
HAL Id: hal-04480664
https://hal.science/hal-04480664

Submitted on 2 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A standardized protocol for assessing the performance of
automatic detection systems used in onshore wind power

plants to reduce avian mortality
Cyrielle Ballester, Sophie M. Dupont, Alexandre Corbeau, Thierry Chambert,

Olivier Duriez, Aurélien Besnard

To cite this version:
Cyrielle Ballester, Sophie M. Dupont, Alexandre Corbeau, Thierry Chambert, Olivier Duriez, et al..
A standardized protocol for assessing the performance of automatic detection systems used in onshore
wind power plants to reduce avian mortality. Journal of Environmental Management, 2024, Journal
of Environmental Management, 354, pp.120437. �10.1016/j.jenvman.2024.120437�. �hal-04480664�

https://hal.science/hal-04480664
https://hal.archives-ouvertes.fr


Journal of Environmental Management 354 (2024) 120437

Available online 24 February 2024
0301-4797/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research article 

A standardized protocol for assessing the performance of automatic 
detection systems used in onshore wind power plants to reduce 
avian mortality 

Cyrielle Ballester a,*, Sophie M. Dupont b,c, Alexandre Corbeau d, Thierry Chambert a, 
Olivier Duriez a, Aurélien Besnard a 

a CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France 
b Littoral Environnement et Sociétés (LIENSs), CNRS-La Rochelle Université, La Rochelle, France 
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A B S T R A C T   

While wind power plants are an important contribution to the production of renewable energy to limit climate 
change, collision mortality from turbines is a danger for birds, including many protected species. To try to 
mitigate collision risks, automatic detection systems (ADSs) can be deployed on wind power plants; these work 
by detecting incoming birds using a detection/classification process and triggering a specific reaction (scaring off 
the bird or shutting down the turbine). Nonetheless, bird fatalities still occur at ADS-equipped wind power 
plants, which raises the question of the performance of these tools. To date, the lack of a transparent, peer- 
reviewed experimental process to compare the performance of types of ADS has meant there is no robust pro
tocol to assess these systems. 

With the aim of filling this gap, we developed two standardized protocols that provide objective and unbiased 
assessments of the performance of different types of ADS, based on their probability of detecting/classifying birds 
at risk of collision. Both protocols rely on precise 3D tracking of wild birds by human observers using a laser 
rangefinder, and the comparison of these tracks with those detected and recorded by an ADS. The first protocol 
evaluates a system’s general performance, generating comparable data for all types of ADS. In this protocol, 
detection/classification probability is estimated conditional on several abiotic and biotic environmental factors 
such as bird size, distance from the target, the flight angle and azimuth of the bird, as well as weather conditions. 
The second protocol aims to verify that the performance of an ADS installed on a given wind power plant 
complies with its regulatory requirements. In this protocol, detection/classification probability is specifically 
estimated for a given target species at a given regulatory detection distance. This protocol also estimates the 
proportion of time an ADS is functional on site over a year, and the proportion of reaction orders successfully 
operated by wind turbines. These protocols have been field-tested and made publicly available for use by gov
ernment agencies and wind power plant operators.   

1. Introduction 

The development of renewable energy is a cornerstone of the global 
energy transition aiming to decrease fossil fuel consumption in order to 
limit climate change (Chum et al., 2011; Teske, 2019). In this context, 
wind power plants as well as photovoltaic power plants are emerging all 
over the world (Tinsley et al., 2023). The downside is that the large-scale 

development of renewable energy sites, in particular wind energy, has 
negative consequences on the environment and on biodiversity that are 
well documented (Drewitt and Langston, 2006; Durá-Alemañ et al., 
2023; Katzner et al., 2019; Kuvlesky et al., 2007). Birds and bats are the 
main taxonomic groups impacted by this infrastructure (Refoyo Román 
et al., 2020; Thaxter et al., 2017). For these taxa, wind power plants are 
a source of both habitat loss and fatality due to collisions with turbines 
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(Gómez-Catasús et al., 2018; Marques et al., 2014). At the deadliest wind 
power plants, up to 26.9 birds and 15.5 bats per turbine may be killed by 
collision each year (Ferrer et al., 2012; Loss et al., 2013; Zimmerling 
et al., 2013; Zimmerling and Francis, 2016). These fatalities impact 
animal populations, potentially affecting their viability. This can have a 
particularly negative impact on long-lived species such as large raptors 
or bats, which often have small populations and population dynamics 
that are highly sensitive to additional mortality (Beston et al., 2016; 
Carrete et al., 2009; Duriez et al., 2023; Watson et al., 2018). 

In Europe and North America, mitigating the risk of bird collision 
when wind turbines are operating is mandatory when protected bird 
species frequent wind power plants (European Commission, 2020; 
USFWS, 2013). Two main mitigation measures are currently imple
mented. The first relies on the passive curtailment of wind turbines 
during sensitive periods of a bird’s annual cycle (i.e., during breeding or 
migration periods), during farming operations that may attract birds 
around wind turbines, and/or during weather conditions that increase 
the risk of collision (i.e., rain, wind, low visibility, etc.) (see e.g., Arnett 
and May 2016; Barrios and Rodríguez, 2004; Smallwood et al., 2007; 
Smallwood and Bell, 2020). Such mitigation measures may, however, 
lead to significant energy production losses, as curtailment is imple
mented even when there is no bird around the turbine (this also applies 
to curtailment for bats, see Hayes et al., 2019). 

An alternative mitigation method relies on the installation of a 
detection–reaction system, called an automatic detection system (ADS), 
inside or close to a wind power plant. Unlike the passive curtailment 
method, these devices actively trigger a reaction only when a bird is near 
a turbine and considered at risk of collision (Gradolewski et al., 2021; 
Hanagasioglu et al., 2015; May et al., 2012; McClure et al., 2021). These 
systems work by (1) detecting birds that are approaching a turbine (i.e., 
birds at risk of collision), and (2) sending an order to prevent the 
collision, e.g., to shutdown the turbine or to emit a visual or auditory 
signal to scare the bird (Gradolewski et al., 2021; May et al., 2012; 
McClure et al., 2021). As these actions only occur when a bird is 
considered at risk of collision, in theory they should reduce the fre
quency and duration of turbine shutdowns, and thus reduce energy 
production loss (de Lucas et al., 2012). In this way, an ADS provides an 
appealing trade-off between reducing bird mortality and maintaining 
energy production. 

Three main families of ADS currently exist: (i) Two-dimensional (2D) 
optic systems, (ii) Three-dimensional (3D) optic systems, and (iii) radar 
technology. The first family, 2D optic systems (e.g., DT Bird®, Safe
wind® or Probird®), uses optical cameras and relies on detection of 
pixel variations to identify birds at risk of collision up to a few hundred 
meters away (Harvey et al., 2018; KNE, 2020; May et al., 2012). These 
ADSs generally analyze changes in pixel contrast between successive 
images to detect a moving object, and then use the size of the object to 
classify it as either a relevant target (i.e., a bird with a wingspan of over 
50 cm) or not. 

The second family, 3D optic systems (e.g., Identiflight®, Bioseco®), 
combines a stereoscopic camera and a 2D optical camera to assess 3D 
trajectories of flying objects. This combination enables a more accurate 
assessment of the distance between the ADS and the detected object. 
These 3D systems can detect objects up to around 1 km under ideal 
conditions (Gradolewski et al., 2021; McClure et al., 2018). Both 2D and 
3D optical systems mainly rely on manually programmed algorithms or 
artificial intelligence algorithms (machine learning or deep learning) to 
classify an object as being at risk or not. Classification rules for some of 
these ADSs are based on the size of the target (i.e., the number of pixels); 
actions are then usually triggered only for large species that can be 
detected at a high distance (Gradolewski et al., 2021). Alternatively, 
some systems classify certain species via artificial intelligence training 
(Duerr et al., 2023; Identiflight® website, n.d.; McClure et al., 2018). 

The third family of ADSs, radar technology (e.g., 3DFlightTrack®), 
uses the reflection of radio waves by objects to detect them (Nilsson 
et al., 2018; Schmaljohann et al., 2008). Successive echoes from a given 

object are concurrently analyzed to determine if the object’s trajectory 
could be deemed risky and whether or not it requires triggering a re
action (Górecki et al., 2023). Such technology is not yet able to classify a 
flying object at species level, but can determine an approximate size 
class. It is sometimes able to classify an object into an approximate 
species group (passerine, raptor, etc.) using wingbeats (Nilsson et al., 
2018; Pavón-Jordán et al., 2020; Schmaljohann et al., 2008). Compared 
to optical systems, radar systems have a much larger detection range (up 
to 10 km), but detection may be hampered by landscape characteristics 
such as topography, trees or wind turbine structures themselves (Ger
ringer et al., 2016; Krijgsveld et al., 2011; Nilsson et al., 2018). 

Although they have different technologies, all types of ADS are based 
on the same principles. They aim to detect and identify individual birds 
at risk of collision inside a given area around a wind turbine, generally a 
sphere-shaped area with the rotor at its centre. The radius of the risk 
sphere usually depends on the target bird species, as the time needed to 
reach the wind turbine depends on avian flight speed (Fluhr and Duriez, 
2021; EolDist web application, 2021). This radius also depends on the 
wind turbine characteristics (mainly size), which influence their shut
down time. When an object considered to be a bird of interest enters the 
risk sphere, the ADS triggers a reaction. 

Yet despite the installation of ADS in a number of wind power plants 
worldwide, bird mortality is still recorded there (see e.g., McClure et al., 
2022, 2021), raising the question of the effectiveness of these systems 
in reducing collisions. To our knowledge, no global and robust investi
gation has been conducted to assess the ability of the different types of 
ADS to concretely reduce fatality rates. Only one peer-reviewed article 
dealing with the effectiveness of a single type of ADS is currently 
available (Identiflight®, McClure et al., 2021), and its results are 
controversial (Huso and Dalthorp, 2023). One reason for this lack of 
studies is that studying the efficacy of an ADS presents ethical issues. 
Indeed, to measure the success of an ADS, it is necessary to compare the 
fatality rates occurring several years before and after the installation of 
the ADS; as well as to compare results obtained from several equipped 
and unequipped sites (Before After Control Impact (BACI) type pro
tocols: Huso and Dalthorp, 2023; Smallwood and Bell, 2020). Such 
methods would involve delaying the installation of an ADS at sites where 
collisions are expected or occur and thus allowing further mortality at 
unequipped wind power plants (control sites) for several years. 

While this ethical issue makes effectiveness difficult or impossible to 
assess, a first step could be to assess their performance, i.e. their ca
pacity to (i) detect and classify a bird potentially at risk of collision and 
(ii) trigger an appropriate reaction in time. Although performance and 
efficacy are not necessarily perfectly correlated, an ADS cannot be 
effective if it is not at least performant. As far as we are aware, ADS 
performance has been evaluated in independent, peer-reviewed, pub
lished studies for only one type of ADS: Identiflight® (see results pub
lished in peer-reviewed international scientific journals: Duerr et al., 
2023; McClure et al., 2018). The performance of other types of ADS has 
been assessed by ADS suppliers themselves or by environmental 
consulting companies commissioned by wind power plants operators; as 
such, they are not independent and often not even publicly available (we 
were only able to find a few, e.g., Aschwanden et al., 2014; Gradolewski 
et al., 2021; Hanagasioglu et al., 2015; Harvey et al., 2018; May et al., 
2012). From these few publicly available references, no general 
conclusion about ADS performance can be clearly drawn, mainly due to 
a lack of standardization of the assessment methods used. These evalu
ations are based on a wide variety of experimental protocols, often with 
variability in the measured response variables, as well as in the technical 
approach used to record them. These tests have also mainly been con
ducted under optimal detection conditions (e.g., on a sunny day when 
visibility was >800 m, McClure et al., 2018), which means they evaluate 
only the upper range of performance. 

With the rise in the number of wind power plants, there is a corre
sponding increase in ADS deployment. While an ADS seems at face value 
a relevant solution to reduce bird fatality by wind turbines, it is 
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problematic that the performance of these systems, which are expensive 
to implement, remains largely unknown. To help address this gap, we 
developed a robust, objective and standardized protocol to evaluate the 
performance of different types of ADS. In addition, we tested the oper
ationality of this protocol in the field. Assessing ADS performance is 
crucial both to (i) help regulatory agencies and wind power plants op
erators to select the most appropriate ADS for a specific installation 
based on the site topography and the bird species present, and (ii) 
evaluate if the performance of an ADS installed on a given wind power 
plant complies with local regulations and/or wind power plant opera
tors’ expectations. However, because these two objectives are inde
pendent and mutually exclusive, we designed a protocol for each case. 
The relevant protocol could be used by ADS suppliers, government 
agencies or environmental consulting companies. Below we describe 
these two protocols and the choices made during their design and 
optimization. Importantly, this manuscript does not intend to present 
evaluation of the ADSs performances. The technical details related to the 
protocols’ field procedure are not presented here, but can be consulted 
on the MAPE project website for more information (this study was 
carried out in the framework of the MAPE project - Reduction of Avian 
Mortality in Operating Wind Farms, MAPE project website: scientific 
valorization, 2021). 

2. How to assess ADS performance? 

The four following operational requirements (or stages) (Fig. 1) are 
involved in the performance definition of an ADS.  

(1) Function: An ADS must be functioning, i.e., show good temporal 
and spatial coverage. Temporal coverage is the fraction of time, 
quantified in a fixed time interval (e.g., per month), during which 
the system is operational. Temporal coverage mainly depends on 
the frequency of ADS failures. Spatial coverage is the fraction of 
space included in the risk sphere that is effectively covered by the 
ADS. Spatial coverage decreases due to blind spots, potential 
blind angles, camera failures and depends also on the ADS’s 
maximum detection distance for a given species (specific to each 
ADS model).  

(2) Detection: An ADS must have a ‘high rate’ of target detection. 
Detection rate corresponds to the capacity of the ADS to identify a 
potential object of interest. As detailed above, the detection 
method used depends on the type of ADS (pixels of an image for 
optical systems, target echo for radar technology). 

(3) Classification: An ADS must have a high rate of accurate classi
fication. Classification combines all the steps involved in pro
cessing the information collected on a mobile target, from its 
detection by the ADS (size, speed, etc.) to the decision to trigger a 
reaction or not. 

(4) Reaction: An ADS must react adequately in response to an iden
tified risk. Reaction is defined as the ADS response following the 
detection and the accurate classification of a target bird at risk of 
collision. Two types of reaction are generally used: scare signals 
and turbine shutdown. The aim of visual or sound signals emitted 
by the ADS is to scare birds away from the turbine by alerting 
them to the danger (Aschwanden et al., 2014). Shutting down the 
wind turbine aims to slow the speed of the blades to reduce the 
risk of collision when the bird passes by. This second type of re
action requires communication between the ADS and the Super
visory Control And Data Acquisition (SCADA) nerve center of the 
turbine. An appropriate reaction is an ADS order that triggers a 
scare signal or turbine shutdown when a bird is at risk. 

Good overall performance of an ADS is achieved when each of these 
four operational requirements is performed well. 

As ADS suppliers and operators can have different evaluation ob
jectives, a separate protocol is required for each, as mentioned above. 
We thus designed two protocols. The protocol aimed at ADS suppliers 
(hereafter referred to as the ‘supplier’ protocol) is designed to inform a 
general audience about the general performance of a specific ADS 
available on the market. This protocol only assesses detection and 
classification performance, as these do not depend on the specific 
characteristics of a wind power plant (i.e., surrounding landscape and 
technical characteristics of the turbines). Detection and classification 
performance must be assessed under various conditions of different 
influencing factors: distance between the bird and the ADS, size class of 
the species, background behind the bird, visibility, rainfall, solar radi
ation, luminosity, and solar incidence angle. These can then be used to 
fill in a generic performance grid for any type of ADS (Table 1). 

The second protocol is intended for wind power plant operators 
(hereafter referred to as the ‘wind power plant’ protocol) and is designed 
to assess in situ all four operational requirements of ADS performance 
(function, detection, classification and reaction). In this protocol, 
detection/classification probability is estimated for the species of in
terest in a given wind power plant before a certain distance from the 
turbine (see e.g., EolDist web application, 2021) in order to define the 
minimal ADS detection distance needed according to the flight speed of 
the species and the characteristics of the wind turbines. Because this 
protocol aims to determine the average probability of detection and 
classification of targets before a certain distance by the ADS within a 
specific wind power plant, no environmental variable is considered in 
the statistical approach (Table 2). 

2.1. Evaluation of functioning performance (‘wind power plant’ protocol 
only) 

Functioning performance is here defined as the probability of the 
system being operational at any point in time and space during its 
deployment. This is defined by two components: the spatial and tem
poral coverage of the ADS. The absence of exhaustive spatial coverage of 
the ADS generally constitutes a partial failure. These partial failures are 
difficult, if not impossible, to measure, so they are not examined in this 
stage of the protocol, but are included in the detection/classification 
performance assessment (see below). Indeed, a lack of detection due to 
partial failure will negatively impact the detection/classification 

Fig. 1. The stages that must be assessed to evaluate ADS performance. The 
‘wind power plant’ protocol requires evaluating all stages from 1 to 4, while the 
‘supplier’ protocol only requires evaluating stages 2 and 3. Stage 1 is to estimate 
ADS functioning probability by analyzing its temporal and spatial coverage. 
Stage 2 is to estimate ADS detection probability. Stage 3 is to estimate ADS 
classification probability. (Stage 1 and 2 are generally merged because they 
cannot be easily separated.) Stage 4 involves evaluating reaction probability. 
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probability and is thus considered in the overall performance probability 
through the second step of performance assessment (see 2.2 Evaluation 
of detection and classification performance (both protocols)). Therefore, 

no specific measurement is required at this early stage, as such infor
mation might introduce redundancy afterwards. It should be noted that 
spatial coverage is generally verified by the supplier when the ADS is 
installed on a wind power plant. They might employ drones to detect 
potential blind spots and correct these by adapting the orientation of the 
equipment used to detect the targets. 

Temporal coverage corresponds to the percentage of time during 
which the ADS is operational, i.e., is not experiencing a complete 
failure. Field observations can be conducted to estimate this by per
forming random visits in wind power plants and recording if and when 
the system does not react when a target crosses the risk sphere. Yet, as 
complete ADS failures are likely to be one-off occurrences, obtaining 
unbiased estimates for this parameter would require a very high number 
of field visits (typically 100 or more) and thus entail very high financial 
and time costs. Alternatively, the frequency of complete failures can be 
evaluated by assessing the number of days with a complete absence of 
detection/classification on a random selection of recorded data over 
hundreds of days. The functioning performance can then be expressed 
by the daily probability of the ADS not being in complete failure. 

It should be noted that this method for estimating complete failure 
implies that the fieldwork procedure used to estimate detection/classi
fication probability (see below) should be conducted during periods 
with no complete failure occurrence. 

2.2. Evaluation of detection and classification performance (both 
protocols) 

2.2.1. Parameters to be estimated 
To estimate the detection probability of an ADS, it is necessary to 

know whether the target has been detected and its detection distance 
from the ADS. This can be done by comparing detections by an inde
pendent monitoring system with detection data from the ADS. To esti
mate the classification probability, we need information about how the 
ADS classified the target and what the target actually is. This can be 
done through identification of the targets that the ADS has classified, by 
viewing the video data, or by comparing the identification in the field 
with that recorded by the ADS (Duerr et al., 2023; McClure et al., 2018). 

Since our method is intended to be applicable to all systems in a 
comparable way, both the ‘supplier’ and ‘wind power plant’ protocols 
focus on the combination of ADS detection/classification performance. 
This is because an ADS is continuously detecting moving targets and 
classifying them almost instantaneously as relevant or not for triggering 
a reaction. Some types of ADS can, on request, record information about 
all detected events, regardless of their classification or whether they 
triggered a response or not (personal communication from suppliers). 
However, extracting this data can represent a considerable amount of 
work and require large storage capacity, as some systems detect several 
tens of thousands of events in a single day such as the movement of trees, 
clouds or insects in the ADS environment, due to their high movement 
sensitivity. Moreover, not all ADSs are able to provide classification 
information independently from detection data, even on request. Aside 
from this, the separate evaluation of detection and classification would 
not provide any relevant information for potential users of these sys
tems. Indeed, it is the result of both aspects that determines whether or 
not the system is making the right decision to trigger a reaction. 

Bird trajectory data offer key variables for estimating detection/ 
classification probability. The average distance between a bird and the 
ADS at first detection/classification is a common measure to indicate 
how well the system detects/classifies birds at a certain distance (Gra
dolewski et al., 2021; McClure et al., 2018). Although perfectly under
standable by everyone, this parameter is actually not relevant to 
estimate ADS performance, as it gives no information about the pro
portion of trajectories correctly detected/classified as ‘at risk’ by the 
ADS out of those really at risk. In both our protocols, we defined the 
parameter to assess detection/classification performance as the proba
bility of detecting/classifying a bird as being ‘at risk’ before it reaches 

Table 1 
Final grid model of estimated performance for each ADS using the ‘supplier’ 
protocol.  

‘Supplier’ protocol Small/medium/large birds 

Detection 
probability 

Lower CI 
(95%) 

Upper CI 
(95%) 

Distance (m) 0–100    
100–200    
200–300    
300–400    
400–500    
500–600    
600–700    
700–800    
800–900    
900–1000    

Bird’s azimuth (◦) 0–60    
60–120    
120–180    
180–240    
240–300    
300–360    

Bird’s vertical 
angle (◦) 

(-75)–(-45)    
(-45)–(-15)    
(-15)–15    
15–45    
45–75    
75–105    

Rainfall (mm/ 
10min) 

0–0.58    
0.58–1.25    
>1.25    

Global radiation 
(J/cm2/1h) 

0–70    
70–140    
140–210    
210–280    
280–350    

Sun azimuth (◦) 0–90    
90–180    
180–270    
270–360    

Sun incidence (◦) (-20)–10    
10–40    
40–70    

Background Sky    
Vegetation    

Visibility (m) 0–200    
200–400    
400–600    
600–800    
800–1000    

Luminosity (lx) 0–24,000    
24,000–48,000    
48,000–72,000    
72,000–96,000    
96,000–120,000     

Table 2 
Final grid model of estimated performance for each ADS using the ‘wind power 
plant’ protocol.  

‘Wind power plant’ protocol  

Probability Lower CI 
(95%) 

Upper CI 
(95%) 

ADS function (time coverage)    
ADS detection/classification before the 

threshold distance specified in the 
regulations in force (m)    

ADS reaction    
Overall performance     
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the risk-sphere distance threshold (Fig. 2). It is the ability to detect/
classify before this distance that indicates that the ADS will potentially 
be able to prevent collisions by triggering a reaction early enough. 

Concretely, for the ‘supplier’ protocol, detection/classification 
capability is assessed over 100-m steps ranging from a distance of 
0–1000 m from the ADS (Table 1). For the ‘wind power plant’ protocol, a 
unique distance between the bird and the wind turbine is defined ac
cording to the flight characteristics of the target species present around 
the studied wind power plant (Table 2). 

2.2.2. The choice of third-party methods to estimate detection/classification 
probability 

Estimating the combined detection/classification probability before 
a certain distance from the turbine requires having (i) data related to 
events that have been detected and classified by the ADS and (ii) geo
location data of birds recorded by a reliable and robust independent 
system. The performance is assessed by comparing known target tra
jectories with the ADS detection/classification events of a given target to 
estimate the proportion of available targets that have been correctly 
detected/classified before a certain distance by the ADS. According to 
the available literature, target trajectories have been recorded using 
drones (Gradolewski et al., 2021), falconry birds (Brighton et al., 2017), 
human observers (McClure et al., 2018), or wild birds tracked with 
Global Positioning System (GPS) tags (Khosravifard et al., 2020) (Fig. 3). 

The first of these methods, drones, has been used to mimic birds 
approaching wind turbines (Gradolewski et al., 2021). At first sight, the 
use of drones with onboard 3D geolocation would seem to be an accurate 
approach to determine ADS performance. This method does enable a 
large amount of data to be acquired in a short period of time, ensuring 
precise estimates through large sample size. It also ensures almost full 
control of the trajectory of the flying target, allowing some flight char
acteristics to be repeated for all trials. However, drones present several 
crucial limitations, which prevent robust evaluation of the combined 
detection/classification probability of an ADS (Fig. 3). First, they are a 
poor proxy for birds, in terms of size, shape, reflectance and type of 
trajectory and flight pattern. Such differences mean that the ADS clas
sification algorithms may not have the same detection/classification 
rates for both drones and birds. Furthermore, the increased use of arti
ficial intelligence as part of the classification algorithms will be more 
likely to exclude drones as relevant target objects at risk as a result of 
their recognition training (the use of drones will then lead to a negative 
bias in ADS performance estimates). 

