping an analog of
the Fourier transform for the relational domain. This is, a
decomposition for graphs that we can apply time-wise to the
link stream in order to represent it through coefficients that
now summarize relational information as a function of time.
Then, we combine this graph decomposition with the Fourier
one in order to develop a Fourier-Structure decomposition for
link streams. To develop our decomposition for graphs, we
notice that the Fourier transform fixes a set of very simple time
series, the ψk’s, so that any other time series can be expressed
as their combination. Thus, our graph decomposition follows
the same approach: it fixes a set of very simple graphs so that,
when properly combined, any other graph can be generated.
To build this set, we may consider fixing a set of simple sub-
structures such as cliques, triangles, stars, paths, etc., and then

look for ways to combine them in order to generate other
graphs. However, the right sub-structures to use seems highly
application dependent. For instance, it may be more relevant
to use cliques to represent interactions in a social network
than paths. Yet, when considering traffic in a transportation
network, the paths may be a better option. Thus, we develop
a decomposition for graphs so that there is flexibility in the
choice of elementary sub-structures to use.

Let D = {Ri ⊆ R}0≤i≤p denote the set of sub-structures
that we aim to employ to decompose graphs, whose edge-
sets are also a subset of R. We impose two conditions on
these substructures: (i) Ri ∩ Rj = ∅ for i ̸= j; and (ii) R =
∪iRi. Therefore, we admit any dictionary of sub-structures
as long as it forms a disjoint partitioning of the relational
space. Yet, this great flexibility comes at the price that we must
artificially enlarge R by injecting virtual relations into each
Ri until we make the size of Ri a power of two. This step is
necessary in order to ensure the mathematical soundness of the
decomposition, albeit we stress that such virtual additions do
not pose any practical problem as the graphs to decompose will
never contain them in their edge sets. Based on the enlarged
sub-structures, let ϕi : R→ R denote the normalized indicator
function of Ri, i.e., ϕi(e) = 1/

√
|Ri| if e ∈ Ri and zero

otherwise. The set Dϕ = {ϕi}0≤i≤p therefore refers to the
dictionary of indicator functions.

Let GR = (V,ER, gR) be any weighted subgraph of R,
where ER ⊆ R refers to its edge-set and gR : R → R to
its weight function. Our goal is therefore to express gR as
a weighted combination of the ϕi’s. We aim the weighting
coefficient associated to ϕi to represent the importance of Ri in
GR. A natural way to measure such importance is by counting
the total weight that the relations of Ri have in GR. Thus,
we propose to use si = 1√

|Ri|

∑
e∈Ri

gR(e) as the weighting

coefficient of ϕi. This allows us to express:

gR =
∑
i

siϕi + error (23)

The inclusion of the error term is necessary as there is no
guarantee that our dictionary of sub-structures can represent
every possible gR. Take for instance the case in which we
select a dictionary containing the complete graph as its only
element D = {R0 = R = V × V }. Consider also that
the graph GR that we aim to decompose contains only one
edge. Then, clearly there is no weighting coefficient that can
make a ϕ0 consisting of a complete graph become a gR
containing only one non-zero entry. Thus, the error term in
(23) is included as a means to capture the information that
cannot be represented through our dictionary of sub-structures.
In the following, we will show that this error term can also
be expressed through a dictionary whose elements indeed
complete Dϕ to become an orthonormal basis. Yet, we have
less control over such elements, which consist of many sub-
structures at different scales. Thus, it is important that the
dictionary D is initially well chosen to represent the data at
hand in order to minimize the influence of the error term.
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Notice that siϕi(e) is only non-zero for e ∈ Ri and that
there is no other skϕk(e) that is non-zero for e ∈ Ri.
Therefore, the values of gR(e) for e ∈ Ri are only being
approximated by the term siϕi in (23). Moreover, observe
that siϕi(e) =

∑
e′∈Ri

gR(e
′)/|Ri| if e ∈ Ri and zero

otherwise. This means that siϕi is approximating the values
of gR(e) for e ∈ Ri through their mean value. This shows
that finding the error term that completes siϕi amounts to
solving the problem of recovering a set of values from their
mean. Notably, this can be achieved by computing differences
between the set of values at multiple resolutions. Namely,
assume that we have {a, b, c, d} and that we aim to recover
them from their mean s = (a + b + c + d)/4. To do it,
we split the set as {a, b} and {c, d} and use the split to
compute the mean differences: w(0) = ((a+ b)− (c+ d))/4,
w(1) = (a − b)/2, w(2) = (c − d)/2. Then, it is easy to
check that a = s + w(0) + w(1); b = s + w(0) − w(1);
c = s− w(0) + w(2); and d = s− w(0) − w(2).

