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Abstract

Uncertainty quantification is critical for deploying deep neu-
ral networks (DNNs) in real-world applications. An Auxil-
iary Uncertainty Estimator (AuxUE) is one of the most ef-
fective means to estimate the uncertainty of the main task
prediction without modifying the main task model. To be
considered robust, an AuxUE must be capable of maintain-
ing its performance and triggering higher uncertainties while
encountering Out-of-Distribution (OOD) inputs, i.e., to pro-
vide robust aleatoric and epistemic uncertainty. However, for
vision regression tasks, current AuxUE designs are mainly
adopted for aleatoric uncertainty estimates, and AuxUE ro-
bustness has not been explored. In this work, we propose
a generalized AuxUE scheme for more robust uncertainty
quantification on regression tasks. Concretely, to achieve a
more robust aleatoric uncertainty estimation, different distri-
bution assumptions are considered for heteroscedastic noise,
and Laplace distribution is finally chosen to approximate
the prediction error. For epistemic uncertainty, we propose a
novel solution named Discretization-Induced Dirichlet pOs-
terior (DIDO), which models the Dirichlet posterior on the
discretized prediction error. Extensive experiments on age es-
timation, monocular depth estimation, and super-resolution
tasks show that our proposed method can provide robust un-
certainty estimates in the face of noisy inputs and that it can
be scalable to both image-level and pixel-wise tasks. Code is
available at https://github.com/ENSTA-U2IS/DIDO.

1 Introduction
Uncertainty quantification in deep learning has gained sig-
nificant attention in recent years (Blundell et al. 2015;
Kendall and Gal 2017; Lakshminarayanan, Pritzel, and
Blundell 2017; Abdar et al. 2021). Deep Neural Networks
(DNNs) frequently provide overconfident predictions and
lack uncertainty estimates, especially for regression models
outputting single point estimates, affecting the interpretabil-
ity and credibility of the prediction results.

There are two types of uncertainty in DNNs: unavoidable
aleatoric uncertainty caused by data noise, and reducible
epistemic or knowledge uncertainty due to insufficient train-
ing data (Hüllermeier and Waegeman 2021; Kendall and
Gal 2017; Malinin and Gales 2018). Disentangling and es-
timating them can better guide the decision-making based
on DNN predictions. Many seminal methods (Blundell
et al. 2015; Gal and Ghahramani 2016; Lakshminarayanan,

Pritzel, and Blundell 2017; Kendall and Gal 2017; Wen,
Tran, and Ba 2020; Franchi et al. 2022) have been proposed
to capture these two types of uncertainty. However, these
methods require extensive modifications to the underlying
model structure or more computational cost. Furthermore,
since DNNs are often designed as task-oriented, obtaining
uncertainty estimates by changing the structure of DNNs
might reduce main task performance.

As one of the most effective methods, Auxiliary Un-
certainty Estimators (AuxUE) (Corbière et al. 2019; Yu,
Franchi, and Aldea 2021; Jain et al. 2021; Corbière et al.
2021; Besnier et al. 2021; Upadhyay et al. 2022; Shen et al.
2023) aim to obtain uncertainty estimates without affecting
the main task performance. AuxUEs are DNNs that rely on
the main task models used for estimating the uncertainty
of the main task prediction. They are trained using the in-
put, output, or intermediate features of the pre-trained main
task model. In practice, the model inputs can be distribution-
shifted from the training set, such as samples disturbed by
noise (Hendrycks and Dietterich 2019), or even Out-of-
Distribution (OOD) data. The pre-trained main task mod-
els mainly exhibit aleatoric uncertainty in the outputs given
the In-Distribution (ID) inputs. Meanwhile, higher epistemic
uncertainty is expected to be raised when OOD data is fed.
A robust AuxUE is required in this case to provide robust
aleatoric uncertainty estimates when facing In-Distribution
(ID) inputs and epistemic uncertainty estimates when en-
countering OOD inputs. This can help to make effective de-
cisions under anomalies and uncertainty (Guo et al. 2022),
such as in autonomous driving (Arnez et al. 2020). Based
on these requirements, the prerequisite for a robust AuxUE,
thus, is to disentangle the two types of uncertainty. Disentan-
gling can help estimate the epistemic uncertainty and find a
more robust aleatoric uncertainty estimation solution.

For vision regression tasks, basic AuxUE addresses only
aleatoric uncertainty estimation (Yu, Franchi, and Aldea
2021). Recent works (Upadhyay et al. 2022; Qu et al. 2022)
aim to improve the generalization ability of the basic Aux-
UEs. In DEUP (Jain et al. 2021), the authors propose to add a
density estimator based on normalizing flows (Rezende and
Mohamed 2015) in the AuxUE, yet challenging to apply on
pixel-wise vision tasks. In the current context, both the ro-
bustness analysis and modeling of epistemic uncertainty are
underexplored for vision regression problems.
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To further explore robust aleatoric and epistemic uncer-
tainty estimation in vision regression tasks, in this work,
we propose a novel uncertainty quantification solution based
on AuxUE. For estimating aleatoric uncertainty, we follow
the approach of previous works such as (Nix and Weigend
1994; Kendall and Gal 2017; Yu, Franchi, and Aldea 2021;
Upadhyay et al. 2022) and model the heteroscedastic noise
using different distribution assumptions. For epistemic un-
certainty quantification, we apply a discretization approach
to the continuous prediction errors of the main task. This
helps to mitigate the numerical impact of the training tar-
gets, which may be distributed in a long-tailed manner. With
the discretized prediction errors, we propose parameterizing
Dirichlet posterior (Sensoy, Kaplan, and Kandemir 2018;
Charpentier, Zügner, and Günnemann 2020; Joo, Chung,
and Seo 2020) for estimating epistemic uncertainty without
relying on OOD data during the training process.

In summary, our contributions are as follows: (1) We pro-
pose a generalized AuxUE solution for aleatoric and epis-
temic uncertainty estimation; (2) We propose Discretization-
Induced Dirichlet pOsterior (DIDO), a new epistemic uncer-
tainty estimation strategy for regression, which, to the best
of our knowledge, is the only existing work employing this
distribution for regression; (3) We demonstrate that assum-
ing the noise which affects the main task predictions to fol-
low Laplace distribution can help AuxUE achieve a more ro-
bust aleatoric uncertainty estimation; (4) We propose a new
evaluation strategy for the OOD analysis of pixel-wise re-
gression tasks based on systematically non-annotated pat-
terns. We show the robustness and scalability of the pro-
posed generalized AuxUE and DIDO on the age estimation,
super-resolution and monocular depth estimation tasks.

2 Related works
Auxiliary uncertainty estimation Auxiliary uncertainty
estimation strategies can be divided into two categories: un-
supervised and supervised. For the former, Dropout layer
injection (Mi et al. 2022; Gal and Ghahramani 2016) sam-
ples the network by forward propagations, and (Hornauer
and Belagiannis 2022) proposed to use the gradients from
the back-propagation. For the latter, AuxUEs are applied
to obtain the uncertainty. In addition to regression-oriented
ones presented in Section 1, we here introduce classification-
oriented solutions. ConfidNet (Corbière et al. 2019) and
KLoS (Corbière et al. 2021) learn the true class probability
and evidence for the DNNs, respectively. Shen et al. (Shen
et al. 2023) apply evidential classification (Joo, Chung, and
Seo 2020) to their AuxUE. ObsNet (Besnier et al. 2021) uses
adversarial noise to provide more abundant training targets
in semantic segmentation task for their AuxUE.

Evidential deep learning and Dirichlet networks Evi-
dential deep learning (Ulmer 2021) (EDL) is a modern ap-
plication of the Dempster-Shafer Theory (Dempster 1968)
to estimate epistemic uncertainty with single forward propa-
gation. In classification tasks, EDL is usually formed as pa-
rameterizing a prior (Malinin and Gales 2018, 2019) or a
posterior (Joo, Chung, and Seo 2020; Charpentier, Zügner,
and Günnemann 2020; Charpentier et al. 2022; Sensoy, Ka-

plan, and Kandemir 2018) Dirichlet distribution. In regres-
sion problems, EDL estimates the parameters of the conju-
gate prior of Gaussian distribution (Amini et al. 2020; Char-
pentier et al. 2022; Malinin et al. 2020). Multi-task learn-
ing is recently applied to alleviate main task performance
degradation due to applying such techniques (Oh and Shin
2022), yet using AuxUE will not affect main task perfor-
mance. Therefore, we apply EDL to our AuxUE. Moreover,
we are the first to apply the Dirichlet network to the regres-
sion tasks by discretizing the main task prediction errors.

Robustness of uncertainty estimation A robust uncer-
tainty estimator should show stable performance when en-
countering images perturbed to varying degrees (Michaelis
et al. 2019; Hendrycks and Dietterich 2019; Kamann and
Rother 2021). Similar studies are applied to evaluate the
robustness of uncertainty estimates (Yeo, Kar, and Zamir
2021; Franchi et al. 2022). Meanwhile, it should provide a
higher uncertainty when facing OOD data, such as in classi-
fication tasks (Hendrycks and Gimpel 2017; Liang, Li, and
Srikant 2018). In image-level regression, we can use the def-
inition of OOD from image classification (Techapanurak and
Okatani 2021) in, for example, age estimation task. But for
pixel-wise regression tasks, the notion of OOD data is ill-
defined. Typical OOD analysis estimates uncertainty on a
different dataset than the training dataset (Charpentier et al.
2022). Yet, image patterns that are rarely assigned ground
truth values in the training set can also be regarded as OOD.
In this work, we also provide a new evaluation strategy for
OOD patterns based on outdoor depth estimation to com-
pensate for this experimental shortfall.

3 Method
In this section, we will first provide the notations and
the problem settings. We define a training dataset D =
{x(i), y(i)}Ni where N is the number of images. We con-
sider that x,y are drawn from a joint distribution P (x,y). A
pipeline for the main task and auxiliary uncertainty estima-
tion is shown in Fig. 1. We define a main task DNN fω with
trainable parameters ω as shown in the blue area in Fig. 1.
Similar to (Blundell et al. 2015), we view fω as a probabilis-
tic model P (y|x,ω) which follows a Gaussian distribution
N (y|µ, σ2) (Bishop and Nasrabadi 2006). The variable σ2

represents the variance of the noise in the DNN’s prediction,
and the variable µ is the prediction ŷ = fω(x) in this case.
The noise is considered here to be homoscedastic as all data
have the same noise. The parameter ω is optimized by max-
imizing the log-likelihood: ω̂ = argmaxω log (P (D|ω))
which is often performed by minimizing Negative Log Like-
lihood (NLL) loss in practice. With the above-mentioned
Gaussian assumption on ŷ, the NLL loss optimizes with the
same objective as the Mean Square Error loss (Bishop and
Nasrabadi 2006), thus, only the prediction goal y is consid-
ered, and the uncertainty modeling is absent in the main task
model training objective.

AuxUE aims to obtain this missing uncertainty estima-
tion without modifying ω̂. We consider two DNNs σΘ1

and
σΘ2 in our generalized AuxUE with parameters Θ1 and Θ2,
i.e., the two DNNs in the orange area of the Fig. 1. σΘ1 is
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Figure 1: Pipeline of our proposed AuxUE solution. A generalized AuxUE is considered with two DNNs σΘ1 and σΘ2 for estimating
aleatoric and epistemic uncertainty, respectively. Presented notations are consistent with and described in Section 3. The encoder parts of both
DNNs can be shared, we compare the performance in Section 4.3. The input of AuxUE can be the input, output, or intermediate features of
fω̂ , we here simplify it to the image x(i) for brevity.

for estimating aleatoric uncertainty ualea, and σΘ2
is for es-

timating epistemic uncertainty uepis. The backbone of σΘ1

and σΘ2 are based on the basic AuxUEs such as Confid-
Net (Corbière et al. 2019), BayesCap (Upadhyay et al. 2022)
and SLURP (Yu, Franchi, and Aldea 2021) depending on
the tasks. The input of AuxUE can be the input, output, or
intermediate features of fω̂ and it depends on the design of
the basic AuxUEs, which is not the focus of this paper. For
brevity, we simplify the input of AuxUE to the image x. We
detail the inputs for different experiments in Supplementary
material (Supp) Section A.

3.1 Aleatoric uncertainty estimation on AuxUE
Based on the preliminaries of the settings, we now start with
the first AuxUE σΘ1

, which addresses ualea estimation prob-
lem as in SLURP and BayesCap.

We consider the data-dependent noise (Goldberg,
Williams, and Bishop 1997; Bishop and Quazaz 1996; Nix
and Weigend 1994) follows N (0,σ2). Then we use the
DNN σΘ1 to estimate the heteroscedastic aleatoric uncer-
tainty ualea (Nix and Weigend 1994; Kendall and Gal 2017).
Θ̂1 and the loss function L(Θ1) are given by:

Θ̂1= argmax
Θ1

P (D|ω̂,Θ1)= argmax
Θ1

N∑
i=1

log(P (y(i)|x(i), ω̂,Θ1))

L(Θ1)=
1

N

N∑
i=1

[
1

2
log(σΘ1(x

(i)))+
(y(i)−fω̂(x(i)))2

2σΘ1(x
(i))

]
(1)

The top of the σΘ1
is an exponential or Softplus function to

maintain the output non-negative. The aleatoric uncertainty
estimation will be: û(i)alea = σΘ1(x

(i)). Minimizing L(Θ1)
is also equivalent to making σΘ1 correctly predict the main
task errors on the training set according to likelihood max-
imization. The errors set is denoted as ϵ = {ϵ(i)}Ni=1 =
{(y(i) − fω̂(x

(i)))2}Ni=1.
Given the fact that distribution assumption on the noise

affecting ŷ can be different than Gaussian, e.g., Lapla-
cian (Marks et al. 1978) and Generalized Gaussian distri-
bution (Nadarajah 2005; Upadhyay et al. 2022) also been
considered in this work, the corresponding loss functions
are provided in Supp Section B. The objective remains un-
changed: employing AuxUE to estimate and predict the

component associated with aleatoric uncertainty using var-
ious distribution assumptions. Perturbing input data in var-
ious ways with different types of noise makes it challeng-
ing to accurately identify the actual noise distribution. Re-
lying on a single distribution assumption and loss function
can affect the reliability of aleatoric uncertainty estimates.
In Section 4.3, we assess the impact of different distribution
assumptions and losses on the robustness of these estimates.

3.2 Epistemic uncertainty estimation on AuxUE

Modeling AuxUEs as formalized in Eq. 1 helps to estimate
aleatoric uncertainty for fω̂ . Yet, taking this uncertainty
prediction as an indicator for epistemic uncertainty is not
methodologically grounded. Evidential learning is consid-
ered to be an effective uncertainty estimation approach (Ul-
mer 2021), which can capture epistemic uncertainty with
a single pass as introduced in Section 2. We thus take it
as an alternative to implement on AuxUE. In regression
tasks, DNN estimates the parameters of the conjugate prior
of Gaussian distribution, such as Normal Inverse Gamma
(NIG) distribution (Amini et al. 2020). The training will
make the model fall back onto a NIG prior for the rare sam-
ples by attaching lower evidence to the samples with higher
prediction errors using a regularization term in the loss func-
tion (Amini et al. 2020). Yet, long-tailed prediction errors
make standard AuxUE more inclined to give high evidence
for most data points, thereby reducing its ability to estimate
epistemic uncertainty. Our experiments also confirmed this
tendency.

In contrast to previous works, which consider the numeri-
cal value of the prediction errors for both aleatoric and epis-
temic uncertainty estimation, we disentangle them and ap-
ply discretization to mitigate numerical bias from long-tailed
prediction errors. Specifically, σΘ1 focuses on aleatoric un-
certainty considering the numerical value of prediction er-
rors, while for epistemic uncertainty, σΘ2

will consider
the value-free categories of the prediction errors. Specifi-
cally, we propose Discretization-Induced Dirichlet pOsterior
(DIDO), involves discretizing prediction errors and estimat-
ing a Dirichlet posterior based on the discrete errors. Further
details are provided in the following sections.



3.2.1 Discretization on prediction errors To mitigate nu-
merical bias due to imbalanced data in our prediction error
estimation, we employ a balanced discretization approach.
Discretization is widely applied in classification approaches
for regression (Yu, Franchi, and Aldea 2022). The popular
discretization methods can be generally divided into hand-
crafted (Cao, Wu, and Shen 2017) and adaptive (Bhat, Al-
hashim, and Wonka 2021). The latter requires computation-
ally expensive components like mini-ViT (Dosovitskiy et al.
2021) to extract global features. Thus, we discretize predic-
tion errors in a handcrafted way.

For pixel-wise scenarios, discretization is applied using
per-image prediction errors, and for other cases, such as
image-level tasks and 1D signal estimation, we use per-
dataset prediction errors. Details and demo-code can be
found in Supp Section C.1 and C.2 respectively.

We divide the set of errors ϵ, denoted in Section 3.1, into
K subsets, where the kth subset is represented by the sub-
script k. To do this, we sort the errors in ascending order and
create a new set, denoted by ϵ′, with the same elements as ϵ.
Then we divide ϵ′ into K subsets of equal size, represented
by {ϵk}Kk=1. Each error value ϵ(i) is then replaced by the in-
dex of its corresponding subset k ∈ [1,K], and transformed
into a one-hot vector, denoted by ϵ̄(i), as the final training
target. Specifically, the one-hot vector is defined as:

ϵ̄(i) = [ϵ̄
(i)
1 . . . ϵ̄

(i)
k . . . ϵ̄

(i)
K ]T ∈ RK (2)

where ϵ̄
(i)
k = 1 if ϵ(i) belongs to the kth subset, and 0

otherwise. Each subset or bin represents a class of error
severity. This process creates a new dataset, denoted by
D̄ = {x(i), ϵ̄(i)}Ni , consisting of discretized prediction er-
rors represented as one-hot vectors, which serves for training
the epistemic uncertainty estimator σΘ2 .

3.2.2 Modeling epistemic uncertainty using ϵ in auxiliary
uncertainty estimation In a Bayesian framework, given
an input x, the predictive uncertainty of a DNN is modeled
by P (y|x,D). Since we have a trained main task DNN, and
as proposed in (Malinin and Gales 2018), we assume a point-
estimate of ω (denoted as ω̂), then we have:

P (ω|D) = δ(ω − ω̂) → P (y|x,D) ≈ P (y|x, ω̂) (3)

with δ being the Dirac function.
We follow the previous assumption, i.e., the prediction

is drawn from a Gaussian distribution N (y|µ, σ2) and ac-
cording to (Amini et al. 2020), we denote α as the pa-
rameters of the prior distributions of (µ, σ2) and we have
P (µ, σ2|α, ω̂) = P (µ|σ2,α, ω̂)P (σ2|α,ω∗). After intro-
ducing α and Eq. 3, we can approximate P (y|x,D) as:

P (y|x,D) =

∫∫
P (y|x, σ2)P (σ2|ω)P (ω|D)dσ2dω

=

∫
P (y|x, σ2)P (σ2|D)dσ2

≈
∫
P (y|x, σ2)P (σ2|x,α, ω̂)dσ2 (4)

Detailed derivation can be found in Supp Section C.3.
We can consider ϵ to be drawn from a continuous dis-

tribution parameterized by σ2. The discrepancy in vari-
ances P (σ2|D) can describe epistemic uncertainty of the

final prediction and the variational approach can be ap-
plied (Joo, Chung, and Seo 2020; Malinin and Gales 2018):
P (σ2|x,α, ω̂) ≈ P (σ2|D). After discretization, we can
transform the approximation to P (π|x,α, ω̂) ≈ P (π|D̄),
with D̄ defined as in Section 3.2.1, π the parameters of a dis-
crete distribution and α re-defined as the prior distribution
parameters of this discrete distribution. In the next section,
we omit ω̂ and x for the sake of brevity.

3.2.3 Dirichlet posterior for epistemic uncertainty Ac-
cording to the previous discussions on the epistemic uncer-
tainty modeling and error discretization, we model Dirichlet
posterior (Sensoy, Kaplan, and Kandemir 2018; Joo, Chung,
and Seo 2020; Charpentier et al. 2022) on the discrete errors
ϵ̄ to achieve epistemic uncertainty on the main task.

Intuitively, we consider each one-hot prediction error ϵ̄(i)

to be drawn from a categorical distribution, and π(i) =

(π
(i)
1 , . . . , π

(i)
K ) denotes the random variable over this dis-

tribution, where
∑K

k=1 π
(i)
k = 1 and π(i)

k ∈ [0, 1] for k ∈
{1, ...,K}. The conjugate prior of categorical distribution is
a Dirichlet distribution:

P (π(i)|α(i)) =
Γ(S(i))∏K

k=1 Γ(α
(i)
k )

K∏
k=1

π
(i)
k

α
(i)
k

−1
(5)

with Γ(·) the Gamma function, α(i) positive concentration
parameters of Dirichlet distribution and S(i) =

∑K
k=1 α

(i)
k

the Dirichlet strength.
To get access to the epistemic uncertainty, the cate-

gorical posterior P (π|D̄) is needed, yet it is untractable.
Approximating P (π|D̄) using Monte-Carlo sampling (Gal
and Ghahramani 2016) or ensembles (Lakshminarayanan,
Pritzel, and Blundell 2017) comes with an increased com-
putational cost. Instead, we adopt a variational way to learn
a Dirichlet distribution in Eq. 5 to approximate P (π|D̄) as
in (Joo, Chung, and Seo 2020). Here, σΘ2

outputs the con-
centration parameters α of P (π|α), and α update according
to the observed inputs. It can also be viewed as collecting the
evidence e as a measure for supporting the classification de-
cisions for each class (Sensoy, Kaplan, and Kandemir 2018),
akin to estimating the Dirichlet posterior.

Since the numbers of data points are identical for each
class in D̄, and no e(i) output before training, we set the
initial α as 1 so that the Dirichlet concentration parameters
can be formed as in (Sensoy, Kaplan, and Kandemir 2018;
Charpentier, Zügner, and Günnemann 2020): α(i) = e(i) +
1 = σΘ2(x

(i)) + 1, where e(i) is given by an exponential
function on the top of σΘ2

. Then we minimize the Kullback-
Leibler (KL) divergence between the variational distribution
P (π|x,Θ2) and the true posterior P (π|D̄) to achieve Θ̂2:

Θ̂2 = argmin
Θ2

KL[P (π|x,Θ2)||P (π|D̄)]

= argmin
Θ2

−EP (π|x,Θ2)[logP (D̄|π)] + KL[P (π|x,Θ2)||P (π)]

The loss function will be equivalent to minimizing the nega-
tive evidence lower bound (Jordan et al. 1999), considering



the prior distribution P (π) as Dir(1):

L(Θ2) =
1

N

N∑
i=1

K∑
k=1

[ϵ̄
(i)
k (ψ(S(i))− ψ(α

(i)
k ))]

+λKL(Dir(α(i))||Dir(1)) (6)
where ψ is the digamma function, λ is a positive hyperpa-
rameter for the regularization term and ϵ̄ is given by Eq. 2.

For measuring epistemic uncertainty, we consider using
the spread in the Dirichlet distribution (Shen et al. 2023;
Charpentier, Zügner, and Günnemann 2020), which is
shown in (Shen et al. 2023) to outperform other metrics,
e.g. differential entropy. Specifically, the epistemic uncer-
tainty is inversely proportional to the Dirichlet strength:
û
(i)
epis = σΘ̂2

(x(i)) = K
S(i) . The class corresponding to the

maximum output from σΘ2
can also represent the aleatoric

uncertainty. Yet, this is a rough estimate due to quantization
errors and underperforming the other solutions. We provide
the corresponding results in Supp Tab. A14. Overall, we
take only σΘ1

output as the aleatoric uncertainty.

In conclusion, we propose a generalized AuxUE with two
components, namely σΘ1

and σΘ2
, to quantify the uncer-

tainty of the prediction given by the main task model. Based
on different distribution assumptions on heteroscedastic
noise in training data introduced in Section 3.1, we can
train σΘ1 to estimate aleatoric uncertainty. Meanwhile, as
described in Section 3.2, applying the proposed DIDO on
σΘ2

and measuring the spread of Dirichlet distribution can
help to estimate the epistemic uncertainty. Overall, we inte-
grate the optimization for both uncertainty estimators, and
the final loss for training the generalized AuxUE is:

LAuxUE = L(Θ1) + L(Θ2) (7)
For L(Θ1), in addition to the Gaussian NLL, we will test
other NLL loss functions according to different distribution
assumptions in the experiment.

4 Experiments
In this section, we first show the feasibility of the proposed
generalized AuxUE on toy examples. Then, we demonstrate
the effectiveness of epistemic uncertainty estimation using
the proposed DIDO on age estimation and monocular depth
estimation (MDE) tasks, and investigate the robustness of
aleatoric uncertainty estimation on MDE task. Due to page
limitations, the experiments for an example of OOD detec-
tion in tabular data regression and the super-resolution task
are provided in Supp Section A.2 and A.4 respectively.

In the result tables, the top two performing methods are
highlighted in color. All the results are averaged by three
runs. The shar.enc. and sep.enc. denote respectively shared-
parameters for the encoders and separate encoders of σΘ1

and σΘ2 in the generalized AuxUE. For epistemic uncer-
tainty, we compare our proposed method with the solutions
based on modified main DNN: LDU (Franchi et al. 2022),
Evidential learning (Evi.) (Amini et al. 2020; Joo, Chung,
and Seo 2020) and Deep Ensembles (DEns.) (Lakshmi-
narayanan, Pritzel, and Blundell 2017), as well as training-
free methods: Gradient-based uncertainty (Grad.) (Hor-
nauer and Belagiannis 2022), Variance based on Inject-
Dropout (Inject.) (Mi et al. 2022).

Figure 2: Results on 1D toy examples. Aleatoric and epistemic
uncertainty estimations given by our proposed AuxUE are pre-
sented respectively as the uncertainty interval and degree (0-1).

The detailed implementations and the main task perfor-
mance for all experiments are provided in Supp Section A.

4.1 Toy examples: Simple 1D regression
We generate two toy datasets to illustrate uncertainty esti-
mates given by our proposed AuxUE, as shown in Fig. 2.
In both examples, a tight aleatoric uncertainty estimation is
provided on training data areas. For epistemic uncertainty,
in Fig. 2-A, DIDO provides small uncertainty until reach-
ing the unknown inputs x /∈ [−3, 3]. In Fig. 2-B, we re-
port the ‘in-between’ uncertainty estimates (Foong et al.
2019). On the in-between part x ∈ [−1, 3], DIDO can pro-
vide higher epistemic uncertainty than in training set regions
x ∈ [−3,−1] and x ∈ [3, 5]. In summary, the generalized
AuxUE provides reliable uncertainty estimates in regions
where training data is either present or absent.

4.2 Age estimation and OOD detection
Epistemic uncertainty estimation for age estimation is sim-
ilar to one for classification problems but has rarely been
discussed in previous works. We use (unmodified) official
ResNet34 (He et al. 2016) checkpoints from Coral (Cao,
Mirjalili, and Raschka 2020) as the main task models. Our
AuxUE is applied in a ConfidNet (Corbière et al. 2019) style
since it is more suitable for image-level tasks.

Evaluation settings and datasets We train the models
on AFAD (Niu et al. 2016) training set and choose AFAD
test set as the ID dataset for the OOD detection task. We take
CIFAR10 (Krizhevsky, Hinton et al. 2009), SVHN (Netzer
et al. 2011), MNIST (LeCun 1998), FashionMNIST (Xiao,
Rasul, and Vollgraf 2017), Oxford-Pets (Parkhi et al. 2012)
and Noise image generated by Pytorch (Paszke et al. 2019)
(FakeData) as the OOD datasets. We employ the Areas
Under the receiver operating Characteristic (AUC) and the
Precision-Recall curve (AUPR) (higher is better for both) to
evaluate OOD detection performance.

Results OOD detection results are shown in Tab. 1.
DIDO performs the best on most datasets. The training-
free methods also perform well, but we observe that the
Gradient-based solution needs inversed uncertainty (inv.) to
provide better performance. On the Pets dataset, DIDO per-
forms worse than DEns. and aleatoric uncertainty estima-
tion head σΘ1

. We argue that images of pets provide features
closer to facial information, resulting in higher evidence es-
timates given by DIDO. While σΘ1

performs better in this



AuxUE Modified main DNN Training-free

OOD
Dataset Metrics Ours

σΘ1

Ours σΘ2

DIDO LDU Evi. DEns. Grad.
(inv.) Inject.

CIFAR10 AUC ↑ 96.0 100 95.2 50.0 99.2 100 94.5
AUPR ↑ 91.7 100 88.3 23.4 95.1 100 87.3

SVHN AUC ↑ 98.3 100 94.8 50.0 99.2 100 94.0
AUPR ↑ 98.1 100 93.2 44.3 97.8 100 92.5

MNIST AUC ↑ 97.8 100 97.6 50.0 99.6 100 98.8
AUPR ↑ 93.9 100 93.8 23.4 97.2 100 96.9

Fashion
MNIST

AUC ↑ 97.7 100 95.6 50.0 99.1 100 97.7
AUPR ↑ 94.0 100 89.3 23.4 93.8 100 94.2

Oxford
Pets

AUC ↑ 82.9 55.9 31.5 50.1 56.1 50.7 48.6
AUPR ↑ 53.3 23.9 12.5 18.5 21.3 19.6 20.3

Fake
Data

AUC ↑ 67.0 80.8 70.0 50.0 33.2 45.9 45.1
AUPR ↑ 59.7 70.2 58.8 49.5 37.8 46.3 44.6

Table 1: OOD detection results on Age estimation task. ID data
is from Asian Face Age Dataset (AFAD) (Niu et al. 2016).

S Metrics Original + Ggau + Sgau + NIG Ours (+ Lap)
shar. enc. σΘ1

Ours (+ Lap)
sep. enc. σΘ1

0

AUSE-REL ↓ 0.013 0.014 0.013 0.012 0.013 0.013
AUSE-RMSE ↓ 0.204 0.258 0.202 0.208 0.205 0.203
AURG-REL ↑ 0.023 0.023 0.023 0.024 0.023 0.023
AURG-RMSE ↑ 1.869 1.815 1.871 1.865 1.869 1.870

1

AUSE-REL ↓ 0.019 0.021 0.019 0.018 0.018 0.019
AUSE-RMSE ↓ 0.340 0.482 0.332 0.335 0.332 0.336
AURG-REL ↑ 0.031 0.029 0.031 0.032 0.032 0.031
AURG-RMSE ↑ 2.357 2.215 2.365 2.362 2.365 2.361

2

AUSE-REL ↓ 0.024 0.026 0.023 0.022 0.022 0.023
AUSE-RMSE ↓ 0.483 0.707 0.463 0.479 0.464 0.468
AURG-REL ↑ 0.038 0.035 0.039 0.039 0.039 0.038
AURG-RMSE ↑ 2.759 2.535 2.779 2.763 2.777 2.774

3

AUSE-REL ↓ 0.033 0.036 0.031 0.031 0.031 0.031
AUSE-RMSE ↓ 0.795 1.176 0.737 0.806 0.749 0.730
AURG-REL ↑ 0.047 0.044 0.049 0.049 0.049 0.049
AURG-RMSE ↑ 3.243 2.862 3.301 3.232 3.289 3.308

4

AUSE-REL ↓ 0.056 0.057 0.050 0.053 0.051 0.049
AUSE-RMSE ↓ 1.517 2.380 1.364 1.582 1.430 1.268
AURG-REL ↑ 0.051 0.051 0.058 0.054 0.056 0.059
AURG-RMSE ↑ 3.680 2.817 3.834 3.615 3.767 3.929

5

AUSE-REL ↓ 0.071 0.082 0.064 0.069 0.066 0.059
AUSE-RMSE ↓ 2.202 3.878 2.043 2.414 2.157 1.760
AURG-REL ↑ 0.056 0.045 0.063 0.057 0.061 0.067
AURG-RMSE ↑ 4.054 2.377 4.213 3.842 4.098 4.496

Table 2: Aleatoric uncertainty estimation results on Monocular
Depth Estimation. S = 0 represents original KITTI dataset and
S > 0 represents KITTI-C datasets.

case, which can jointly make AuxUE a better uncertainty es-
timator. Overall, we consider that using generalized AuxUE
with DIDO is an alternative that can better detect OOD in-
puts than ensembling-based solutions.

4.3 Monocular depth estimation task
For the MDE task, we will evaluate both aleatoric and
epistemic uncertainty estimation performance based on the
AuxUE SLURP (Yu, Franchi, and Aldea 2021). Our gener-
alized AuxUE is also constructed using SLURP as the back-
bone. We use BTS (Lee et al. 2019) as the main task model
and KITTI (Geiger et al. 2013; Uhrig et al. 2017) Eigen-
split (Eigen, Puhrsch, and Fergus 2014) training set for train-
ing both BTS and AuxUE models.

4.3.1 Aleatoric uncertainty estimation In this section,
the goal is to analyze the fundamental performance and
robustness of aleatoric uncertainty estimation under differ-
ent distribution assumptions. We choose simple Gaussian
(Sgau) (Nix and Weigend 1994), Laplacian (Lap), Gener-
alized Gaussian (Ggau) (Upadhyay et al. 2022) and Normal-

Figure 3: Illustrations of uncertainty estimations for MDE
task. A: input image, green points represent pixels with depth
groundtruth; B: depth prediction; C and D: aleatoric and epistemic
uncertainty estimations. The areas lacking depth groundtruth, e.g.
sky and tramway, are assigned high uncertainty using DIDO.

Inverse-Gamma (NIG) (Amini et al. 2020) distributions. We
modify the loss functions and the head of the SLURP to out-
put the desired parameters of the distributions.

Evaluation settings and datasets We first build Sparsi-
fication curves (SC) (Bruhn and Weickert 2006): we achieve
predictive SC by computing the prediction error of the re-
maining pixels after removing a certain partition of pixels
(5% in our experiment) each time according to the highest
uncertainty estimations. We can also obtain an Oracle SC by
removing the pixels according to the highest prediction er-
rors. Then, we have the same metrics used in (Poggi et al.
2020): Area Under the Sparsification Error (AUSE, lower is
better), and Area Under the Random Gain (AURG, higher
is better). We choose absolute relative error (REL) and root
mean square error (RMSE) as the prediction error metrics.

We generate KITTI-C from KITTI Eigen-split validation
set using the code of ImageNet-C (Hendrycks and Dietterich
2019) to have different corruptions on the images to check
the robustness of the uncertainty estimation solutions. We
apply eighteen perturbations with five severities, including
Gaussian noise, shot noise, etc., and take it along with the
original KITTI for evaluation.

Results As shown in Tab. 2, the Laplace assumption
is more robust when the severity increases, while Gaussian
one works better when the noise severity is smaller. We
also check the proposed generalized AuxUE with a shared
encoder. It shows that the epistemic uncertainty estimation
branch affects the robustness of aleatoric uncertainty
estimation in this case, especially under stronger noise.

The next sections show epistemic uncertainty estimation
results based on different methods. Furthermore, in Supp
Tab. A15 and Tab. A16, we also verify whether aleatoric
uncertainty methods based on different distribution assump-
tions can generalize to the OOD data, i.e., provide high
uncertainty to the unseen patterns, even without explicitly
modeling epistemic uncertainty.

4.3.2 Robustness under dataset change This experiment
will explore the predictive uncertainty performance encoun-
tering the dataset change. Supervised MDE is an ill-posed
problem that heavily depends on the training dataset. In our
case, the main task model is trained on the KITTI dataset,
so the model will output meaningless results on the indoor
data, which should trigger a high uncertainty estimation. The



AuxUE with DIDO Modified main DNN Training-free

Metrics Ours σΘ2

sep. enc.
Ours σΘ2

shar. enc. LDU Evi. DEns. Grad. Inject.

AUC ↑ 98.1 98.4 58.1 70.6 62.1 78.4 18.3
AUPR ↑ 99.3 99.4 79.5 77.8 76.7 92.6 62.3

Table 3: Epistemic uncertainty estimation results encountering
dataset change on Monocular depth estimation task. The eval-
uation dataset used here is NYU indoor depth dataset.

AuxUE with DIDO Modified main DNN Training-free

S Metrics Ours σΘ2

sep. enc.
Ours σΘ2

shar. enc. LDU Evi. DEns. Grad.
(inv.) Inject.

0
AUC ↑ 100.0 99.9 96.5 76.7 93.5 85.6 58.4
AUPR ↑ 100.0 99.0 93.8 42.6 70.0 76.3 28.1
Sky-All ↓ 0.015 0.018 0.278 0.986 0.005 0.001 0.800

1
AUC ↑ 100.0 99.9 96.3 69.7 92.8 76.9 58.5
AUPR ↑ 99.9 98.9 93.5 37.4 68.0 69.8 28.2
Sky-All ↓ 0.016 0.018 0.277 0.988 0.005 0.002 0.799

2
AUC ↑ 99.9 99.9 95.9 65.4 92.3 75.6 58.4
AUPR ↑ 99.8 98.8 93.0 34.5 67.0 67.8 28.1
Sky-All ↓ 0.017 0.018 0.280 0.990 0.005 0.002 0.803

3
AUC ↑ 99.9 99.7 95.9 62.3 91.6 73.6 58.4
AUPR ↑ 99.7 98.1 92.8 32.8 65.7 64.5 28.2
Sky-All ↓ 0.018 0.020 0.283 0.992 0.005 0.002 0.809

4
AUC ↑ 99.6 99.5 96.1 58.8 91.8 71.3 58.4
AUPR ↑ 99.1 97.2 92.9 31.2 67.2 60.0 28.3
Sky-All ↓ 0.023 0.022 0.288 0.994 0.005 0.002 0.819

5
AUC ↑ 98.5 99.0 96.5 58.5 92.2 66.8 57.8
AUPR ↑ 97.1 96.1 93.7 32.8 70.4 53.8 28.2
Sky-All ↓ 0.035 0.026 0.295 0.996 0.005 0.002 0.839

Table 4: Epistemic uncertainty estimation results encountering
unseen pattern on Monocular depth estimation task. The eval-
uation datasets used here are KITTI Seg-Depth (S=0) and KITTI
Seg-Depth-C (S>0).

results are shown in Tab. 3.
Evaluation settings and datasets We take AUC and

AUPR as evaluation metrics. We take all the valid pixels
from the KITTI validation set (ID) as the negative samples
and the valid pixels from the NYU (Nathan Silberman and
Fergus 2012) validation set (OOD) as the positive samples.

Results Tab. 3 shows whether different uncertainty es-
timators can give correct indications facing the dataset
change. Generalized Gaussian and Gradient-based methods
can provide competitive results, while our method, espe-
cially DIDO, provides the best performance.

4.3.3 Robustness on unseen patterns during training
This experiment focuses on how uncertainty estimators be-
have on unseen patterns during training. The unseen patterns
are drawn from the same dataset distribution as the patterns
used in training, and the outputs of the main task model for
such patterns may be reasonable. Still, they cannot be eval-
uated and thus are unreliable. High uncertainty should be
assigned to these predictions. Since this topic is rarely con-
sidered in MDE, we try to give a benchmark in this work.

Evaluation settings and datasets We select sky areas
in KITTI as OOD patterns. This setting is based on the fol-
lowing reasons: due to the generalization ability of MDE
DNNs, it is inappropriate to treat all pixels without ground
truth as OOD. However, there is consistently no ground truth
for the sky parts since LIDAR is used in depth acquisition.
During training, sky patterns are masked and never seen

by the DNNs (including the AuxUEs). Meanwhile, they are
annotated in KITTI semantic segmentation dataset (Alhaija
et al. 2018) (200 images), thus can be used for evaluation.

Three metrics are applied for evaluating OOD detection
performance as shown in Tab. 4. AUC and AUPR: we se-
lect 49 images that are not in the training set and have both
depth and semantic segmentation annotations. For each im-
age, we take the sky pixels as the positive class and the pixels
with depth ground truth as the negative class. We use AUC
and AUPR to assess the uncertainty estimation performance.
Note that this metric does not guarantee that the uncertainty
of the sky is the largest in the whole uncertainty map. Thus,
we have Sky-All (lower is better): all 200 images with se-
mantic segmentation annotations are selected for evaluation.
The ground truth uncertainties are set as 1 for the sky ar-
eas. Then we normalize the predicted uncertainty, take the
sky areas ûsky from the whole uncertainty map and mea-
sure: mean((1 − ûsky)

2). For simplicity, we denote KITTI
Seg-Depth for both evaluation datasets. We also generate a
corruption dataset KITTI Seg-Depth-C using the same way
in the aleatoric uncertainty estimation section.

Results Fig. 3 shows a qualitative example of typical
uncertainty maps computed on KITTI images. More visu-
alizations are presented in Supp Section E. In Tab. 4, the
Deep Ensembles and Gradient-based methods can better as-
sign consistent and higher uncertainty to the sky areas, but
they are inadequate for identifying the ID and OOD areas.
As outlined in Section 3.2.3, DIDO prioritizes rare patterns
and then generalizes the uncertainty estimation ability to the
unseen patterns. This results in assigning higher uncertainty
to some few-shot pixels that have ground truth, making Sky-
All results slightly worse. Yet, it can achieve a balanced per-
formance on all the metrics, and at the same time, it main-
tains robust performance in the presence of noise.

4.4 Ablation study
We conduct the ablation study on the corresponding section
in Supp Section D. Hyperparameters. We analyze the ef-
fect of the number of sets K defined in Section 3.2 for dis-
cretization and λ for the regularization term in Eq. 6. Neces-
sity of using AuxUE. We also apply DIDO on the main task
model to check the impact on main task performance. Effec-
tiveness of Dirichlet modeling. We show the effectiveness
of the Dirichlet modeling instead of using the normal Cate-
gorical modeling based on the discretized prediction errors.
For the former, we apply classical cross-entropy on the Soft-
max outputs given by the AuxUE.

5 Conclusion
In this paper, we propose a new solution for uncertainty
quantification on regression problems based on a general-
ized AuxUE. We design and implement the experiments
based on four different regression problems. By modeling
heteroscedastic noise using Laplace distribution, the pro-
posed AuxUE can achieve more robust aleatoric uncertainty.
Meanwhile, the novel DIDO solution in our AuxUE can pro-
vide better epistemic uncertainty estimation performance on
both image-level and pixel-wise tasks.
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Hyperparameters Main task AuxUE
learning rate 0.001 0.005
# epochs 200 100
batch size 64 64
λ - 0.001
K - 5

Table A5: Hyperparameters for 1D signal toy examples.

A Supplements for the experiments
A.1 Toy example: 1D signal
A.1.1 Dataset We created two toy datasets for our experi-
ment. Fig.2-A on the main paper was generated as follows:
y = 10 sin(x) + ϵ, with ϵ:

ϵ ∼ N (0, 3) x ∈ [−3, 0]

ϵ ∼ N (0, 1) x ∈ [0, 3]

0 otherwise

Fig.2-B on the main paper was generated as follows: y =
10 sin(x) + ϵ, with ϵ:

ϵ ∼ N (0, 3) x ∈ [−3,−1]

ϵ ∼ N (0, 1) x ∈ [3, 5]

0 otherwise

A.1.2 Models Our main task model consists of an MLP
with four hidden layers with 300 hidden units per layer and
ReLU non-linearities. We use a generalized AuxUE method
similar to ConfidNet (Corbière et al. 2019).

In particular, the input of the AuxUE is the features from
the output of the penultimate layer of the main task model.
Thus, in this case, the generalized AuxUE does not need the
encoders, as shown in the general process in Fig.1 on the
main paper. The architecture of this AuxUE is as follows.
σΘ1

is composed of one fully connected layer (FCL) with
an exponential activation function on the top. σΘ2

is com-
posed of an MLP with a cosine similarity layer and a hidden
layer with 300 hidden units per layer, and an exponential
activation function on the top.

The reason for using the cosine similarity layer is to de-
crease the impact of the numerical value. This operation is
similar to the fully connected layer operation but simply di-
vides the output by the product of the norm of the layer’s
inputs (trainable parameters of the linear and input features).

A.1.3 Training The hyperparameters are listed in Tab. A5.
As a reminder, λ andK are the hyperparameters specifically
for AuxUE (σΘ2

), which stand for the weight for the regu-
larization term in the loss function, and respectively for the
number of the class we set for discretization.

Hyperparameters Main task AuxUE
learning rate 0.001 0.001
# epochs 150 20
batch size 64 64
λ - 0.0001
K - 5

Table A6: Hyperparameters for tabular data example.

MSE ↓ AUC ↑ AUPR ↑
DEns. 0.646 0.548 0.250
DIDO 0.646 0.936 0.863

Table A7: Main task and OOD detection performance on tab-
ular data example.

A.2 Tabular data example
A.2.1 Dataset In the tabular data example, we use the red
wine quality dataset (Cortez et al. 2009) for the OOD de-
tection task. We randomly separate the dataset in training,
validation, and test sets with 72%, 8%, and 20% as the pro-
portions of the whole dataset for each set. We generate the
OOD data using the ID test set. We first replicate two test
sets as OOD sets, one of which we set all the features in the
table to be negative, and the other, we randomly shuffle the
values of the features.

A.2.2 Models and training Our main task model consists
of an MLP with four hidden layers with 16, 32, and 16 hid-
den units in the respective layer and ReLU non-linearities.
We use a generalized AuxUE method similar to Confid-
Net (Corbière et al. 2019).

In particular, we find it better to provide the tabular data to
the AuxUE directly. We use one hidden layer with 16 hidden
units followed by ReLU as the feature extractor for σΘ1

and
σΘ2

uncertainty estimators. For the uncertainty estimators,
we use the same ones as in the 1D signal data. The hyperpa-
rameters are listed in Tab. A6.

A.2.3 Results We trained three models to build Deep En-
sembles (DEns.) (Lakshminarayanan, Pritzel, and Blundell
2017). The epistemic uncertainty estimates are obtained us-
ing the variance of DNNs’ point estimates. We evaluate the
OOD detection performance using AUC and AUPR as the
metrics. The results are shown in Tab. A7. The proposed
DIDO outperforms the DEns. on OOD detection task using
one extra DNN apart from the main task model.

A.3 Age estimation
A.3.1 Model The main task ResNet34 (He et al. 2016)
model checkpoints are downloaded from the official GitHub
repository of Coral (Cao, Mirjalili, and Raschka 2020).



Hyperparameters Main task AuxUE
learning rate 0.0005 0.001
# epochs 200 25
batch size 256 256
λ - 0.01
K - 8

Table A8: Hyperparameters for age estimation.

We observe that the age estimation result can outperform
the one achieved by Coral by applying soft-weighted-sum
(SWS) (Yu, Franchi, and Aldea 2022) on the top of the mod-
els trained using cross-entropy loss. The goal of SWS is a
post-processing operation to transfer the discrete Softmax
outputs to the continuous age estimates. For this reason, we
use the main task models trained by cross-entropy loss.

As introduced in Section 4.2 of the main paper, the
AuxUE DNN is applied in a ConfidNet (Corbière et al.
2019) way. Similarly to the toy example settings, we take
the pre-logits (512 features) from the main task model as the
inputs of our AuxUE.

For σΘ1
, we use an MLP with one hidden layer with 512

hidden units and an FCL with an exponential function on
the top. For σΘ2

, we use an MLP with a cosine similarity
layer and one hidden layer with 512 hidden units per layer
and ReLU non-linearities, followed by an FCL with an ex-
ponential function on the top.

A.3.2 Training To train the AuxUE DNN, we use the hy-
perparameters shown in Tab. A8. We use the same optimizer
and batch size as for the main task training, while we use 25
epochs which is much less than training the main task.

A.3.3 Main task and aleatoric uncertainty performance
For the age estimation task, we list the main task results in
Tab. A9 given by the original Coral, the original cross en-
tropy (CE)-based models and the CE-based models using
soft-weighted-sum (SWS). We can see that SWS really im-
proves the main task performance. Furthermore, by adjust-
ing the original model to output the parameters of Gaussian
distribution (Nix and Weigend 1994; Kendall and Gal 2017)
and training three models like this from scratch, we can
achieve the results given by Deep Ensembles (DEns.) (Lak-
shminarayanan, Pritzel, and Blundell 2017). We also im-
plement LDU (Franchi et al. 2022) and Evidential learning
(Evi.) (Joo, Chung, and Seo 2020) based on the ResNet34
backbone. The overall difference among different tech-
niques is not huge, while the adjustments still reduce a bit
the age estimation performance. We argue that the adjusted
DNNs might achieve comparable performance to the un-
changed ones, but more tuning and hyperparameter search-
ing should be required. On the other hand, for aleatoric
uncertainty estimation result, for AUSE-RMSE (↓), Ours:
0.067, LDU: 0.056, Evi.: 0.070, DEns.: 0.074, Grad.: 0.073,
Inject.: 0.076. Ours is shown to provide comparable results
to the other solutions.

A.4 Super-resolution
In the SR task, the noise in the reconstructed image will be
irreducible given the noisy low-resolution input, and we con-

Metrics Coral CE CE
+SWS LDU Evi. DEns.

MAE ