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ABSTRACT

3D ultrasound reconstruction allows physicians to explore a region
of interest (ROI) in 3D while leveraging the advantages of 2D ul-
trasound imaging: simple, low cost and non-ionizing. It may assist
many clinical tasks, such as organ measurement, procedure control
or visualization of tissues difficult to interpret through 2D visualiza-
tion. Recently, new deep learning techniques in the field of novel
view synthesis, based on a continuous description of the 3D field,
showed promising results in terms of 3D model estimation, robust-
ness to noise and uncertainty, and efficiency. Inspired by these ap-
proaches, the objective of this work is to propose a 3D ultrasound
reconstruction method based on neural implicit representations. Re-
sults on simulated and experimental data show the superiority of
the proposed method compared to state-of-the-art voxel-based re-
construction.

Index Terms— Ultrasound reconstruction, neural implicit rep-
resentation, 3D ultrasound imaging, unsupervised deep learning

1. INTRODUCTION

Ultrasound imaging is one of the most used medical imaging modal-
ities, due to its relatively low-cost, ease-of-use and non-ionizing na-
ture. The standard procedure in most clinical applications is to ac-
quire temporal series of 2D images, i.e., slices, of the examined tis-
sues. This considerably limits the ability of ultrasound imaging to
represent the 3D geometry of organs, and motivates an intensive lit-
erature on 3D ultrasound imaging. 3D ultrasound volumes could
represent a powerful tool to assist physicians in number of appli-
cations such as, for example, organ volume measurement [1], med-
ical procedure assistance [2] or fetal examination. 3D ultrasound
imaging can be obtained through several techniques: the most usual
are based on mechanically-driven moving 1D arrays, or 2D arrays.
However, the first option results into low-rate volumes and low-
functionality, while the latter suffers from technological limitations
related to the high channel count and limited field-of-views.

An alternative to the above-mentioned solutions is to reconstruct
3D ultrasound volumes from a collection of 2D slices acquired by
moving manually a 1D ultrasound probe. To perform such a recon-
struction, the position of each 2D image in space needs to be known.
Three main approaches are usually employed to obtain these posi-
tions: mechanical guiding of the probe [3], computation of the rela-
tive position of the slices [4] or tracking the probe using six degrees
of freedom (6DOF) position sensors, e.g., optical or magnetic track-
ers [5]. The particular interest of the latter has been shown in a
number of applications (e.g. [6–8]).

In this work, we consider the challenging problem of US vol-
ume reconstruction from freehand 2D slices acquired by a 1D probe
whose position is tracked by a magnetic 6DOF sensor attached
to it. Since the seminal works on 3D ultrasound reconstruction,

voxel grids have been adopted as the basis of most reconstruction
methods [5, 9]. They can be classified in three categories: pixel-
based (PBM), voxel-based (VBM) and function-based methods
(FBM). Their main challenges are related to their real-time capa-
bilities [9], the difficulty to fill large gaps in data, or to overcome
ultrasound imaging limitations such as low spatial resolution and
signal-to-noise ratio, or variable depth penetration of the ultrasound
waves [6, 10]. PBM usually consist in two steps: bin-filling and
hole-filling [11]. In the bin-filling step, the pixel values of each
input 2D image are assigned to one or multiple voxels of the 3D
volume, based on their position. In the hole-filling step, the voxels
with no value assigned are filled using various methods such as fast
marching [12] or olympic filling [11].

In contrast to PBM, VBM directly assign a value to each voxel
of the volume of interest (VOI) based on the neighboring input im-
ages. This approach has the advantage of creating a fully filled 3D
grid in one step and is the most common method in 3D ultrasound
reconstruction [5]. However, VBM are usually sensitive to noise
and spatial inconsistency, i.e., widely separated inputs or region im-
balance. The most standard VBM algorithm is the voxel-nearest
neighbor (VNN) [13], which assigns to each voxel the value of the
closest pixel in the dataset. Complementarily, the distance-weighted
(DW) [13, 14] method aggregates the values of multiple near pixels
and weight them using their distance, allowing a smoother and more
robust reconstruction.