Thus, inspired from the procedure above, we set R(0)
i = Ri

and recursively split this set in halves so that R(ℓ)
i = R

(2ℓ+1)
i ∪

R
(2ℓ+2)
i . Then, we leverage this partitioning to define the

functions θ(ℓ)i : R→ R given as:

θ
(ℓ)
i (e) =



1√
|R(ℓ)

i |
if e ∈ R

(2ℓ+1)
i

−1√
|R(ℓ)

i |
if e ∈ R

(2ℓ+2)
i

0 otherwise

(24)

These functions therefore complete the dictionary Dϕ and it
is not hard to show that they turn it into an orthonormal basis
for subgraphs of R. We thus project the graph gR into these
elements in order to compute their weighting coefficient as
w

(ℓ)
i =

∑
e∈R gR(e)θ

(ℓ)
i (e), allowing us to replace the error

term in (23) as:

gR =
∑
i

siϕi +
∑
i

∑
k

w
(ℓ)
i θ

(ℓ)
i . (25)

Finally, given a link stream L, we apply our relational decom-
position time-wise. This allows us to express it as:

L(t, e) =
∑
i

si(t)ϕi(e) +
∑
i

∑
ℓ

w
(ℓ)
i (t)θ

(ℓ)
i (e), (26)

where si(t) and w(ℓ)
i (t) are computed as above but for L(t, e)

with t fixed and e running. It remains to observe that si(t)
and w

(ℓ)
i (t) are time series that can be decomposed under

the Fourier dictionary. Therefore, by decomposing them via
Fourier, we obtain the Fourier-Structure decomposition of L
as:

L(t, e) =
∑
i

∫
R
sf,i (ψf (t)ϕi(e)) df

+
∑
i

∑
ℓ

∫
R
w

(ℓ)
f,i

(
ψf (t)θ

(ℓ)
i (e)

)
df (27)

Interestingly, the products ψf (t)ϕi(e) and ψf (t)θ
(ℓ)
i (e) pro-

duce a different value for every different combination of e

and t. Therefore, they correspond to link streams. In particular,
they consist of link streams made of one structure ϕi or θ(ℓ)i

oscillating at frequency f , and the coefficients sf,i and w
(ℓ)
f,i

indicate the extent at which such structures are oscillating at
that frequency in L.

C. Processing link streams with filters

A popular application of signal processing is filtering,
aiming to amplify or suppress specific frequency information
of a time series. In this subsection, we extend this concept to
link streams, aiming to amplify or remove their frequency and
structural information. Particularly, we show that we can use
classical filters from signal processing to filter the frequency
information of a link stream. We then develop the analog
of filters for graphs and combine them with the classical
time series ones in order to process both the frequency and
structural information.

Time series filters can be seen as black boxes that receive a
time series and produce a new one. If such black boxes are lin-
ear and time invariant, then they can be entirely characterized
by their response to the impulse function. This is, processing
any time series via that filter is equivalent to convolving the
time series with the impulse response of the filter. Interestingly,
we can use any classical time series filter as a means to process
the frequency information of a link stream. To see this, let h
denote the impulse response of the filter and let us apply it to
a link stream L relation-wise through the convolution sum:

L̃(t, e) =
∫
R
h(τ)L(t− τ, e)dτ, (28)

where L̃ refers to the filtered link stream. By decomposing L
as in (27), then we have that:

L̃(t, e) =
∑
i

∫
R

∫
R
h(τ)sf,iψf (t− τ)ϕi(e)dfdτ

+
∑
i,ℓ

∫
R

∫
R
h(τ)w

(ℓ)
f,iψf (t− τ)θ

(ℓ)
i (e)dfdτ (29)

By exploiting the crucial property that ψf (t − τ) =
ψf (t)ψ

∗
f (τ), then we have that:

L̃(t, e) =
∑
i

∫
R
sf,iγfψf (t)ϕi(e)df

+
∑
i,ℓ

∫
R
w

(ℓ)
f,iγfψf (t)θ

(ℓ)
i (e)df (30)

where γf =
∫
R h(τ)ψ

∗
f (τ)dτ refers to the classical Fourier

transform coefficient of h associated to frequency f . Thus, (30)
shows that L̃ is the result of scaling the coefficients sf,i, w

(ℓ)
f,i

by a factor γf , implying that we can use any signal processing
filter h to process the frequency information of L. To fully
process a link stream, it therefore remains to construct filters
that allow to target the structural information.

We develop structural filters by noticing that time series
ones, through the convolution sum (28), essentially replace the
value of the time series at time t by a weighted combination of
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the own time series values, where the weighting coefficients
are given by h. Therefore, we build upon this observation
to define the analog of filters and the convolution sum to the
relational axis. Namely, let q : R×R→ R denote a weighting
kernel. Then, we define the relational convolution of L with
the kernel q as:

L̃(t, e) =
∑
e′∈R

L(t, e′)q(e′, e) (31)

This is, (31) replaces the value of L at point (t, e) by a
weighted average of all the other values at time t, where the
weighting coefficients are given by q and may be different
for each relation. Let us now assume that we aim to filter L
structure wise, so that its coefficients sf,i and w

(ℓ)
f,i are re-

scaled by coefficients σi and ν(ℓ)i , respectively. Then, we have
that q represents such a filter if it is constructed as:

qfilt(e
′, e) =

∑
i

σiϕi(e
′)ϕi(e)+

∑
iℓ

ν
(ℓ)
i θ

(ℓ)
i (e′)θ

(ℓ)
i (e) (32)

To demonstrate it, we perform the relational convolution
between L and qfilt while decomposing L:

L̃(t, e) =
∫
R

∑
i,j

∑
e′

cf,iσjψf (t)ϕi(e
′)ϕj(e

′)ϕj(e)df

+

∫
R

∑
i,j,ℓ

∑
e′

w
(ℓ)
f,iν

(ℓ)
j ψf (t)θ

(ℓ)
i (e′)θ

(ℓ)
j (e′)θ

(ℓ)
j (e)df (33)

Due to the orthonormality of the graph dictionary, we have
that

∑
e′ ϕi(e

′)ϕj(e
′) = 1 if i = j and zero otherwise (same

for θ(ℓ)i and θ(ℓ)j ). Therefore, (33) reduces to:

L̃(t, e) =
∫
R

∑
i

cf,iσiψf (t)ϕi(e)df

+

∫
R

∑
i,ℓ

∑
e′

w
(ℓ)
f,iν

(ℓ)
i ψf (t)θ

(ℓ)
i (e)df (34)

showing that cf,i and w(ℓ)
f,i are indeed re-scaled by σi and ν(ℓ)i ,

as desired. Clearly, (28) and (31) can be jointly applied to L,
thus permitting its joint frequency-structure filtering. We finish
stressing that given that our decomposition and filters handle
the temporal and relational dimensions separately, when L
has no structure then they trivially reduce to the classical
definitions for time series.

IV. CONCLUSION

In this paper, we showed that link streams can be seen as
a generalization of graphs and time series. While the graph
extension naturally arises by studying the link stream as a
set of time-stamped edges, the time series ones appears when
the link stream is studied through the weight function of
such time-stamped edges. In particular, we showed that this
weight function corresponds to an extension of time-series
to a relational dimension, for which we extended numerous
concepts from signal processing to consider a relational di-
mension, in addition to the temporal one. Our extensions range

from elementary concepts, like energy and differentiation, to
more advanced ones like the Fourier transform and filters.
We showed that some of these extensions show interesting
connections with the formalism developed from the graph
perspective when the link stream is unweighted. Thus, they
offer a starting point to develop extensions of the graph con-
cepts to a weighted scenario and perhaps to the convergence
of the two visions. Some of the considered concepts depend
on the ordered nature of time, thus we extended them by also
assuming the relational axis to be ordered. While less intuitive,
we highlighted that through simple orders of the relational
axis some interesting analyses can be done with the proposed
concepts. The next steps consist in assessing the pertinence of
the proposed concepts in real-world applications, continue the
extension of the graph and signal frameworks to link streams,
and explore more in depth the connection between the two
perspectives.

