
HAL Id: hal-04480999
https://hal.science/hal-04480999v1

Submitted on 27 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A metamodel for confined yield stress flows and
parameters’ estimation

Clément Berger, David Coulette, Paul Vigneaux

To cite this version:
Clément Berger, David Coulette, Paul Vigneaux. A metamodel for confined yield stress flows and
parameters’ estimation. Rheologica Acta, 2024, �10.1007/s00397-024-01436-0�. �hal-04480999�

https://hal.science/hal-04480999v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A metamodel for confined yield stress flows and parameters’
estimation⋆
Clément Bergera,1, David Coulettea,2 and Paul Vigneauxa,b,∗,2

aUMPA CNRS UMR 5669 ENS de Lyon, 46 Allée d’Italie, Lyon, 69364, Rhône, France
bLAMFA CNRS UMR 7352 Université de Picardie Jules Verne, 33 Rue Saint Leu, Amiens, 80039, Somme, France

A R T I C L E I N F O
Keywords:
Herschel-Bulkley
lubrication approximation
closed domain
inverse problem
Polynomial Chaos Expansion
Principal Component Analysis

A B S T R A C T
With the growing demand of mineral consumption, the management of the mining waste is crucial.
Cemented paste backfill (CPB) is one of the techniques developed by the mining industry to fill the
voids generated by the excavation of underground spaces. The CPB process is the subject of various
studies aimed at optimizing its implementation in the field. In this article, we focus on the modelling of
the backfill phase where it has been shown in [Vigneaux et al., Cem. Concr. Res. 164 (2023) 107038]
that a viscoplastic lubrication model can be used to describe CPB experiments. The aim here is to
propose an accelerated method for performing the parameters’ estimation of the properties of the
paste (typically its rheological properties), with an inverse problem procedure based on observed
height profiles of the paste. The inversion procedure is based on a metamodel built from an initial
partial differential equation model, thanks to a Polynomial Chaos Expansion coupled with a Principal
Component Analysis.

1. Introduction
In this article, we focus on a fast model for the simulation

and parameters’ estimation of thin sheets of viscoplastic
material aiming at filling elongated cavities. A typical appli-
cation would be the cemented paste backfill in underground
stopes.

With the growing demand of mineral consumption, the
management of the mining waste is crucial. Cemented paste
backfill (CPB) is one of the techniques developed by the min-
ing industry to fill the voids generated by the excavation of
underground spaces. CPB has been documented in Germany
in the 1980’s Landriault (2006). It is now used in a growing
number of countries across the world, including Australia,
Canada and China Yilmaz and Fall (2017). The paste is
obtained by mixing tailings coming from the extraction, with
water and a hydraulic binder. Mixtures are then transported
from the surface plant to the underground openings through
pipes. Addition of the binder (cement like) is crucial for
the final strength and stability of the backfill. Among the
advantages of the CPB, one expects:

• the ability of reusing the mining waste by reintro-
ducing it in the mine. This would prevent to use
surface spaces on the ground (e.g., tailings dams),
with all the potential environmental impacts this can
have (UNCED (1992) and Azam and Li (2010)).
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• By filling the voids in underground spaces with these
pastes, the ground is thus consolidated, leading to two
advantages: (i) the risk of subsidence Keller (2008)
is lowered and (ii) there is no need to leave unex-
ploited pillars as done originally for stability, since the
whole cavity can then be backfilled with the cemented
paste (like in the cut-and-fill mining methodology). A
better exploitation of the mining deposit can thus be
expected.

The practical implementation of CPB is a complex process
where optimization needs to be done on several aspects: the
composition of the CPB (chemical and mineralogical char-
acteristics) and its resulting physical properties in relation
with the transportation phase (where fluidity would ease the
pumping) and finally the consolidating phase (where high
mechanical strength is needed for an efficient stability of the
resulting backfilled volume) Yilmaz and Fall (2017).

In the present paper, we focus more specifically on the
modelling and simulation of the filling phase where we
consider the slurry of a viscoplastic material in a bounded
domain. We refer to Vigneaux et al. (2023) for a more
detailed description on the modelling where it was shown
that a viscoplastic lubrication model successfully described
laboratory experiments of such slurries made of typical CPB
material. Using this model, we present here a new methodol-
ogy to perform parameters’ estimation of this model thanks
to an inverse problem using observations of the surface
height of the slurry. The objective of the present article is
thus to provide a fast algorithm which allows to simulate
an observed paste flow and to determine its viscoplastic
properties, typically the viscosity (or consistency), the yield
stress and the power index of the constitutive law of the
associated rheology (namely, the Herschel-Bulkley law). As
a matter of fact the rheology is one of the most important
properties of CPB material Yilmaz and Fall (2017); Roussel
and Coussot (2005). Having these parameters, we can then
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solve the direct problem to simulate further in time and
optimize the filling process of the cavity.

To perform the inverse problem in a faster way, we
develop a so called metamodel which is a precise approxi-
mation of the lubrication model (in its original partial differ-
ential equation (PDE) form) but much faster to evaluate than
solving the PDE. (Metamodels are also sometimes called
surrogate models.) Indeed, when considering the closed
stope configuration, there is no explicit solution for the
height profile and a numerical resolution is required. The
design of this algorithm borrows from previous works Blat-
man and Sudret (2013); Hawchar et al. (2017) but seems to
have been rarely adapted in the context of PDEs. We develop
here a specific and complete framework for the model of
Vigneaux et al. (2023). Of note, we also provide in an open
access repository the data and code of the metamodel 1, so
that readers can experiment and identify the parameters of
their own CPB lab experiments.

The paper is organized as follows. In section 2, we detail
the model under consideration and the numerical resolution
of the direct problem, as well as the links with the inverse
problem. We then present in section 3 the construction
of the metamodel, which mixes Polynomial Chaos Expan-
sion (PCE) and a Principal Component Analysis (PCA). In
section 4, we test the metamodel performances depending
on the characteristics of the PCA and the PCE. We also
measure the ability to estimate the parameters when the
metamodel is coupled to a Nelder-Mead algorithm to solve
the inverse problem for both synthetic data (in silico) or for
the laboratory experiments data of Vigneaux et al. (2023).