Falconry birds, i.e., trained birds, can also be used to mimic the 
presence of target birds in the ADS environment in a controlled manner 

(by teaching the birds to fly between trainers or to follow specific routes 
within the wind power plant). As it uses real birds, this approach has the 
advantage of providing realistic trajectories and flight patterns with true 
wingbeats. These birds can also be equipped with GPS tags, which re
cord the 3D position of the bird every second, allowing a detailed 
analysis of the detection/classification performance of the ADS by 
comparing geographical positions and their times with those obtained 
by the ADS. In terms of the ‘supplier’ protocol, experimental falcon 
flights can also be organized to acquire 3D geolocations over most of the 
gradient of all abiotic influencing variables (Table 1) and in a variety of 
weather conditions (range of temperatures from winter to summer 
conditions; with moderate rain; in light fog; at wind speeds of up to 27.8 
m/s). However, interviews with professional falconers revealed limita
tions for using this approach in the evaluation of combined detection/ 
classification probability (Fig. 3). First, even with so-called ‘high-flying’ 
species, falconry birds are generally not trained to fly at heights greater 
than 10 m (while the zone at risk of collision, i.e., the rotor of the tur
bines, is usually located between heights of 30 and 150 m). Furthermore, 
these birds are trained to fly in a straight line and at a relatively constant 
speed (between ~60 and 90 km h− 1, depending on the species) towards 
their trainer or a lure. Therefore, it is rarely possible to generate varied 
and unpredictable trajectories like those of wild birds. These differences 
in flight behavior/patterns between trained and wild birds may signif
icantly affect their detection/classification by an ADS (Fig. 3). In addi
tion, experimental flights at dusk and dawn, important since low 
luminosity may affect ADS performance while some birds may be active 
at these hours (see Table 1), are also impractical due to the risk that a 
bird unfamiliar with the test site may be unable to return to its falconer 
in the low light/visibility conditions of these periods. 

Another method, equipping wild birds that regularly and naturally 
fly over the area of interest with high-resolution GPS tags, may allow the 
passive acquisition of a large quantity of geolocation data at a very fine 
time scale (longitude, latitude and altitude every second). This can then 
be compared with ADS detection/classification data. However, deploy
ing this type of technology requires the capture of individuals and 
therefore the involvement of ornithologists with special authorizations 
that may be difficult to obtain. Moreover, even if several birds are 
equipped on a site, it may be challenging and take a long while before 
enough trajectories of these birds over the wind power plant are avail
able for robust analysis. Because of these limitations, we did not include 
this approach in our protocols, although we think it remains highly 
relevant in terms of the quality of the data it can provide (Fig. 3) (Sassi 
et al., 2023). 

Currently, the most robust, standardized and relevant approach for 
evaluating the combined detection/classification probability of an ADS 
is to record 3D positions of wild birds occurring at a wind power plant by 
one observer equipped with a laser rangefinder, preferentially assisted 
by a second observer. This method is not perfect: neither ADS nor human 
observers are exhaustive in the detection of birds near wind power 
plants, and some high-risk trajectories may be missed by both types of 
observation systems. Yet, the proportion of trajectories detected by ADS 
out of those detected by observers results in an unbiased estimate of the 
detection probability of the ADS, as long as the detection probability of 
the observers is independent of that of the ADS (Fig. 3) (this condition is 
not always respected: see the section ‘Field testing of the protocols’). 

The use of binoculars with integrated laser rangefinders and a 3D 
compass is crucial in this approach. Most currently available ADSs on 
the market do not measure the distance between the detected object and 
the ADS. These binoculars, by providing the distance and azimuth be
tween the target object and the laser rangefinder, allow an accurate 3D 
trajectory of the object to be drawn. For this to work, the clocks of the 
ADS and the observer/binoculars must be well synchronized, and only 
one bird should be present at any time in the study area. This approach 
also has its limitation: it is time consuming. For the same amount of time 
invested, it yields fewer trajectories on average than with drones or 
falconry birds, which makes this method less accurate. Its advantage is 

Fig. 2. Modelling the combined detection/classification probability before a 
certain distance (dotted line: risk sphere) based on trajectories recorded in the 
field. The time of detection/classification is represented by a blue star. The 
trajectory takes the value ‘1’ if it is detected/classified before this distance 
(green tick), and ‘0’ if it is not detected/classified before this distance (orange 
cross). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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that it provides unbiased estimates in contrast to the other approaches 
(Fig. 3). 

2.3. Evaluation of reaction performance (‘wind power plant’ protocol) 

Reaction is defined as the ADS response following the detection/ 

classification of a target object at risk of collision. In our ‘wind power 
plant’ protocol, we focus only on the shutdown of wind turbines and not 
on the emission of scare signals. This is because not all types of ADS 
produce these signals, but they all incorporate wind turbine shutdown. 
Reaction performance is assessed by estimating the probability of the 
ADS–SCADA coupling to correctly react, i.e., the probability that the 

Fig. 3. The choice of third-party methods. The chosen approach must enable bird geolocations to be recovered in a way that is independent of the ADS, unbiased and 
accurate. No approach satisfies all three conditions. In such a situation, unbiased methods should be prioritized over biased ones, even if they are slightly less 
accurate. (a) Ana Sibler from Pixabay©, (b) Josep Monter Martinez from Pixabay©, (c) Olivier Duriez©, (d) Cyrielle Ballester©. 
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ADS sends the correct order and that this order is activated by the 
SCADA (Table 2). No fieldwork is needed to estimate this probability. It 
can be acquired by comparing data recorded by both the ADS and the 
SCADA, notably the daily number of shutdowns generated by the ADS 
and the number of shutdowns triggered by the SCADA, over hundreds of 
days. 

