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We consider a one-dimensional topological superconductor hosting Majorana bound states at its
ends coupled to a single mode cavity. In the strong light-matter coupling regime, electronic and
photonic degrees of freedom hybridize resulting in the formation of polaritons. We find the polariton
spectrum by calculating the cavity photon spectral function of the coupled electron-photon system.
In the topological phase the lower in energy polariton modes are formed by the bulk-Majorana
transitions coupled to cavity photons and are also sensitive to the Majorana parity. In the trivial
phase the lower polariton modes emerge due to the coupling of the bulk-bulk transitions across the
gap to photons. Our work demonstrates the formation of polaritons in topological superconductors
coupled to photons that contain information on the features of the Majorana bound states.

I. INTRODUCTION

Cavity embedding provides a promising avenue to
probe and control quantum materials and devices. On
the one hand there is tantalizing possibility of control-
ling phase transitions and phase diagrams by coupling
to a cavity mode, an idea which has received theoretical
and experimental attention [T}, [2]. Another source of cav-
ity control can arise from the hybridization with finite-
frequency modes, leading to new hybrid quasiparticles —
polaritons [3], which can be then probed and control in
novel ways. A wide range of polaritonic modes have been
proposed and observed, classified depending on the type
of charged particles in the matter component [4].

A particularly appealing scenario arises when the ma-
terial has a non-trivial topological character, a feature
which can then be enhanced or suppressed [5HI] or even
generated by the coupling with a cavity and thus trans-
mitted to the emergent polariton excitations [I0]. Among
topological phases of matter, topological superconduc-
tors hosting zero-energy Majorana bound states [1I-
T4] hold a specially interesting place for their poten-
tial for quantum computing [I5]. The prototype sys-
tem for topological superconductivity is the Kitaev chain
model [T1] describing a one-dimensional p-wave super-
conductor with Majorana bound states emerging at its
opposite ends in the topological phase. Promising plat-
forms for the Majorana bound states are superconductor-
semiconductor nanowires [16, [I7], graphene-like sys-
tems [I8 [19], and chains of magnetic atoms [20H22)].
Signatures of the Majorana bound states in the form
of zero-bias peak have been experimentally observed in
superconductor-semiconductor nanowire platforms [23-
29]. However, theoretical works have demonstrated that
the zero-bias peak could arise due to non-Majorana
mechanisms [30H38].

The idea of using cavities to probe and manipulate the
Majorana bound states has been explored in different
settings [39H47]. In these cases the cavity plays mainly
the role of non-invasive spectroscopic tool to probe the
physics of these modes. A different scenario arises poten-

tially in the strong or ultrastrong light-matter coupling
regime where polariton modes are formed, which in the
case of a topological superconductor could take the form
of the Majorana polaritons [48], 49].

In this work we study the hybrid light-matter states
that emerge by coupling topological superconductors to
a single mode cavity. We consider two models of topolog-
ical superconductors hosting the Majorana bound states:
a prototype Kitaev chain model [11] and a more realis-
tic nanowire model [16], [I7]. Hybridization between elec-
tronic and photonic states results in formation of polari-
tons. We focus specifically on the signatures of these po-
laritonic modes which emerge in the cavity photon spec-
tral function [7, [50H53], which is directly measurable in
a transmission/reflection experiment [40] [54]. We find
that the polariton spectrum is sensitive to the Majorana
parity in the topological phase. Moreover, the energies of
the polariton modes are different in the trivial and topo-
logical phases that could be used to probe the emergence
of zero modes in topological superconductor.

The paper is organized as follows. In Sec. [[] we in-
troduce two tight-binding models for topological super-
conductors and derive how to couple them to a single
mode cavity. Then, in Sec. [[T]| we calculate the polariton
spectrum of the coupled electron-photon system. Finally,
Sec. [¥lis devoted to conclusions.

II. COUPLING TOPOLOGICAL
SUPERCONDUCTORS TO LIGHT

We start by discussing how to couple topological super-
conductors described by a tight-binding model to a single
mode cavity. We consider two models for topological su-
perconductors: (1) a prototype Kitaev chain [11] and (2)
an experimentally relevant nanowire with spin-orbit in-
teraction and proximity-induced superconductivity sub-
ject to magnetic field [16, I7]. Contrary to previously
studied tight-binding models for non-superconducting
systems [7}, [52], the Kitaev chain (nanowire) models con-
tain p-wave (s-wave) superconducting pairing term that



pairs two neighboring sites (opposite spins) in the chain.