2. Formulation of the direct problem
2.1. Original PDE model

The starting model is a so-called lubrication model for
yield stress flows in confined geometry. It is borrowed from
Balmforth et al. (2006) developed in unconfined geometry
(see also earlier works Liu and Mei (1989); Coussot et al.
(1996); Huang and Garcia (1998)). It was then studied in
the case of the flow in a confined cavity by Vigneaux et al.
(2023). We refer to Balmforth et al. (2006) and Vigneaux
et al. (2023) for more details.

We consider a closed cavity in 1D, inclined at an angle 𝜙
to the horizontal (see figure 1). In non-dimensional variables
the length of this cavity is equal to 1. We assume that
the material follows a Herschel-Bulkley constitutive law
(whose characteristic parameters: yield stress, consistency
and power index will be described later). It is assumed that
the injected flow rate of the material is imposed on the left
of the domain. The non-dimensionalization process leads to
𝑞 = 1 as the left boundary condition for the model at 𝑥 = 0.
While on the right, at 𝑥 = 1, a wall condition is imposed
with 𝑞 = 0. The unknown of the problem that is solved is the
dimensionless height ℎ of the material at time 𝑡 and distance
𝑥 from the injection point. Note that we assume that there is
no material at 𝑡 = 0 (the cavity is empty), so that the initial

1https://zenodo.org/records/8377205

injection

wall

Figure 1: 1D model, non-dimensionalized variables. The blue
curve is the height ℎ of the material at two successive times
(the flow is from left to right). Note that the gravity vector
is inclined with an angle 𝜙 since the 𝑥 axis is assumed to be
inclined downslope from the horizontal.

condition of the PDE is : ℎ(𝑥, 𝑡 = 0) = 0 for all 𝑥 ∈ [0, 1].
The evolution of ℎ is the solution of the following partial
differential equation (PDE):

𝜕
𝜕𝑡
ℎ(𝑥, 𝑡) + 𝜕

𝜕𝑥
𝑞(𝑥, 𝑡) = 0,∀𝑥 ∈]0, 1[,∀𝑡 > 0, (1)

where 𝑞(𝑥, 𝑡) is the flux function defined as:

𝑞(𝑥, 𝑡) = sgn
(

𝑆 −
𝜕ℎ(𝑥, 𝑡)
𝜕𝑥

)

|

|

|

|

𝑆 −
𝜕ℎ(𝑥, 𝑡)
𝜕𝑥

|

|

|

|

1∕𝑛
(2)

×
𝑛𝑌 (𝑥, 𝑡)1+1∕𝑛

(𝑛 + 1)(2𝑛 + 1)
((2𝑛 + 1)ℎ(𝑥, 𝑡) − 𝑛𝑌 (𝑥, 𝑡)) ,

where sgn(.) is the sign function and 𝑛 (dimensionless, typi-
cally in [0.3; 1.2]) is the power index of the aforementioned
constitutive law. The variable 𝑌 (𝑥, 𝑡) encodes the yield sur-
face (i.e., the height above which the material behaves like a
pseudo-plug) and is given by:

𝑌 (𝑥, 𝑡) = max
⎛

⎜

⎜

⎝

ℎ(𝑥, 𝑡) − 𝐵
|

|

|

𝑆 − 𝜕ℎ
𝜕𝑥 (𝑥, 𝑡)

|

|

|

, 0
⎞

⎟

⎟

⎠

, (3)

where 𝐵 is the Bingham number and 𝑆 the so-called slope
parameter, in this context.

Note that, as such, the independent parameters of this
model are 𝐵, 𝑆 and 𝑛. Knowing (𝐵,𝑆, 𝑛), using afore-
mentioned initial condition on ℎ and boundary conditions
on 𝑞, one can compute the evolution of ℎ in the cavity.
We now detail these parameters in terms of the associated
dimensional variables. The slope parameter 𝑆 is given by:

𝑆 =
tan𝜙
𝜖

, (4)

where 𝜖 = �̂�0∕�̂� is the aspect ratio between the typical
height of the material (�̂�0 in 𝑚) and the typical length of
the cavity (�̂� in 𝑚, in the 𝑥 direction depicted in figure 1). In
the lubrication theory (thin film), it is assumed that 𝜖 ≪ 1.
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The Bingham number is defined as:

𝐵 =
�̂�0𝜏𝑦
�̂��̂��̂�

, (5)

where 𝜏𝑦 (𝑘𝑔.𝑚−1.𝑠−2 or 𝑃𝑎) is the yield stress of the
viscoplastic material, �̂� is the density (𝑘𝑔.𝑚−3), �̂� is the
characteristic downslope velocity (𝑚.𝑠−1). The parameter �̂�
is the characteristic kinematic viscosity:

�̂� = �̂�
�̂�

(

�̂�
�̂�0

)𝑛−1

, (6)

where �̂� (𝑘𝑔.𝑚−1.𝑠𝑛−2 or 𝑃𝑎.𝑠𝑛) is the consistency associ-
ated to the Herschel-Bulkley rheology.

The typical height of the cavity �̂�0 can be computed
through:

�̂�0 =

(

�̂��̂�
�̂��̂� cos𝜙

(

�̂�0

�̂�

)𝑛) 1
2(1+𝑛)

, (7)

where �̂� = 9.81 (𝑚2.𝑠−1) is the gravitational acceleration
(note that �̂� = ‖ ⃖⃗𝑔‖ of figure 1), �̂� (𝑚) is the transverse
width of the cavity and �̂�0 (𝑚3.𝑠−1) is the known injected
flow rate of material. Note that if one starts from the given
dimensional input data, one can begin with (7) and using:

�̂� =
�̂�0

�̂� �̂�0
(8)

one can compute subsequently the non dimensional quanti-
ties of the problem.

To fix the ideas, we recall the range of values for the pa-
rameters (𝐵,𝑆, 𝑛). In the context of CPB a "secured choice"
(meaning extending a bit the range of potential extreme val-
ues) of values is 𝐵 ∈ [0.5, 250] and 𝑆 ∈ [∼ 0.1 or 1, 120].
Concerning the power law index, it is generally observed
𝑛 ≈ 1. More commonly, one might find CPB parameters
of real mines close to (𝐵,𝑆, 𝑛) ∼ (150, 12, 1) (see Vigneaux
et al. (2023) for more details). We will come back to this
point at the end of the article.
2.2. Numerical solver

The solution of (1)-(2) is approximated by a numerical
solver. It should be noted that this model has been exten-
sively tested in various configurations by leading groups in
the field Balmforth et al. (2006); Liu et al. (2016); Hogg
and Matson (2009). So, even if it seems difficult to find
a rigorous proof of the existence and uniqueness of this
model in the literature, it does seem to be well-posed (in
Hadamard’s sense) in the configuration studied here. The
time evolution is treated by an explicit scheme (forward
Euler). The spatial discretization is treated using a centered
scheme for 𝜕ℎ∕𝜕𝑥 and an upwind scheme for 𝜕𝑞∕𝜕𝑥. Using
the boundary conditions, 𝑞 can be computed for all the points

of the mesh, which enables to compute ℎ for all points except
the first one at 𝑥 = 0 (which would require the evaluation
of 𝑞(−Δ𝑥)). This point is treated by using the boundary
condition 𝑞(0) = 1 and a downwind scheme for 𝜕ℎ∕𝜕𝑥. The
resulting equation on ℎ(𝑡, 0) cannot be computed in closed
form (see (2)) and leads to a scalar non linear equation whose
root can be solved with standard built-in libraries (e.g. fzero
in Matlab or brenth in Python-Scipy). Cf. appendix A.1 for
more details.

For a given spatial discretization (Δ𝑥) we adapt the time
step (Δ𝑡) dynamically at each time iteration. A stability
condition has been heuristically derived so that the time
step is determined by the spatial step. This is done by
taking the minimum of the two classical numerical stability
constraints on Δ𝑡 associated to the non-linear advection-
diffusion problem (1)-(2). Namely, a constraint due to the
advection component of (1) (CFL condition) and a constraint
due to the explicit treatment of the diffusion component (Δ𝑡
constrained by Δ𝑥2) (LeVeque, 2004). Cf. appendix A.2 for
more details. It should also be noted that there is no difficulty
in dealing with the front where ℎ vanishes, due to the nature
of this PDE which includes the threshold (3).

To determine the spatial step, a numerical study of
the convergence (Δ𝑥 is refined, and therefore also Δ𝑡 by
the stability condition (33)) was performed. A reference
solution has been computed beforehand using a very small
Δ𝑥 (with 𝑛𝑥 = 9601 points in the mesh). Then, this
solution is compared with the use of others bigger Δ𝑥 (𝑛𝑥 =
76, 151, 301,… , 4801), to evaluate if there is a numerical
convergence of the norm of the difference of the two solu-
tions, as Δ𝑥 is reduced. The comparison is done at a final
meaningful time: the one at which the fluid has reached the
right wall, a time referred to as wall-touch. An example of
such study is illustrated on the figure 2 for𝐵 = 100,𝑆 = 120
and 𝑛 = 0.8. We see that the numerical scheme is convergent
with an exponent power of at least 0.6. This exponent is not
very high, which is known to be associated to the stiffness
of the non-linear problem. The development of higher order
schemes is out of the scope of this paper. Note that we also
perform the same kind of study for (𝐵 = 30, 𝑆 = 15,
𝑛 = 0.8) and (𝐵 = 70, 𝑆 = 0.3, 𝑛 = 0.8) which also show
that the scheme is convergent with an order between 0.6 and
1. This validates the use of this whole solver.

Some (𝐵,𝑆) parameters lead to very fast resolutions,
but some others can take up to two hours for 𝑛𝑥 = 301 or
multiple weeks for higher values of 𝑛𝑥. These correspond
to high values of 𝐵 and low values of 𝑆, i.e., a high yield
stress and a low slope. For such parameters, the wall-touch
happens at higher time so many more time steps have to be
performed. As a compromise deduced from the above study,
the use of 𝑛𝑥 = 301 provides very good accuracy while
leading to reasonable computation times, in the perspective
of building a metamodel, as explained below.

This said, such numerical resolution remains costly, es-
pecially for some (𝐵,𝑆, 𝑛) parameters. Assume now that we
want to use this solver to estimate the parameters (𝐵,𝑆, 𝑛),
given measured data of ℎ(𝑥, 𝑡) profiles. We will then need
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Figure 2: Study of the convergence (Δ𝑥 is refined, and
therefore also Δ𝑡 by (33)) of the PDE numerical solver for
𝐵 = 100, 𝑆 = 120, 𝑛 = 0.8. All solutions have been computed
at their respective wall-touch time. The reference solution
(ℎ𝑟𝑒𝑓 ) has been computed using 𝑛𝑥 = 9601 points. The 𝐿2

error (‖ℎ𝑟𝑒𝑓 (𝑥) − ℎΔ𝑥,Δ𝑡(𝑥)‖2) decreases at least like 𝑦 = 𝑥0.6.

to use inverse problem algorithms to perform parameters’
estimation. This may involve a lot of evaluations of the direct
problem: knowing (𝐵,𝑆, 𝑛), compute ℎ(𝑥, 𝑡). The compu-
tation time may be too expensive. This is the justification
to build a metamodel (or surrogate model) which is an
approximation of the PDE solver which is must faster to
compute.
2.3. Final direct problem

With the previous considerations, the forward mapping
provides, given 𝐵, 𝑆 and 𝑛, the result of the numerical
solver at wall-touch, using 𝑛𝑥 = 301 points for the space
discretization. This means that the output is a vector of ℝ301

which corresponds to an approximated height profile. The
metamodel and inversions are performed for fixed 𝑛, as it
is assumed that physicists can provide a precise value for 𝑛,
but the methodology can be applied for any value of 𝑛. Note
also that the model (1) varies smoothly with 𝑛 for the values
involved in the applications (𝑛 ∼ 1). Thus the ultimate goal
is to estimate𝐵 and 𝑆 given height profile(s) of a fluid in the
cavity.

3. Metamodel
A standard procedure for constructing a metamodel is the

use of Polynomial Chaos Expansion (PCE), which consists
in a polynomial approximation. They are often used for
uncertainty quantification Le Maître and Knio (2010) or
sensitivity analysis Sudret (2015). In order to reduce the
dimension of the problem (which is currently 𝑛𝑥 = 301), we
combine this method with a Principal Component Analysis
(PCA).

3.1. Polynomial chaos expansion (PCE)
We start by describing the PCE procedure for some

bounded random vector 𝑋 of ℝ𝑑 (in our case 𝑋 = (𝐵,𝑆) ∈
ℝ2) and a computational model  ∶ ℝ𝑑 → ℝ𝑚.

We are interested in the random vector 𝑌 = (𝑋) (in
our case, 𝑚 = 301 and 𝑌 ∈ ℝ301 is the height profile at
wall-touch). We begin this description for the case 𝑚 = 1 in
order to simplify the presentation (section 3.1.1 and first §
of section 3.1.2); then we describe the full case with 𝑚 ≥ 1
(last § of section 3.1.2). Our goal is to approximate 𝑌 by a
formula of the type:

𝑌 =
∑

𝛼∈Λ
𝜓𝛼(𝑋) (9)

where (𝜓𝛼)𝛼∈Λ are polynomials. It is assumed that 𝑌 has a
finite variance, which is reasonable for us since (𝐵,𝑆) lives
in a bounded domain and we expect the mapping: (𝐵,𝑆) ↦
ℎ to be smooth. We also assume that the coordinates of 𝑋
are independent.
3.1.1. General construction

In this section, we assume that 𝑚 = 1. Let us define 𝑓𝑋𝑖the marginal distribution of the 𝑖𝑡ℎ component of 𝑋. We use
it to define an inner product for functions 𝑢, 𝑣 defined on the
support𝑆𝑖 of𝑋𝑖 (we recall𝑋 belongs to a bounded domain):

⟨𝑢, 𝑣⟩𝑖 = ∫𝑆𝑖
𝑢(𝑧)𝑣(𝑧)𝑓𝑋𝑖 (𝑧)𝑑𝑧. (10)

Using this inner product as a scalar product, we define the
orthogonality as usual. Then, classic algebra procedures as
Gram-Schmidt allows us to construct a family of orthogo-
nal polynomials (𝑃 𝑖𝑘)𝑘∈ℕ which depends on 𝑓𝑋𝑖 and is not
trivial in general. Still in some particular cases, a known
polynomial sequence is recovered. In our case (uniform dis-
tribution), we recover the Legendre polynomials. For more
examples of known families, see Sudret (2015), Xiu and
Karniadakis (2002). Note that originally, the methodology
has been introduced with Hermite polynomials. For other
functions, we should talk about generalized PCE.

For now, we have constructed families of polynomials
in one variable (one family for each component of 𝑋).
To construct polynomials of the whole 𝑋 vector, we will
use products of univariate polynomials (which makes sense
as the components of 𝑋 are independent). Formally, we
introduce multi-indices 𝛼 ∈ ℕ𝑑 as 𝛼 = (𝛼1, .., 𝛼𝑑) and define:

∀𝑥 ∈ ℝ𝑑 , 𝜓𝛼(𝑥) =
𝑑
∏

𝑖=1
𝑃 𝑖𝛼𝑖 (𝑥𝑖). (11)

In this framework, it can be proven that we can write (see,
e.g., Le Maître and Knio (2010)):

𝑌 =
∑

𝛼∈ℕ𝑑
𝑐𝛼𝜓𝛼(𝑋), (12)

where the 𝑐𝛼 are real and need to be determined.
C.Berger et al.: Preprint submitted to Rheologica Acta Page 4 of 12
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3.1.2. Implementation considerations
Standardized entries. In fact, the Legendre polynomials
(as well as other known families) correspond to a precise
distribution (Xiu and Karniadakis (2002)). When the input
𝑋 does not correspond to one of these known distributions,
some methods exist to determine the corresponding family
(see Sudret (2015) for references), but the standard proce-
dure consists in transforming 𝑋 into a new variable �̃� that
enters in a known case. In the case of uniform distributions,
the standard distribution is the uniform distribution over
[−1, 1]. However, 𝐵 ∈ [0.5, 250] and 𝑆 ∈ [0.05, 120]. Thus
we must change the (𝐵,𝑆) coordinates into (�̃�, �̃�) using the
formula :

�̃� = 𝐵 − 125.25
125.25

, (13)

�̃� = 𝑆 − 60.025
60.025

. (14)
Truncation order. In practice, we cannot determine an
infinite number of coefficients and one has to choose which
polynomials to take. For this, let us define the degree of
a multivariate polynomial 𝜓𝛼 by ∑𝑑

𝑖=1 𝛼𝑖 (the sum of the
degrees of the univariate polynomials defining 𝜓𝛼). Usually,
polynomials with high degrees are associated with high
order of interactions between the inputs, which are generally
limited Le Maître and Knio (2010), Sudret (2015). That is
the reason why generally, the truncation is done by selecting
polynomials of degree lower than a threshold 𝛽, usually
between 3 and 5.

Thus, once an order of truncation 𝛽 has been determined,
we can rewrite the problem of (12) as:

𝑌 ≃
𝑙

∑

𝑞=1
𝑐𝑞𝜓𝑞(𝑋). (15)

where we have reordered the polynomials for clarity of
notation. Note that 𝑙 is finite, it depends on the order of
truncation 𝛽, but 𝑙 and 𝛽 are different.
Determination of coefficients. There exist multiple tech-
niques to compute the coefficients of (15). A first distinction
is made between intrusive and non-intrusive methods. The
intrusive methods such as Galerkin projection are based on
the resolution of modified problems (i.e., not the evaluation
of  itself) which require the design of specific solvers,
see Le Maître and Knio (2010). More recently, non-intrusive
methods have risen, based only on evaluations of  and
statistical tools. A popular solution is to treat the problem
as a least-square minimization problem Migliorati and No-
bile (2015), Hadigol and Doostan (2018), Sudret (2015).
Given a set of samples (𝑋(1), ..., 𝑋(𝑟)) with their evaluations
(𝑌 (1), ..., 𝑌 (𝑟)), we reduce the problem to:

min
𝑐∈ℝ𝑙

𝑟
∑

𝑗=1

(

𝑌 (𝑗) −
𝑙

∑

𝑞=1
𝑐𝑞𝜓𝑞(𝑋(𝑗))

)2

. (16)

More details can be found in Migliorati and Nobile (2015),
Hadigol and Doostan (2018) and Sudret (2015).

Multivariate output. (case 𝑚 ≥ 1). The last aspect re-
maining to treat is the fact that in our case, the output is a
vector and not a scalar. It seems that in most of the pub-
lished articles of the literature, the components of the output
are all treated separately. This means that we decompose
(𝑋) = ((𝑋)1, ...,(𝑋)𝑚) and perform a different PCE
for each (𝑋)𝑖, resulting in 𝑚 different computations of
parameters. See, e.g., Sudret (2015), Garcia-Cabrejo and
Valocchi (2014) and Sun et al. (2020).
3.2. Principal component analysis (PCA)

We hereby give a brief review of the PCA. More details
can be found in Jolliffe (2002). In this section, we want
to study the random vector 𝑌 ∈ ℝ𝑚, the mapping  is
completely forgotten. We start by defining 𝜑0 ∈ ℝ𝑚 as:

𝜑0 = argmax
𝜑∈ℝ𝑚

𝑉 𝑎𝑟(⟨𝜑, 𝑌 ⟩). (17)

We define :
𝛼0 = ⟨𝜑0, 𝑌 ⟩. (18)

Then 𝛼0 is called the first Principal Component (PC) of 𝑌
and 𝜑0 is its direction. For 1 ≤ 𝑘 ≤ 𝑚 − 1, we recursively
define the 𝑘𝑡ℎ PC in a similar manner:

𝜑𝑘 = argmax
𝛼0,…,𝛼𝑘−1,⟨𝜑,𝑌 ⟩ uncorrelated

𝑉 𝑎𝑟(⟨𝜑, 𝑌 ⟩), (19)

and
𝛼𝑘 = ⟨𝜑𝑘, 𝑌 ⟩. (20)

With these variables we introduce the matrix notation:
𝛼 = 𝜑𝑌 , (21)

where 𝛼 is the column vector of the 𝛼𝑘 and 𝜑 is the squared
matrix whose lines are the 𝜑𝑘. One can show that in fact 𝜑
is invertible. It follows that we can write 𝑌 = 𝜑−1𝛼, so that
the study of 𝛼 is equivalent to the study of 𝑌 . However, 𝛼 is
defined so that most of its variations are contained in its first
few components. This allows to reduce the dimension of the
problem by performing a truncation on the first PCs:

𝑌 ≈ 𝜑−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛼0
⋮
𝛼𝑝
�̄�𝑝+1
⋮

�̄�𝑚−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (22)

where �̄�𝑘 = E [

𝛼𝑘
] and 𝑝 ∈ J1, 𝑚 − 1K.

In our case we do not have access to the theoretical
distribution of 𝑌 . As done in practice Jolliffe (2002), we will
thus use a data set which is supposedly a good sampling of
𝑌 and use sample variances and expectations to compute the
PCs.
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3.3. Final surrogate via PCE - PCA coupling
We now go back to the PCE. Until now, the metamodel

is given by:
(𝑋) = (Φ0(𝑋), ...,Φ𝑚−1(𝑋)) ≈ (𝑋), (23)

where Φ𝑘 is the result of the PCE performed on the mapping
𝑋 ↦ (𝑋)𝑘 = 𝑌𝑘. We replace these 𝑚 different PCEs
performed on the components of 𝑌 by PCEs performed on
the first PCs. More precisely, we assume that the 𝑝 + 1
first PCs account for most of the variance of 𝑌 . Then for
0 ≤ 𝑘 ≤ 𝑝, we denote by 𝜃𝑘 the result of the PCE performed
on the mapping𝑋 ↦ 𝛼𝑘(𝑋) (by virtue of (21), if 𝑌 is viewed
as a function of 𝑋 then 𝛼𝑘 can also be viewed as such). We
use it for our final metamodel:

̂(𝑋) = 𝜑−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜃0(𝑋)
⋮

𝜃𝑝(𝑋)
�̄�𝑝+1
⋮

�̄�𝑚−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

≈ (𝑋). (24)

We recall that 𝜑 and the �̄�𝑘 are deterministic quantities
precomputed during the PCA step.

Such a combination between PCA and PCE is not com-
mon in the literature. Up to the authors’ knowledge it has
been first used by Blatman and Sudret (2013) and more
recently in Hawchar et al. (2017).

4. Results
Of note, in this section, we work with 𝑛 = 1. However,

the entire methodology and codes can be used with other val-
ues of 𝑛, e.g., between 0.2 and 1.2. Moreover as mentioned in
paragraph 2.3, the present lubrication model varies smoothly
for the values of 𝑛 considered here (𝑛 ∼ 1). It also turns out
that the experimental pastes studied in the last subsection are
such that 𝑛 = 1 Vigneaux et al. (2023).
4.1. Metamodel performances

In order to compute the coefficients of the metamodel,
a sampling grid in the (𝐵,𝑆) domain has to be established.
The exact forward mapping is then evaluated for each couple
of the grid. We will work with a small regular grid of 400
couples (20 different values of 𝐵 and 20 values of 𝑆) and
a huge regular grid of 6084 couples (78 by 78). Note that
the couples which are the longest to be evaluated seem to
be the same for all values of 𝑛, which means that we can
use the existing computations to estimate the duration of
the computation of each solution, so that the evaluation of
a new dataset can be efficiently parallelized. In practice, the
small regular grid can be computed in five hours using seven
processors.

Let us now define the precision of a metamodel. Apart
from our two regular grids, a validation set of approximately
6000 couples sampled uniformly at random on the (𝐵,𝑆)
domain has been precomputed. Given a metamodel ̄,

Table 1
Different statistics of the errors of reconstruction for different
metamodels, where 𝛽 is the order of truncation for the PCE.

Data set 𝛽 PCA median 3rd quantile max

78x78

4 no 1 1.8 16.8
yes 1 1.8 16.8

15 no 0.018 0.027 0.59
yes 0.018 0.027 0.59

30 no 0.0011 0.002 0.082
yes 0.0018 0.0024 0.082

20x20
4 no 1.1 1.9 15.8

yes 1.1 1.9 15.8

15 no 0.021 0.032 1.13
yes 0.021 0.032 1.13

we evaluate it on all the couples of the validation set and
compare them to the real outputs (𝐵,𝑆). For each couple
(𝐵,𝑆) of the validation set, we define the reconstruction
error ‖(𝐵,𝑆) − ̄(𝐵,𝑆)‖2. Some statistics over the
validation set for different parameters of the metamodel are
presented in the table 1. We comment them below.

Multiple orders of truncation for the PCE have been
tested, from 4 to 30. As expected, the higher the order is,
the more precise the metamodel. From order 4 to 6, the
error is divided by 3. From 10 to 12 it is divided by 2. At
order 30, for the biggest grid, there is approximately 3% of
error for most couples of the validation set. There is however
a limit to it since there is a limited number of samples,
so the system becomes undetermined for a degree high
enough. This happens for the smallest grid, which cannot be
associated to an order higher than 15. Another practical limit
comes from the computation time of the coefficients. While
for small orders like 4 or 5, the coefficients are estimated in
a few minutes, it can take multiple days to train for order 30.

To combine PCA and PCE, one has to determine a
number of principal components (PC) to keep. For instance
if one uses only 3 PCs (i.e., 𝑝 = 2 following the notation
of the previous section), then the quality of the metamodel
reaches a plateau after order 10. Using 10 PCs (i.e., 𝑝 = 9),
the precision is almost not affected even at order 30, so that
is what we will use. Note that using the PCA with 10 PCs,
we have to perform 10 one-dimensional PCEs. If we did not
use the PCA, we would have to perform 𝑛𝑥 = 301 PCEs. So
the use of the PCA divides the computation time by 30.

We point out the fact that no matter the parameters of
the metamodel, there are always a few couples which lead to
a significant error of reconstruction. Even the most precise
version has a maximal error of 10% which can be prob-
lematic for an inversion procedure. However these extreme
cases happen very infrequently and almost only close to the
boundary of the (𝐵,𝑆) domain, for small values of 𝐵 and
generally also small values of 𝑆. Since the domain has been
chosen so that for the applications, the values should be quite
far from the boundary, we may expect the error to be under
the 3rd quantile.
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Until now the focus has been on the precision of the
prediction of the metamodel. However, let us recall the
reason why a metamodel is needed in the first place is that
an inversion procedure will typically require hundreds of
evaluations of the model, so that it needs to be evaluated very
fast. The metamodels presented above are all a lot faster to
evaluate than the real model, but they are not equal. While
being slightly more precise, the PCE of order 30 without
PCA requires the evaluation of 301 bivariate polynomials
of degree 30. In comparison, the PCE of order 15 with
PCA only requires 10 polynomials of order 15 and a matrix
multiplication. In practice, the latter is three times faster than
the first one.

In the figure 3, we present typical reconstructions of the
PDE solution by the metamodel approach trained with the
20 x 20 data set, using the PCE of order 15 with PCA. Three
representative (𝐵,𝑆) couples are chosen and the associated
ℎ profiles given by the PDE solver and by the metamodel are
superposed. We observe a very good adequacy of both types
of profiles.

Considering all of the above, we will now use the PCE-
PCA with 𝛽 = 15 (following the notation of the previous
section) and 𝑝 = 9, trained on the smallest grid. This
provides a precise metamodel which can be evaluated very
quickly and which can be trained in a day or two at most
(counting the dataset evaluation) on a domestic laptop.

Figure 3: Comparison of the results from the PDE direct solver
(solid line) and from the metamodel (circle markers), for three
sets of (𝐵,𝑆) parameters (colors).

4.2. Parameters’ estimation on synthetic data
The purpose of the metamodel is to be used for param-

eters’ estimation. As a first step we will test it on synthetic
data, in the sense that we will use the profiles of the valida-
tion set (termed as "real" in the following) and try to retrieve
the values of 𝐵 and 𝑆, using our metamodel.

In addition to the real profiles ℎ(𝐵,𝑆), we create noisy
profiles out of them. As field data are expected to be available
up to a precision of roughly 5% (see next section), we will try
2%, 5%, and 10% of noise intensity. More precisely, we sam-
ple ℎ𝑛𝑜𝑖𝑠𝑒𝑑(𝐵,𝑆) = ℎ(𝐵,𝑆) + 𝜀 where 𝜀 ∼  (0, 𝛼ℎ(𝐵,𝑆))

Table 2
Summary statistics of the errors (eq. (25)) of parameters’
estimation.

Noise median 3rd quantile max var
0% 0.00045 0.00088 0.0299 7.46e-06
2% 0.016 0.043 1.21 0.0276
5% 0.035 0.097 3.07 0.064
10% 0.067 0.18 5.03 0.202

and 𝛼 = 0.02, 0.05 or 0.1. All in all, for each (𝐵,𝑆) couple,
we have at our disposal ℎ(𝐵,𝑆) (the real one) and 3 noisy
profiles with respectively 2%, 5%, and 10% noise intensity.
We will do so for 500 couples of the original validation set.

The parameters’ estimation is performed by the Nelder-
Mead algorithm, with a maximum of 400 iterations, see
Nelder and Mead (1965) for details on the algorithm. The
error of the estimation is defined by the Euclidean distance
between the real (𝐵,𝑆) couple and the estimated one. The
results are summed up in the table 2. The error displayed is
the relative error of the estimated couples, i.e.,

𝑒𝑟𝑟 =
‖

‖

‖

‖

‖

(

𝐵𝑟𝑒𝑎𝑙 − 𝐵𝑒𝑠𝑡𝑖𝑚
𝐵𝑟𝑒𝑎𝑙

,
𝑆𝑟𝑒𝑎𝑙 − 𝑆𝑒𝑠𝑡𝑖𝑚

𝑆𝑟𝑒𝑎𝑙

)

‖

‖

‖

‖

‖2
. (25)
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Figure 4: Comparison between a real height profile (solid line),
its noisy version (circle) and the profile determined by the
Nelder-Mead algorithm (dotted line). The noisy profiles are
created using 2% of noise. The three colors correspond to three
different (𝐵,𝑆) couples randomly chosen. Note that at this
level of zoom the line and the dotted line are superimposed,
so only one is visible.

For the non-noisy couples, the estimation is almost exact
and for 2% of noise, there is generally less than 5% of error.
The situation for 5% of noise is a little worse, with roughly
10% of error in the estimation. Note that these noisy profiles
are extremely chaotic compared with what we would expect
from experimental data. Still, the profiles corresponding to
the couples determined by the algorithm are very close to
the real profiles as displayed on the figures 4 and 5. If
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Figure 5: Comparison between a real height profile (solid line),
its noisy version (circle) and the profile determined by the
Nelder-Mead algorithm (dotted line). The noisy profiles are
created using 5% of noise. The three colors correspond to three
different (𝐵,𝑆) used in the figure 4. Note that at this level of
zoom the line and the dotted line are superimposed, so only
one is visible.

the ℎ profiles have 10% of noise, practitioners need to be
cautious because the estimation of (𝐵,𝑆) can diverge more
significantly than for the previous noise intensities, even
though real data would be expected to be less chaotic so the
figure 7 (in the Appendix) should be thought of as a worst-
case scenario.
4.3. Parameters’ estimation on experimental data

In this section, we apply the current algorithm to the
experimental data measured in the lab presented in Vigneaux
et al. (2023). In this article, four pastes are used to perform
four fillings of an empty box – a reduced model in the lab
for CPB experiment, with pastes coming from the field. For
each experiment the snapshot of the profile of ℎ at wall-touch
is obtained (see, e.g., figure 16 of Vigneaux et al. (2023)).
This gives four curves 𝑥 ↦ ℎ(𝑥) that we can use to perform
a (𝐵,𝑆) parameters’ estimation.

The results are presented in figure 6. As a first comment,
we can note that the experimental data do exhibit a sort of
noise whose amplitude is of the same order as in the virtual
noise 2% - 5% used in section 4.2. The noise in the experi-
ments is not significantly associated to the image processing
but is essentially due to the very "thick" rheological behavior
of the pastes (including mounding described below). The
parameters values estimated by the metamodel are given in
table 3.

It is important to note that (𝐵,𝑆) values were estimated
in Vigneaux et al. (2023) with two distinct techniques.
Namely one estimation with the fitting of a Bingham consti-
tutive law, and the other with a creep shear experiment. Of
note, the estimation of𝐵 in the lab is not trivial due to the use
of real material as encountered in the field, for which very
precise rheometric measurements is a complicated task. The

Table 3
Parameters’ estimation with ℎ profiles coming from lab data
of Vigneaux et al. (2023). "#" stands for the Paste number.
"exp" stands for the estimation done physically in the lab
(with two techniques for 𝐵). "meta" stands for the estimation
obtained with the present metamodel. "var" stands for the
percentage of variation between Vigneaux et al. (2023) and
present estimation with the metamodel. See main text for
details.

# 𝐵: exp meta % var 𝑆: exp meta % var
1 [43;58] 73 69; 26 0.22 0.05 -77
2 [102;122] 176 73; 44 0.28 0.05 -82
3 [74;98] 137 85; 40 0.28 2.2 686
4 [68;93] 120 76; 29 0.26 0.05 -81

illustration of this can be seen in the significant variability
of 𝐵 shown for the two techniques in the second column of
Tab. 3. Another difficulty is the fact that the experiments may
present 3D mounding effect (see pastes 1, 2 and 4 in figure
6, around 𝑥 = 0.1) which cannot be captured by the current
2D model (and not 3D) used here. In the present study, this
mounding effect translates in a "bump" shape perturbation
for 𝑥 close to 0.1 which is equivalent to a noise on the
curve of ℎ(𝑥). This may challenge the inversion procedure
which tries to fit the PDE model (without mounding) to the
experimental curve.

It is also worth to mention that the lab experiment was
such that 𝑆 is very small due to a very small slope of
the experimental device (in operational CPB context, one
usually encounters slightly bigger slopes and thus bigger 𝑆,
as mentioned in section 2.1). This implies that the numerical
test for the inverse problem is in a challenging part of the
(𝐵,𝑆) parameters’ space because:

• (i) the smallest grid has been used for training, so
the metamodel has been trained with very few values
close to the boundary of the (𝐵,𝑆) domain (the two
smallest values of 𝑆 used for training are 0.05 and
roughly 6, nothing in between), as a result it can
be expected that the metamodel has only a limited
precision in this very extreme range of S values;

• (ii) a close inspection of the solutions 𝑥 ↦ ℎ(𝑥) for
different values of (𝐵,𝑆) shows that for very small 𝑆
(particularly 𝑆 < 1), only a slight change in the value
of 𝑆 results in a significantly different solution of the
PDE, so that both training the metamodel and solving
the inverse problem become far more challenging in
that area.

All the above reasons explain why this particular test is
difficult. As well as the significant percentage of variation
seen in the Tab. 3 between the (𝐵,𝑆) values of Vigneaux
et al. (2023) and the values estimated by the present Meta-
model+inversion procedure.

This said, it should be noted that the curves obtained
by the metamodel are very well fitted with the experimental
curves. It should also be noted that the inversion procedure
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is very fast compared to an inversion using a resolution of
the PDE. So, given the noise that can be encountered with
CPB field materials and the fact that their typical (𝐵,𝑆) live
in the bulk (and not at the boundaries) of the parameters’
space of the metamodel (giving more accuracy for exploring
couples that minimize the discrepancy between the curve
of the model and the curve of the experiment), we believe
that this metamodel-inversion procedure can be one of the
tools to make a first estimation of the rheology of CPB
experiments, based on the curve 𝑥↦ ℎ(𝑥) at wall-touch.

For this purpose, we deliver on the Zenodo open repos-
itory Zenodo (2013) the codes and metamodel data Berger
and Vigneaux (2023) so that other teams having wall-touch
snapshots of ℎ(𝑥) can test the current methodology with their
own data.
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Figure 6: Fitting via the parameters’ estimation procedure
using four different real data sets from Vigneaux et al. (2023).
For each paste are displayed in blue the experimental profile
ℎ(𝑥) (non-dimensional variables, see section 2.1) and in orange
the curve associated to the (𝐵,𝑆) couple estimated by our
procedure.
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5. Summary and discussion
Based on a partial differential equation (PDE) model

derived from a lubrication approximation, we have designed
a metamodel approximating this PDE. The metamodel is
constructed using a combination of polynomial chaos ex-
pansion (PCE) and principal component analysis (PCA). We
have extensively tested different combinations of PCE and
PCA features, resulting in a metamodel that represents a
good compromise between speed and accuracy. As a result,
given the two model parameters (𝐵,𝑆), the solutions of
the PDE and the metamodel are essentially superimposed,
while the computation of the metamodel is much faster.
Next, we tested this metamodel for parameters’ estimation
on synthetic data, including noisy data. It is demonstrated,
using statistically relevant samples, that with the typical
noise encountered in typical CPB applications, the inversion
procedure leads to good parameter estimations. The solu-
tions of the inverse problem are such that the estimate of
(𝐵,𝑆) is very good, as is the fit of the height profiles (data
that can be obtained from a laboratory snapshot). Finally, we
also tested this inversion procedure on a small sample of four
available experimental data, in the worst-case scenario, i.e.,
with a low-slope configuration that lies at the boundary of
the parameters’ space for CPB (and thus also for the meta-
model) with respect to 𝑆. The inversion procedure naturally
struggles to estimate these (𝐵,𝑆) parameters. Given the high
variability of𝐵 values obtained in Vigneaux et al. (2023), an
average 𝐵 error of 53% can be considered quite encouraging
for such rough pastes and stiff numerical configuration.