Finally, FBM use the input dataset to estimate functions that de-
scribe the values of each voxel in the VOI. Commonly used func-
tions range from polynomial to radial basis functions and Bézier
spline [15]. Less commonly used in ultrasound imaging, FBM suffer
from large computational time [9], but benefit from strong properties
in regard to robustness to noise or missing data.

The objective of this paper is to propose an unsupervised deep
learning approach for 3D ultrasound reconstruction. We took inspi-
ration from the neural implicit representations (NIR), a family of ap-
proaches that learn volumetric functions from 3D samples [16, 17].
To the best of our knowledge, only two approaches have been pro-
posed to adapt this concept to 3D ultrasound reconstruction [18,19].
They are both based on a specific variant of NIR called neural ra-
diance field (NeRF). NeRF-based networks learn a field of radiance
that is used by a rendering engine (integration along the view direc-
tions) to generate novel views. Li et al. compared the results of a
direct application of NeRF to the standard VNN algorithm for the
creation of a spine volume to evaluate spine curvature [18]. Wysocki
et al. used the output of a NeRF network as multiple parameters to
render an ultrasound slice using a simulation process, and used those
learned parameters to re-slice the volume [19].

This paper is organized as follows. Section 2 summarizes the
concept of NIR. Section 3 describes the proposed method and the
process of collecting the data. Section 4 regroups the simulated and
experimental results, before reporting perspectives and conclusions.



2. NEURAL IMPLICIT REPRESENTATIONS

In the field of computer graphics, novel view synthesis consists
in rendering a new points of view of a scene known only through
other images. Recent works, based on the concept of implicit
neural representations [16] and sinusoidal representation networks
(SIRENs) [17], use deep learning to associate a set of parameters
to any point of the scene through the example images. Using an
algorithm such as ray marching [20], it becomes then possible to
render an image from a new point of view using those parameters.

The forefront work in this field is neural radiance fields [21]
(NeRF), which learns color and density associated with the position
and view angle of any point in the scene. The density learned can
then be used as a side product to estimate the underlying objects
present in the scene. Moreover, some works extended this idea and
pushed towards learning parameters used for volume reconstruction,
such as neural implicit surface [22] (NeuS), which learns a signed
distance field to better fit the objects of the scene.

One of the drawbacks of NeRF-based networks is their com-
putational load, representing tens of hours of learning before con-
vergence. However, with the introduction of instant neural graphic
primitives [23] (instant NGP), which present a new data structure to
accelerate learning, the computational time can be reduced by sev-
eral orders of magnitude, i.e., from hours to seconds for comparable
results [24].

3. MATERIAL AND METHOD

3.1. Overview

Inspired by neural implicit representations, we propose a formula-
tion of the ultrasound volume reconstruction problem as the opti-
mization of a 3D function (see Eq. (2)), and leverage deep-learning
mechanisms and previous work on neural representation to approach
the optimum. In the case of the freehand ultrasound volume re-
construction, different challenges compared to novel view synthe-
sis arise, such as high speckle noise in the input data or shadowing
due to ultrasound wave attenuation in tissues. The proposed frame-
work aims at mitigating these challenges through the choice of the
network and learning scheme.

In the seminal works on novel view synthesis methods using
deep-learning, three main stage are usually identifiable: network ar-
chitecture and training, output usage and data embedding. In this
work, we focus on volume reconstruction and thus ignore for now
the view angle component typical to NeRF networks and focus on
the input data (i.e. specification, embedding) that represents the
main difference between the targeted application and the existing
literature.

3.2. Data acquisition and structure

To show the potential of the proposed method, simulated and ex-
perimental images are used. The simulated images are obtained by
generating synthetic ultrasound images from a volume for different
positions of the simulated ultrasound probe. The volumes consid-
ered are synthetic objects with perfectly known geometry, or 3D in
vivo magnetic resonance volumes. The generation of the scatterers
contributing to the simulation of each 2D slice follows the compu-
tationally efficient strategy that we have recently proposed in [25].
Data simulated in this way has the advantage of being perfectly con-
trolled, i.e., the underlying medium used can serve as ground truth,
the uncertainty of the simulated probe can be controlled, as well as
the amount of noise in the images.