A. Kitaev chain coupled to cavity

The Hamiltonian for the Kitaev chain reads [I1],

N-1
'“Z cjc; —t (c}cj_ﬂ + h.c.)
j=1 j=1
N-1
+A Y (cjeip1 +he), (1)
j=1
where c} (cj) are fermionic creation (annihilation) op-

erators at site j, N is the total number of sites in the
chain, p is the chemical potential, ¢ is the hopping am-
plitude, and A is a p-wave superconducting pairing po-
tential. The Kitaev chain is in the topological (trivial)
phase if |u| < 2t (|u| > 2¢) hosting two Majorana bound
states describes by the operators ypr) = 'YZ(R)- These
two Majorana operators form a full fermionic state with
ev = (yr — #yr)/2 that gives raise to the Majorana oc-
cupation ny; = <C}L\4€M> that determines its parity. The
Majorana occupation ny; can be 0 or 1 corresponding to
the even (odd) parity.

Next, we couple the Kitaev chain to a single mode
cavity given by the Hamiltonian H,, = w. (aTa + 1/2),
where a' (a) is the photonic creation (annihilation) op-
erator and w, is the cavity frequency. The Kitaev chain
Hamiltonian Hg is coupled to the electromagnetic field
described by a homogeneous photonic vector potential
A =u, (g/e) (a + a') via the Peierls substitution, which
is equivalent to applying a unitary transformation U to
the electronic Hamiltonian (6)) only [7, 52], Hx_pn =
Hy,p, +UTHgU, with

= e 5 @
Here, R; = j — lp, where |y = N/2 for even N. Using
that
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we find that the superconducting pairing term acquires
a site-dependent phase and the full light-matter Hamil-
tonian reads
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Moreover, we note that coupling the superconducting
pairing term to light is equivalent to dressing A with
a phase, A — Ae® [41] 55, [56]. The phase ¢ could be
found under the assumption that the p-wave pairing term
in Hg is inherited from the bulk s-wave superconductor
underneath the wire. In this case, we consider that the
instantaneous supercurrent flowing through the bulk su-
perconductor vanishes,

2
Jo= U (Ve — 2eA) = 0. (5)

Here, m, |¢|?, and ¢ are the electronic mass, the den-
sity of superconducting electrons in the s-wave super-
conductor, and its phase, respectively. The solution
of the differential equation Vo = 2eA gives us ¢; =
2g(a+a)(j —1lo+1/2)v/N. Here, p; is chosen such that
v1 = —pn [B4]. We note that these two approaches result
in the same light-matter Hamiltonian given by Eq. (4).
Alternatively, light-matter coupling could be included in
the problem by starting with a semiconducting nanowire
tunnel coupled to a bulk s-wave superconductor and as-
suming that the tunneling hopping is dressed with the
Peierls phase [40].

B. Superconductor-semiconductor nanowire
coupled to cavity

We now consider a more realistic model of topological
superconductor coupled to photonic cavity. The tight-
binding Hamiltonian composed of IV sites that describes
a semiconducting nanowire with Rashba spin-orbit inter-
action and proximity-induced superconductivity subject
to magnetic field reads [57]

H,., = Z {CL_LU (—tdoor +id? ) cjor + ACJT il

J,0,07
1
+ 20} o (2t = 1) bpor +Vzol | Cjor + h.c.}, (6)
where cja(c]c,) is the creation (annihilation) operator

acting on electrons with spin o located at site j, o)
is the z (y) Pauli matrix acting in the spin space, and
t = h?/ (2m*a}) is the hopping amplitude, with m* the
effective mass and a; lattice constant. Here, « is the
spin-orbit coupling, A is the proximity—induced super-
conducting pairing potential, p is the chemical poten-
tial, and V; = g*upB/2 is the Zeeman energy, with g*
the g-factor of the nanowire and pp the Bohr magne-
ton. The nanowire hosts Majorana bound states emerg-
ing at the opposite ends of the one-dimensional system if
Vz > \/AZ + 12 [16, 7).

Similarly to the Kitaev chain, the light-matter Hamil-
tonian for the nanowire coupled to a single mode cavity
could be obtained by performing the unitary transforma-
tion Hy—pn = Hpn + UTH,,,, U, with

U— ez\/!;ﬁ(aJraT)Zm Xic ;ra (7)



Here, x; = j — jo is chosen such that x; = —xn~ [54],
with jo = (IV + 1) /2 for even N. Using that
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we find that total light-matter coupling Hamiltonian be-
comes

J T
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In the next section we will discuss the cavity photon spec-
tral function for the two models in Egs. and (E[) and
highlight the emergence of polariton excitations and their
topological signatures.

III. POLARITON SPECTRUM

In the strong light-matter coupling regime, the elec-
tronic and photonic states hybridize giving raise to the
formation of new hybrid quasiparticles — polaritons. The
polariton spectrum can be obtained by computing the
cavity photon spectral function

—%Im/dteii‘”t (—i6(t)) ([a(t), aﬂ) . (10)

To compute this quantity we follow Refs. [7, 50H52], write
down the action for the electron-photon problem which
we evaluate at the saddle point plus Gaussian fluctua-
tions in the cavity field. Due to gauge-invariance the pho-
ton remains incoherent in presence of a uniform vector
potential [52] 58H61]. The light-matter coupling however
gives rise to a self-energy correction for the cavity mode
arising from current-current fluctuations of the electronic
system. As a result the cavity spectral function takes the
form [7, [52]

Alw) =

1 X' (w)(w +we)?
AWw) = —— g (o))2 o2’
T (W? — wZ = 2wex (w))? + (2wex” (w))
(11)
where y(w) = K(w) — (Jg) is the current-current corre-

lation function, with

K(t—t) = =if(t —t')([p@), Jpb@)]).  (12)

Here, J, (Jq) are paramagnetic (diamagnetic) current
operators that could be defined from the second-order
expansion in g [7, (2]

Hy (nw)—ph ® wea'a + Hy () + (a +al) J, — 5

(13)
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and 0(t — t') is the Heaviside step function.
Polariton spectrum is approximately given by the so-
lutions of the equation [52] 60]

w? & w? 4 2w (W).

(14)
For g = 0 the topological superconductor and cavity pho-
tons are fully decoupled and there is a single solution of
Eq. given by w = w,. For finite light-matter coupling
g # 0 electrons and photons are coupled resulting in mul-
tiple solutions that depend both on cavity frequency w,
and parameters of the electronic system through the real
part of the current-current correlation function x'(w).
Therefore, the resulting polariton energies are sensitive
to the properties of the topological superconductor.

We start by deriving the general expression for the
current-current correlation function y(w). Coupling be-
tween topological superconductor and cavity photons in-
duces transitions between the Majorana and bulk states
in the chain [40] 46, [47]. These Majorana-bulk transi-
tions could be directly seen as peaks in the imaginary
part of the correlation function K (w) Eq. (I2). To eval-
uate K (w), we rewrite the fermionic operators c; (C}L) in

terms of the annihilation (creation) operators ¢, (&) for
the Bogoliubov quasiparticles [40], 46]

cj = Z (Uj)nén + Ujmél) ,

n

(15)

so that the electronic Hamiltonian @ becomes diag-
onal H,, = Yo €n (ELén - 1/2). Here, uj, (vjn) are the
electron (hole) components of the eigenvectors and e, are
the corresponding eigenvalues of the electronic Hamilto-
nian, with n = 1...N for the Kitaev chain Hamiltonian
(1) and n = 1...2N for the superconductor-semiconductor
nanowire Hamiltonian @ To calculate the expectation
value of the diamagnetic current operator (Jg) over a bare
electronic Hamiltonian @ we rewrite Jy in terms of
&n (€1) operators and use that (¢1¢,,) = f(€,)0pn.m, with
f(em) being the Fermi distribution function. Assuming
zero temperature, f(e,,) reduces to the occupation num-
ber n,, that can take values 0 or 1 for empty or occupied
state. Under this assumption, we arrive at the following
expression

(Ja) =D dmnm, (16)

where j& is the diagonal matrix element for the diamag-
netic current operator between eigenstates correspond-
ing to the eigenvalues €,,. Defining the Fourier trans-
formation as K(w) = [€™®!K(t) and using that &, (t) =
Em(0)e~mt we find the general expression for the para-
magnetic current correlation function at zero tempera-
ture