Acknowledgements. This work is funded in part by the ANR
(French National Agency of Research) through the ANR FiT
LabCom.

REFERENCES

[1] D. Zhou, L. Zheng, J. Han, and J. He, “A data-driven graph generative
model for temporal interaction networks,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 401–411, 2020.

[2] R. Cazabet and G. Rossetti, “Challenges in community discovery on
temporal networks,” Temporal network theory, pp. 181–197, 2019.

[3] S. Citraro, L. Milli, R. Cazabet, and G. Rossetti, “δ-conformity: multi-
scale node assortativity in feature-rich stream graphs,” International
Journal of Data Science and Analytics, pp. 1–12, 2022.

[4] A. Wilmet, T. Viard, M. Latapy, and R. Lamarche-Perrin, “Degree-based
outliers detection within ip traffic modelled as a link stream,” in 2018
Network Traffic Measurement and Analysis Conference (TMA), pp. 1–8,
IEEE, 2018.

[5] S. Boudebza, R. Cazabet, F. Azouaou, and O. Nouali, “Olcpm: An online
framework for detecting overlapping communities in dynamic social
networks,” Computer Communications, vol. 123, pp. 36–51, 2018.

[6] R. Fontugne, P. Abry, K. Fukuda, D. Veitch, K. Cho, P. Borgnat, and
H. Wendt, “Scaling in internet traffic: a 14 year and 3 day longitudinal
study, with multiscale analyses and random projections,” IEEE/ACM
Transactions on Networking, vol. 25, no. 4, pp. 2152–2165, 2017.

[7] R. Fontugne, J. Mazel, and K. Fukuda, “Characterizing roles and
spatio-temporal relations of c&c servers in large-scale networks,” in
Proceedings of the 2016 ACM International on Workshop on Traffic
Measurements for Cybersecurity, pp. 12–23, 2016.

[8] S. Bhatia, B. Hooi, M. Yoon, K. Shin, and C. Faloutsos, “Midas:
Microcluster-based detector of anomalies in edge streams,” in Proceed-
ings of the AAAI conference on artificial intelligence, vol. 34, pp. 3242–
3249, 2020.

[9] Y.-Y. Chang, P. Li, R. Sosic, M. Afifi, M. Schweighauser, and
J. Leskovec, “F-fade: Frequency factorization for anomaly detection in
edge streams,” in Proceedings of the 14th ACM International Conference
on Web Search and Data Mining, pp. 589–597, 2021.

[10] D. Eswaran and C. Faloutsos, “Sedanspot: Detecting anomalies in
edge streams,” in 2018 IEEE International conference on data mining
(ICDM), pp. 953–958, IEEE, 2018.

[11] M. Latapy, T. Viard, and C. Magnien, “Stream graphs and link streams
for the modeling of interactions over time,” Social Network Analysis
and Mining, vol. 8, no. 1, pp. 1–29, 2018.

[12] M. Latapy, C. Magnien, and T. Viard, Weighted, Bipartite, or Directed
Stream Graphs for the Modeling of Temporal Networks. Springer
International Publishing, 2019.

[13] F. Simard, “On computing distances and latencies in link streams,”
in Proceedings of the 2019 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, pp. 394–397, 2019.

8



[14] A. Baudin, L. Tabourier, and C. Magnien, “Lscpm: communities in
massive real-world link streams by clique percolation method,” arXiv
preprint arXiv:2308.10801, 2023.

[15] M. Ghanem, F. Coriat, and L. Tabourier, “Ego-betweenness centrality
in link streams,” in Proceedings of the 2017 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining 2017,
pp. 667–674, 2017.

[16] M. Naima, M. Latapy, and C. Magnien, “Temporal betweenness cen-
trality on shortest paths,” 2023.

[17] T. Viard, M. Latapy, and C. Magnien, “Computing maximal cliques in
link streams,” Theoretical Computer Science, vol. 609, pp. 245–252,
2016.

[18] E. Bautista and M. Latapy, “A frequency-structure approach for link
stream analysis,” Temporal Network Theory (2nd Ed.), 2023.

9