It should be noted that our protocol does not consider the deceler
ation time of wind turbines after a shutdown order, since this is not a 
performance criterion of the ADS per se. This deceleration time depends 
essentially on the characteristics and settings of the wind turbines. 
However, it is important for operators to know/measure this decelera
tion time to define the threshold distances to be considered at risk (see 
(EolDist web application, 2021)). 

3. Assessment of overall ADS performance 

The three probabilities (function, detection/classification and reac
tion) characterizing ADS performance can be estimated from the data 
collected as described above by using generalized linear models (GLMs) 
with binomial distribution and the logit link function. Estimating the 
overall ADS performance on a specific wind power plant (‘wind power 
plant’ protocol) will allow verification that an ADS is performing well on 
that site. Local regulations may require different performance levels for 
different wind farms (e.g., requirements for only one of the performance 
aspects). The verification of ADS performance compliance will therefore 
be wind power plant dependent. The overall performance probability of 
an ADS is obtained by multiplying each of the three conditional prob
abilities of function, detection/classification and reaction (Table 2). The 
accuracy of the overall performance can be obtained using a parametric 
bootstrap. 

As function and reaction probabilities can be estimated using a large 
number of days, this should make them very precise. The overall prob
ability accuracy will thus largely depend on that of detection/classifi
cation probability, which primarily varies with the number of 
trajectories recorded by the observers. For example, with a detection/ 
classification probability of 0.50 and 50 trajectories, the confidence 
interval will be [0.36; 0.64], while with a detection/classification 
probability of 0.50 and 100 trajectories, the confidence interval will be 
[0.40; 0.60], and with a detection/classification probability of 0.90 and 
50 trajectories, the confidence interval will be [0.80; 0.98]. The ex
pected precision given the number of trajectories and mean probability 
is easily obtained through the binomial distribution. The ‘supplier’ 
protocol involves modelling the effect of several explanatory variables 
on the combined detection/classification probability before a certain 
distance. As a result, the measurement effort will have to be greater to 
obtain a precise estimate over the entire gradient of explanatory 
variables. 

4. Field testing of the protocols 

We tested the protocols in the field from July 18, 2022 to October 21, 
2022 on all three technologies that currently exist (2D cameras, 3D 
cameras and radar). The data was collected at five wind power plants 
located in different regions of France, each hosting different species of 
concern. Because these tests were performed under an agreement of 
confidentiality with private wind power plant operators, we cannot 
explicitly mention the precise site locations, the ADS brand and model 
tested, or the exact performance results obtained. The wind power plant 
operators gave their agreement on the condition that these experiments 
aimed to check the applicability of the protocol to be sure it was oper
ational and not to assess ADS performance on their wind power plant. 

To conduct the tests, observations were carried out at each wind 
power plant over three five-day periods separated by at least two weeks. 
We opted for the approach of two human observers equipped with 
binoculars with an integrated laser rangefinder monitoring a sphere 
with a radius of 1 km. This enabled us to assess performance with real 

flight behavior and site frequentation (unbiased). We targeted all 
possible birds with laser rangefinders, from pigeons (wingspan of ~0.5 
m) to vultures (wingspan ~2.7 m). These measurements were carried 
out between sunrise and sunset (there is currently no robust solution for 
assessing an ADS in night-time conditions). This allowed us to test the 
relevance of the protocol for different species sizes and flight patterns, 
across various wind conditions, low light situations, backlight condi
tions, cloudy weather and light rain. A guide to the deployment of 
protocols for evaluating ADS performance is available on the MAPE 
website (MAPE project website: scientific valorization, 2021). 

We found that the geographical location of the wind power plant had 
the greatest impact on sampling, while the time of year and weather 
conditions were found to have a lesser influence. The average number of 
trajectories obtained with the laser rangefinder varied considerably 
between wind power plants. For small birds (wingspan < 1m), the 
average number of trajectories per day for all wind power plant com
bined was 13± 11 (min = 0; max = 57). For medium-sized birds 
(wingspan between 1 and 1.5 m), the average number of trajectories 
collected per day was 13± 11 (min = 0; max = 50). For large birds 
(wingspan >1.5 m), we obtained an average of 18± 24 trajectories (min 
= 0; max = 92) per day. 

A few limitations were noted during these tests. First, there were 
challenges with the laser rangefinder when tracking a bird against a 
background with vegetation. In this case, the distance measured was 
often that between the observer and the background and not between 
the observer and the bird of interest. It is possible that an ADS may also 
have difficulty detecting/classifying when birds are against a vegetation 
background (as several suppliers confirmed us). In this situation, the 
observer’s detection capability is not entirely independent from that of 
the ADS, while our protocol’s modelling approach assumes detection 
independence between the observer and the system. This non- 
independency could potentially result in an overestimation of the 
ADS’s detection capability. There is unfortunately no statistical solution 
to this problem. The observers must try to minimize the occurrence of 
these situations in the field by making a judicious choice of observation 
points so that they are not too elevated in order to avoid measurements 
of birds against vegetation (Fig. 4). 