The first simulated dataset corresponded to a synthetic medium
consisting of a highly echogenic 1.253cm3 cube in a low echogenic
homogenous medium. The ultrasound slices were generated by

mimicking a sectorial sweep (the only movement is a probe tilt).
The second dataset was simulated from a pelvic T2 MRI volume,
by moving the simulated ultrasound probe in a double orthogonal
sweep. The simulated sweeps are constituted respectively of 180 and
240 images. To mimic freehand acquisitions, positional and angular
perturbations corresponding to zero-mean Gaussian distributions
with standard deviations of 0.1 mm and respectively 0.03 rad, were
generated.

The experimental data was acquired with an Ula-Op 64 scan-
ner [26], with a 3.5-MHz LA523 probe from Esaote, equipped with
a calibrated magnetic tracker that provides its 3D position in real-
time. A synchronization system has been used to synchronize the
2D ultrasound image acquisition with the probe 3D position. Free-
hand acquisitions have been performed on a phantom mimicking a
peripheral nerve block (CAE blue phantom from CAE Healthcare).

For both simulated and experimental cases, the raw data is a list
of 2D images, associated with their dimensions and 3D position con-
sisting in the 3D translation and rotation of each image center. Thus,
each pixel in any 2D image can be associated with its position in
the 3D real world. A collection of the pairs (position; pixelvalue)
represents the abstract base of the used data.

3.3. Network and data usage

Inspired by the seminal NeRF [21] and related works [22, 23],
we adopt an architecture consisting of eight layers of 256 fully-
connected perceptrons with ReLU activation to represent a function
Φθ such that

Φθ(γ(x)) = dx, (1)

where x is a 3D vector whose elements are the 3D spatial coordi-
nates and dx is the value of an ultrasound slice at position x. In other
words, the aim of the network is to learn, through the iterative up-
date of its parameter set θ, a continuous function Φθ that provides
the value of the reconstructed volume at any 3D position, while re-
specting the input data, i.e., is equal to the available ultrasound slice
pixel values. γ is a position encoding function that has an important
role in the fidelity of the network and its convergence rate. Different
choices will be detailed in the next subsection, and supporting re-
sults will be presented to highlight its impact on ultrasound volume
reconstruction.

At each learning step, the network’s results are compared against
the expected value on a subset of known locations corresponding
to the pixels of one of the ultrasound slices. The loss function is
defined as the mean squared error between the network output and
ultrasound slice pixel value, yielding to the following optimization
process:

argmin
θ

||Φθ(γ(x))− dx||22. (2)

3.4. Positional encoding

As explained previously, one of the key points in NeRF-like net-
works is the encoding of the input through the function γ in (1).
This encoding phase is the first, non-learnable, layer of the network.
Its role is to increase the dimension of the position vector x, allowing
the network to represent more finely spatial variations. In this work,
we evaluate three encoding schemes, described hereafter.

3.4.1. Frequency encoding

The first encoding, proposed in the seminal work on NeRF [21], is a
frequency encoding (also referred to as Fourier encoding) and is in-
spired by the conclusion of Rahaman et al. [27] that neural networks
are spectrally biased towards low frequencies. Each component of



the input vector x, denoted by x in (3), is mapped from R to R2L

(with L being a meta-parameter) following a function γ(x):

γ(x) = [sin(20πx), cos(20πx), · · · , sin(2L−1πx), cos(2L−1πx)]
(3)

3.4.2. Hash grid encoding

Extending on the notion of positional encoding, Müller et al. [23]
proposed a new approach to expend the input vector to more mean-
ingful values through a process combining hierarchical acceleration
structures and deep learning. A 3D coordinate is associated with a
set of cells coming from 3D grids spanning from coarser to finer res-
olution. The final value vector is composed of the corner indexes,
arbitrarily associated and hashed by a deep learning process to opti-
mize their expressiveness. In the general case, this approach tremen-
dously speeds up the learning process and allows finer details.

3.4.3. No encoding

As further emphasized and explained in the NeRF followup arti-
cle [28], encoding aims at enhancing the high frequencies in the
learned medium. While this property is of high interest in optical
applications, it is not necessarily the case in 3D ultrasound recon-
struction, because of the high level of speckle noise that affects the
slices. Based on this observation, we also evaluate in this work the
reconstruction of 3D ultrasound volumes without any encoding. In
this case, the γ function reduces to the identity function, and thus no
input data dimensionality augmentation is performed.

3.5. Volume generation

Training our network on a given ultrasound dataset results into a
space weighing function Φθ , as described in 1. This can be seen in
theory as a volume of infinite resolution (within the spatial bounds
of the dataset) [27]. From Φθ , there are three possible approaches to
obtain an exploitable ultrasound volume: (i) use it directly through a
volume rendering process such as ray-marching [20], (ii) discretize
a given isovalue using marching cube [29] or a similar algorithm,
(iii) that discretizes the function in an arbitrarily sized voxel grid. To
facilitate the comparison with existing voxel-based reconstruction
methods, the latter is adopted in this work.

4. RESULTS

4.1. Impact of encoding

Before evaluating the accuracy of the proposed reconstruction
method, we start by analyzing the impact of the encoding in the
particular case of ultrasound applications, through the simulated
dataset from 3D MRI. Fig. 1 shows an original MRI slice, the cor-
responding simulated ultrasound 2D image, and the output of our
network with different or no encoding. To ensure a fair compari-
son, the same amount of reconstruction time was imposed for the
three reconstruction schemes, instead of fixing the same number of
iterations. One may observe that hash grid encoding is the best in
learning the high-frequency content of ultrasound images. However,
this is not a desirable effect in 3D ultrasound reconstruction, be-
cause of the high level of speckle. Frequency encoding shows good
properties in removing the speckle, but introduces some undesirable
artifacts. Finally, the result with no encoding forces the network to
summarize the shape of the medium, yielding smoother results and
creating a simplified volume. In our specific scenario, this may be
highly desirable. This behavior could be linked with the deep image

prior [30], i.e., stopping the network at the right time becomes cen-
tral to satisfactory reconstruction. Based on this observation, only
reconstruction results without encoding are reported hereafter.

Fig. 1. Comparison of the reproduction of an ultrasound slice by a
network trained on the same dataset for 10 minutes (reproduced slice
not present in the learning set). Top: MRI slice, simulated ultrasound
image. Bottom: reconstructed slice with frequency encoding, hash
grid encoding, and without encoding.

4.2. 3D reconstruction results

This section regroups 3D ultrasound reconstruction results with
the proposed network without encoding, in comparison with DW
method typically used in ultrasound (see, e.g., [13]).

Fig. 2 shows the results on the first simulated dataset of a highly
echogenic cube in a low echogenic homogenous medium. It shows
the ability of the proposed network to remove noise from the volume
and recreate a coherent geometry, while DW reconstruction strug-
gles to efficiently eliminate speckle, resulting into a less-well defined
cube. This result highlights the ability of our method to create a less
noisy volume compared to DW, focusing on the shape of interest and
recreating it more sharply.

Fig. 3 shows results on simulated ultrasound images from an
MRI volume in a double orthogonal sweep. Using the larger amount
of data at each spatial point due to crossing slices, the proposed
method is clearly able to extract the shape of the medium. How-
ever, this generalization may come with a drawback, as the details
in the ultrasound images tend to be smoothed. This results in gaps
being closed and bumps erased in 3D reconstruction, but also leads
to a easier-to-interpret reconstruction. Such result may be of high
interest in some ultrasound reconstruction applications related to 3D
localization or surgery assistance.

Fig. 4 shows the results of the experimental dataset. The pro-
posed network is able to remove most of the noise in the acquisitions

Fig. 2. Reconstruction based on a simulated sectorial sweep of a
cube, with probe trajectory (green dot, top): a) ultrasound image
given as an input to the network, b) network reconstruction of the
image in a), c) DW reconstruction, d) 3-D reconstruction.



Fig. 3. Reconstruction based on a simulated double sweep (one hor-
izontal, one vertical) of a T2 pelvic MRI based medium, with the
probe trajectory shown in green. a) Ultrasound image given as an
input to the network, b) reconstruction of the image in a) with the
proposed method, c) DW reconstruction, d) 3D reconstruction with
the proposed method.

and still display a faithful reconstruction, while some gaps in nerves
have been closed and the overall shape is smoother.

Finally, Tab. 1 regroups numerical results of signal-to-noise ra-
tio (SNR) and contrast-to-noise ratio (CNR) for the three reconstruc-
tion results. Both measures have been realized on blocks of voxels
extracted from inside (for SNR and CNR) and outside (for CNR)
a region of interest (the hyper-echogenic cube, the uterus and one
nerve) and computed using the formulas: SNR = 20× log10(

µin
σin

)

and CNR = 20 × log10(
|µin−µout|√

σ2
in+σ2

out

) with µ and σ being respec-

tively the mean and the standard deviation of the regions. These
quantitative results confirm the visual impression and strengthen our
argument in favor of the proposed network reconstruction interest.

Fig. 4. Reconstruction based on a single horizontal freehand sweep
acquired on a nerve phantom with probe trajectory (green). a) Ul-
trasound image given as an input to the network, b) Network recon-
struction of the image in a), c) DW reconstruction, d) 3-D recon-
struction.

5. DISCUSSION

5.1. Advantages and drawbacks of neural representation

Using neural representation has many advantages, namely, it can rep-
resent a continuous function, acts as a compact representation of the
data [21], gives rise to desirable properties and takes advantage of
the dynamic field it has originated. But this does not completely al-
leviate the inherent flaws of deep learning-based methods, such as
for example their explainability on in vivo data. While the proposed
method has a considerably short training time (of the order of a few
minutes, on a single computer), it still tends to be outperformed in
this respect by more baseline and massively parallel state-of-the-art
methods.

5.2. Future work

5.2.1. View angle

Among the existing Neural Implicit Representations, one of the key
aspects of the NeRF-like networks is their ability to take into ac-
count the view angle when evaluating a certain point in space. This

MRI Nerve
Cube simulation phantom

Ours DW Ours DW Ours DW
SNR 31.8 26.1 28.3 25.5 14.4 12.6
CNR 30.4 22.4 25.8 20.5 14.2 12.3

Table 1. Signal-to-Noise Ratio (SNR) (dB) and Contrast-to-Noise
Ratio (CNR) (dB) for the three experiments with DW and proposed
methods.

represents a natural extension of the proposed work. The challenges
imposed by ultrasound imaging such as depth attenuation (the same
point may appear more or less bright depending on the distance from
the probe) or shadowing (a bright object may not appear that way
when positioned behind a strong impedance change) could be thus
alleviated. Another important challenge is to consider the tissue de-
formation while scanning the medium with the ultrasound probe.

5.2.2. Data input in the learning process

In the current framework, the data points (position; pixelvalue)
are tightly tied to the slice notion (every point belongs to a slice, and
an iteration covers one slice). However, there is no particular reason
to do so, and may even strongly bias the network. Completely decor-
relating the point representation could allow multiple improvements
to the learning scheme of the network. One could for instance add
a slight noise to point position each time they are presented to the
network to enforce better generalization. Furthermore, designing an
adapted encoding function to the reconstruction problem could ac-
celerate the learning as the previously established functions, while
maintaining the denoising and smoothing potential of the results pre-
sented in this article.

6. CONCLUSION

This work showed that the 3D freehand ultrasound reconstruction
problem can be efficiently addressed using NIR and unsupervised
deep learning, and showed encouraging results on denoising, shape
generalization and visualization. Furthermore, this application can
benefit from the advances of the NIR field while having its own set
of specific challenges to consider. Many avenues of research remain
to be explored, to enhance the current results that look already very
promising.
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