_ .p 2 ny —nm
K(w) = Z |Jz,m| m

l,m

(17)
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FIG. 1. (a) Energy spectrum of the Kitaev chain [1|as a function of the chemical potential 1/t (red solid lines). Vertical dashed
lines indicate the transition frequencies wy and we(,). For the chosen set of parameters Majorana energy enr = 7.44 x 10~7 and
We ~ wo. (b) Real part of the current-current correlation function x’(w) as function of frequency w/t. Red solid (black dashed)
lines correspond to even (odd) Majorana parity. The transition frequencies w. are shown in gray vertical dotted lines. (c)
Imaginary part of the current-current correlation function x”(w) as function of frequency w/t for even (odd) Majorana parity
shown in red solid (black dashed) lines. Gray vertical dotted lines correspond to the transition frequencies and indicate the
position of the peaks. Parameters are chosen as N = 100, A/t = 1, u/t = —1.75 (except in panel (a)), n = 4 x 1073,

Here, jﬁ m are the matrix elements of the paramag-
netic current and n > 0 is the linewidth of the en-
ergy levels. At zero temperature only bulk states with
negative energies are occupied, while n; = ny = 0,1
for the Majorana states. We note that K(w) = 0 for
I = m making it fully off-diagonal in contrast to (Jg).
When the system is in the topological phase the para-
magnetic current correlation function given by Eq.
can be rewritten as a sum of three contributions K (w) =
Kpp(w) + Ky (w) + Kyp(w), corresponding respec-
tively to transitions between bulk states only (Kpp), be-
tween Majorana and bulk states (K pgjs) and between Ma-
jorana states only (Karpar). We note that Ky (w) =0
since Majorana parity remains conserved in the presence
of coupling to photons [40]. The bulk only contribution
in the topological phase (or the total paramagnetic cur-
rent correlation function in the trivial phase) could be
further simplified to

Kﬁ3<w)=: 2:

€152m >0

S 7

1 1
(wwarz'n _w+wb+in>
(18)

where wp = €; + €, is the transition frequency between
the bulk states [ and m, and jlp, _.n is the matrix element
between the bulk states with energies ¢; and —¢,,. The
peaks in the imaginary part of the bulk contribution ap-
pear at transition frequencies wy > 2A,, where Ay is the
the effective gap in the electronic energy spectrum.

Furthermore, the bulk-Majorana transitions are in-
cluded in Kpps(w) term given by

1 1

K = E _

G (w — We(0) + m w+ We(0) + in)
€ >0

< |liful2oar =) + 130 P Q= =man)] . (19)

where we () = € &€y is the transition frequency between
bulk state with occupation number n; = 0 and Majorana

state with occupation number njy; = 0(1) corresponding
to even (odd) parity, and jlpe(o) is the matrix element be-

tween bulk state [ and even e (odd o) parity Majorana
state. The imaginary part of the paramagnetic current
correlation function K%,,(w) calculated for even parity
with nj; = 0 has multiple peaks at frequency w. > A,
with the amplitude given by |j£e|27 while for ny; = 1
the peaks are at w, with the amplitude given by |j7 o|2.
Moreover, even in the absence of the overlap between two
Majorana bound states €jp; &~ 0 the correlation function
Kpy(w) distinguishes between different Majorana pari-
ties through the matrix elements j; (o) [446].

In the topological phase the cavity spectral function
A(w) given by Eq. depends on the Majorana par-
ity through the different matrix elements entering in the
current-current correlation function y(w) and, therefore,
polariton spectrum could be used to probe Majorana
properties. Comparing Egs. and we note that
the lowest-energy peaks in the topological and trivial
phases appear at frequencies we(o) = Ay and w, ~ 24,
respectively, suggesting that the cavity spectral function
could be also used to differentiate between two phases.

A. Polaritons in Kitaev chain coupled to photons

We start discussing the cavity spectral function for the
Kitaev chain, Eq. . In this case the paramagnetic
and diamagnetic current operators could be found from

Eq. :

Jp =i

2

g
N ; { N tc}cj"'l + 2A(Rﬁ + 1/2)Cjcj+1 —h.c.

(20)



and
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J
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N

where we see that in addition to the usual contribution
from single particle hopping there is also a term coming
from the superconducting pairing. We emphasize that
this current is not associated to a conserved charged in
the Kitaev model, which only enjoys a discrete Zs parity
symmetry. However, it is the natural object entering the
response of the system to the cavity vector potential, see
Eq. .

To find the cavity spectral function we first calculate
the current-current correlation function using Eqgs.
and . In Fig. [1] (b) we plot the real part of corre-
lation function x'(w) as a function of frequency w. Ver-
tical dotted lines indicate the bulk-Majorana transition

(a)038 7
0.30}
0.25;
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~
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T
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FIG. 2. Cavity spectral function A(w) as function of fre-
quency w/t for g = 0.1. (a) In the topological phase (u/t =
—1.75) red solid (black dashed) line corresponds to even (odd)
Majorana parity. Vertical gray dotted line indicates the cav-
ity frequency w. fixed to be in resonance with the first bulk-
Majorana transition. (b) In the trivial phase (u/t = —2.25)
there is a large peak emerging at w. and smaller peaks ap-
pearing at w > 2A,. Vertical gray dotted line corresponds
to w. and pink dotdahsed line indicates the first bulk-bulk
transition. Other parameters are the same as in Fig.

frequencies w,(,). For the Kitaev chain in the topologi-
cal phase €); ~ 0 and therefore w, ~ w,. We find that
X' (w) has different oscillation amplitudes for even and
odd Majorana parities stemming from the difference in
the matrix elements j;,. Next, we numerically evalu-
ate the imaginary part of the correlation function y” (w)
(see Fig. [1] (¢)). The function x”(w) has multiple peaks
at resonant frequencies w,(, that differ for two parities,
similarly to the features present in x'(w). Therefore,
the current-current correlation function x(w) is a good
marker to distinguish between two Majorana parities in
the topological phase.

Given the above results for the current-current cor-
relator we can now focus on the cavity photon spectral
function . We plot A(w) as a function of frequency in
Fig.|2| (a) at a fixed light-matter coupling g for different
parities in topological phase. The current-current cor-
relation function is calculated for a finite-length Kitaev
chain and has many resonances (see Fig. [1| (b)), there-
fore, Eq. has multiple solutions for polariton energies
corresponding to peaks in A(w). Moreover, the polariton
spectrum in topological phase depends on the Majorana
parity through x/(w). The cavity spectral function has
different patterns for two parities and can distinguish be-
tween the parities. We further compute the cavity spec-
tral function in the trivial phase [see Fig. [2| (b)] for the
same light-matter coupling strength g and the effective
gap Ay We find that A(w) has a sharp peak around
the cavity frequency w. as in the topologically nontriv-
ial phase. However, we note that contrary to topological
case small peaks emerge at frequencies larger than 2A,
corresponding to bulk-bulk transition across the gap in
the system.

In Fig. (a) we plot the cavity spectral function for
the Kitaev chain in the topological phase as a function of
frequency and light-matter coupling. We consider a cav-
ity frequency in resonance with the first bulk-Majorana
transition for the even parity (w. = w.). We see that
for low frequency there is a broad peak which shifts to-
wards lower frequencies upon increasing ¢g. At higher
frequencies on the other hand we recognize sharp fea-
tures associated to transitions between Majorana and
bulk states. Next, we calculate A(w) for the Kitaev chain
in the trivial phase [see Fig. (3) (b)]. As discussed for
the topological phase there is a broad peak that origi-
nates at w = w, for ¢ = 0 and further broaden as the
light-matter coupling strength is increased. However, in
the trivial phase the current-current correlation function
X(w) that enters Eq. has resonances only at frequen-
cies wy > 2A,. Therefore, other polariton modes appear
only at w > 2A,. Comparing the cavity spectral function
calculated in the topological phases we note the distinct
features between the two, namely that the sharp features
of the transitions between Majorana (bulk) - bulk states
appear at different energy scales of Ay (2A,). There-
fore, the polariton spectrum could be potentlally used as
a way to probe zero-energy states in topological super-
conductors.
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FIG. 3. Spectral function A(w) as a function of g and w/t.
Horizontal black dashed line corresponds to frequency w. cho-
sen to be equal to first bulk-Majorana transition frequency
and horizontal pink dotdashed line corresponds to wy in the
trivial phase. (a) In the topological phase with u/t = —1.75
the lowest polariton branch originating at w = w. for g = 0
goes down as ¢ is increased. White horizontal lines corre-
sponding to bulk-Majorana transitions coupled with photons
that appear at frequencies w > A,. (b) In the trivial phase
with pu/t = —2.25, the lowest polariton branch appears at
w = we. In contrast to the topological phase, white horizon-
tal lines correspond to bulk-bulk transitions and appear at
w > 2A4. In two phases white horizontal lines corresponding
to bulk-Majorana (a) and bulk-bulk (b) transitions emerge
at different frequencies signalling the presence of zero-energy
states in the topological phase. Other parameters are the
same as in Fig. [T

