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Imitation learning control for
thermoacoustic stabilization of a Rijke tube*

Gustavo Artur de Andrade!, Mirko Fiacchini? and Christophe Prieur?

Abstract— This work studies the use of Neural Network (NN)
boundary controllers to stabilize thermoacoustic instabilities in
a Rijke tube. The dynamics of this phenomenon are governed by
a system of 4 x 4 hyperbolic linear partial differential equations
(PDEs) for the acoustic wave propagation, plus a linear ordinary
differential equation (ODE) for the heat release. The control
action is applied in one of the left boundary conditions,
characterizing this system as underactuated. Previous results in
the literature showed that this control problem can be solved
by the backstepping methodology with stability guarantees in
the £, sense. However, the stabilization and closed-loop system
performance are usually affected by uncertainties. To tackle
this issue, we rewrite this PDE-ODE boundary control problem
as an imitation learning problem for stabilizing the system
by observing the state values of a numerical simulator of
the Rijke tube system under different operating conditions.
Additionally, we present a Lyapunov-based method with local
sector quadratic constraints to analyze the stability of the
closed-loop system with the NN controllers. We demonstrate by
simulations that the NN controller is able to stabilize the system
under uncertain conditions, with the potential to overcome the
performance of the backstepping.

I. INTRODUCTION

Modern turbine technologies rely on lean premixed com-
bustion to comply with low-emission standards. The main
challenge of these processes is the increased likelihood of
high-amplitude pressure fluctuations, commonly referred to
as thermoacoustic instability, due to the positive feedback
loop between the acoustic modes and the fluctuating heat
release from the combustion chamber. At best, the conse-
quences of these instabilities are increased noise, and reduced
system performance and durability. At their worst, the oscil-
lations highly increase the average pressure, resulting even
in the damage of the system. Therefore, the capability to
predict and control thermoacoustic oscillations is of utmost
importance for further advances in combustion technologies.

Much of the early work on the mitigation of these instabil-
ities focused on developing passive methods to dampen the
oscillations by ad-hoc physical augmentation of the system
[1]. However, these methodologies work well only on a
given operating region and can be incredibly expensive.
Recent results in the area have shown that active control
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is an alternative technology able to reduce oscillations over
a wide range of conditions in order to achieve the desired
performance.

Traditionally, the Rijke tube has been used as a benchmark
system to study control strategies to mitigate thermoacoustic
instabilities. This system was discovered in the 1850s by P.
L. Rijke [5] and consists of a vertical tube open at both ends
with an embedded heat source. The air that traverses the
heating zone expands, causing the local pressure to increase.
The pressure acoustically propagates along the tube and
returns (due to the boundary conditions), inducing a feedback
loop: the pressure at the current time is affected by itself
at earlier time instants, leading to time-delayed dynamics
in the thermoacoustic coupling. Thus, a hyperbolic partial
differential equation (PDE) system for the acoustic dynamics
plus an ordinary differential equation (ODE), describing the
heat release dynamics, is suitable to mathematically represent
this system [4]. A speaker placed under the tube is generally
used as an actuator to suppress the oscillations, which yields
a boundary control problem.

Over the past fifty years several researchers developed con-
trol strategies based on reduced phenomenological models,
as can be seen in [8]. More recently, control strategies based
on the PDE model of thermoacoustic instabilities have been
proposed in the literature, such as the backstepping controller
proposed in [3] or the delayed control laws developed in [7].
A disadvantage of these model-based control strategies is that
they require knowledge of the acoustic and thermodynamic
parameters to characterize the system dynamics. Usually,
their values must be estimated through correlation analysis
with other variables or obtained by calibrating the model
with real sensor data through an involved validation process
that works on specific conditions. To reduce the need for
modeling, a data-driven controller that requires minimal
modeling information is desirable. This challenge can be
addressed by the use of neural network (NN) controllers.

In the last years, neural networks (NN) have drawn
attention from the control community since they have the
strength to map input-output relationships with only a priori
input-output information. In this case, NNs can be used
as parametric approximators for functions of states whose
weights are updated automatically to learn the control law
and, consequently, circumvent the model complexity and
identification process faced by model-based controllers. In
addition, NN controllers can deal with stochastic conditions
by considering random events in their training process,
whereas model-based control approaches for PDE systems
still face challenges in tackling uncertainties [2].



