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Abstract

The XAI Disagreement Problem concerns
the fact that various explainability methods
yield different local/global insights on model
behavior. Thus, given the lack of ground
truth in explainability, practitioners are left
wondering “Which explanation should I be-
lieve?”. In this work, we approach the Dis-
agreement Problem from the point of view
of Functional Decomposition (FD). First, we
demonstrate that many XAI techniques dis-
agree because they handle feature interac-
tions differently. Secondly, we reduce inter-
actions locally by fitting a so-called FD-Tree,
which partitions the input space into regions
where the model is approximately additive.
Thus instead of providing global explanations
aggregated over the whole dataset, we advo-
cate reporting the FD-Tree structure as well
as the regional explanations extracted from
its leaves. The beneficial effects of FD-Trees
on the Disagreement Problem are demon-
strated on toy and real datasets.

1 INTRODUCTION

The Machine Learning paradigm is growing in pop-
ularity in data-centric domains. However, there are
rising concerns regarding the black-box nature of the
performant models e.g. Random Forests (Breiman,
2001) and Gradient Boosted Trees (Friedman, 2001).
To address these concerns, the field of eXplainable AI
(XAI) was introduced, and various post-hoc explana-
tion methods were proposed to provide insight into
complex model behaviors (Arrieta et al., 2020). No-
table examples of post-hoc explanations include Par-
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tial Dependence Plots (PDP) (Friedman, 2001), SHap-
ley Additive exPlanations (SHAP) (Lundberg and Lee,
2017), and Permutation Feature Importance (PFI)
(Breiman, 2001).

Despite the explosion in XAI research, there remain
fundamental challenges to address. For instance, the
so-called Disagreement Problem (DP) (Krishna et al.,
2022) refers to the observation that different post-hoc
explanation methods disagree on the local/global be-
havior of models. This is not necessarily an issue
and it is actually expected since different XAI tech-
niques characterize models differently. Yet, if practi-
tioners are expected to make decisions based on those
explanations or said explanations are used to justify
decisions impacting human beings, then the DP be-
comes critical. Which explanations should a practi-
tioner consider? Which explanation should be shown
to a client being impacted by the model? Given the
lack of ground truth in XAI, these questions are cur-
rently left unanswered.

Our partial mitigation of the disagreement problem is
inspired by Hybrid Interpretable Models (Wang, 2019;
Pan et al., 2020; Ferry et al., 2023). In these works,
it is shown that regions exist where complex models
can be replaced by simple rules without degradation
in overall performance. These analyses suggest that
models may be globally complex yet simple in certain
regions. Note that it may be possible to explain the
model on those regions without any disagreement from
post-hoc explainers. As a toy example, consider the
features xi ∼ U(−1, 1) for i = 0, 1, . . . 4 and the model

h(x) =

{
x0 if x1 ≥ 0

x2 otherwise,
(1)

which is globally complex but locally simple (lin-
ear). To compute global feature importance with
PDP/SHAP/PFI, one must provide reference data
samples. The typical approach is to use the whole
dataset which leads to Figure 1 (a). We observe strong
disagreements regarding the importance of x1. What
can we do to reduce this disagreement? We propose to
learn two disjoint regions Ω− = {x ∈ R5 : xi ≤ γ} and
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Figure 1: Toy Example. (a) Global Feature Importance when using the whole dataset as reference. The PDP
(transparent), SHAP (semi-transparent), and PFI (opaque) importance are differentiated via their opacity. (b)
A special loss function is minimized by splitting the input space along a feature. The chosen split is x1 ≤ 0.02.
(c) & (d) Global feature importance when the reference data is restricted to each region. The two regions are
indicated by red/blue colors.

Ω+ = {x ∈ R5 : xi > γ} and explain the model sepa-
rately on each region. To define these regions, we must
choose the feature xi to split upon and the threshold
value γ. Figure 1 (b) shows the choice of feature i
and threshold γ that minimizes an objective function
that we will define in Section 3.1. This optimization
procedure suggests defining two regions based on the
conditions: x1 ≤ 0.02 and x1 > 0.02. Then, instead of
computing global feature importance using the whole
dataset as a reference, we only provide reference sam-
ples that land in a given region. Doing so leads to
a strong agreement between the different techniques,
see Figure 1 (c)&(d). This simplified example demon-
strates that explaining a model on a well-chosen input
region can lead to more faithful results. The main
contributions of this work are

1. By unifying the PDP/SHAP/PFI explainers via
Functional Decomposition, we show that feature
interactions are a necessary condition for expla-
nation disagreement.

2. Since high-dimensional feature interactions are in-
herently hard to interpret, we argue that PDP,
SHAP, and PFI are only trustworthy when they
agree i.e. when there are no feature interactions.

3. To increase explanations agreement, we propose
to learn partitions of the input space where the
model has fewer interactions on each region. The
disjoint regions are defined as the leaves of a de-
cision tree.

4. We show on six real datasets that explaining Ran-
dom Forests and Gradient Boosted Trees on well-
chosen regions can increase the agreement be-
tween post-hoc explainers.

2 BACKGROUND

2.1 Functional Decompositions

Let [d] := {1, . . . , d} be a set of d features, X ⊆ Rd
be the input space, and h : X → R be a model. For
u ⊆ [d] we denote by xu = (xi)i∈u the restriction of
the vector x ∈ X to the indices in u. For convenience,
we denote by −S the complement [d] \ S. Functional
Decomposition (FD) aims to represent h as a sum of
2d sub-functions

h(x) =
∑
u⊆[d]

hu(x), (2)

where hu only depends on xu. The term h∅ is a con-
stant, the terms hu for |u| = 1 are called “additive”
while the terms |u| ≥ 2 are referred to as “|u|-way in-
teractions”. The model h is said to be additive if there
exists a decomposition where hu = 0 whenever |u| ≥ 2
i.e. there are no interactions. Additive models are ad-
vertised as being inherently interpretable because the
impact of varying a feature on the output is indepen-
dent of other features Lou et al. (2012). On the other
hand, models with interactions hu (|u| ≥ 2) are more
difficult to interpret because the impact of varying a
feature on the output may depend on other features.

Functional Decompositions are far from unique yet
they are often computed in the same recursive fash-
ion. For instance, the Anchored Decomposition (Kuo
et al., 2010) lets z ∈ X be a reference input and follows

h∅,z := h(z) (Constant)

hi,z(x) := h(xi, z−i)− h∅,z
· · ·

hu,z(x) := h(xu, z−u)−
∑
v⊂u

hv,z(x).

(3)
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The intuition is that we progressively construct inter-
action terms around z by replacing zu components
with xu while substracting the effects of lower order
interactions v ⊂ u. We can also use a distribution B
as a reference

h∅,B := E
z∼B

[h(z)] (Constant)

hi,B(x) := E
z∼B

[h(xi, z−i)]− h∅,B
· · ·

hu,B(x) := E
z∼B

[h(xu, z−u)]−
∑
v⊂u

hv,B(x).

(4)

We shall refer to this decomposition as the Interven-
tional Decomposition since replacing zu components
with xu breaks feature correlations within B. Note
that Anchored and Interventional Decompositions are
related via hu,B(x) = Ez∼B[hu,z(x)]. If B = Bind :=∏d
i=1 Bi (i.e. input features are independent), the In-

terventional Decomposition falls back to the so-called
ANOVA Decomposition (Hooker, 2004). In such cases,
the total variance is the sum of the variance for each
individual hu

E
x∼Bind

[ (h(x)− h∅,Bind
)2] =

∑
u⊆[d]
|u|≥1

σ2
u (5)

with σ2
u := Ex∼Bind

[hu,Bind
(x)2]. However, for general

B, the variance will not decompose in such a way.

The Anchored/Interventional Decompositions are of
interest because they are minimal (Kuo et al., 2010).
Simply speaking, these FDs do not introduce more in-
teraction terms than necessary. If h does not depend
on feature i then hu,B = 0 whenever i ∈ u. If h is
additive then the decomposition is also additive. We
refer to Appendix A for the formal definition of min-
imality.

2.2 Post-hoc Explanations

The field of XAI has risen with the promise of explain-
ing black boxes. While there is no universal notion of
explanation, multiple definitions have been proposed.
Local feature attributions for instance are functionals
φ : H × X → Rd whose ith component φi(h,x) is
meant to convey how much each feature i contributes
toward the prediction h(x). On the other hand, global
feature importance are functionals Φ : H → Rd+ whose
ith component Φi(h) illustrates how much feature i
is used “globally” by the model (not for a specific
prediction). We now go through various functionals
proposed in the literature. Partial Dependence Plots
(PDP)(Friedman, 2001) take the following form

φPDP
i (h,x) := E

z∼B
[h(xi, z−i)]. (6)

PDPs are typically visualized graphically as a function
of xi. They can also be extended to compute global
feature importance by taking their variance (Greenwell
et al., 2018)

ΦPDP
i (h) := Vx∼B[φPDP

i (h,x)]. (7)

The next post-hoc explainer comes from Cooperative
Game Theory. Let, νh,x : 2[d] → R be a coalitional
game which takes S ⊆ [d] and returns νh,x(S) =
Ez∼B[h(xS , z−S)], The Shapley values, as defined in
the library SHAP (Lundberg and Lee, 2017), are

φSHAP
i (h,x) :=

∑
S⊆[d]\{i}

W (|S|, d)
[
νh,x(S∪{i})−νh,x(S)

]
(8)

where W (|S|, d) := |S|!(d − |S| − 1)!/d!. The Shapley
values are the weighted average contribution of adding
feature i to any coallition S that excludes it. They
respect an important property called Efficiency:

d∑
i=1

φSHAP
i (h,x) = h(x)− E

z∼B
[h(z)]. (9)

One way to provide global feature importance consists
of averaging square Shapley values 1

ΦSHAP
i (h) := E

x∼B
[φSHAP
i (h,x)2 ]. (10)

Permutation Feature Importance (PFI) (Breiman,
2001) was introduced as a global feature importance
technique for Random Forest although its definition
is model-agnostic. The general idea is to replace a
feature with noise and report the impact on model per-
formance. Here, we will use the following definition

ΦPFI
i (h) := E

x∼B

[(
h(x)− E

z∼B
[h(x−i, zi) ]

)2]
. (11)

which is slightly different from other ones that have
appeared in the literature. In Appendix B we discuss
these differences. Equation 11 is of interest for this
work because it can easily be expressed in terms of
the Interventional Decomposition. This will allow us
to compare PDP, SHAP, and PFI under a common
theoretical framework.

We finally introduce disagreement metrics between lo-
cal and global explanations

D(φ,φ′) := E
x∼B

[
‖φ(h,x)− φ′(h,x)‖22

]
(12)

D(Φ,Φ′) := ‖Φ(h)−Φ′(h)‖22. (13)

We focus on norm-based metrics and not on metrics
that compare the top-k features or feature rankings.

1SHAP actually takes the absolute value but taking the
square facilitates our analysis.
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Name Local Global

PDP φPDP
i (h,x) = hi,B(x) + Constant ΦPDP

i (h) = Vx∼B
[
hi,B(x)

]
.

SHAP φSHAP
i (h,x) =

∑
u⊆[d]:i∈u

hu,B(x)
|u| ΦSHAP

i (h) = Ex∼B

[(∑
u⊆[d]:i∈u

hu,B(x)
|u|

)2 ]
PFI φPFI

i (h,x) =
∑
u⊆[d]:i∈u hu,B(x) ΦPFI

i (h) = Ex∼B

[(∑
u⊆[d]:i∈u hu,B(x)

)2 ]
Table 1: Expressing the various post-hoc explainers in terms of the Interventional Decomposition.

The reason is that, in Section 3.1, we will derive the-
oretical guarantees covering Equations 12 & 13. Note
that it is extremely difficult to obtain theoretical guar-
antees with combinatorial quantities such as ranks.

3 METHODOLOGY

3.1 Lack of Additivity

We unify the various post-hoc explainers from the
point of view of the Interventional Decomposition, see
Table 1. Firstly, the PDPs are the first components
of the FD up to a Constant. Since the profile of the
PDP curve is more useful (not its value), the Constant
can be fixed to zero without impacting interpretation.
Secondly, SHAP computes local feature attributions
by sharing the M -way interaction evenly between the
M features involved (Herren and Hahn, 2022). Lastly,
PFI yields importance to i by accounting for each com-
ponent involving i, see Appendix B for details.

If there were no interactions (hu,B = 0 for |u| ≥ 2), all
explainers would agree and yield φi(h,x) = hi,B(x) lo-
cally and Φi(h) = Ex∼B[hi,B(x)2] globally. Therefore,
tackling the Disagreement Problem requires quantify-
ing interaction strength as a function of the model h
and the background B. Later, this will allow us to
design backgrounds with reduced interactions and in-
creased explanation agreement.

Definition 3.1. A function Lh(B) ∈ R+ measures
Lack of Additivity (LoA) of h w.r.t B if it respects the
following properties.

1. If h is additive on a rectangular domain R ⊇
supp(B), then Lh(B) = 0.

2. There is a function w : 2[d] → R+ such that

Lh(Bind) =
∑

u⊆[d]:|u|≥2

w(u)σ2
u. (14)

3. If h is additive in feature j (i.e. h(x) = gj(xj) +
g−j(x−j) ), then

Lh(Bj × B−j) = Lh(B′j × B−j) (15)

for any distributions Bj and B′j on feature j and
B−j on features [d] \ {j}. Simply put, the LoA is
not affected by additive features unless they corre-
late with interacting features.

The three properties of this definition are desirable if
Lh is to be used as a loss function to minimize w.r.t
B. Property 1 guarantees that if the model is additive
over the support of the background, then minimization
has converged. Property 2 is a sanity check that in
the ideal scenario of independent features, the LoA
penalizes the variances σ2

u which are well-established
measures of interaction strength (Hooker, 2004; Owen,
2013). Property 3 allows a reduction of the search
space for B. Indeed, if only a subset I ⊂ [d] of features
interact, then we only need to minimize Lh w.r.t BI
and ignore other features.

Theorem 3.1. Any function

Lh(B) = E
x∼B

[ ∑
u,v⊆[d]
|u|≥2,|v|≥2

a(u, v)hu,B(x)hv,B(x)

]
.

for some a : 2[d] × 2[d] → R is a LoA.

Proof Sketch. We must show that function Lh in the
theorem respects the three properties of Definition
3.1. Properties 1 and 3 are proven using the min-
imality of the Anchored/Interventional Decomposi-
tions (Kuo et al., 2010). Property 2 is proven with the
characteristics of the ANOVA decomposition (Owen,
2013, Appendix A).

The implication of this Theorem is that many func-
tions can quantify the LoA. A first possibility would
be the L2 Cost of Exclusion (CoE) (Hooker, 2004),
which computes the error between the model and its
additive components

LCoE
h (B) := E

x∼B

[(
h(x)−

∑
u⊂[d]
|u|≤1

hu,B(x)

)2 ]
. (16)

Other possibilities would be any disagreement between
local explainers.
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Corollary 3.1. The distances D(φ,φ′) between local
PDP/SHAP/PFI explainers, as well as the L2CoE are
all LoA functions.

This Corollary clarifies the relationship between expla-
nation disagreement and feature interactions. By the
first property of LoA, when the model is additive, the
disagreement will be null. Conversely, if disagreements
occur between local PDP/SHAP/PFI then the model
must have interactions.

3.2 FD-Trees

We now propose to minimize the Lack of Additivity
with a methodology called Functional Decomposition
Trees (FD-Trees). The main intuition behind it is
that, although a complex model is non-additive over
its whole domain, there may exist regions where it is
approximately additive. More formally, given a back-
ground distribution B, and a measurable subset Ω ⊂ X
such that B(Ω) > 0, we define the local background BΩ

as the measure:

BΩ(A) :=
B(A ∩ Ω)

B(Ω)
, (17)

for any measurable subset A ⊂ X . The assumption
behind FD-Trees is that, although there are strong
interactions hu,B, the local interactions hu,BΩ

(|u| ≥ 2)
may be of smaller magnitude.

3.2.1 Empirical Estimates

In XAI, we often set B to the distribution that gen-
erated the dataset S := {x(i)}Ni=1 ∼ BN . Yet, since
B is unknown, we must approximate it with the em-
pirical distribution B̂ := 1

N

∑
x(i)∈S δ(x

(i)). Applying
Equation 17 leads to the following local backgrounds

B̂Ω =
1

|S ∩ Ω|
∑

x(i)∈S∩Ω

δ(x(i)). (18)

The corresponding Interventional Decomposition
hu,B̂Ω

describes h relative to the average prediction on
datapoints that land in Ω. To simplify notation, the
corresponding LoA will be renamed L̂h(SΩ) ≡ Lh(B̂Ω)
with SΩ := S ∩Ω. We let H be the N ×N × d tensor
whose components

Hijk := hk,x(j)(x(i)) := h(x
(i)
k ,x

(j)
−k )− h(x(j)) (19)

are the hk of the x(j)-anchored decomposition evalu-
ated at x(i). Given H, the L2CoE is

L̂CoE
h (SΩ) =

1

|SΩ|
∑
i∈SΩ

(
Hadd
ii −

1

|SΩ|
∑
j∈SΩ

Hadd
ij

)2

,

(20)

where Hadd
ij :=

∑d
k=1Hijk + h(x(j)). The disagree-

ment between local PDP and PFI D(φPDP,φPFI) is
also simple to compute given H and yields

L̂PDP-PFI
h (SΩ) =

1

|SΩ|
∑
k∈[d]

∑
i∈SΩ

(
1

|SΩ|
∑
j∈SΩ

Hijk+Hjik

)2

.

(21)
We do not investigate other LoA functions involving
SHAP since they would imply precomputing another
N ×N ×d tensor containing the Shapley values. With
Equations 20&21, only the tensor H is required.

3.2.2 Learning a Partition

To reduce interactions and increase the agreement be-
tween various post-hoc explainers, we learn a partition
of X into M regions (Ω1,Ω2, . . . ,ΩM ) that minimizes
the total LoA

argmin
(Ω1,Ω2,...,ΩM )

M∑
k=1

L̂h(SΩk
). (22)

Equation 22 is intractable so solving it requires ap-
proximation. We shall restrict the set of all partitions
of X to the set of leaves of depth log2(M) decision
trees. These decision trees will be grown in a greedy
fashion where at each internal node n, we will search
for the feature in ∈ [d] and threshold γn ∈ R such
that splitting examples according to 1(xin ≤ γn) will
minimize the objective.

To illustrate the principle of FD-Trees, we study the
following toy example

y(x) =1(x0 ≥ 0 ∧ x1 ≥ 0) sin(πx2)

+1(x0 < 0 ∨ x1 < 0)(−2x2
2 + x3).

(23)

To simulate a more realistic scenario, we fit this label
with a Multi-Layered Perceptron (MLP) h and then
explain it. This model is approximately additive in
certain regions but not globally additive. Looking at
Figure 2 (a) and (b), we note that there are many dis-
agreements between PDP and SHAP which is indica-
tive of strong feature interactions. The effect of x0 on
the model is especially difficult to understand given
these plots. By learning an FD-Tree of depth 2 with
CoE objective, we identified three regions indicated in
blue/red/green in Figure 2 (c) and (d).

3.2.3 Computational Considerations

At each internal node, we must iterate over all fea-
tures and identify the one along which it is optimal
to split. The tree growth could be unnecessarily long
if the number of input features is large. However, as
the third property of Definition 3.1 suggests, a split
along an additive feature j can only decrease the loss
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Figure 2: Toy example showing how to increase agreement between PDP (lines) and SHAP (dots).

if it is correlated with another feature that interacts.
Since in those cases, j only acts as a proxy, we argue
that splitting should only be done on features that in-
teract. As split candidates, we select the k features
that interact most, see Appendix D.1.

Additionally, the LoA requires a N × N × d tensor
H which is too large for any realistic dataset. Hence,
it is primordial to subsample N ′ � N data points
and use them to compute H. In our experiments, we
subsampled 600 points and addressed the stochasticity
by reporting results on 5 random seeds. In Appendix
D.2 we study the impact of subsample size on the
stability of the partitions.

3.3 Related Work

3.3.1 Disagreement Problem

Prior work proposes to increase agreement between
post-hoc explainers by averaging their importance
ranks (Pirie et al., 2023) or by only reporting the
common top-k feature with consistent attribution sign
(Roy et al., 2022). Such methods do not investigate
the root cause of disagreements and thus offer no in-
sight into the Disagreement Problem.

It has also been suggested to use Pearson/Spearman
correlations of different explainers as a regularization
for training Neural Networks (Schwarzschild et al.,
2023). The authors observed that such regularization
tends to make the model more linear w.r.t the input
features. This coincides with our theoretical analysis
showing that h being additive (which is more general
than h being linear) is a sufficient condition for expla-
nation agreement.

3.3.2 Regional Explanations

Partitioning the input space via decision trees to ob-
tain regional explanations is not new. Regional Ef-
fect Plots with implicit Interaction Detection (REPID)
have been previously proposed to grow such trees

(Herbinger et al., 2022). The loss function minimized
during feature splitting is the L2 loss between the
mean-centered PDP of feature i and the mean-centered
ICE curves (Goldstein et al., 2015). Although REPID
is similar to FD-Trees, it is only applicable to PDPs
and not SHAP/PFI explanations. Moreover, a sepa-
rate tree must be fitted for each individual feature. In
constrast, growing a single FD-Tree can yield regional
PDP for each feature.

Generalized Additive Decomposition of Global EffecTs
(GADGET)(Herbinger et al., 2023) is a generalization
of REPID to more explainers. It uses a decision tree
to compute regional PDP, ALE(Apley and Zhu, 2020),
and SHAP with reduced interactions. Still, there are
two key differences in our methodology. First, GAD-
GET uses different losses for PDP and SHAP. Thus,
two tree-growth runs are required to compute regional
PDP/SHAP explanations. On the contrary, FD-Trees
unify PDP and SHAP via Interventional Decompo-
sitions. So a single FD-Tree is required for regional
SHAP and PDP explanations. Second, the way SHAP
is handled within GADGET is suboptimal. Indeed,
GADGET recomputes SHAP values after each split
to account for the fact that the background distribu-
tion has changed. Also, the loss computation requires
regressing splines on the Shapley values. In contrast,
growing an FD-Tree is extremely fast since the tensor
H is precomputed before growing the tree.

Finally, as the following proposition highlights, GAD-
GET with the PDP loss (henceforth called GADGET-
PDP) is in fact a FD-Tree.

Proposition 3.1. The GADGET-PDP loss is a LoA.

Consequently, GADGET-PDP can reduce disagree-
ments between PDP/SHAP/PFI explanations. This
is an interesting result since GADGET-PDP was de-
signed with only PDP and ICE in mind. For the details
behind GADGET and the proof of Proposition 3.1,
we refer to Appendix C.
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Random CART GADGET-PDP CoE PDP-PFI

Figure 3: Explanation disagreements and amplitudes for two baselines (Random, CART) compared to various
FD-Trees (GADGET-PDP, CoE, PDP-PFI). Results are presented for trees of depth 1, 2 and 3. The disagree-
ments/amplitudes were normalized w.r.t disagreements/amplitudes obtained when the whole data is considered
as the background.

Table 2: P-values of the Repeated-Measure-ANOVA tests comparing the explanation disagreements between the
GADGET-PDP, CoE, and PDP-PFI objectives. For each p-value lower than 0.05, we also show the objective
leading to the least disagreements : (1) GADGET-PDP (2) CoE (3) PDP-PFI.

Locality Default-Credit Adult Marketing Kin8nm BikeSharing California

Local 0.003 (3) 0.31 0.015 (3) 0.42 0.06 0 (3)
Global 0.01 (3) 0.03 (3) 0.25 0 (3) 0.001 (3) 0.7

4 EXPERIMENTS

We experimentally assessed the viability FD-Trees on
various datasets and models2. The UCI classification
datasets Adults, Default-Credit, and Marketing were
employed while, for regression tasks, the UCI dataset
BikeSharing, Kin8nm, and the StatLib dataset Cal-
ifornia were investigated. The two types of models
that were considered are Random Forests (RF) and
Gradient-Boosted Trees (GBT). The Scikit-Learn (Pe-
dregosa et al., 2011) implementations of these mod-
els were used. For each dataset and model type, we
trained a separate model for five different random
seeds. Then, for each of the resulting 60 models, 9
FD-trees were fitted with maximum depth 1, 2, 3 and
losses GADGET-PDP, CoE, and PDP-PFI. A total
of 60 × 9 = 540 FD-Trees were obtained. Since the
sizes of the datasets were too high to store the full
N × N × d tensor H required for training FD-Trees,
we sub-sampled 600 data points to generate H using
the same seed as during model training. Thus, the
seed controls all stochasticity in the FD-Tree growth
since it impacts both the model h and the sample of
data.

2The code to reproduce our experiments is available at
https://github.com/gablabc/UXAI ANOVA

4.1 Quantitative Results

Are FD-Trees able to significantly reduce the disagree-
ments between post-hoc explainers? Before address-
ing this question, note that the disagreement metrics
D(φ,φ′) are scale-sensitive: for any ε ∈ ]0, 1[ we have
D(εφ, εφ′) < D(φ,φ′). This introduces a bias since
reducing the explanation norm can reduce explana-
tion disagreements. Remember that PDP/SHAP/PFI
all describe the model predictions h(x) relative to the
mean Ez∼BΩ

[h(z)]. So, if the background BΩ is very
local, the model may deviate less from its average and
explanations will naturally be smaller. Consequently,
even a random tree can identify regions with reduced
disagreements, a fact that we consistently observed
empirically. A basic sanity check for FD-Trees is to
compare the reduction in explanation disagreements
to those induced by random trees. A stronger san-
ity check is comparing FD-Trees to regions yielded by
a Classification And Regression Tree (CART) fitted
on the model output. CART minimizes the deviation
Ex∼BΩ

[ (h(x)−Ez∼BΩ
[h(z)] )2 ] at each leaf Ω, and so

directly minimizes the norms of the explanations.

Figure 3 presents the results comparing the baselines
(Random, CART) to various FD-Trees (GADGET-
PDP, CoE, PDP-PFI). From Figure 3(a)&(c), we
note that FD-Trees lead to greater reductions in dis-
agreements compared to both baselines. These differ-
ences are statistically significant according to paired

https://github.com/gablabc/UXAI_ANOVA
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relationship ∈ [Own-child,Other-relative,Unmarried,Not-in-family] relationship ∈ [Husband,Wife]

Figure 4: Adult Income. Lines are PDPs while points are SHAP values. (a)&(c) represent the SHAP and
PDP explanations when the background is set to the whole dataset. (b)&(d) plot regional explanations with
backgrounds restricted to the two regions indicated in red/blue colors.

Student-t tests. Still, is there more agreement simply
because explanations are smaller? Looking at the ex-
planation amplitudes in Figure 3(b)&(d), CART is by
far the method that leads to the smallest explanation
norms. Yet, CART did not manage to reduce explana-
tion disagreements as much as FD-Trees could. This
demonstrates that solving the Disagreement Problem
is not as trivial as making explanations smaller, and
that feature interactions are a key quantity to mini-
mize.

Given that FD-Trees (GADGET-PDP, CoE, PDP-
PFI) can identify useful regions, we compared them
more thoroughly via Repeated-Measure-ANOVA tests,
see Table 2. Repeated-Measure-ANOVA aims to iden-
tify if there are significant differences in “outcome” for
various “treatments” applied to recurring “subjects”.
In our setting the “outcome” is the explanation dis-
agreement, the “subjects” are the 30 combinations of
model type, random seed, and depth of the FD-Tree,
while the “treatment” is the objective employed when
growing the tree. According to Table 2, there are of-
ten no significant differences between GADGET-PDP,
CoE, and PDP-PFI. When the differences are signifi-
cant, it is systematically the PDP-PFI objective that
leads to the least disagreements.

4.2 Qualitative Results

We discuss Adults and BikeSharing here and the other
four datasets in Appendix D.3. An industrial use-
case is also presented in Appendix E.

4.2.1 Adult-Income

The Adult-Income task is to predict if someone makes
more than 50k USD based on demographic attributes.
The first step of the analysis was to compute post-
hoc explanations using the whole dataset as the back-
ground distribution. According to Figure 4 (a)&(c),

the resulting PDP local attributions are a poor esti-
mate of the SHAP values. This warns us that strong
feature interactions make the local attributions of age
and educational-num unreliable. To reduce disagree-
ments, we studied the regional explanations over the
leaves of a FD-Tree. All FD-Trees that were trained on
RFs and Adult-Income identified the same first split:
separating married from unmarried people. Figure
4 (b)&(d) show the corresponding regional explana-
tions. Our first observation is that errors between PDP
and SHAP suddenly decrease. Secondly, the model has
very distinctive behaviors between married and un-
married people. From Figure 4 (b), the attribution of
age tends to be negative for younger people, but to a
larger extent if you are married. Also, the attribution
of age becomes negative for older married people while
it remains positive for older unmarried ones. Similar
observations can be made for education-num.

4.2.2 Bike-Sharing

The BikeSharing dataset aims to predict the hourly
count of bike rentals between years 2011 and 2012
in Washington state, based on time and weather fea-
tures. Figure 5 (a) presents the global feature im-
portance of a RF when the background is the whole
dataset. We note that the importance of the fea-
ture workingday is highly uncertain. Indeed, PFI
ranks it 2, SHAP ranks it 4, and PDP assigns it no
importance. This implies that workingday interacts
strongly with other features. Interestingly, all the FD-
Trees trained on BikeSharing used workingday=True

and workingday=False as their first split. However,
the trees differ in their subsequent splits. The rest
of Figure 5 presents the results on a depth-2 FD-Tree
trained on a RF model with CoE objective. The four
identified regions differentiate working days from non-
working days and early morning hours from daytime
hours. According to Figure 5 (b) presenting the at-
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Figure 5: BikeSharing. Lines are PDPs while points are SHAP values. The bar chart (a) is the global feature
importance when the whole dataset is used as a background distribution. For all other sub-figures, the regional
explanations are displayed.

tribution of hr, the amplitude peaks at rush hours
during working days while it peaks in the afternoon
on non-working days. Inspecting the local attribution
of temp from Figure 5 (c), the temperature has mini-
mal effects on the model during early morning hours.
Nevertheless, past 9am, the temperature considerably
influences model predictions, and to a larger extent for
non-working days compared to working days. Similar
conclusions are drawn from the humidity feature hum.

4.3 Discussion & Limitations

Our method induces a higher cognitive load on users
because they must understand the regions description,
as well as the model behavior on each separate region.
For example, instead of providing a single ranking of
global feature importance, one such ranking must be
reported for each FD-Tree leaf. We view this as a nec-
essary price to pay in order to gain faithful insight into
model behavior. Nevertheless, practitioners can still
use the whole dataset as background as long as the ex-
planations of various techniques are shown in tandem
to reveal potential interactions. For example, we ad-
vocate simultaneously reporting the PDP/SHAP/PFI
global importance as in Figure 5(a).

FD-Trees are currently grown in a greedy fashion : we
split each node along a feature that is locally opti-
mal, and we never consider future impacts of a split,
nor do we backtrack on any previous choice. Greedy
strategies are common in tree induction because of the
considerable search space (Louppe, 2014). Even so, in-
vesting more time to find a better solution (e.g. via
look-ahead strategies (Esmeir and Markovitch, 2007))
may prove beneficial for FD-Trees.

Discontinuities in the local explanation of a feature oc-
cur when FD-Trees split along them, see Figure 5(b)
for example. These discontinuities must not be in-
terpreted as model discontinuities. They are simply
artifacts of considering disjoint regions.

The Accumulated Local Effect (ALE)(Apley and Zhu,
2020) explainer was not investigated because, although
its theoretical definition agrees with PDP/SHAP/PFI
when the model is additive, its empirical estimate may
not. Indeed, the empirical ALE estimate requires bin-
ning the ith feature and the choice of bins impacts the
resulting explanation. Thus, it is hard to disentangle
the disagreements induced by interactions and those
induced by binning. In constrast, PDP/SHAP/PFI
are guaranteed to agree when the model is additive,
irrespective of the sample of data used. Adding ALE
to our framework and characterizing the effects of bin-
ning is part of future work.

Our entire methodology assumes that more agreement
between explanations is better. However, recent work
has demonstrated that disagreements can be leveraged
to detect irregularities in the model or data (Stando
et al., 2023).

5 CONCLUSION

We unified the Partial Dependence Plots, SHapley Ad-
ditive exPlanations, and Permutation Feature Impor-
tance through the lens of Functional Decomposition.
We showed that disagreements between these explain-
ers are caused by feature interactions. Thus, we pro-
posed to reduce interactions by partitioning the in-
put space. The background distributions used to com-
pute explanations are then restricted to each region,
leading to explanations with reduced disagreements.
The benefit of regional explanations was demonstrated
both quantitatively and qualitatively on a variety of
toy/real datasets and models.

Future work should investigate other definitions of
regions. For example, a region could be an open-
ball around an instance similar to Local Interpretable
Model-agnostic Explanations (LIME) (Ribeiro et al.,
2016), or it could be obtained via K-means clustering.
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in Québec (CRIAQ), together with its industrial part-
ners Thales Canada inc, Bell Textron Canada Limited,
CAE inc and Bombardier inc.3

References

European Union Aviation Safety Agency. Easa
artificial intelligence concept paper - proposed
issue 2, 2023. URL https://www.easa.europa.eu/
en/document-library/general-publications/

easa-artificial-intelligence-concept-

paper-proposed-issue-2.

Daniel W Apley and Jingyu Zhu. Visualizing the ef-
fects of predictor variables in black box supervised
learning models. Journal of the Royal Statistical So-
ciety Series B: Statistical Methodology, 82(4):1059–
1086, 2020.

Alejandro Barredo Arrieta, Natalia Dı́az-Rodŕıguez,
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Daniel Molina, Richard Benjamins, et al. Ex-
plainable artificial intelligence (xai): Concepts, tax-
onomies, opportunities and challenges toward re-
sponsible ai. Information Fusion, 58:82–115, 2020.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes, we state that FD-Trees require comput-
ing a tensor H with time and space complex-
ity O(N2d).

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes, the code is provided
in supplementary materials.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes.

(b) Complete proofs of all theoretical results.
Yes, all proofs are available in supplementary
materials.

(c) Clear explanations of any assumptions. Yes.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes, the code to reproduce the results
is provided in supplementary materials.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Not
Applicable

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Not Applicable

(d) A description of the computing infrastructure
used. Not Applicable

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. Yes, we cite the SHAP library.

(b) The license information of the assets, if ap-
plicable. Not Applicable

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Not Applica-
ble
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(d) Information about consent from data
providers/curators. Not Applicable, the
data is open source.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable
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A PROOFS

We first present the minimality property of the Anchored Decomposition.

Theorem A.1 (Theorem 3.1 from (Kuo et al., 2010)). Let R ⊆ Rd be a rectangle and let h : R → R be a
function that can be expressed as

∑
u⊆[d] gu where gu only depends on xu. Also, assume that a subset v ⊂ [d]

exists such that
v ⊆ u⇒ ∀x ∈ R gu(x) = 0.

Then, z-Anchored Decomposition respects

v ⊆ u⇒ ∀x, z ∈ R hu,z(x) = 0.

Critically, this Theorem requires that the function h has a rectangular domain. Otherwise, the expressions
h(xu, z−u) from Equation 3 would not make sense. We can now easily derive the minimality of the Interventional
Decomposition.

Corollary A.1. Let R ⊆ Rd be a rectangle and let h : R → R be a function that can be expressed as
∑
u⊆[d] gu

where gu only depends on xu. Also, assume that a subset v ⊂ [d] exists such that

v ⊆ u⇒ ∀x ∈ R gu(x) = 0.

Then, for any probability distribution B such that supp(B) ⊆ R the Interventional Decomposition respects

v ⊆ u⇒ ∀x ∈ R hu,B(x) = 0.

Proof. Let u be a super-set of v (v ⊆ u). By Theorem A.1, for any x, z ∈ R we have hu,z(x) = 0. Since
supp(B) ⊆ R, any sample z ∼ B from the background will land inside the domain R. Hence, for any x ∈ R

hu,B(x) = E
z∼B

[hu,z(x)] = E
z∼B

[0] = 0.
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Lemma A.1. If h is additive in feature j then

j /∈ u⇒ hu,Bj×B−j
= hu,B′j×B−j

(24)

for any two distributions Bj and B′j on xj.

Proof. According to Kuo et al. (2010), the hu,B component of the Interventional Decomposition can be written

hu,B(x) =
∑
v⊆u

(−1)|u\v| E
z∼B

[h(xv, z−v)]. (25)

By our assumptions, h(x) = gj(xj) + g−j(x−j) for some gj and g−j , and the probability density under B can be
expressed ρ(x) = ρj(xj)ρ−j(x−j). Now, for any subset u excluding j we have

hu,B(x) =
∑
v⊆u

(−1)|u\v| E
z∼B

[h(xv, z−v)]

=
∑
v⊆u

(−1)|u\v|
(

E
z∼B

[gj(xv, z−v)] + E
z∼B

[g−j(xv, z−v)]

)

=
∑
v⊆u

(−1)|u\v|
(

E
z∼B

[gj(zj)] + E
z∼B

[g−j(xv, z−v)]

)
(Since j /∈ v)

= E
z∼B

[gj(zj)]
∑
v⊆u

(−1)|u\v| +
∑
v⊆u

(−1)|u\v| E
z∼B

[g−j(xv, z−v)] (Note that
∑
v⊆u(−1)|u\v| = 0)

=
∑
v⊆u

(−1)|u\v| E
z∼B

[g−j(xv, z−v)]

=
∑
v⊆u

(−1)|u\v|
∫
X
g−j(xv, z−v)ρ(z)dz

=
∑
v⊆u

(−1)|u\v|
∫
X

g−j(xv, z−v)︸ ︷︷ ︸
does not depend on zj

ρ−j(z−j)ρj(zj)dz−jdzj

=
∑
v⊆u

(−1)|u\v|
∫
X−j

g−j(xv, z−v)ρ−j(z−j)dz−j

∫
ρj(zj)dzj

=
∑
v⊆u

(−1)|u\v|
∫
X−j

g−j(xv, z−v)ρ−j(z−j)dz−j .

This expression is independent of the choice of ρj(zj).
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Theorem A.2 (Theorem 3.1). Any function

Lh(B) = E
x∼B

[ ∑
u,v⊆[d]
|u|≥2,|v|≥2

a(u, v)hu,B(x)hv,B(x)

]
(26)

for some a : 2[d] × 2[d] → R is a LoA.

Proof. We demonstrate that the function Lh from Equation 26 respects the three properties of Definition 3.1.

Property 1 By the minimality of the Interventional Decomposition (cf. Corollary A.1), if h is additive over
a rectangle R ⊇ supp(B), then |u| ≥ 2⇒ ∀x ∈ R hu,B(x) = 0. So we have

Lh(B) = E
x∼B

[ ∑
u,v⊆[d]
|u|≥2,|v|≥2

a(u, v)hu,B(x)hv,B(x)

]
= E

x∼B
[0] = 0.

Property 2 By feature independence, we have (Owen, 2013, Appendix A)

u 6= v ⇒ E
x∼B

[hu,Bind
(x)hv,Bind

(x)] = 0. (27)

Letting σ2
u := Ex∼Bind

[hu,Bind
(x)2], we therefore obtain

Lh(Bind) =
∑

u⊆[d]:|u|≥2

a(u, u)σ2
u, (28)

and by identification the interaction penalization weights are w(u) = a(u, u).

Property 3 Let h be additive in feature j meaning that h(x) = gj(xj) + g−j(x−j). Since the Interventional
Decomposition is minimal, there will not be any interaction hu with j ∈ u. Moreover, let the background
factorize as B := Bj × B−j implying that the corresponding probability density is ρ(x) = ρj(xj)ρ−j(x−j).

Lh(Bj × B−j) := E
x∼B

[ ∑
u,v⊆[d]
|u|≥2,|v|≥2

a(u, v)hu,B(x)hv,B(x)

]
= E

x∼B

[ ∑
u,v⊆[d]\{j}
|u|≥2,|v|≥2

a(u, v)hu,B(x)hv,B(x)

]

=

∫
X

∑
u,v⊆[d]\{j}
|u|≥2,|v|≥2

a(u, v)hu,B(x)hv,B(x) ρ(x)dx

=

∫
X

∑
u,v⊆[d]\{j}
|u|≥2,|v|≥2

a(u, v)hu,B(x)hv,B(x) ρ−j(x−j)ρj(xj) dxj

=

∫
X−j

∑
u,v⊆[d]\{j}
|u|≥2,|v|≥2

a(u, v)hu,B(x)hv,B(x) ρ−j(x−j)dx−j

∫
ρj(xj)dxj

=

∫
X−j

∑
u,v⊆[d]\{j}
|u|≥2,|v|≥2

a(u, v)hu,Bj×B−j
(x)hv,Bj×B−j

(x) ρ−j(x−j)dx−j .

By Lemma A.1, for any u not containing j, the subfunction hu,Bj×B−j does not depend on the choice of Bj .
Thus, we have proven Lh(Bj × B−j) = Lh(B′j × B−j) for any alternative distribution B′j on feature j.
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Corollary A.2 (Corollary 3.1). The distances D(φ,φ′) between local PFI/SHAP/PFI explainers, as well as
the L2CoE are all LoA functions.

Proof. We prove that these various functions take the form of Equation 26. First comparing local PDP and
SHAP, we have

D(φPDP,φSHAP) = E
x∼B

[ d∑
k=1

(
hk(x)−

∑
u⊆[d]:k∈u

hu(x)

|u|

)2]

= E
x∼B

[ d∑
k=1

( ∑
u⊆[d]:k∈u,|u|≥2

hu(x)

|u|

)2]

= E
x∼B

[ d∑
k=1

∑
u,v⊆[d]
k∈u,k∈v
|u|≥2,|v|≥2

hu(x)hv(x)

|u| |v|

]

= E
x∼B

[ ∑
u,v⊆[d]:|u|≥2,|v|≥2

|u ∩ v|
|u| |v| hu(x)hv(x)

]
.

The corresponding interaction penalization is w(u) = a(u, u) = 1
|u| . Now comparing local PDP and PFI, we

obtain

D(φPDP,φPFI) = E
x∼B

[ d∑
k=1

(
hk(x)−

∑
u⊆[d]:k∈u

hu(x)

)2 ]

= E
x∼B

[ d∑
k=1

( ∑
u⊆[d]:k∈u,|u|≥2

hu(x)

)2 ]

= E
x∼B

[ d∑
k=1

∑
u,v⊆[d]
k∈u,k∈v
|u|≥2,|v|≥2

hu(x)hv(x)

]

= E
x∼B

[ ∑
u,v⊆[d]:|u|≥2,|v|≥2

|u ∩ v|hu(x)hv(x)

]
.

The corresponding interaction penalization is w(u) = a(u, u) = |u|. The disagreement between local SHAP and
PFI yields

D(φSHAP,φPFI) = E
x∼B

[ d∑
k=1

( ∑
u⊆[d]:k∈u

hu(x)

|u| − hu(x)

)2]

= E
x∼B

[ d∑
k=1

( ∑
u⊆[d]:k∈u,|u|≥2

(1− |u|)hu(x)

|u|

)2]

= E
x∼B

[ d∑
k=1

∑
u,v⊆[d]
k∈u,k∈v
|u|≥2,|v|≥2

(1− |u|) (1− |v|)hu(x)hv(x)

|u| |v|

]

= E
x∼B

[ ∑
u,v⊆[d]:|u|≥2,|v|≥2

|u ∩ v| (|u| − 1) (|v| − 1)

|u| |v| hu(x)hv(x)

]
.

The corresponding interaction penalization is w(u) = a(u, u) = (|u| − 1)2/|u|.
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The L2 Cost of Exclusion (CoE) is also a LoA

LCoE
h (B) := E

x∼B

[(
h(x)−

∑
u⊆[d]:|u|≤1

hu(x)

)2 ]

= E
x∼B

[( ∑
u⊆[d]:|u|≥2

hu(x)

)2 ]

= E
x∼B

[ ∑
u,v⊆[d]
|u|≥2,|v|≥2

hu(x)hv(x)

]
.

The corresponding interaction penalization is w(u) = a(u, u) = 1.

We end this section by presenting the various penalization functions w(u) implicit to each LoA when features
are independent, see Figure 6. The weights w were normalized so that w(u) = 1 when |u| = 2. Note that
any LoA that involves a disagreement with the PFI explainer will penalize the higher-order interactions to a
greater extent. This is because the PFI counts the interaction hu several times. In opposition, the disagreements
between PDP and SHAP put more weight on low-order interactions.
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Figure 6: How various LoA penalize interaction orders differently.



Tackling the XAI Disagreement Problem

B PERMUTATION FEATURE IMPORTANCE

The original definition of the PFI is (Breiman, 2001; Bénard et al., 2022)

ΦPFI-O
i (h) := E

(x,y)∼B
z∼B

[(
h(x−i, zi)− y

)2]− E
(x,y)∼B

[(
h(x)− y

)2]
, (29)

which compares the model performance on the original data and on synthetic data where feature i is replaced by
a sample from the marginal. This replacement is typically done by permuting the ith column of the data matrix
X ∈ RN×d, which justifies the terminology Permutation Feature Importance. However, to establish a natural
link between PFI and the Interventional Decomposition of h (and so with the explainers PDP and SHAP), we
will slightly change the expression

ΦPFI
i (h) := E

(x,y)∼B

[(
E

z∼B
[h(x−i, zi)

]
− y

)2]− E
(x,y)∼B

[(
h(x)− y

)2]
. (30)

Crucially, we moved the expectation w.r.t the noise sample z inside the square (·)2. This definition is still in
line with the high-level idea of replacing a feature with noise and reporting the impact on performance. However,
we now average the model predictions on noisy samples before comparing them to the labels. To recover the
definition of the PFI used in the paper, we must eliminate the labels y and replace them with model predictions
h(x). To use y and h(x) interchangeably, we need to make the following assumption : h(x)− y = ε where ε is a
random variable that is independent of x, E[ε] = 0, and E[ε2] = σ2. Given these assumptions

E
(x,y)∼B

[(
h(x)− y

)2]
= E[ε2] = σ2.

Letting g(x) := Ez∼B[h(x−i, zi)
]
, the left term in the PFI can be expressed

E
(x,ε)∼B

[(
g(x)− y

)2]
= E

(x,y)∼B

[(
g(x)− h(x) + ε

)2]
= E

x∼B

[
( g(x)− h(x) )2

]
+ E

(x,ε)∼B

[
ε( g(x)− h(x) )

]
+ σ2

= E
x∼B

[
( g(x)− h(x) )2

]
+ E[ε] E

x∼B

[
( g(x)− h(x) )

]
+ σ2

= E
x∼B

[(
g(x)− h(x)

)2]
+ σ2

and so the noise σ2 computed previously will cancel out. We are left with

ΦPFI
i (h) = E

x∼B

[(
g(x)− h(x)

)2]
= E

x∼B

[(
E

z∼B

[
h(x−i, zi)

]
− h(x)

)2]
. (31)

This definition is desirable because it can easily be expressed in the Interventional Decomposition. Indeed, from
Equation 4 we can deduce that

E
z∼B

[h(xu, z−u)] =
∑
v⊆u

hv,B(x) (32)

and so
ΦPFI
i (h) = E

x∼B

[(
E

z∼B

[
h(x−i, zi)

]
− h(x)

)2]
= E

x∼B

[( ∑
u⊆[d]\{i}

hu,B(x)−
∑
u⊆[d]

hu,B(x)
)2]

= E
x∼B

[( ∑
u⊆[d]:i∈u

hu,B(x)
)2]

.

(33)
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Figure 7: Intuition behind the GADGET-PDP. The colored lines are the (centered or uncentered) ICE curves
for various values of z−k. The dashed dark line is the centered PDP. (a) There are weak interactions involving
feature k so the ICE curves for various z−k are nearly parallel. (b) After centering the ICE curves, the centered
PDP is computed and is a good estimate of the centered ICEs. Thus the GADGET-PDP loss is very low. (c)
There are strong interactions involving feature k and the ICE curves are not parallel. (b) After centering, the
PDP is a poor estimate of the ICEs and the GADGET-PDP loss is large.

C GADGET

GADGET (Herbinger et al., 2023) is a similar technique to FD-Trees and so we must take the time to discuss
it in detail. Like FD-Trees, GADGET partitions the input space by fitting a decision tree. However, the losses
minimized during the tree-growth are different from the ones we propose. GADGET employs two distinct losses
depending on whether the user wants to compute regional PDPs or regional SHAP values.

C.1 GADGET-SHAP

We will not discuss in too much detail the loss employed to compute regional SHAP explanations because its
computation is suboptimal. Indeed, computing the loss requires regressing the SHAP value φSHAP

i (h,x) onto
feature xi with a spline model. The larger the error of this regression, the more interactions involve feature i in
h. Crucially, a different spline model must be fitted for each split candidate along a feature j. Additionally,
GADGET-SHAP requires recomputing SHAP values after each node split because the background distribution
has changed. Seeing as running SHAP can take several minutes, growing the full tree can be unnecessarily long.
On the other hand, as we are about to prove, the GADGET-PDP loss can be efficiently optimized since it only
requires pre-computing a N ×N × d tensor R.

C.2 GADGET-PDP

In this section, we will use a different notation h(xk, z−k) ≡ h(xk, z−k) to accentuate that xk is a scalar
dimension. Also, for a given background distribution B, the marginal along the subset of feature S ⊂ [d] is BS .

GADGET-PDP computes the ICE curves (Goldstein et al., 2015)

φICE
k (h, xk, z−k) := h(xk, z−k) (34)

which are then centered with respect to xk to obtain the mean-centered ICE curve

φICE-c
k (h, xk, z−k) := h(xk, z−k)− E

xk∼Bk

[
h(xk, z−k)

]
. (35)

These curves can be visualized as a function of xk to understand the effect of feature k when the other features are
set to z−k. See Figure 7 for a toy example of how centered (and uncentered) ICE curves are typically visualized.
Subsequently, by averaging the mean-centered ICE curves w.r.t z−k, we obtain the mean-centered PDP

φPDP-c
k (h, xk) := E

z−k∼B−k

[
φICE-c
k (h, xk, z−k)

]
. (36)

Like ICEs, the centered PDP is visualized as a function of xk but it now represents the average effect of setting
feature k to xk. If there are no interactions in h involving feature k, then the ICE and PDP curves are parallel
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when plotted as functions of xk. Consequently, the centered ICEs and PDP should be identical. The loss
employed in GADGET is

LGADGET-PDP
h (B) :=

d∑
k=1

E
xk∼Bk

z−k∼B−k

[(
φICE-c
k (h, xk, z−k)− φPDP-c

k (h, xk)
)2]

=

d∑
k=1

E
xk∼Bk

[
Vz−k∼B−k

[
φICE-c
k (h, xk, z−k)

] ]
.

(37)

The intuition behind this loss is illustrated in Figure 7.

Proposition C.1 (Proposition 3.1). The loss employed inside GADGET-PDP is a valid LoA.

Proof. The function LGADGET-PDP
h (B) respects the three properties of Definition 3.1.

Property 1 When the model is additive, all ICE curves of a given feature are parallel, which implies that the
GAGDET-PDP loss is zero.

Property 2 We first express the centered ICE curves in the Interventional Decomposition with Bind. Our
derivation employs the following “annihilation” property (Kuo et al., 2010)

v ∩ u 6= ∅ ⇒ E
xv∼Bind,v

[
hu,Bind

(x)] = 0. (38)

We have

φICE-c
k (h, xk, z−k) := h(xk, z−k)− E

xk∼Bind,k

[
h(xk, z−k)

]
=
∑
u⊆[d]

hu,Bind
(xk, z−k)− E

xk∼Bind,k

[ ∑
u⊆[d]

hu,Bind
(xk, z−k)

]
=
∑
u⊆[d]

hu,Bind
(xk, z−k)−

∑
u⊆[d]

E
xk∼Bind,k

[hu,Bind
(xk, z−k)]

=
∑
u⊆[d]

hu,Bind
(xk, z−k)−

∑
u⊆[d]\{k}

E
xk∼Bind,k

[hu,Bind
(xk, z−k)] (Annihilation Property)

=
∑
u⊆[d]

hu,Bind
(xk, z−k)−

∑
u⊆[d]\{k}

hu,Bind
(xk, z−k)

=
∑

u⊆[d]:k∈u

hu,Bind
(xk, z−k).

The centered-PDP can also be expressed in terms of the FD

φPDP-c
k (h, xk) := E

z−k∼Bind,−k

[
φICE-c
k (h, xk, z−k)

]
= E

z−k∼Bind,−k

 ∑
u⊆[d]:k∈u

hu,Bind
(xk, z−k)


=

∑
u⊆[d]:k∈u

E
z−k∼Bind,−k

[hu,Bind
(xk, z−k)]

= E
z−k∼Bind,−k

[hk,Bind
(xk, z−k)] (Annihilation property)

= hk,Bind
(xk, z−k).
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Thus the GADGET-PDP loss simplifies

LGADGET-PDP
h (B) :=

d∑
k=1

E
xk∼Bind,k

z−k∼Bind,−k

[(
φICE-c
k (h, xk, z−k)− φPDP-c

k (h, xk)
)2]

=

d∑
k=1

E
xk∼Bind,k

z−k∼Bind,−k

[( ∑
u⊆[d]:k∈u

hu,Bind
(xk, z−k)− hk,Bind

(xk, z−k)

)2 ]

=

d∑
k=1

E
xk∼Bind,k

z−k∼Bind,−k

[( ∑
u⊆[d]:k∈u
|u|≥2

hu,Bind
(xk, z−k)

)2 ]

=

d∑
k=1

E
x∼Bind

[( ∑
u⊆[d]:k∈u
|u|≥2

hu,Bind
(x)

)2 ]
(By feature independence)

=

d∑
k=1

∑
u⊆[d]:k∈u
|u|≥2

σ2
u =

∑
u⊆[d]
|u|≥2

|u|σ2
u. (By feature independence and Equation 27)

Thus, when features are independent, GADGET-PDP penalizes |u|-way interactions with a weight w(u) = |u|.
Like the LoA D(φPDP,φPFI), higher order interactions are penalized more than low order interactions.

Property 3 We assume that h is additive in feature j and must prove that LGADGET-PDP
h (Bj × B−j) =

LGADGET-PDP
h (B′j × B−j) for any two distributions Bj and B′j on feature j. We will study the ICE curves of

feature j and features k 6= j separately.

Feature j : Because the model is additive in j, the ICE curves and the PDP of feature j will be parallel. Hence
the contribution of feature j to the GADGET-PDP loss is null :

E
xj∼Bj

z−j∼B−j

[(
φICE-c
j (h, xj , z−j)− φPDP-c

j (h, xj)
)2]

= 0. (39)

Feature k 6= j : Since the Interventional Decomposition is minimal, there will not be any interaction terms hu
with j ∈ u. In that case, the Centered ICE curves of feature k 6= j are

φICE-c
k (h, xk, z−k) := h(xk, z−k)− E

xk∼Bk

[h(xk, z−k)]

=
∑
u⊆[d]

hu,B(xk, z−k)− E
xk∼Bk

[
hu,B(xk, z−k)

]
= hj,B(xk, z−k)− E

xk∼Bk

[
hj,B(xk, z−k)

]
+

∑
u⊆[d]\{j}

hu,B(xk, z−k)− E
xk∼Bk

[
hu,B(xk, z−k)

]
= hj,B(zj)− hj,B(zj) +

∑
u⊆[d]\{j}

hu,B(xk, z−k)− E
xk∼Bk

[
hu,B(xk, z−k)

]
(Since k 6= j)

=
∑

u⊆[d]\{j}

hu,B(xk, z−k)− E
xk∼Bk

[
hu,B(xk, z−k)

]
.

We have just proven that

φICE-c
k (h, xk, z−k) does not depend on zj (40)
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since we sum over all interactions hu that exclude feature j. Finally, the total GADGET-PDP loss is

LGADGET-PDP
h (B) :=

∑
k∈[d]

E
xk∼Bk

[
Vz−k∼B−k

[
φICE-c
k (h, xk, z−k)

] ]
=

∑
k∈[d]\{j}

E
xk∼Bk

[
Vz−k∼B−k

[
φICE-c
k (h, xk, z−k)

] ]
(Equation 39)

=
∑

k∈[d]\{j}

E
xk∼Bk

[
Vz−{j,k}∼B−{j,k}

[
φICE-c
k (h, xk, z−k)

] ]
. (Equation 40)

This expression does not involve Bj so it is independent of the manner in which feature j is distributed. The
direct implication is that LGADGET-PDP

h (Bj × B−j) = LGADGET-PDP
h (B′j × B−j).

The fact that the GADGET-PDP loss is a LoA implies that it penalizes interactions and so it can potentially
reduce the disagreements between PDP/SHAP/PFI explanations. This an interesting result since GADGET-
PDP was initially designed with PDP and ICE in mind. If we let R be a N ×N × d Tensor with components

Rijk := h(x
(i)
k ,x

(j)
−k), (41)

then the empirical counterpart of the GADGET-PDP loss is

L̂GADGET-PDP
h (SΩ) =

1

|SΩ|
d∑
k=1

∑
i,j∈SΩ

(
Rijk −

1

|SΩ|
∑
`∈SΩ

R`jk −
1

|SΩ|
∑
m∈SΩ

Rimk +
1

|SΩ|2
∑

`,m∈SΩ

R`mk

)2

. (42)
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Name Local Global

H2
ij N/A ΦInter

ij (h) = Ex∼B[h{i,j},B(x)2 ]

SHAP-T φSHAP-T
ij (h,x) =

hi,B(x) if i = j∑
u⊆[d]
i,j∈u

hu,B(x)

(|u|2 )
if i 6= j. ΦSHAP-T

ij (h) =

Ex∼B[hi,B(x)2] if i = j

Ex∼B[
(∑

u⊆[d]
i,j∈u

hu,B(x)

(|u|2 )

)2
] if i 6= j.

Table 3: Expressing the various interactions indices in terms of the Interventional Decomposition.

D ADDITIONAL EXPERIMENTS

D.1 Interaction Detection

As was discussed in the main text, FD-Trees should only split along features that interact. But how do we
discover features that interact? Several options have been proposed in the literature. For instance, the H2

ij

statistic (Friedman and Popescu, 2008) quantifies the interaction between features i and j via

ΦInter
ij (h) := Vx∼B

[
E

z∼B
[h(x{i,j}, z−{i,j})]− E

z∼B
[h(xi, z−i)]− E

z∼B
[h(xj , z−j)]

]
. (43)

Moreover, Shapley-Taylor indices (Sundararajan et al., 2020) generalize SHAP values by providing local attri-
butions φij(h,x) for i, j ∈ [d] that still respect Efficiency

d∑
i=1

d∑
j=1

φSHAP-T
ij (h,x) = h(x)− E

z∼B
[h(z)]. (44)

As was done with SHAP, one can compute global importance from Shapley-Taylor indices by averaging the
squared amplitudes

ΦSHAP-T
ij (h) := E

x∼B
[φSHAP-T
ij (h,x)2 ]. (45)

In Table 3 we express these interaction indices in the Interventional Decomposition. We see that the H2
ij statistic

is the variance of the {i, j}-interaction, and Shapley-Taylor attributes importance to the {i, j} interaction by
identifying all M -way interactions that involve {i, j} and sharing them evenly between the

(
M
2

)
pairs of features

involved (Sundararajan et al., 2020).

In our experiments, we detected interactions using the Shapley-Taylor global indices (cf. Equation 45) and not
the H2

ij statistic. The reason is that Shapley-Taylor indices Φij(h) quantify the interactions {i, j}, but also
the higher degree interactions u such that {i, j} ⊂ u. To compute these indices quickly when explaining tree
ensembles, we rely on the work of Laberge et Pequignot (Laberge and Pequignot, 2022) who generalized the
Interventional TreeSHAP algorithm to the Shapley-Taylor index.

Adults Figure 8 shows the interactions in the Adults dataset. We note that the strongest interactions involve
the features age, capital-gain, marital-status, and relationship. Therefore, only these four features were
split candidates.

BikeSharing Figure 9 presents the interactions in the BikeSharing dataset. The dominating interactions
are amongst the features hr, workingday, year, and temp. Hence, these four features were split upon by the
FD-Trees.

Marketing Figure 10 highlights interactions in Marketing. The main interactions involve month, day, contact,
pdays, which will be used by the FD-Trees.

Default-Credit Figure 11 presents the interactions in the Default-Credit dataset. Notable interactions involve
Delay-Sep, Delay-Aug, Bill-Sep, and Bill-Aug. These features are the four split candidates in FD-Trees.

Kin8nm Figure 12 illustrates interactions in Kin8nm. All features interact with other features so they must
all be considered when fitting FD-Trees.
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California Figure 13 shows the interactions in the California Housing data. Strong interactions between
Lattitude and Longitude are present. We also see weaker interactions between Occupancy, MedInc, and
HouseAge. These five features were used by the FD-Trees to define the regions.
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Figure 8: Interaction Indices on Adult.
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Figure 12: Interaction Indices on Kin8nm.
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(e) GBT Marketing
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Figure 14: Stability of the Partitions given by FD-Trees as a function of the subsample size.

D.2 Stability of Partitions

The tensor H required to train FD-Trees has a size of N ×N × d. Thus, on any realistic dataset it is crucial to
subsample N ′ � N data points and use them to approximate H. However, this introduces stochasticity in the
training of FD-Trees since different subsamples may lead to different trees. Ideally, N ′ should be large enough
to lead to stable partitions (Ω1,Ω2, . . . ,ΩM ) on multiple reruns. Yet, it should also not be too large to avoid the
O(N2) time and space complexities.

To assess the stability of partitions, we repeat the following methodology 10 times: 1) subsample N ′ data points,
2) compute H, 3) grow a full FD-Tree using H, 4) return the associated partition. The Rand Index (Hubert and
Arabie, 1985) can then be used to measure the similarity between any pairs of partitions resulting from these
repeated reruns. The Rand Index considers all pairings of data points x(i) and x(j). The two partitions are said
to agree on the pair if either 1) x(i) and x(j) are in the same group for both partitions, or 2) x(i) and x(j) are in
separate groups for both partitions. The Rand Index is then the ratio of agreeing pairs to the total number of
pairs. However, it is best to employ the Adjusted Rand Index (Hubert and Arabie, 1985) which normalizes the
metric to account for chance. Thus, random partitions will have an index close to zero.

In Figure 14, we present the Adjusted Rand Index as a function of subsample size. A general trend is that
partitions stabilize when more samples are used to train FD-Trees. Importantly, the partitions of depth-1 FD-
Trees are extremely stable on Adults and BikeSharing. For the other datasets, it takes multiple samples before
the first split stabilizes. Based on these results, we advocate that subsampling N ′ = 600 is reasonable on all
these datasets, although kin8nm could benefit from including more samples. Still, to keep the experimental setup
simple, we subsample 600 data points for all datasets and models.



Tackling the XAI Disagreement Problem

0.0 0.5 1.0 1.5
Feature Importance

default
previous
marital

loan
education

job
campaign

age
balance

pdays
housing

poutcome
day

contact
month

duration

(a)

0 10 20 30
day

-0.5

0.0

0.5

A
tt

ri
b

of
d

ay

(b)

0 1 2 3 4 5 6 7 8 9 10 11
month

0.0

1.0

2.0

A
tt

ri
b

of
m

on
th

(c)

0.0 0.5 1.0
Feature Importance

contact
default

poutcome
previous

loan
age
job

marital
education
campaign

pdays
housing
month

day
balance

duration

(d)

0.0 0.5 1.0 1.5
Feature Importance

default
contact

previous
marital

education
loan
job

campaign
age

balance
pdays

housing
poutcome

day
month

duration

(e)

0 10 20 30
day

-0.5

0.0

0.5

1.0

A
tt

ri
b

of
d

ay

(f)

0 1 2 3 4 5 6 7 8 9 10 11
month

0.0

1.0

2.0

A
tt

ri
b

of
m

on
th

(g)

contact=unknown contact ∈ [telephone,cellular]

Figure 15: Marketing (Part 1). Lines are PDPs while points are SHAP values. The top row shows the ex-
planations when the background is set to the whole data distribution. The bottom row presents the regional
explanations extracted from a FD-Tree of depth 1.

D.3 Qualitative Results

D.3.1 Marketing

The Marketing dataset available on the UCI Repository4 describes the marketing campaign of a Portuguese
banking institution. Each instance corresponds to a distinct phone call and the binary label encodes whether or
not the client subscribed to a term deposit.

Figure 15 (top row) shows the global/local explanations of a GBT when the whole dataset is used as the
background distribution. We note strong disagreements between the PDP/SHAP/PFI global feature importance
of month, contact, and day. Moreover, the PDP local attributions are poor estimates of the SHAP values. These
results highlight the presence of strong interactions involving these three features. To reduce interactions and
increase agreement between post-hoc explainers, we partition the input space with a FD-Tree trained with PDP-
PFI loss. This loss was used since it dominates other losses on this dataset according to Table 2. The first split
of the tree separates contant=unknown from contact∈[telephone, cellular]. This was systematically the first
split for any FD-Tree. Figure 15 (bottom row) shows explanations on the two regions identified by the split.
We note that there are no longer strong disagreements w.r.t the importance of contact. Still, there remain
disagreements between the global feature importance of month and day when contact∈[telephone, cellular].

These two features are split upon when considering deeper FD-Trees, see Figure 16. Looking at the top-row
reveals that the next splits were made w.r.t month. As a result, the local feature attributions of day are starting
to highlight some interesting heterogeneity. The bottom row highlights more heterogeneity in the local feature
attribution of day given different month intervals. There are even sub-regions of contact∈[telephone, cellular]
where the PDP/SHAP local feature attributions have strong agreements: region 1.00 < month ≤ 5.00 and region
5.00 < month ≤ 7.00. For the two other sub-regions of contact∈[telephone, cellular] (region month ≤ 1.00
and region month > 7.00), the PDP remains a poor estimate of the SHAP values and hence it may be safer to
abstain from explaining those regions.

4https://archive.ics.uci.edu/dataset/222/bank+marketing

https://archive.ics.uci.edu/dataset/222/bank+marketing
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Figure 16: Marketing (Part 2). Lines are PDPs while points are SHAP values. From the top to the bottom row
we show the regional explanations extracted from a FD-Tree of depth= 2, 3.

D.3.2 Default-Credit

The Default-Credit dataset available on the UCI Repository5 aims at predicting if clients of a Taiwanese bank
will default on their credit. The data contains records of 30K individuals and 23 features related to past
payments/bills/delays and demographic characteristics.

Figure 17 (top row) shows the global/local explanations of a GBT when the whole dataset is used as the
background distribution. According to Figure 17 (a), the global feature importance of Delay-Sep, Bill-Sep, and
Bill-Aug disagree considerably. Additionally, as seen in Figure 17 (b) the PDP local attributions of Delay-Aug
is a poor estimate of the SHAP values. Both of these observations are caused by strong feature interactions.
To aim at reducing interactions, we partition the input space with a FD-Tree trained with CoE loss. The
corresponding first split differentiates not Delay-Sep from Delay-Sep. This first split was consistent across all
FD-Trees fitted on Default-Credit. Investigating Figure 17 (e), the regional feature attributions of Delay-Aug

depend heavily on whether or not there was a delay in September payments. In fact, the PDP of Delay-Aug

is an increasing function of Delay-Aug when there is no September delay. The PDP is a decreasing function
when there is a September delay. From Figure 17 (f), the regional attributions of Bill-Sep behave differently
near the origin depending on whether there was a delay in September payments. In fact, for individuals with a
delayed payment in September, the attribution of having a small September bill is extremely negative.

The next splits separate individuals with positive August bills from individuals with null (or negative) bills, see
Figure 17 (bottom row). We again note very diverse model behaviors depending on the region, especially for the
feature Delay-Aug, see Figure 17 (h). Given our limited knowledge of the data, we cannot fully explain these
complex model behaviors. Indeed, it is not clear to us why bills could be negative and what link that could have
with delayed payments. Yet, our goal with this analysis is not to demystify the Default-Credit dataset. Rather,

5https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients

https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
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Figure 17: Default Credit. Lines are PDPs while points are SHAP values. The top row shows the explanations
when the background is set to the whole data distribution. The middle row presents the regional explanations
extracted from a FD-Tree of depth 1. The bottom row illustrates regional explanations extracted via a FD-Tree
of depth 2.

it is simply to show that regional explanations extracted from FD-Tree leaves can highlight heterogeneous model
behaviors.

D.3.3 Kin8nm

The kin8nm dataset is a realistic simulation of the forward dynamics of an 8-link robot arm. The regression task
is to predict the distance of the end-effector from a target based on 8 input features representing angles from the
robot arm joints. Our knowledge of this dataset is extremely limited since we cannot interpret what each angle
represents. Nonetheless, this dataset was chosen because we hypothesize that it contains strong interactions
since the effects of varying an angle should depend on the other angles. As evidenced by Figure 12, there are
indeed strong interactions between certain angles. We go further and visualize the Shapley-Taylor attributions
φSHAP-T
ij (h,x) in Figure 18. Most interactions ressemble XOR functions where the effect of one angle changes

drastically if the other angle is positive or negative.

These strong interactions can also be observed if we compute global feature importance and local feature attri-
butions using the whole dataset as background, see Figure 19. Indeed, according to Figure 19 (a), the global
importance of theta4, 5, 6, and 7 are highly uncertain since various explainers give them drastically different
importance. Strong disagreements are also apparent in the PDP/SHAP local feature attributions in Figure
19 (b)-(c)-(d).

To reduce these disagreements we fitted a FD-Tree with the GADGET-PDP objective. Figure 20 shows the
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Figure 18: Kin8nm. Local Shapley-Taylor attribution for angles that interact most.
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Figure 19: Kin8nm part 2. (a) The global feature importance. (b)-(c)-(d) show the PDP (line) and SHAP
(points) local feature attributions.

global feature importance in each of the 8 regions identified by a FD-Tree of depth 3. We first note increased
agreement between the global feature importance in regions (b) and (h). However, there remain disagreements
in other regions. For example, the importance of theta4 remains uncertain in regions (c) and (e). This means
that 8 regions may not be enough for this dataset.

We also investigate local feature attributions in Figure 21. Crucially, the model explanations vary highly de-
pending on the region. For instance, the attribution of theta4 depends on whether or not theta6 and theta7
are positive or negative. For the other features, it is more difficult to see such a general trend emerge. But we
still observe very different behaviors depending on the region: sometimes the attribution increases, decreases, or
remains constant. This diversity of trends is hidden when using the whole dataset as the background.

.
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Figure 20: Kin8nm part 3. Feature Importance on the 8 regions identified by a FD-Tree.
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Figure 21: Kin8nm part 4. Local Feature Attribution on the 8 regions identified by a FD-Tree.
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Figure 22: California. The top row shows the global (a) and local (b)&(c) explanations when the background
is set to the whole data distribution. Lines are the local PDP while points are the local SHAP values. (d) The
state of California is split by a FD-Tree into four regions shown in color. The major cities of Los Angeles, San
Francisco, San Diego, and San Jose are shown as red stars. (e)&(f) The local PDP/SHAP explanations extracted
from these four regions.

D.3.4 California

The California dataset available on the Statlib Repository6 consists in predicting the median house value in a
California block from 1990. The input features involve demographic characteristics aggregated over each block
as well as the longitude and lattitude of the respective blocks. We present the results of fitting a GBT on
this dataset.

As highlighted in Figure 13, the strongest interactions involve features longitude and lattitude. In Figure
22 (a), we observe stronger disagreements regarding the global importance of these two features. Additionally,
according to Figure 22 (b)&(c), the PDP local explanation is a poor estimate of the SHAP values. Based on all
of these observations, it is difficult to explain the effect of each separate coordinate on the model. The impact
of varying longitude depends on lattitude and vice versa. Nonetheless, we hypothesize that FD-Trees can be
used to split up California into regions where the role of both coordinates is more additive.

We fitted a depth-2 FD-Tree with the PDP-PFI objective because it dominates the other objectives (Table 2).
All of the splits conducted by this tree were applied to the longitude and lattitude features. Consequently,
the tree leaves can be visualized over a map of California, see Figure 22 (d). Figure 22 (e)&(f) presents the PDP
and SHAP explanations whose background distribution is restricted to a single leaf. The disagreements between
the two explainers are greatly reduced as a result. As a final note, the large cities of Los Angeles, San Francisco,
San Diego, and San Jose are shown on the California map as red stars. Interestingly, each city belongs to a
separate FD-Tree leaf. This result is not a coincidence since these splits were consistent across various FD-Trees
trained on GBTs with the CoE and PDP-PFI objectives.

6http://lib.stat.cmu.edu/datasets/

http://lib.stat.cmu.edu/datasets/
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(a) On the whole test set. (b) On each of the two regions learned.

Figure 23: Partial dependence plots for load amplitude corresponding to two rpm on the feature Pressure altitude.
The shaded area represents the standard deviation, while the solid line represents the mean, namely the PDP
value. Histograms show the marginal distribution of the data for Pressure altitude.

E INDUSTRIAL USE-CASE: PITCHLINK LOAD PREDICTION

In this section, we provide a quick glimpse into the practical application of our methodology and techniques in
an industrial context. As a collaborative effort within the DEEL7 project, we worked in conjunction with experts
from Bell Textron to develop a machine learning model geared towards the prediction of pitchlink load signals.
These predictions are based on data obtained from the flight data recorder (FDR) during helicopter operations.
Pitchlinks are critical components of helicopters that are subjected to significant stress and necessitate frequent
inspections and replacements. Our primary objective throughout this project was to explore the potential use
of machine learning for load monitoring in real-world maintenance procedures.

The proprietary data collected by Bell Textron consists of many hours (about 74 hours in total) of load measure-
ments on a pitchlink along with 15 parameters typically collected by a flight data recorder (e.g. Pressure altitude,
Computed Airspeed, cyclic positions, ...). This time series data underwent preprocessing steps, including data
cleaning, normalization, and feature extraction, to ensure that it was in a suitable format for learning a model.
While we cannot divulge at this stage the exact preprocessing steps, these were tailored to take advantage of the
specific characteristics of the load signal for the purpose of machine learning.

Fully connected networks with ReLU activations were trained for a regression task using a proprietary labeled
dataset pairing FDR parameters with corresponding load signals. We assessed the models’ performance using
industry-standard metrics, such as Root Mean Square Error (RMSE), and others suitable for regression tasks.
These metrics helped us evaluate the models’ accuracy and reliability in predicting load signals during flights.

Our models exhibited significant promise in predicting load signals during helicopter flights based on FDR pa-
rameters. This has substantial implications for the potential use of machine learning in real-time load monitoring
for maintenance purposes. We emphasize that the feasibility of certification remains a critical step in confirming
its practical application. In particular, the European Union Aviation Safety Agency (EASA) in the Issue 2 of its
Concept Paper on Artificial Intelligence (AI) and Machine Learning (ML) (Agency., 2023) identifies the following
objective “EXP-03: The applicant should identify and document the methods at AI/ML item and/or output
level satisfying the specified AI explainability needs”. Focusing on global explanations for domain experts, we
find that our approach using FD-Trees provided useful insights into the model behavior that were not revealed
by other available methods. In particular, FD-Trees revealed that our model exhibits several interactions among
flight parameters. Moreover, FD-Trees led to the discovery certain flight conditions for which global explanations
of our model are more reliable.

In Figure 23, we present results of the analysis our models pertaining to the prediction of the amplitude of a
key frequency of the load signal. A feature importance analysis on the whole test set revealed that Computed
Airspeed, FCC1 Cyclic FA Pos and Pressure Altitude are among the most important features for predicting this

7https://deel.quebec

https://deel.quebec
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amplitude. As an example, we fitted a depth-1 FD-Tree using the CoE objective on a test sample of size 2048
that resulted in a split on the forward position of the cyclic control (FCC1 Cyclic FA Pos) at the value 62.87%.
We present the Partial Dependence Plots of Pressure Altitude in Figure 23. It appears that the dependence on
Pressure Altitude is more important when the cyclic control is tilted forward (value above 62.87%). Given that
FCC1 Cyclic FA Pos is strongly positively correlated with Computed Airspeed, this seems to suggest that the load
amplitude of this key frequency is more affected by Pressure Altitude when flying at high speed, an interpretation
that was validated by experts from Bell Textron.
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