B. Polaritons in nanowire coupled to photons

We now move to the superconductor-semiconductor
nanowire model, Eq. @D, for which the paramagnetic and

005 010 015 020

005 010 015 020
w/t

FIG. 4. Cavity spectral function A(w) of the nanowire as
function of frequency w/t for light-matter coupling strength
g = 0.05. (a) Red solid (black dashed) lines correspond to
ny =0 (na = 1) in the topological phase with Vz/A = 1.8.
Gray vertical dotted line indicates the cavity frequency we
resonant with the first bulk-Majorana transition at we ~ wo
(ear/t = 1075). (b) A(w) for the nanowire in the trivial phase
with Vz/A = 0.2. Vertical gray dotted line indicates w. and
pink dotdashed line signals the position of the first bulk-bulk
transition frequency wpy. Other parameters are fixed as N =
100,3A/t =01, =0 Vz/A =18, a/t = 04, and n/t =
1077,

diamagnetic current operators read respectively

Jp=i— Z [ ( Cjy1161 + Cg+1¢CJ¢)

+a(]+1TCJ¢ ;r‘+1¢ch) 2Ax ¢ JTCN h-C-} (22)

and

g
=N Z [ ( Cjr1rGit T Cg+1¢CJ¢)
j

—l—oz(}L_HTCN—CL_HCJT)—FZLAX] cjpC N—l—hc} (23)

To find the cavity spectral function of the nanowire
model, we proceed in the same way as for the Kitaev
chain. The real and imaginary part of x(w) has similar
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FIG. 5. Cavity spectral function A(w) of the nanowire as a
function of the light-matter coupling g and frequency w/t.
Black dashed line indicates the value of cavity frequency
we = we (resonant with the first bulk-Majorana transition
for even parity). White horizontal lines correspond to bulk-
Majorana transitions and emerge at frequencies w > Ag.
Other parameters are same as in Fig. [

structure to Fig. |1} but the position and amplitude of the
peaks are less homogeneous due to more involved energy
spectrum of the nanowire.

In Fig. [ we plot the cavity spectral function for the
nanowire model as a function of frequency w for a fixed
value of the light-matter coupling g. In the topologi-
cal phase we consider different parities depicted in solid
red and black dashed line. The cavity spectral function
has a large peak around the cavity frequency w,. reso-
nant with the lowest bulk-Majorana transition frequency
we & w, and multiple smaller peaks corresponding to
higher in energy bulk-Majorana transitions appearing at
w > Ay [see Fig. @ (a)]. Considering the superconductor-
semiconductor nanowire in the trivial phase coupled to
photonic cavity, we find that the cavity spectral func-
tion has a sharp peak originating at the frequency w,
and multiple smaller peaks at frequencies w > 2A, that

stem from the bulk-bulk transitions in the nanowire [see
Fig. [4 (b)]. Similar features were found for the Kitaev
chain [see Fig.|2| (b)] and allow one to probe the presence
of zero-energy modes in the topological superconductor.

Finally, we present A(w) for the nanowire in the topo-
logical phase as a function of frequency and light-matter
coupling strength in Fig. [f] By choosing the cavity fre-
quency to be equal to the first bulk-Majorana transi-
tion frequency, we find the appearance of a broad low-
frequency polariton mode that goes down in w with in-
creasing ¢g. Higher-frequency polariton modes appear
due to coupling between higher bulk-Majorana transi-
tions and photons showing a dense pattern of modes.
Similar behaviour was found for the Kitaev chain (see

Fig. |3).

IV. CONCLUSIONS

In this work, we studied the topological superconduc-
tor coupled to cavity photons. We calculated the cav-
ity spectral function of the electron-photon system that
revealed the polariton spectrum of the hybrid system.
The peaks in cavity spectral function appear at different
energy scales for the electronic chain in the trivial and
topological phase. Moreover, in the topological phase as-
sociated with the presence of the Majorana bound states
the polariton spectrum has different pattern for two Ma-
jorana parities. Therefore, cavity spectral function could
be used to probe topological properties of the electronic
chain.
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