Another difficulty found in this test phase concerns groups of birds 
passing through the wind power plant. If an ADS collects information on 
the position or azimuth of a detected bird, it is easy to determine 
whether the observer and the ADS have detected and tracked the same 
bird, provided that the different birds available to detection are coming 
from different directions. But some ADSs do not collect information on 

Fig. 4. Background of the same bird according to the position of the observer: 
the human observer (a) targets a bird against a background of vegetation, 
which may lead to measurement errors by the laser rangefinder; the observer 
(b) monitors a bird against a background of sky, leading to less measurement 
errors by laser rangefinders; the ADS (c) targets a bird against a background of 
vegetation. If the ADS is less performant when birds are against a background of 
vegetation, then using data from observer (a) will lead to an overestimation of 
ADS performance, as some observer-recorded trajectories of birds against the 
background will be removed from the dataset. 
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the geographical position or azimuth of a detected bird. For these sys
tems, it is thus impossible to know whether the bird tracked with the 
laser rangefinder is the one detected by the ADS when several birds are 
present simultaneously in the risk area. This means that trajectories 
measured when groups of birds are present have to be excluded from the 
ADS evaluation. It is therefore essential to have two observers on the 
ground to ensure overall monitoring of the wind power plant area and to 
note the presence of groups of birds while using the laser rangefinder. 

5. Conclusions 

This study allowed us to determine the best approach for a stan
dardized and robust protocol to assess the performance of any ADS 
deployed on a wind power plant to mitigate collision fatalities of birds. 
The field tests of the protocol confirmed that it was operational and 
identified specific situations that need to be taken into account either in 
the field or prior to data analysis. Such standardized assessment of ADS 
performance is crucially needed, both to reinforce the trust in these 
systems and to help government agencies and wind power plant oper
ators select the most suitable ADS for a wind power plant. The protocols 
we suggest – one for ADS suppliers and another for wind power plant – 
should help improve transparency regarding ADS effectiveness and 
contribute to ensuring that the development of renewable energy is not 
at the expense of biodiversity. 
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de Lucas, M., Ferrer, M., Bechard, M.J., Muñoz, A.R., 2012. Griffon vulture mortality at 
wind farms in southern Spain: distribution of fatalities and active mitigation 
measures. Biol. Conserv. 147, 184–189. https://doi.org/10.1016/j. 
biocon.2011.12.029. 

Drewitt, A.L., Langston, R.H.W., 2006. Assessing the impacts of wind farms on birds: 
impacts of wind farms on birds. Ibis 148, 29–42. https://doi.org/10.1111/j.1474- 
919X.2006.00516.x. 

Duerr, A.E., Parsons, A.E., Nagy, L.R., Kuehn, M.J., Bloom, P.H., 2023. Effectiveness of 
an artificial intelligence-based system to curtail wind turbines to reduce eagle 
collisions. PLoS One 18, e0278754. https://doi.org/10.1371/journal.pone.0278754. 
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Glossary 

Additional mortality: We consider that mortalities resulting from wind turbine collisions 
are supplementary to mortality – natural or anthropogenic – already occurring in the 
population 

Shutdown: When a turbine shutdown is initiated, the rotor motor stops, but a residual 
rotor speed remains, which effectively means that the blades slow down up to a re
sidual speed rather than completely stop. 

ADS effectiveness: Their capacity of the ADS to actually reduce fatality rates. Measuring 
this requires comparing the number of fatalities occurring before and after the 
installation of the system as well as in equipped sites vs control sites (BACI experi
mental setup: Smallwood and Bell, 2020) 

ADS performance: The ability of the automatic detection system (ADS) to detect/classify/ 
react to the arrival of a target in a risk sphere, as well as its degree of operability over 
time. 

SCADA: SCADA is a control system architecture used in wind turbines that gathers and 
analyses data to monitor and control systems 

Partial ADS failure: This occurs when only one of the components of a wind power plants 
ADS fails. This may be a failure lasting a few hours or the failure of a single camera. 
These failures are hard to identify by only looking at the data recorded by the ADS 
because this may contain partial-day detections or only pertain to specific cameras, 
making it difficult to detect a failure 

Complete ADS failure: This is defined as a situation when the entire ADS of a wind power 
plant has failed for at least 24 h. In some cases, the wind power plant may automat
ically shut down when such a failure occurs. These failures are readily identifiable 
either by contacting the wind power plant operator or by analyzing the ADS data and 
identifying the days when no detections/classifications were recorded on the wind 
power plant 

High-flying species: High-flying falconry birds include the peregrine falcon and the golden 
eagle. They should be distinguished from ‘low-flying’ species such as the goshawk, 
saker falcon or Harris’s hawk 

Parametric bootstrap:: This involves randomly sampling in a known distribution of a 
parameter of interest (usually estimated using a specific model) 
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