In this work, we propose a state feedback NN controller
that imitates the backstepping control law proposed in [3],
i.e. behavior cloning where the dataset is taken from the
expert. Importantly, the proposal does not require any prior
knowledge of the model structure, or model calibration.
Instead, the control input is obtained by a training process
with a simulator of the system. Thus, minimal assumptions
on the infinite-dimensional control problem yet obtain good
controllers through a data-driven process. Additionally, a
stability analysis of the NN controllers is presented by using
sector conditions to represent the nonlinear activation func-
tions. The advantage of this framework is that all the classic
results of robust control theory became available to access the
asymptotic stability condition of the zero equilibrium of the
closed-loop system. We demonstrate by simulations that the
NN controller is able to stabilize the system under uncertain
conditions, with the potential to overcome the performance
of the backstepping controllers.

The outline of this article is as follows. Section II sum-
marizes the Rijke tube model. The backstepping controller
is briefly presented in Section III. Section IV details the
imitation learning approach for boundary control of the
Rijke tube model. Section V includes the numerical results,
comparing the closed-loop performance of the system with
the backstepping controller in different scenarios. Finally,
Section VI summarizes the main results and discusses future
works.

II. PROBLEM UNDER CONSIDERATION

The Rijke tube model used in this work is inspired by the
one described in [3], which is given by the following set of
linear PDEs-ODE in the so-called characteristic coordinates:

Oral(t, z) + A0, a(t, z) = 0, (1
9B(t, z) — AO:B(L, 2) =0, (2)
Q) + Q(t) = ca(ea(t, 1) — aa(t, 1)),  (3)
where
a=(a1,a2), B=(01,02), A=dag{Ai,N}.
The boundary conditions are given by

a(t,0) = N;B(t,0) + N, U(¢t), 4)
B(t,1) = Nya(t,1) + NyQ(t), (5)

with

(ko 0 (2
. 1 0 _(a
= (ow) %e(0)

In (1)-(5), the time ¢ belongs to [0, c0), the space variable
z belongs to [0,1], and the characteristic speeds A; and Ag
satisfies Ay > Ay > 0. The constants 7,, ¢; and co are
strictly positives, and the reflection coefficients kr and kg
belong to (—1,0). For ¢ € {1, 2}, the initial conditions of
(1)-(2) are denoted by a;0, B0, and Q. They belong to
(£2(0, 1)) x K.

A. Control Problem

The control problem of the Rijke tube system is to design a
feedback control law U such that the zero equilibrium point
of (1)-(5) is exponentially stable in the (L£3([0,1]))* x R
sense. In this work, this control problem will be solved by
developing a NN based controller that mimics the backstep-
ping methodology designed in [3]. In this work, we will
assume that the values of the states on the entire domain are
available for the controller because a scenario with output
measurements would require the use of a state observer and
an involved training procedure with a large amount of data
which still needs to be investigated.

IT1I. BACKSTEPPING CONTROLLER

The backstepping controller for (1)-(5) was first developed
in [3] and uses a full-state-feedback control law to stabilize
the system. The key idea of this methodology is to find an
invertible transformation (the backstepping transformation)
so that the transformed states of the system verifies a PDE
with the desired stability properties. This transformation also
allows finding the control variable in the form of feedback.
In the particular case of the Rijke tube system, the kernels of
the transformation can be found explicitly, allowing in turn
to derive the explicit expression of the control law gains.

The boundary full-state-feedback backstepping controller
is given by

1 1
Unn(t) = 3 (51(£0) + £00Q) + [ ar(t.OK(0.€)d¢
1 1 0
LE)G(0,£)d JOH(0,6)de), (6
+ [Caatr 000,00 + [ meom0.dk). ©
where
c A
_fo E-1< (-1,
Gz, 5)_{ ;;i(p(gl(z, £)), otherwise):

A
£E+1 2 /\—‘:’(1 —2),
otherwise,

0
H(z, €) = { 5820 (ga(2, €)),

z—1

p(z) = —cren,

As stated in the next theorem, the control law (6) guaran-
tees the convergence of (1)-(5) in the (£2(]0,1]))* x R sense
[3].

Theorem 3.1: Consider the system (1)-(5) with the control
law (6). Then for any initial condition a; o and 3; ¢, for
i€ {1,2},in (L2([0, 1]))* and Qo € R, the zero equilibrium
is exponentially stable in the (£2)* x R sense.

IV. IMITATION LEARNING

In this section, we present the imitation learning (IL)
approach for boundary control of the Rijke tube system
(1)-(5). Although explicit knowledge of the PDE model is
not required, the stability certification analysis of the NN
structure, which is based on the framework proposed in [6], is



developed considering the Lyapunov theory for discrete finite
dimensional dynamic systems. Thus, as a first step in the
IL methodology, the Rijke tube model (1)-(5) is discretized
in time and space so that a finite dimension approximate
representation can be obtained.

A. Discrete time-space approximation and finite state space
representation of the system

We consider a discretized approximation of model (1)-(5)
using a Euler scheme in time and space. In this context, the
solution of the states «v and 3 are approximated by piecewise
constant functions on the discretized spatial and temporal
domains [0, 1] x [0, 7], with T > 0.

Let Az = 1/(S — 1) be the length of the spatial
discretization, where S is the number of nodes, such that
zj =(j—1)Az je{l,..., S}, are the grid points with

D=2 <29< - <2zg_1<zg=1.

Then, the spatial derivatives in (1)-(2) at a given time
instant ¢ € [0,7] and at a given z € (0,1) can be approx-
imated by 880;’7 (t,2) ~ %f@z”, and %(t,z) R~
Bulbzie) =Bz for j e {1, ..., S}.

Regarding the time derivative, M constant values are
considered over the time horizon ¢ € [0,77], such that the
length of the time discretization is At = T'/(M — 1) and the
temporal grid points are

0=t <ty < - <ty <ty =T,

with ¢, = (k — 1)At, ke {1, ..., M}.

Then, at a given value of z € (0,1) and at a given
t € (0,T) the corresponding time derivative approximations
are given by aa(“ (t,2) =~ w, %(t7 z) =~
ﬂi(tk+17ZA)t_ﬁi(tkaZ€’ and thQt?(t) ~ Q(tk+1A)t—Q(tk)

Using the time and spatial derivative approximations, the
model (1)-(5) is transformed into discrete algebraic expres-
sions. More precisely, define the following discrete-time state
variables:

B, (k) =P (tr, 2j),
ﬁ2,j (k) :ﬁQ (tkv Zj)a

(k) = on(te, j),
g, (k) = az(te, 2),

Q(k) = Q(tx),
with k € {1, ..., M} and j € {1, ..., S}. Stacking these
variables into the state vector ( € R"¢, with ng = 45 +
1, and using (1)-(5), it is possible to obtain the following

compact finite dimensional discrete-time approximation of
the Rijke tube system:

C(k+1) = Ag((k) + BaU(k), @)

where Ag € R"¢*"¢ Bo € R™6. The explicit expressions
of Ag and B¢ are omitted in this paper due to lack of space.

Given a state feedback controller, the vector (* € R"¢ is
an equilibrium point of (7) if and only if

(Ag—I)C*+BgU*=O. )

Thus, given state and control data pairs from the back-
stepping methodology described in Section III, our goal is

to learn a NN controller from the data to reproduce the
demonstrated behavior, while guaranteeing the stability of
the zero equilibrium point defined by the solution of (8).

B. Neural network controller

In this work, the NN controller 7 : R"¢ — R is assumed
to be an (-layer feedforward neural network defined as

wo(k) = C(k), )
wi(k:) :(bi(Wiwi,l(k)—f—bi), 1€ {1,...,6}, (10)
U(k) = Wewe(k) + e, (1

where wy € R™ is the input to the network (system states),
with ng = ng, and for ¢ € {1,...,¢}, w; € R™ is the
output from the i-th layer. The operations for each layer are
defined by a weight matrix W; € R™ x R™-1, a bias vector
b; € R™, and an activation function ¢; : R™ — R™, which
is applied element-wise, that is,

¢i(v) = (p(11)

where ¢ : R — R is the predefined scalar hyperbolic tangent
activation function'.

In this work, the gradient descent technique is used as
the optimization algorithm to minimize the least-square loss
function taking into account the error between the learned
policy and the expert behavior in order to find a set of
weights that best map the states into the desired control
signal. In the first step, closed loop data with different initial
conditions are generated with the late-lumping approxima-
tion of the backstepping controller presented in Section III.
Then, these data are properly treated for their application
into the training process of the NN controller.

Besides the design of the NN controller (9)-(11), we
present in the next section a framework, based on [6], to
analyze the closed-loop of system (7) under the control
law (9)-(11). The idea of this methodology is to extract
the bounds of the activation functions once the NNs are
trained, and then, develop LMI conditions for the abstracted
formulation.

P(Vn:)) »

C. Isolation of NN nonlinearities
For i € {1,...,¢}, let »; € R™ be the input to the
activation function ¢;, that is,

l/l(k) :Wiwifl(k)—f—bi, xS {1,...,(}.

Then, the operation of the i-th layer can be expressed as
w;(k) = ¢;(vi(k)). Gathering the inputs and outputs of all
activation functions, we get

1551 w1

¢
where ny =Y, n;.

10ther activation functions such as sigmoid, rectified linear unit (ReLU),
and leaky ReLU, could be used without loss of generality.



Now, define the vector of stacked activation functions ¢ :
R™ — R™# such that

¢1(v1)
P(vg) = :
be(ve)

In this framework, the NN control policy m can be
rewritten as

(12)

C(k)
U(k) )
=N| ws(k , 13
( v (k) ¢1( ) (1
wp = P(vy(k)), (14)
where
0 ‘ 0 O Wi ‘ bey1
Wil O 0 0 by
N = 0 W2 0 0 bQ
0 0o ... W, 0 by
_ [ Nu¢ Nuw Nup
NV( Nl/w Nl/b

The decomposition (13)-(14) isolates the activation func-
tion nonlinearities which in turn allows us to analyze the
stability of the controlled system by applying quadratic
constraints (QC) that bound the activation functions in a
similar fashion as in robust control theory.

D. Quadratic constraints

The key idea of applying QC is to obtain a new repre-
sentation of the NN controller (13)-(14) where the nonlinear
activation functions are substituted by the constraints they
impose on the pre- and post- activation signal. Obviously,
any property that can be guaranteed in this framework is
also satisfied by the original NN as well. A typical QC is
the local sector condition, which allows us to obtain tight
bounds on the graph of the activation functions.

In the scalar case, we say that a nonlinear function ¢ :
R — R, with ¢(0) = 0, is sector bounded in the sector
[m, 7], with m < r < oo, if the following condition holds
for all v € R:

(p(¥) —mv)(p(v) —rv) <0.

This concept can be extended to the vectorial case of
nonlinear functions, as the one in (12). Indeed, for ¢ €
{1,...,n4}, assume that the i-th activation function ¢; in
¢ is sector bounded by [m;, r;]. Then, it is possible to stack
these sectors into vectors mg, 74 € R™¢ so that the following
condition is satisfied for ¢:

(6(¢) = MypQ)" (8(¢) — RyC) <0,
with My = diag(m,) and Ry = diag(rg).
From (16), it readily follows that
vs \'( —2MyRs (M, + Ry) Yo\ >
W (M¢ + R¢) _2In¢ We -
(17)

15)

(16)

For the NN controller (13)-(14) the local sector conditions
can be obtained by a numerical procedure given the set of
weighting matrices, W;, the bias vectors, b;, and monoton-
ically non-decreasing activation functions, ¢;. Additionally,
we will assume an artificial set of states constraints, Z, in
order to allow us to apply the local sectors. This set is defined
by

Z={¢eR" . —h < HE<h, h >0},

where H € R™"=*"G and h € R"=.

First, note that the smallest hypercube that bounds the state
constraint set Z is ¢ < ¢ < ¢, with ¢, € R™¢. Then, from
(9) it follows that wy is bounded below by w, = (¢ and above
by Wy = ¢. Now, define 0 = (wo + wy), n = 3(@o — wy),
and denote yT as the ¢-th row of Wy € R"*"0_ Then, the
activation input v; = Wiw® + by is bounded below and
above by v, and 7, respectively, where the ¢-th entry of the
vectors v4 and 7y are given by vy; = yTn+b1;—> 0y [yin,|
and v1; = yTm+by; + >0, |yin|, respectively. The sector
bounds for the hyperbolic tangent function (see [6] for more
details) are 7y = 1 and

tanh(7;) — tanh(vf) tanh(vg) — tanh(zq)) .

*_

my = min — " ,
vy — v} 124

4]
Since the activation functions in ¢; are monotonically non-
decreasing, then the activation output w; is bounded below
by w; = ¢(v;) and above by w1 = ¢(71). These values can
then be used to compute the bounds of the activation input v
of the next layer. Propagating this process through all layers
of the NN we obtain the bounds ¥ € R"¢, and 7 € R"¢.
Considering these arguments we have the following result:
Lemma 4.1: Let Z = {¢ € R : ¢ < ¢ < (} be
the smallest hypercube that bounds the states. Additionally,
consider that the activation functions of the NN defined in
(13)-(14) are given by the hyperbolic tangent function. Then,
there exist vectors ag and by such that the nonlinearity ¢
defined in (12) satisfies the local sector constraint (16).

E. Lyapunov condition

The stability result of system (7) under the NN controller
(13)-(14) is assessed by the following theorem.

Theorem 4.1: Consider the system (7) with the NN con-
troller (13)-(14) with equilibrium point (* = 0 and the
state constraint set Z. Let &, E ag and by be given vectors
satisfying Lemma 4.1. Define

_ Inc 0 _ Nvm va
RV‘(NW Now )’R¢‘( 0 I, )
If there exist a positive definite matrix P € R"¢*"¢ and
vector 6 € R™¢ with § > 0 such that © = diag(f) satisfying

RUViRy + R{VaRy <0, (18)
with
V- ALPAg — P ALPBg
1 BLPA;  BLPBg )’
Vo = —2MyR;© (Mg + R,;)O
(Ry + My)O —20 ’



Then the origin of the system (7) with the NN controller
(13)-(14) is asymptotically stable.

Proof: Define the Lyapunov function V(§) = ¢7 P¢,
where P € R"¢*"¢ js a positive definite matrix. Then, using
(7) we can show that

viets+ ) -veeoy = (($9) w9,

Now, from (17) and Lemma 4.1 the following inequality

holds:
(88 () =

In order to guarantee that the above inequalities are
simultaneously satisfied we apply the S-procedure. Thus, if
there exists © = diag(¢) where 6 > 0 and if (18) is satisfied
it follows that there exists € > 0 such that

V(E(k+1)) — V(E(k))+
k) " £(k) ,
< w(k) > RZ%%( w(k) ) < —el&®)I* (19

Assume that £(k) € Z for some k € N. Then, the last term
on the left-hand side of (19) is greater or equal than zero,
and thus the inequality V' (£(k + 1)) < 1 must hold, which
means that {(k + 1) € Z. Using this idea, we can show by
an induction argument that £(0) € Z implies that z(k) € Z
Vk € N. Consequently, if £(0) € £ the final term on the left
side of (19) is greater or equal to zero Vk € N, which means
that V(£(k + 1)) — V(E(k)) < —€[l&(R)[|* Yk € N. Then,
using a standard argument from Lyapunov theory, it follows
that the origin of the system (7) with the NN controller (13)-
(14) is locally asymptotically stable. [ ]

V. SIMULATION RESULTS

In this section, we present numerical experiments of the
approach proposed in this paper. In the numerical experi-
ments, the model (1)-(5) is considered as virtual plant coded
in Matlab with an Euler scheme in time and space, such that
At = 0.01 ms and Az = 0.02 m, and the Deep Learning
Toolbox was used for training the NNs. The values of the
model parameters were borrowed from [3] and correspond
to a real experimental setup available for the authors. The
initial condition of (1)-(5) is given by

a1,0(z) = @1 sin(22),
181,0(2) = Blez7
QO = @7

where, for i € {1,2}, @;, B, and Q are randomly chosen
values (from the standard normal distribution) for generation
of training and validation data for the NN controller.
Finally, all simulations were performed on a Intel core i5
8th generation personal computer with 8GB of RAM and
8Mb of memory cache.
1) Varying the number of hidden layers: As a first ex-
periment, we consider finding approximations of the NN
controllers with a varying number of layers, for a given input

a2,0(z) = @2 cos(22),

Ba2,0(2) = By(sin(52) — 2 cos(z)),

TABLE I: Comparison of the NN controller performance for
different numbers of layers.

¢ Training time [s] RMSE o Prpin  Prjae
1 1447.30 5.98 x 1072 11.09 0.78 3.39
2 1732.36 5.37 x 1072 10.34 0.84 4.61
4 2163.00 1.91 x 10—2 9.85 0.64 0.7
6 2908.89 1.87 x 1072 9.42 0.46 0.87
8 3852.05 8.6 x 1073 8.76 0.74 0.83

set. Specifically, we consider NNs with ng inputs, 1 output,
and ¢ € {1,2,4,6,8} hidden layers, each having 5 neurons
per layer. The number of epochs of the models is 500, which
was chosen based on the decrease and stabilization of the
root mean square error (RMSE) between the output of the
NN controller and the backstepping control law (6). For
generating the training data, we compute upgs at 62550 time
steps, where 10% is used for validation and 90% of the data
is used for training the NN by minimizing the mean-squared
loss.

The RMSE performance index and the training time of
the NN controllers are sumarized in Table I, where o stands
for the standard deviation, and P, _, and P, ___ are the
minimum and maximum eigenvalues of matrix P computed
through the LMI in (18). As can be seen in Table I, for more
then 4 layers the training time increases significantly and the
improvement in the RMSE and o are small. In all cases it
was possible to find a positive definite matrix P ensuring the
asymptotic stability of the NN controller.

The performance of the backstepping and NN controllers
(with £ = 4) is depicted in Figure 1. In Figures la-1b, it can
be seen that the states are stabilized to the zero equilibrium
point by the backstepping and NN controller, respectively.
As can be seen in Figure 1d, the NN controller was capable
of reproducing a similar transient behavior to backstepping
at the same time that the closed-loop system is stabilized.
2) Uncertain parameters of the system: In the previous
studies, we assume perfect knowledge of the Rijke tube
model. In practice, however, it is hard to determine some
model parameters such as the steady-state values of the
states, the empirical constant of the King’s law, the heat
release time constant, and reflection losses. Therefore, it
is of practical interest to verify the performance of the
controller under an uncertain scenario. Here, we investigate
the performance of the NN and backstepping controllers
given an inaccurate model. The uncertain parameter chosen
is ¢o since several of the aforementioned uncertainties enter
continuously in this term.

In this scenario the NN controller is trained in a stochastic
environment where cy is randomly chosen from a uniform
distribution of the values {1.19, 3.25, 7.5} in each episode.
Then the NN controller is validated for each specific sce-
nario. We define c5 = 4.22 as the nominal value for the
backstepping control design while the virtual plant operates
with ¢o randomly chosen between {1.19, 3.25, 7.5}.

Figures 2 shows the mean value of the norm evaluated
along the simulated time of both controllers for 20 experi-
ments with random values of ¢, and initial conditions in the
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Fig. 1: Velocity, pressure and heat power evolution, and control inputs of the Rijke tube system with the full-state backstepping
and NN controller with ¢ = 4. (a) Velocity and pressure evolution with backstepping controller. (b) Velocity and pressure
evolution with neural network controller. (c) Heat power evolution with backstepping and neural network controller. (d)

Backstepping and neural network control inputs.
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Fig. 2: Mean value of the norm evaluated along the simulated
time of the closed-loop system with the backstepping and NN
controler in Scenario 2.

distribution data. Comparing the values both controllers in
Figure 2, it can be seen that the NN controller has a better
performance.

VI. CONCLUSIONS

This paper has introduced a systematic approach for
designing NN controllers by imitating the behavior of the
full-state backstepping method. Simulations results show that

the NN controllers can achieve a similar behavior with the
backstepping design in a scenario with perfect knowledge of
the model parameters. Future works include real experiments
in a setup available to the authors. Other directions are to
compare the proposed methodology with adaptive control
approaches with robustness guarantees and to analyze the
closed-loop stability directly on the PDE instead of finite
dimensional approximations.
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