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The physics of skyrmions, and in particular the issue of how to isolate and manipulate them
individually, is a subject of major importance nowadays in the community of magnetism. In this
article we present an in-depth extension of a study on this issue that was recently proposed by
some of the authors [H. D. Rosales, et al. Phys. Rev. Lett. 130, 106703 (2023)]. More precisely,
we analyse the competition between skyrmions and a chiral spin liquid in a model on the kagome
lattice. We first present an analytical overview of the low-energy states using the Luttinger-Tisza
approximation. We then study the effect of thermal fluctuations thanks to large-scale Monte-Carlo
simulations, and explore the entire parameter space with a magnetic field B, in-plane Dxy and out-
of-plane Dz Dzyaloshinskii-Moriya interactions. While skyrmions and the chiral spin liquid live in
different regions of the parameter space, we show how to bring them together, stabilizing a skyrmion
fluid in between; a region where the density of well-defined skyrmions can be tuned before obtaining
an ordered phase. We investigate in particular the melting of the skyrmion solid. Our analysis
also brings to light a long-range ordered phase with Z3 symmetry. At last, we initiate the study
of this rich magnetic background on conduction electrons that are coupled to the local spins. We
study how the different chiral magnetic textures stabilized in this model (skyrmion solid, liquid and
gas and chiral spin liquid) induce a topological Quantum Hall effect. We observe in the ordered
skyrmion phase the appearance of Landau levels which persist even in the skyrmion-liquid regime
and gradually disappear as the skyrmion density decreases to form a gas.

I. INTRODUCTION

Magnetic skyrmions have attracted great interest ow-
ing to their unique topological spin texture [1–6], espe-
cially for potential applications to next-generation mag-
netic memory and logic computing devices in spintron-
ics [7, 8]. In general, the formation of skyrmion lat-
tices arises from the interplay of competing interac-
tions. A variety of stabilizing mechanisms have been
well established over the years, starting from the com-
petition between the ferromagnetic exchange interaction
and the Dzyaloshinskii-Moriya (DM) interaction [9, 10],
to exchange frustration [11, 12], bond-dependent ex-
change anisotropy [13–21], the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction in itinerant magnets[22–25]
or higher-order exchange interactions[26]. Generally at
zero field, B = 0, the low-temperature physics favors
the development of a helical (H) phase characterized by
one-dimensional magnetic stripes. As the magnetic field
B increases from a low but finite value, these stripes,
through the superposition of multiple stripes along dif-
ferent directions, develop into a periodic arrangement of
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skyrmions (SkX). During the transition between the H
and SkX phases, the emergence of elongated skyrmions
known as bimerons is often observed [27]. Ultimately, at
high magnetic fields, the SkX phase undergoes a transi-
tion into a field-polarized (FP) regime.

The intermediate region between the SkX and FP
phases holds significant importance due to the intrigu-
ing presence of a dilute fluid of skyrmions. Typically, the
density of skyrmions can be manipulated at low temper-
atures by adjusting the field strength B which acts as an
effective chemical potential [28–30]. However, attempt-
ing to control the number of skyrmions with temperature
(by heating) is more challenging. Thermal fluctuations
do melt the SkX phase, but they eventually destroy the
skyrmions. In that sense, temperature does not really
tune the density of skyrmions but rather disintegrates
them into paramagnetic fluctuations. In a recent pub-
lication, we introduced a frustrated microscopic model
that effectively separates the SkX order from the param-
agnetic regime by introducing an intervening chiral spin
liquid (CSL) in between [31]. This CSL bears a finite
magnetization that couples to the magnetic field, sta-
bilizing the FP regime for lower fields at intermediate
temperatures. As a result, the FP regime circles around
the SkX phase, and the skyrmion density can now be
continuously tuned from high to low upon heating.

Our objective in the present manuscript is to conduct
an in-depth study of the model proposed in Ref. [31].
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Firstly, we analyze the low-energy physics using a
Luttinger-Tisza approximation. Then, through Monte-
Carlo simulations, we explore the entire phase diagram in
multi-dimensional parameter space, varying the in-plane
Dxy and out-of-plane Dz Dzyaloshinskii-Moriya interac-
tions as well as the magnetic field B, as a function of
temperature T . The chiral spin liquid and skyrmions live
in different regions of parameter space, and we explain
under which conditions these regions can be brought to-
gether. As a side benefit, we discover the presence of a
long-range order with Z3 symmetry. Then, focusing on
parameters where four distinct chiral magnetic textures
are successively stabilized upon heating (skyrmion solid,
liquid, and gas & chiral spin liquid), we characterize the
two-dimensional solid/liquid transition of skyrmions [28–
30]. Last but not least, we analyze the topological Hall
response of itinerant electrons coupled to the local mag-
netic moments to probe these different chiral phases. We
find the traditional topological quantum Hall effect in the
skyrmion-solid phase [32, 33] but also, and more surpris-
ingly, in the skyrmion-liquid regime despite the absence
of broken translational symmetry.

II. THE MODEL

We consider the following spin Hamiltonian on a
kagome lattice

H = −
∑
⟨ij⟩

J Si · Sj −
∑
⟨ij⟩

Dij · (Si × Sj)−B
∑
i

Sz
i(1)

where Si represents classical Heisenberg spins of unit
length (|Si| = 1) at site i, J > 0 (for simplicity, we will
fix J = 1 for the rest of the manuscript), the DM interac-
tion includes in-plane and perpendicular (to the lattice)
contribution as Dij = Dz

ij ẑ + Dxy
ij (see Fig. 1(a)), be-

ing Dxy
ij = Dxy r̂ij = Dxy(rj − ri)/|rj − ri|, and B is

the external magnetic field perpendicular to the lattice
plane.

In the kagome lattice, at B = 0, the model defined by
Eq. (1) exhibits a particular point in the parameter space.

When Dxy = 0 and Dz/J = ±
√
3, the ferromagnetic

(FM) coupling perfectly balances the Dz interaction. As
a result, the chiral “umbrella” and FM ground-state con-
figurations illustrated in Fig. 1(b,c) minimize the classical
energy for each triangle [34]. This leads to the spins’ xy
components displaying chiral-spin-liquid (CSL) behavior,
characterized by extensive degeneracy and algebraic cor-
relations, while the z components assume a finite uniform
value.

However, in the case of pure in-plane DM interaction
where Dxy > 0 and Dz = 0, the scenario undergoes
a significant change. A non-zero Dxy value promotes
the emergence of typical spin helical configurations, com-
monly observed in ferromagnetic materials, as well as the
formation of skyrmion phases for a finite external mag-
netic field. Thus, the interplay between these two types

of DM interactions is expected to give rise to exotic phe-
nomena. In our previous work [31], we initiated this
study by focusing on a combination of these cases, specif-
ically considering Dz =

√
3 and Dxy = 0.5. We demon-

strated the possibility of utilizing a CSL as an entropic
buffer to induce a quasi-vacuum of skyrmions. Building
upon these findings, our present study aims to further
explore this model and investigate the phenomenology
across a broader range of parameters.

FIG. 1. (a) kagome lattice and DM vectors. Labels 1, 2, 3
represent the three sublattices, (b) umbrella configuration in
a triangular plaquette (c) ferromagnetic configuration. Both
(b) and (c) states have the same out-of-plane magnetization.

III. THE LUTTINGER-TISZA
APPROXIMATION

To explore the low energy configurations in the ab-
sence of a magnetic field at zero temperature, we re-
sort to the LTA [35, 36]. In this approximation, the
local fixed spin-length constraint |Si| = 1 is replaced
by a global constraint

∑
j S

2
j = N , where N represents

the number of lattice sites. By introducing this softer
constraint, the spin Hamiltonian (1) can be diagonal-
ized using the Fourier transformation Sα

j =
∑

k e
ik·rjSα

k .
Here, α = x, y, z, while rj and k denote the position
and pseudo-momentum, respectively. Following the di-
agonalization process, the resulting spectrum within this
method consists of nine bands wk,a (a = 1, ...9, repre-
senting the three spin components and three sublattices)
and the lowest energy configuration is associated with
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FIG. 2. (a-e) Cut of the band structure obtained from the Luttinger-Tisza approximation (LTA) in momentum space for
(Dz, Dxy) = (a) (

√
3, 0) (pure chiral spin liquid) (b) (0, 0.5) (c) (0, 1.5) (pure skyrmion models), and (d) (

√
3, 0.2) (e) (

√
3, 0.3),

combination of CSL and pure skyrmion models. The bottom of each panel shows the position of the energy minima at Egs.
Panel (f) shows the energy difference ∆E between the energy minima and the degenerate flat bands as a function of Dxy, fixing
Dz =

√
3.

the bottom of the lowest band which defines the ordering
wave-vector k∗.

In Fig. 2 we summarize several cases of the model de-
fined in Eq. (1). Panel (a) shows the pure chiral spin

liquid case, (Dz, Dyx) = (
√
3, 0), which has the charac-

teristic lowest energy flat bands. In the “pure skyrmion”
model (Dz = 0), at lower values of the in-plane DM in-
teraction the lowest energy band has ring-like minima
for smaller Dxy, and a triple-k set appears as Dxy is in-
creased (panels (b) and (c)). The inclusion of Dz =

√
3

does not significantly change the bands’ minima (panels
(d) and (e)), but it introduces a flat band with energy
−2J . The energy difference ∆E between the minima and
the flat bands starts from zero (gapless) and smoothly
increases with Dxy (panel (f)). At low Dxy this differ-
ence is fairly small compared to the ground state energy
Egs, and thus we may expect a strong influence of the
chiral spin liquid physics at finite temperature. On the
other hand for higher Dxy, ∆E is significantly larger, so
we expect the chiral spin liquid effects to be erased. At
the particular value Dxy = 0.5, ∆E ≈ 0.2 ≈ 10%Egs,
which would be consistent with the evidence of chiral
spin liquid behavior at intermediate temperatures. Thus,
from this analysis we are able to predict the range of
Dxy where chiral spin liquid effects are visible in Monte
Carlo simulations: they would be dominant for low Dxy

and negligible for larger Dxy ≈ 1. At intermediate val-
ues, Dxy ≈ 0.3 − 0.6, an interesting interplay between
skyrmion and spin liquid physics can be expected. But
the LTA remains an approximation, which is why we shall
now turn our attention to Monte Carlo simulations in or-
der to confirm this analytical intuition.

IV. PHASE DIAGRAMS BY CLASSICAL
MONTE CARLO SIMULATIONS

Here we thoroughly investigate the proposed model in
Eq. (1) by exploring different parameter values of the DM
interactions and magnetic field, using extensive Monte-
Carlo simulations, with a combination of the Metropolis
algorithm and the overrelaxation method (microcanoni-
cal updates), lowering the temperature in an annealing
scheme. We performed our simulations in N = 3 × L2

site clusters, with L = 48 − 192, with periodic bound-
ary conditions. 105−106 Monte Carlo steps (MCS) were
used for initial relaxation, and measurements were taken
in twice as much MCS.
We first give a general overview of the competition

between chiral spin liquid (CSL) and skyrmion physics,
varying Dxy and Dz at zero field B = 0. Then, we de-
scribe in detail the emergent physics in the B − T phase
diagram that was presented in Ref. [31] for Dxy = 0.5.
The different magnetic phases are characterized via the
magnetization M = ⟨ 1

N

∑
i S

z
i ⟩ and the specific heat

Ch = (⟨E2⟩ − ⟨E⟩2)/T 2. Another convenient quantities
to identify various types of chiral states are the scalar
chirality χijk = Si · (Sj ×Sk) defined for each triangular
plaquette and, what is more appropriate to characterize
skyrmions states, the discretized scalar chirality defined
as [37]

χQ =
1

4πN
⟨
∑
i

Aijk sgn [χijk] +Aij′k′ sgn [χij′k′ ]⟩ (2)

where i, j, k (i, j′, k′) are the sites involved in the calcu-
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FIG. 3. (a) Dxy vs T phase diagram at B = 0, Dz =
√
3 (b,c) Ch and χQ vs T for different values of Dxy, Dz =

√
3 (d) Dz

vs T phase diagram at B = 0, fixing Dxy = 0.2 (e,f) Ch and χQ vs T for different values of Dz, Dxy = 0.2. Representative
snapshots for different phases at T = 2× 10−4 for Dxy = 0.2, 0.35, 0.5 (panels g-i), Dz =

√
3, and for Dxy = 0.2, Dz = 2 (panel

j). In panels (g-j) the scale in terms of lattice spacing (a) is indicated.

lation and Aijk is the local area spanned by three spins
i, j, k (and i, j′, k′) on every elementary triangle. In ad-
dition to these quantities computed from the local spins
{Si}, we introduce the plaquette spin, calculated as the
average spin in each elementary triangle (or plaquette),
ST
j =

∑
i∈

a
j ,

`
j
Si/3, with plaquette index j. Taking

into account that each type of plaquette defines a trian-
gular lattice, we also define the plaquette chirality χT

Q,
calculated by the triple product between plaquette spins
{ST

j }.

Finally, it is well known that the structure factor will
have distinct characteristics for the CSL phase (the pres-
ence of pinch-points [34, 38]) and for a skyrmion lat-
tice (six bright peaks or triple-k phase [4]). There-
fore, we have also calculated he static spin structure
factor, with components S⊥(k) and S||(k), perpendic-
ular and parallel to the external field respectively, de-
fined as S⊥(k) =

1
N

∑
a=x,y⟨|

∑
j S

a
j e

ik·r|2⟩ and S||(k) =
1
N ⟨|

∑
j S

z
j e

ik·r|2⟩, and the related plaquette variables,

ST
⊥(k) and ST

|| (k). As seen in the following section,

we will focus on the use of the plaquette variables at
Dxy = 0.5, to evidence the effect of the CSL physics.

A. In zero field B = 0

As we described in Sec. II, there are two disconnected
limits of the model presented in Eq. (1): (a) Dxy = 0

and Dz = ±
√
3, with the spins xy components display-

ing chiral-spin-liquid (CSL) behavior and (b) Dxy > 0
and Dz = 0 that promotes the emergence of typical
spin helical configurations, necessary for the formation
of skyrmion phases in a field. Let us see what happens
when moving from one limit to the other in zero field. In
Fig. 3 we present our simulation results, for lattice size
L = 48. The phase diagrams where constructed combin-
ing the specific heat, the nearest neighbor chirality and
inspection of the snapshots.
We first fix Dz =

√
3 and B = 0 (Fig. 3(a)), inducing

the CSL phase for Dxy = 0 with two clear signatures:
(i) the presence of the well-known “pinch points” in the
spin structure factor S⊥(k) at low-temperatures [34, 38]
and (ii) a specific heat Ch ≈ 5/6 < 1 (see Fig. 3(b))
which reflects the presence of soft-modes [39]. In the
context of the LTA, as presented in section III, the ini-
tial scenario occurs when the dispersive band intersects
with the lowest energy flat band, leading to the observa-
tion of pinch points [40, 41]. As the CSL is chiral, time-
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reversal symmetry in this phase is broken. In the absence
of any external magnetic field, it is then a spontaneously
broken symmetry, indicating a phase transition between
the paramagnetic and CSL phases. As explained in the
introduction, this broken symmetry only applies to the
z−component of the spins (out-of-plane magnetization);
the spin-liquid degrees of freedom are entirely in the
(Sx, Sy) plane [42]. For 0 < Dxy ≲ 0.35, from the LTA
analysis we expect strong CSL effects. Indeed, the CSL
phase persists at intermediate temperatures (Ch < 1),
until a sharp peak in specific heat arises at lower tem-
peratures, indicating a transition to a “labyrinth” phase
(see Fig. 3.(a,b,g)). This phase is similar to that found in
other chiral magnets [43–46], lacking a defining wavevec-
tor but clearly showing a scale in the “thickness” of the
labyrinth, which varies with Dxy. This competition be-
tween the CSL and labyrinth phases is consistent with the
LTA results presented in Sec. II; for low enough Dxy the
gap to the flat bands remains fairly small (see Fig. 2.(f)),
which means that the chiral spin liquid state may be ac-
cessed through thermal fluctuations. For Dxy ≳ 0.35,
the CSL region is suppressed and the system stabilizes
in a distorted helix (DH) phase, which gets smoother as
Dxy is increased (compare snapshots for Dxy = 0.35, 0.5
in panels (h,i)).

Starting from the other limit, we now fix Dxy = 0.2
and vary Dz. The resulting phase diagram is presented
in Fig. 3.(d). The helical order persists up to Dz ≈ 0.6.
For intermediate values, 0.6 ≲ Dz < 1.35, the com-
petition between in-plane and out-of-plane DM interac-
tions distorts the helical order and induces a labyrinth
phase, while CSL appears at higher temperatures for
1.35 < Dz ≲

√
3. Since the phase diagram of panel (d)

at Dz =
√
3 overlaps with the one of panel (a), we know

that the labyrinth phase must re-emerge at low tempera-
ture below the CSL (see the upper violet region). Finally,

for Dz ≳
√
3 the system goes into a q = 0 planar order

(see for example panel (j) in Fig. 3), due to the dominant
positive Dz term [42].

In a nutshell, it is possible to tune the system from
the chiral spin liquid to the helical phase, passing by
the labyrinth phase. In particular, the helical phase is
accessible, albeit distorted, for Dz =

√
3, which is the

closest in parameter space to the CSL. From now on,
we will only consider Dz =

√
3 (except briefly in section

IVC). Now that the zero-field physics is under control,
let us turn on the magnetic field to determine in which
parameter space we can find skyrmions.

B. The search of skyrmions in a magnetic field

To explore the emergence of skyrmions in a finite mag-
netic field, we investigate the cases of Dxy = 0.33 and
Dxy = 0.35 (dashed black lines in Fig. 3(a)). As seen, at
zero magnetic field, for Dxy = 0.33 there is a small CSL
region encroaching upon the labyrinth region at higher
temperature, which is not seen for Dxy = 0.35. We thus

FIG. 4. B vs T phase diagrams for Dz =
√
3 and Dxy = 0.33

(panel (a)) and Dxy = 0.35 (panel (b)) with representative
spin configurations (c-e) (lattice size L = 48). In panel (f)
we present the order parameter ϕ (scaled by system size N)
as a function of temperature for three different system sizes
L = 36, 48, 60 for Dxy = 0.35 and magnetic fields B = 0.045.
Panel (g) presents the evolution of ϕ as a function of the
magnetic field B showing a well-defined region where the FV
phase emerges. In panels (f) and (g) the error bars are the
size of the markers.

explore the behavior of the model for these two values
of Dxy in the presence of a magnetic field, to see the
effect of the zero-field CSL region in the formation of
skyrmions; in particular, if they can appear out of the
labyrinth phase, or if they require the more traditional
helical one [47]. In Fig. 4(a,b) we present the resulting
B vs T phase diagrams.

For Dxy = 0.33, the labyrinth phase persists at low
field (a representative snapshot is shown in Fig. 4(d)),
and then turns into a “frustrated vortex” (FV) phase,
which we describe in detail below, and at higher field it
goes into the field-polarized (FP) phase. This FP phase
is actually the magnetized evolution of the CSL that was
present in a small temperature window at B = 0, but
where the time-reversal symmetry is broken by the field
instead of spontaneously by a transition. The out-of-
plane spin components are magnetized when increasing
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B, but the in-plane spin components continue to sup-
port a noticeable chirality |χQ|, signature of the under-
lying CSL. As seen in the LTA analysis, for these val-
ues of Dxy the flat band, related to the CSL, is not far
from the minima, and thus is accessible through ther-
mal fluctuations and magnetic field. For Dxy = 0.35,
however, the labyrinth phase and the CSL are absent at
zero field. When increasing the magnetic field, bimerons
and skyrmions appear above the distorted-helical phase,
(Fig. 4(e)) before the labyrinth phase, which then evolves
into the FV phase.

The frustrated vortex phase is favored at higher fields,
but it gets smaller asDxy is increased until it disapears at
higher Dxy. As depicted in the snapshot in Fig. 4(c), the
xy components of the spin in the hexagons of the kagome
lattice form vortexes with alternating circulation. It is
easily seen that there is a Z3 symmetry breaking due to
the three possible tilings, which have a 3 × 3 hexagons
magnetic unit cell. These structures are similar to those
proposed in [48], but here the sense of the circulation is
fixed by the sign of the DM interaction. To identify this
phase, we calculate as an order parameter ϕ, the pla-
nar structure factor ϕ = S⊥(k

∗) at k∗ = (4π/3, 0) [48].
In Fig. 4(f) we illustrate MC results for ϕ/N as a func-
tion of T for three different system sizes (L = 36, 48, 60)
at Dxy = 0.35 and B = 0.045. The order parameter
ϕ jumps to a finite value below a critical temperature,
where the FV phase emerges. Furthermore, in panel (g)
we present ϕ as a function of B for Dxy = 0.35 at the
lowest temperature T = 0.0002, averaged over indepen-
dent copies, showing that ϕ distinguishes the FV phase
from the other ones.

The labyrinth phase at zero field thus seems to pre-
vent the apparition of skyrmions at finite field. This is
probably because the skyrmion crystal comes from multi-
q order, or in other words, from the interference pat-
tern of the stripes of spins oriented in multiple directions
[47]. In the labyrinth phase, these different orientations
can naturally co-exist in the same spin configuration (see
Fig. 3.(g,h)). More intuitively speaking, there is no need
for the interference pattern of the skyrmion crystal to
minimize the energy.

As a conclusion of this analysis, and combining the re-
sults from simulations and the Luttinger-Tisza approx-
imation, we understand the necessary balance on the
value of Dxy in order to support both the CSL and
skyrmion physics. On one hand, the LTA shows that we
need small values ofDxy to keep the energy gap of the flat
bands reasonable (see Fig. 2.(f)), and thus the physics of
the chiral spin liquid accessible to thermal fluctuations.
On the other hand, we also need Dxy to be large enough
to support a (distorted) helical phase at zero field; oth-
erwise, the presence of the labyrinth phase at low tem-
perature would prevent the apparition of skyrmions in
a field. Hence, we expect the competition between CSL
and skyrmion physics to be stronger at intermediateDxy.
Through the rest of this work, we fix Dxy = 0.5. Now, we

shall describe in detail the phase diagram of this model
in a field B.

C. Competition between skyrmions and a chiral
spin liquid

In order to quantify the influence of the spin liquid, it
is useful to know what happens in absence of it. To do
so, we compare our model (where Dz =

√
3) to a stan-

dard model for skyrmions (where Dz = 0). In Fig. 5 we
present B − T density plots for the magnetization, near-
est neighbor chirality, and plaquette chirality for both
Hamiltonians.
The Dz = 0 case presents the features of a typi-

cal skyrmion model. At low field is the helical phase,
with quasi-zero magnetization and chirality because the
stripes in the spin configuration bear alternatively pos-
itive and negative magnetization. As we increase the
field B, there is a jump in the spin and plaquette chiral-
ity and a gradual increase of the magnetization; this is
the region of the skyrmion crystal (SkX). The chirality
vanishes again when the magnetization saturates at high
field; this is the field-polarized (FP) phase.
The picture becomes noticeably different when Dz =√
3. The FP phase goes down at high temperature, cir-

cling around the skyrmion crystal, and accompanied by
a sharp increase of the spin chirality; χQ is 10 times big-
ger in this high-temperature FP regime than in the SkX
! This high-temperature FP regime is clearly not due to
skyrmions because the plaquette chirality χT

Q now be-
haves differently from the spin chirality χQ. This is due
to the CSL, where under a magnetic field the out-of-plane
spin components tend to be aligned with the field. As the
planar spins components in each plaquette are either chi-
ral or ferromagnetic (see Fig. 2), this structure is washed
out when adding the three spins in each plaquette to
calculate χT

Q. Therefore, we may identify an extended
chiral spin liquid region in the density plots by noticing
there is a large region at higher temperatures, starting
at intermediate fields, where χQ is quite large but χT

Q is
significantly smaller.
The phase diagram for Dz =

√
3 and Dxy = 0.5 is

given in Fig. 6(a), as determined in Ref. [31]. We sum-
marize the main results of Ref. [31] below:

(i) Helical (H): in Fig. 3(i) we show an example of a he-
lical phase, present at low temperatures and low fields.
(ii) Skyrmions + Bimerons (Sk+B): a very thin
metastable region characterized by a mixture of
skyrmions + bimerons [27, 49] (Fig. 6(c)) emerges be-
tween the helical and the skyrmion lattice phases.
(iii) Skyrmion Lattice (SkX): a typical skyrmion lattice
(Fig. 6(b)) is found at intermediate fields and low temper-
ature, matching the region where χT

Q is higher in Fig. 5

(bottom right panel). This phase is a superposition of
three spiral orders that preserves the C3 symmetry of
the lattice.
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FIG. 5. Magnetization M , first nearest neighbors chirality χQ and plaquette chirality χT
Q presented as density plots in B − T

phase diagrams for Dz = 0 (top) and Dz =
√
3 (bottom), fixing Dxy = 0.5 (lattice size L = 48). Please note the sharp increase

of chirality χQ when Dz =
√
3; the color scale is an order of magnitude higher than for Dz = 0.

FIG. 6. (a) B − T phase diagram obtained from MC simulations for Dxy = 0.5, Dz =
√
3, where there are helical (H), mixed

skyrmion and bimeron (Sk+B), skyrmion crystal (SkX), skyrmion fluid (SkF), bimeron glass (BG) and field polarized (FP)
phases, taken from Ref.[31]. (b-e) Typical real-space spin configurations obtained by Monte Carlo simulations on a N = 3×482

system size at different temperatures and magnetic field, illustrating various phases of panel (a). (f,g) Comparison of the two
phases where bimerons are found, i.e. the low-field Sk+B phase (f) and the high-field BG phase (g), as seen from their plaquette
chirality density per plaquette position. Bimerons are surrounded by dashed curves, showing that the chirality is stronger in
the extremities.

(iv) Field Polarized (FP): in this phase, as the temper-
ature is lowered, magnetic moments are further aligned

with the field, but the xy components retain the extended
degeneracy of the chiral spin liquid, as explained in sec-
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FIG. 7. Snapshots of spin configurations taken at different temperatures for our model at Dxy = 0.5 and Dz =
√
3 at fixed

magnetic field B = 0.09, for large system sizes (L = 96). Each panel is accompanied by the corresponding structure factors
S⊥(k) (top right) and ST

⊥(k) (bottom right), averaged over Monte Carlo time. S⊥(k) is the traditional magnetic structure
factor for the transverse (Sx, Sy) spin component. ST

⊥(k) is the same but the degrees of freedom are the total spin of each
triangular plaquette. In panels (b) and (f), we zoom in on a skyrmion (inset, above) and show how it looks like from the point
of view of the total spins per plaquette (inset, below). Please note that the Fourier space in panel (f) is smaller than the others;
it is zoomed in to emphasize the 6 Bragg peaks characteristic of the skyrmion lattice.

tion II.
(v) Skyrmion-Fluid (SkF): this phase can be qualitatively
separated in a dense, or skyrmion liquid phase (SkL) and
a dilute phase, dubbed skyrmion gas (SkG). Unlike the
SkF usually present at higher fields and low temperatures
in a typical skyrmion model (Dz = 0), this SkF phase is
found at higher temperatures, and skyrmions are found
on a chiral spin liquid background (Fig. 6(d)).
(vi) Bimeron Glass (BG): an intermediate phase between

the SkX and field polarized region emerges at lower tem-
peratures (Fig. 6(e)), which is not present when Dz = 0.
In Fig. 6(f,g), we present the plaquette chirality density
of the Sk+B and BG phases, illustrating that the chiral-
ity in bimerons is located in their extremities and that
bimerons in the BG phase are more extended.

A remarkable feature of our model is the formation of a
skyrmion gas at high temperature, emerging from a CSL
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FIG. 8. Spin configuration (top row), Delaunay triangulation (middle row) and structure factor Sq(q) (bottom row) for a
representative set of temperatures of the different regimes for D⊥ = 0.5, Dz =

√
3 and B = 0.09. Here it is the structure factor

of the position of skyrmions, given by Sq(q) = 1
NSk

∑
r e

−q·r ∑
i,j δ(r − rij) where the summation in r is over all skyrmion

positions, the summation in i, j is over all skyrmion pairs, and rij is the vector between skyrmions i and j. Figure taken from
Ref.[31], Supp. Material. (lattice size L = 192)

background. The difference with traditional skyrmion
models (e.g. when Dz = 0) is that the CSL provides
a large entropy to the field-polarized phase (FP). The
chirality χQ of Fig. 5 clearly illustrates how this en-
hanced entropy of the FP phase separates the param-
agnetic regime to the SkX order, imposing an interven-
ing region with quasi-zero skyrmions. This is how the
density of skyrmions becomes controllable with temper-
ature, even forming a diluted gas, before skyrmions are
destroyed by paramagnetic fluctuations.

In Fig. 7 we present several snapshots and their corre-
sponding spin-spin structure factor S⊥(k) and plaquette-
plaquette structure factor ST

⊥(k) (calculated with the
total spin per plaquette), at different temperatures for
B = 0.09. From panels (a) to (c) we see how well-defined
skyrmions start to emerge as T is lowered. The under-
lying CSL background is signaled by the characteristic
pinch points in S⊥(k), albeit broadened by thermal fluc-
tuations and the presence of skyrmions. As T is lowered
further, more skyrmions appear with no particular pat-
tern, but with distinctive changes in the structure factors
(panel (d)). Pinch points are replaced by “half moons”
[50–52], indicating the disappearance of the CSL. And
the circles of intensity in ST

⊥(k) become hollow circles,
whose radius indicates the apparition of a length scale,
typically the mean distance between skyrmions. These
bright circles, which strongly suggest a liquid-like behav-

ior, are still present as the lattice is more densely pop-
ulated by skyrmions (panel (e)), and disappear at the
lowest temperatures in favor of Bragg peaks when the
skyrmion lattice is formed (panel (f)). Given the rich va-
riety of emergent phases and their unique characteristics,
in the following section, we focus on carefully character-
izing this transition from fluid to solid.

V. FLUID TO SOLID PHASE TRANSITION

In this section we focus on the transition from the CSL
phase to the SkX phase, going through a skyrmion fluid,
and how the skyrmions “crystallize” at low temperatures.
For this purpose, we choose a region in parameter space
where several different phases emerged as the tempera-
ture was lowered, Dxy = 0.5, Dz =

√
3 and B = 0.09,

as discussed in Sec. IVC. An important fact to carry
on this analysis is that the individual skyrmions per-
sist throughout the whole melting process [53]. Apart
from a crystal/solid phase at low temperature and a fluid
at high temperature, a third intermediate hexatic phase
may emerge, characterized by short-range translational
order and quasi-long-range orientational order. However,
this is still an open problem with several scenarios de-
pending on the nature of model [28–30].
Here, by means of a combination of Monte Carlo al-
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gorithms (Metropolis and Heat-Bath), using large sys-
tem sizes (L = 96, 192), real-space identification of the
skyrmion positions, and a Delaunay triangulation, we
study the emergence of SkX tuning the temperature T .
To do so, we first assigned a real-value position to each
skyrmion in the lattice, computing it as the center of
mass of one individual skyrmion Ri =

1
n

∑
a∈Sk ra where

ra denotes the position of the n spins in skyrmion i, de-
fined as a contiguous cluster of spins with Sz < 0. Each
skyrmion i is surrounded by ni nearest neighbors deter-
mined by a standard Delaunay triangulation. Each near-
est neighbor j ∈ {1, ..., ni} sits at position Ri+ r⃗ij . If θij
is the angle formed between the x−axis and r⃗ij (see inset
in Fig. 9(b)), then we can define the local orientational
order parameter ψ6(Ri) [54],

ψ6(Ri) =
1

ni

ni∑
j=1

ei θij , (3)

which is a standard measure to quantify the emergence of
local hexagonal order in a 2D ensemble of particles. We
can also define the global orientational order parameter
as

Ψ6 =
1

N

N∑
i=1

ψ6(Ri) (4)

Then, the orientational correlation function G6(R) is de-
fined as:

G6(R) =
1

nR

∑
|Ri−Rj |=R

ψ6(Ri)ψ
∗
6(Rj) (5)

where the sum is over all nR particle pairs at distance R.
In addition, we introduce the translational correlation
function Gk(R) defined as

GK(R) =
1

6

6∑
a=1

1

nR

∑
|Ri−Rj |=R

ψka
(Ri)ψ

∗
ka
(Rj) (6)

where ψka
(Ri) = eik·Ri is the translational order param-

eter and ka (a = 1, ..., 6) are the reciprocal lattice vectors
determined by the positions of the first-order Bragg peaks
in the structure factor of the position of the skyrmions r,
given by Sk(k) =

1
NS

∑
R expik·R

∑
i,j δ(R−Rij), where

NS is the total number of skyrmions in the lattice. The
nature of the orientational and translational correlation
functions, whether they are short-ranged or quasi-long
ranged, together with the values of the exponents, will
be the key to classify the various phases.

Before exploring these parameters, we briefly recall
some relevant results from our previous work [31], to show
how the structure factor from the Delauney triangula-
tion (Fig. 8) and variables such as the specific heat and
the chirality (Fig. 9) behave in the different phases. In
Fig. 8 we show, on the first row, the real-space skyrmion
structures at five different temperatures and, on the sec-
ond row, the filtered particle configurations and corre-
sponding Delaunay triangulation. At low temperature

(T = 0.0009), the skyrmion crystal is stabilized in the
form of a triangular lattice, characterized by the well-
known six bright peaks in the structure factor. This lat-
tice gets distorted at higher temperatures, and the Bragg
peaks turn into a bright circle (T = 0.1152), suggesting
a fluid-type behavior, which broadens upon heating until
the lattice structure essentially vanishes. This disorder in
the positions of skyrmions is accompanied by a reduction
of their density, granting them more freedom to occupy
non-regular positions.

In Fig. 9, we compare the behavior of the skyrmion
density NS (normalized with N0, the number of
skyrmions at T → 0) with the thermally averaged ⟨|Ψ6|⟩
parameter. We can observe that ⟨|Ψ6|⟩ is saturated at low
temperature (crystal phase), and sharply decreases at Ts.
In this window of temperature (Ts < T < Tl), NS/N0

remains saturated to 1, and thus corresponds to a dense
fluid of skyrmions, or skyrmion liquid (SkL). NS/N0 then
drops from Tl to Tg, defining the region for the skyrmion
gas (SkG).

FIG. 9. Competition between the chiral spin liquid and
skyrmion solid at B = 0.09 as measured from: (a) the specific
heat Ch and magnetisation Mz, (b) the normalised number of
skyrmion NS and orientational order parameter Ψ6 of Eq. (4)
whose angle θij is defined in the inset. N0 is is the satu-
rated number of skyrmions for B = 0.09. (Figure taken from
Ref.[31])

In order to clarify and characterize the different phases
that emerge as temperature varies, in Fig. 10 we show the
calculated G6(R) and GK(R) and the corresponding fits
of its upper envelopes at different temperatures in log-log
scale. Following the theory proposed by the Kosterlitz,
Thouless, Halperin, Nelson and Young (KTHNY) [54–
57], we recall the expected behaviour of the correlations
in each type of phase:

• crystal phase: G6(R) → 1 and GK(R) → 1
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• solid phase: G6(R) → 1 and GK(R) ∝ R−ηK , with
ηK < 1/3.

• hexatic phase: G6(R) ∝ R−η6 , with η6 < 1/4 and
GK(R) ∝ e−R/ξK .

• liquid phase: G6(R) ∝ e−R/ξ6 and GK(R) ∝
e−R/ξK .

Figs. 10(a) and (b) show the G6(R) and GK(R) as a
function of distance R between skyrmions for different
temperatures. It can be seen that at the lowest temper-
ature (T/J ∼ 9 × 10−4), both the orientational and po-
sitional correlation functions are constant with skyrmion
distance and remain close G6(R) ∼ 1 and GK(R) ∼ 1, in-
dicating a crystal phase. By increasing the temperature,
G6(R) ∼ 1 while GK(R) follows an algebraic behavior
with ηK < 1/3, consistent with the characteristic quasi-
long-range positional ordering of a solid-like phase.

In Fig. 10(c) we show the evolution of the power-law
exponents η6 and ηK obtained from the fits of the local
maxima of the correlation functions at a given temper-
ature, in the range where an algebraic fit is adequate.
We observe that η6 increases rapidly when the temper-
ature approaches T ∼ Ts. This abrupt change is also
reflected in the parameter ⟨|Ψ6|⟩ (Fig. 9). At the tem-
perature T = Ts ∼ 0.0769 J , η6 crosses the specific value
η6 = 1/4, the upper bound for η6 if the system were in
a hexatic phase, which means we have entered the liquid
phase. However, for T < Ts, GK(R) decay as a power-law
with ηK < 1/3, as expected for a solid phase. This situ-
ation differs from the hexatic state in 2D systems, where
GK(R) is expected to decay exponentially at a large dis-
tance. A similar situation has earlier been studied in the
context of a vortex lattice in a Type II superconductor
[58]. This state could be an orientational glass (OG) with
a slowly decaying orientational order. At T ≈ Ts, the
structure factor presents a reduction in the peak ampli-
tude while the sharp peaks are widened, which is similar
to that characteristic of the hexatic phase (see Fig. 8,
bottom row). Nonetheless, the present results suggest
that the potential hexatic phase in our model is either in
a very narrow temperature range or non-existent.

For temperatures Ts < T < Tg, G6(R) presents short-
range correlations (Fig. 10(a)), while GK(R) ∝ R−ηK

(ηK ∼ 1/2). This phase corresponds to the fluid phase
with a characteristic widened ring distribution in the
structure factor (Fig. 8). Although for a fluid phase
short-range order for the translational correlations is ex-
pected, the present behavior for GK(R) can be under-
stood as follows: the crystal/solid phase presents well-
defined sharp peaks in the structure factor, while the
fluid phase supports a ring-like distribution of peaks with
homogeneous amplitude. Then, we must calculate the
average of GK(R) in the whole k−ring. If we write
k ·Rij = k R cos θkij in the definition of the translational
order parameter ψka

(Ri), then

FIG. 10. Orientational G6(R) (a) and positional GK(R)
(b) correlation functions as a function of the distance be-
tween skyrmions (R), calculated for a fixed magnetic field
B/J = 0.09 at different temperatures T . The dashed black
curves are typical fits of their local maxima to power-law or
exponential decay. (c) Temperature dependence of the power-
law exponents η6 and ηK .

⟨G|K|(R)⟩ =
1

2πk

∫ 2π

0

dθkij k GK(R)

=
1

2π

∫
dθk

(
1

6

6∑
a=1

1

nR

∑
R

cos(k R cos θkij)

)

=
1

2π

∫ 2π

0

dθk

(
2

nR

∑
R

)
cos(kR cos θkij)

∝ J0(k R) (7)

where J0(k R) is Bessel function of the first kind (n = 0).
This description is confirmed in Fig. 11 where we compare
the average value ⟨G|K|(R)⟩ in Eq. (7) to GK(R) from
MC simulations.
Finally, for temperatures T > Tg we have the chiral

spin liquid behavior discussed in the previous sections.
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FIG. 11. Positional correlation function calculated for
⟨G|K|(R)⟩ (dashed black line) and GK(R) from MC simu-
lations at fixed magnetic field B/J = 0.09. For both temper-
atures the system is in the SkG phase.

VI. ROTATION OF THE HAMILTONIAN

When Dxy = 0, the ground state of Hamiltonian (1)
is the chiral spin liquid, where each triangle is either fer-
romagnetic or an umbrella state with a fixed magnetic
chirality imposed by the sign of Dz [34] (see Fig. 1(b,c)).
It has been shown that this Hamiltonian can be mapped
exactly onto a specific point of the XXZ model on the
kagome lattice [34], without any DM interaction. Since
the mapping is exact, the ground state of this XXZ
Hamiltonian is an equivalent spin liquid, but where all
triangles are in an umbrella state, with either positive
or negative magnetic chirality; our chiral spin liquid has
thus lost its magnetic chirality. And since the mapping
is a rotation of in-plane spin components (different for
each kagome sublattice), the out-of-plane magnetic field
is invariant. When applying this mapping to our present
model with finite Dxy, we thus obtain an XXZ model in
a magnetic field, with rotated in-plane DM interactions,

Hrot = 2|J |
∑
i,j

(
S⊥
i · S⊥

j − 1

2
Sz
i S

z
j

)
(8)

+
Dxy

2

(
−Sx

i S
z
j + Sz

i S
x
j

)
−
√
3

2
Dxy

(
Sy
i S

z
j + Sz

i S
y
j

)
−B

∑
i

Sz
i .

Here it is important to understand that since the trans-
formation between Hamiltonians (1) and (9) is exact and
conserves the spin length, the energy spectrum of these
two models is the same; it is only the corresponding eigen-
states (i.e. spin configurations) that are transformed by

FIG. 12. Top: Comparison of specific heat (a), nearest neigh-
bor chirality χQ, third nearest neighbor chirality χN3

Q and

plaquette chirality χT
Q (b) as a function of temperature for

the original (Eq. (1)) and rotated (Eq. 9) Hamiltonians. (c)
Low-temperature spin configuration of the SkX lattice (left)
and for each sublattice (right). Comparison of the magnetic
structure factor S⊥ in the spin-liquid regime at T = 0.1853
between the (d) original and (e) rotated Hamiltonians. All
data have been measured for Dxy = 0.5 and B = 0.09 (lattice
size L = 48).

the mapping. It means that the phase diagram of Hamil-
tonian (9) is the same as in Fig. 6, albeit with differ-
ent magnetic textures. For example, the specific heat is
the same between the two models in Fig. 12(a), but the
magnetic chiralities in Fig. 12(b) are different. The spin
chirality χQ is much lower at high temperature for the
rotated Hamiltonian (9) because the spin liquid is not
chiral anymore; there are as many umbrella states with
positive than with negative chirality ion average. And the
in-plane spin components of the umbrella states always
have zero magnetization; the plaquette magnetization is
thus only along the z−axis and the plaquette chirality
χT
Q is necessarily zero.
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This mapping nonetheless raises the question of
skyrmions. Thermodynamically, there must be phases
equivalent to the skyrmion solid and fluid in the phase
diagram, but the form of their magnetic texture after
transformation is less straightforward. The presence of
skyrmions can be measured by the third-nearest-neighbor
chirality χN3, where we see that both models give the
same result in Fig. 12(b). This is confirmed by looking
at snapshots of spin configurations in Fig. 12(c), where
we show that the transformation simply changes the he-
licity in each sublattice. Finally, the magnetic structure
factor S⊥ of the spin liquid changes from ferromagnetic
to antiferromagnetic pinch points in Fig. 12(d,e), as was
measured in Ref. [34].

In summary, we have shown here that all the physics
developed in this paper does not necessarily requires an
out-of-plane Dzyaloshinskii-Moriya term, but can also be
obtained in a simple XXZ model on kagome.

VII. HALL CONDUCTIVITY OF CHIRAL
MAGNETS

Itinerant electrons are especially useful probes for chi-
ral magnetic textures and have a long history with frus-
trated magnetism [59–62], especially on the kagome lat-
tice, due to the natural occurrence of scalar spin chirality
in this geometry [63–66], even if virtual [67] or attached
to antiferromagnetic order [68, 69], spin liquids [70–72]
and more recently to Fe3Sn2 [73]. The unconventional
electron conduction properties of skyrmion systems have
also attracted a rather intense effort over the past years,
especially related to anomalous and topological Hall ef-
fects (THE) [15, 32, 33, 74–82]. In this section, we ad-
dress how the competition between the chiral spin liquid
and skyrmion phases (gas, liquid and solid) leads to dif-
ferent types of THE, focusing on the parameter set of
Dxy = 0.5, Dz =

√
3 and B = 0.09 where all these chiral

phases are stable.

A. The Kondo lattice

To describe the coupling between the itinerant elec-
trons and magnetic textures, we consider the classical
Kondo lattice Hamiltonian, which has been widely used
to address the transport properties of the electron-spin
coupled systems[83–87]:

HK = Hkin +Hint +H, (9)

where H is the Hamiltonian of Eq. 1 between localized
moments, and{

Hkin = −t
∑

⟨ij⟩,s(c
†
iscjs + c†jscis),

Hint = −JK
∑

i si · Si.
(10)

Here, Hkin is the kinetic energy of itinerant electrons:

c†is(cis) is a creation (annihilation) operator of an electron
at a site i and spin s. The summation over ⟨ij⟩ is taken
over the nearest-neighbor pairs of sites. The electrons
interact with the localized moments through the Kondo
coupling represented by Hint, where Si = (Six, Siy, Siz)
is a classical localized moment defined at a site i on the
kagome lattice, and si ≡ 1

2c
†
isσss′cis′ is an electron spin,

with σss′ , the vector notation of Pauli matrices. Note
that we do not consider the direct coupling of itinerant
electrons with the external magnetic field B. As a trans-
port property of the system, we focus on the Hall con-
ductivity, which is obtained from the Kubo formula, as

σxy =
2π

V

∑
m,m′

(f(Em)− f(Em′))

× Im(⟨m|Jx|m′⟩⟨m′|Jy|m⟩)
(Em − Em′)2 + 1/τ2

. (11)

Here, σxy is given in unit of e2/h. V is the volume
(area) of the system. In Eq. (11), |m⟩ is the one-particle
eigenstate of the Hamiltonian (9), and Em is the corre-
sponding eigenenergy labeled in ascending order, namely
Em ≤ Em+1. Jν is the current operator in ν direc-
tion, and 1/τ is a dumping rate due to non-magnetic
impurities, which are implicitly assumed. We consider a
clean system, and set the damping rate 1/τ to be small,
1/τ = 0.001. As we are generally interested in the low-
temperature transport compared with the electric energy
scale, we assume a low temperature ∼ 0.01t, which allows
us to connect the chemical potential µ and the total num-
ber of electrons Nel as µ ≃ 1

2 (ENel−1+ENel
), in the Fermi

distribution function f(ε).
As to the coupling constant JK, we set JK = 100t,

which is almost the strong-coupling limit, JK → ∞,
where we expect the influence of magnetic texture on
the transport to be the clearest. We mainly focus on
the region of small electron density n, even though we
present results for all range of n. In general, itinerant
electrons mediate the effective interactions between lo-
calized spins. However, in the strong-coupling limit, the
energy scale of effective interaction is small in the low-
density region Jeff ∝ nt. Accordingly, we can exclude
the possibility that the presence of electrons alters the
magnetic structure due to the localized part H. With
this assumption, we obtain the Hall conductivity as a
sample average of σxy over 120 configurations of {Si},
obtained from Monte Carlo simulations of Hamiltonian
H at different temperature, T .

B. Hall conductivity in each phase

As we discussed in Sec. IVC, the competition between
skyrmions and a chiral spin liquid results in a rich phase
diagram for the parameter set of Dxy = 0.5, Dz =

√
3

and B = 0.09, as is evident in Fig. 6 and Fig. 9. We
here address the behavior of Hall conductivity in each
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FIG. 13. Temperature dependence of Hall conductivity for
n = 0.001, 0.005, 0.01, and 0.02, compared to the evolution of
the specific heat. Characteristic temperatures are indicated
by arrows.

phase. To this aim, from the high-temperature side,
we define the characteristic temperatures, TFP = 0.430,
Tg = 0.229, Tl = 0.109, and Ts = 0.065 below which
the field polarized state containing the chiral spin liquid
(FP), skyrmion gas state (SkG), skyrmion liquid state
(SkL), and skyrmion crystal state (SkX) are respectively
realized.

In Fig. 13, we show the overall temperature depen-
dence of Hall conductivity σxy at several small electron
densities, n = 0.001, 0.005, 0.01 and 0.02, together with
the specific heat. As shown here, σxy shows larger val-
ues for larger n in the whole temperature range, and
at low temperatures, σxy is approximately proportional
to n, as we discuss in more details later. The tempera-
ture variation of σxy shows several characteristic features.
Upon cooling from high temperature, σxy starts to show
a gradual increase around TFP, as seen more clearly for
n = 0.02. Then σxy turns to a rapid increase when en-
tering the skyrmion fluid below Tg, while no conspicuous
change is found at the boundary between the skyrmion
gas and liquid. Finally, at the transition to the SkX phase
at Ts, a small kink appears in σxy.

To understand the behavior of the Hall conductivity in
each region, we now plot the doping dependence of σxy
at several temperatures in Figs. 14. Please note that in
the limit of JK → ∞, σxy satisfies the symmetry relation:
σxy → −σxy when changing n → n + 1

2 . We will thus
only consider doping values, 0 < n < 1/2.

Fig. 14(a) shows the evolution of σxy at high tempera-
ture for T > Tg. As mentioned previously, σxy gradually
starts to grow below TFP. Even though its magnitude
remains small, the Hall conductivity displays large error
bars in this region. Since these curves are obtained after
sample averaging over 120 spin configurations obtained
from Monte Carlo simulations, these large error bars in-
dicate a strong sample dependence in the chiral spin liq-

FIG. 14. Hall conductivity σxy as a function of doping n
(top) around TFP, (middle) between Tg and Tl, and (bottom)
around Ts. Please note that the different scale of longitudinal
axis in the top panel. For the guide to eye, we draw vertical
dashed lines to indicate n = 1/6 and n = 1/3, and horizontal
dashed lines to indicate the quantized Hall conductivity.

uid. This might be because umbrella states (with scalar
chirality) and ferromagnetic states (without scalar chiral-
ity) are equiprobable in the spin-liquid ground state [34]
(see Fig. 1); their relative ratio may thus vary a lot from
one sample to the other. This sample dependence van-
ishes at n = 1/6 where σxy exhibits a quantized value of

e/h. Since n = 1/6 corresponds to band touching in the
tight-binding spectrum on the kagome lattice at JK = 0,
this quantum Hall effect is a consequence of the degen-
eracy lift and gap opening when the Kondo coupling to
the spin texture JK is turned on. More precisely, the
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quantization of the transverse conductivity at n = 1/6 is
consistent with the spin scalar chirality of the umbrella
states in the chiral spin liquid, generating a Berry cur-
vature responsible for the topological Hall effect [63, 64].

Fig. 14(b) shows σxy inside the skyrmion fluid phase,
Tl < T < Tg, where the error bar is suppressed, indi-
cating little sample dependence. σxy shows a quick and
monotonic evolution upon cooling, approximately 50-fold
between Tg and Tl.

Finally, Fig. 14(c) shows σxy around the SkX phase.
Across the transition point of the skyrmion ordering, σxy
seems to exhibit a rather gradual increase. Inside the
SkX phase, σxy continues to grow slowly as decreasing
temperature and saturates at low temperature. From
the smooth evolution of Fig. 14(c), it is unclear how the
kink of Fig. 15 appears at Ts. This is because we need to
zoom in at the low doping behavior of σxy.

C. Landau level formation without skyrmion
crystallization

Indeed, Fig. 15 shows that at low doping, σxy increases
smoothly in the skyrmion gas (T = 0.135) but develops a
step-like behavior upon cooling, which is especially clear
in the SkX phase (T = 0.027). The edge of the plateau

corresponds to quantized value of σxy = n e2

h where inte-
ger n changes by 1 between neighboring plateaus. Addi-
tionally, the jump between plateaux occurs when n is the
integer multiple of skyrmion density nSk ≡ 2.2425×10−3.
In the SkX phase for our Hamiltonian parameters, the
number of skyrmions is 31 in the systems of 48× 48× 3
sites. This feature naturally explains the origin of the
kink at Ts where each skyrmion is the source of an emer-
gent magnetic field [6].

To understand the microscopic origin of this step-like
behavior, we plot the averaged density of states (DOS) in
the lower band in Fig. 16, with properly shifted energies
depending on n. The DOS shows oscillatory behavior as a
function of the energy, especially in the SkX phase. As a
result of the DOS oscillations, the integrated DOS shows
a step-like behavior whose jumps are consistent with the
width of the plateaux in Fig. 15, nSk. This implies that
the step-like behaviour of σxy can be attributed to the
oscillations in the DOS.

Presumably, the oscillation of DOS in the SkX phase
may not be surprising [32, 33], since the skyrmions ex-
hibit periodic ordering, which explicitly breaks the trans-
lational symmetry of the kagome lattice. As a result
of this translational symmetry breaking, the electric
states are decomposed into skyrmion subbands. If each
skyrmion subbands has the Chern number ν = 1, σxy
would show a step-like behavior, as shown in Fig. 15,
and each plateau should be quantized as an integer mul-

tiple of e2

h . Moreover, the jump of the integrated DOS
corresponds to the number of the states contained in one

FIG. 15. (a) Hall conductivity σxy as a function of doping
n for T/t = 0.1351, 0.0798, and 0.0278, which correspond to
SkG, SkL, and SkX regions, respectively. The electron den-
sity n is scaled with the skyrmion density nSk ≡ 2.2425×10−3

of the SkX phase. Namely, n/nSk = 1 means an electron den-
sity just filling up the lowest skyrmion band. (b) Derivative
of σxy with respect to doping n. The Hall conductivity quan-
tization appears as peaks in the SkX and SkL regimes, but
disappears in the SkG region (except for a weak signal at very
low doping). The change of periodicity of the peaks between
the SkX and SkL is due to the decrease of skyrmions with
temperature.

subband, which precisely corresponds to the electron den-
sity of nSk.

What is remarkable in Fig. 16 is that the DOS oscil-
lations persist even above Ts = 0.065, in the skyrmion
liquid. Reflecting this oscillatory character of DOS, σxy
also shows rounded but nonetheless distinctive steps at
T = 0.080. In other words, there is a signature of sub-
band formation in the electric state without translational
symmetry breaking in the magnetic state!

As an origin of the subband formation, it is interesting
to point out the role of Berry phase arising from the
coupling of itinerant electrons to the disordered magnetic
texture of the skyrmion fluid. In the strong coupling
limit: J → ∞, when an itinerant electron moves around
a triplet of spins, it acquires the Berry phase Φ = Ω

2 ,
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FIG. 16. A set of one particle electron density of states (DOS)
is shown for several temperatures across Ts and Tl. To facil-
itate the comparison of oscillation amplitudes, we shift en-
ergies to each curve to place the lowest peak at the same
position. After this shift, we set the origin of the energy near
the band bottom. We also show the accumulated density of
states at T = 0.0278. The thin horizontal lines are integer
multiples of nSk to compare with the accumulated DOS.

where Ω is the solid angle spanned by the triplet of the
spins. It means the presence of one skyrmion generates
the effective magnetic field equivalent to one magnetic
flux quantum.

Accordingly, if the effective magnetic field is uniformly
distributed, one Landau level is formed per one skyrmion.
We expect it is actually what happens in the SkL phase.
The assumption of uniform effective magnetic field is,
however, far from trivial. The translational symmetry
in the skyrmion fluid phase is obtained after the sample
average. Each spin configuration suffers a strong spatial
variation of the effective magnetic field, which may de-
stroy the equally-spaced Landau level structure. Indeed,
in the skyrmion gas phase, Landau levels do not appear
to exist, as DOS lacks the oscillatory components (See
T = 0.135 of Fig. 16).

Presumably, in the SkL phase, the highly packed na-
ture of skyrmions, as is implied by the saturation of
skyrmion density [Fig. 9], leads to the suppression of the
fluctuation of the effective magnetic field. In contrast,
in the SkG phase, loosely placed skyrmions may result
in a random distribution of effective magnetic field, and
makes it difficult to form Landau levels.

So far, electric response of skyrmion fluid states has
not been well explored, in contrast to abundant stud-
ies on the skyrmion crystal case. Our study reveals two
important aspects of electric transport in the skyrmion
fluid phase. Firstly, the Berry phase from the magnetic
texture induces the Landau levels. And secondly, packed
configurations of skyrmions might be necessary for the
equally-space Landau levels to be actually observable.
These findings will give insights into this nontrivial spin-

electron coupled state and will be useful to further stud-
ies.

VIII. CONCLUSION AND PERSPECTIVES

In this work we have extensively studied a magnetic
model with an extremely rich variety of relatively uncon-
ventional phenomena. Starting from a model defined in
the kagome lattice with isotropic couplings and an unidi-
rectional DM interaction, which is known to host a chiral
spin liquid phase, we investigated the effect of a perpen-
dicular DM term and a magnetic field. Depending on the
values of each parameter, we found an extremely rich be-
havior of the system which can be summarized in figures
3, 4 and 6.
We first analyze the purely magnetic system with the

LT approximation. The main result with this approach
is that for small in-plane DM interaction (Dxy), the en-
ergy gap between the minima and the flat band associ-
ated with the chiral spin liquid remains relatively mod-
est in comparison to the ground state energy, suggesting
a substantial impact of chiral spin liquid physics at fi-
nite temperatures. Thus, we resort to large-scale Monte
Carlo simulations to incorporate thermal fluctuations
and broaden the exploration in parameter space. The
zero field behavior is already quite rich, with a dubbed
labyrinth phase, distorted helices order, and a chiral spin
liquid. In the presence of an external magnetic field, a
large variety of additional phases unfolds. When the in-
planeDxy is limited to a narrower range, we identify a re-
gion where a frustrated vortex phase emerges exhibiting
long-range order and spontaneous breaking of Z3 symme-
try. Regarding skyrmion textures, for large enough Dxy

we have identified three different phases, liquid, solid,
and crystalline, according to the long-range behavior of
positional and orientational order parameters. On top of
the skyrmion crystalline phase lies a bimeron glass phase
whose study goes beyond the scope of the present work
but certainly deserves further investigation as another
horizon for a very rich phenomenology, this time in the
subject of slow dynamics and out-of-equilibrium physics.
As magnetic chiral structures induce interesting be-

haviors in itinerant electrons, the rich variety of chiral
phases found in this model motivated our investigation in
this direction. We studied a Kondo-lattice Hamiltonian,
where the non-zero but relatively low measured Hall con-
ductance in the chiral spin liquid phase sees a dramatic
rise once the skyrmions start to form until reaching a
very high level in the dense skyrmion phase. At the crys-
talline phase, the Hall conductance shows a steplike be-
havior indicating the formation of band with non-zero
Chern number which originates from the larger periodic
structure of the skymion Crystal. This can be easily seen
in the plot of the DOS as the function of the filling where
distinctive oscillation of quasi-band structure shows up.
What is remarkable is that the DOS oscillations persist
even in the skyrmion liquid phase, indicating that there
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is a signature of subband formation in the electric state
without translational symmetry breaking in the magnetic
state.

It is quite surprising that a relatively simple model,
such as the one studied here, can give rise to such a spec-
tacular variety of phenomena, some of which would de-
serve further investigation. The issues of the dynamics
in the bimeron glass as well as the behavior of the Hall
conductivity of itinerant electrons in all these phases cer-
tainly open promising perspectives for future studies.
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