In addition, given the good statistical results obtained
on the synthetic data, it is expected that with laboratory
experiments conducted on CPB configurations mimicking
the field, i.e., with 𝑆 ∼ 10, inversion with the metamodel
can be a valuable tool for performing (𝐵,𝑆) parameters’
estimation. For testing purposes, we are providing the data
and metamodel codes Berger and Vigneaux (2023) so that
other teams can test them on their laboratory data. Not only
the ready-to-use metamodel, but also the code to recalculate
this metamodel with other parameters, are also provided in
the repository, so that another training set of (𝐵,𝑆) and
the corresponding metamodel can be computed offline in
a few days with a domestic laptop, providing a metamodel
specialized in the (𝐵,𝑆) range of a specific type of CPB
applications. The code is written in Python and is well-
documented so that a minimal investment is required to do
so.

Future research directions would include a quantitative
study of the influence of the 𝜙 angle (involved in 𝑆), as well
as a more systematic study of general slope variations due to
layers already deposited at the bottom. It is common practice
in CPB to carry out several injections on layers of cemented
paste that have already been deposited Mizani et al. (2013).

A. Numerical solver
A.1. Numerical computation of ℎ(𝑡, 0)

As stated in section 2.2, the numerical computation of
ℎ(𝑡, 0) is not straightforward. The time being fixed, let’s write
ℎ1 = ℎ(𝑡,Δ𝑥) (known) and ℎ0 = ℎ(𝑡, 0) (unknown). A
downwind scheme for 𝜕ℎ∕𝜕𝑥 and the boundary condition
𝑞(0) = 1 together with the equation (1) lead to the following
problem on ℎ0:

1 =𝛿 𝑛
(𝑛 + 1)(2𝑛 + 1)

𝑌𝑑(ℎ0)1+1∕𝑛×

|

|

|

|

𝑆 −
ℎ1 − ℎ0
Δ𝑥

|

|

|

|

1∕𝑛
(

(2𝑛 + 1)ℎ0 − 𝑛𝑌𝑑(ℎ0)
)

(26)

with
𝛿 = 𝑠𝑔𝑛

(

𝑆 −
ℎ1 − ℎ0
Δ𝑥

)

, (27)
and

𝑌𝑑(ℎ0) = max
⎛

⎜

⎜

⎝

ℎ0 −
𝐵

|𝑆 − ℎ1−ℎ0
Δ𝑥 |

, 0
⎞

⎟

⎟

⎠

. (28)

This problem is highly non-linear. However, it is constant
equal to 0 whenever 𝑌𝑑(ℎ0) = 0. On the other part of the
real line, it can be checked that the function of ℎ0 defined by
(26) is actually strictly increasing and continuous, implying
the uniqueness of the solution of our problem. Because of
the power law involved in (26), an external solver is required
to numerically solve the problem. In order to accelerate its
resolution, we provide to the solver the point after which
𝑌𝑑 > 0 (so that it does not get stuck in a constant region).
Using (28) and ℎ0 ≥ 0, we derive the formula:

ℎ0 >
ℎ1 − 𝑆Δ𝑥

2
+

√

(

ℎ1 − 𝑆Δ𝑥
2

)2
+ 𝐵Δ𝑥. (29)

Note that in the special case 𝑛 = 1, the problem (26) is
equivalent to finding the root of a polynomial of degree 7.
However, in practice, it is not faster than using the method-
ology presented above.
A.2. Numerical stability condition

We develop the expression (1) of the model, so as to ob-
tain explicitly an advection-diffusion form. Denoting 𝑉 (𝑥)
the transport coefficient and 𝐷(𝑥) the diffusion coefficient,
(1) is equivalent to:

𝜕
𝜕𝑡
ℎ(𝑥, 𝑡) + 𝑉 (𝑥) 𝜕

𝜕𝑥
ℎ(𝑥, 𝑡) −𝐷(𝑥) 𝜕

2

𝜕𝑥2
ℎ(𝑥, 𝑡) = 0 (30)

with 𝛿 = sgn(𝑆 − ℎ𝑥),
𝑉 (𝑥) = 𝛿𝑌 1∕𝑛

|𝑆 − ℎ𝑥|1∕𝑛ℎ, (31)
and

𝐷(𝑥) = −1
(1 + 𝑛)(1 + 2𝑛)

𝑌 1∕𝑛
|𝑆 − ℎ𝑥|1∕𝑛−1×

(

2𝑛ℎ 𝐵
|𝑆 − ℎ𝑥|

+ (1 + 𝑛)ℎ2 + 2𝑛2 𝐵2

(𝑆 − ℎ𝑥)2

)

.
(32)
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At each time iteration, as mentioned in the main text, the
time step is determined as:

Δ𝑡 = min
(

Δ𝑥
2max𝑥(𝑉 (𝑥))

, 𝐶𝑑
(Δ𝑥)2

max𝑥(𝐷(𝑥))

)

(33)

where (the classical) 𝐶𝑑 = 0.5 ensures stability for most
simulations. One can lower 𝐶𝑑 , e.g. 𝐶𝑑 = 0.05 to stabilize
the simulation if needed. Note that for the current paper,
where the solutions are not computed after the time of wall-
touch, 𝐶𝑑 = 0.5 leads to stable simulations for all studied
parameters (𝐵,𝑆).

B. Noisy synthetic profiles
The supplementary figure, mentioned in the main text,

concerning the study of noisy profiles with 10% noise.

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

6

h

B=146.48, S=40.25
B=5.75, S=1.04
B=31.27, S=3.44

Figure 7: Comparison between a real height profile (solid line),
its noisy version (circle) and the profile determined by the
Nelder-Mead algorithm (dotted line). The noisy profiles are
created using 10% of noise. The three colors correspond to
three different (𝐵,𝑆) used in the figure 4.
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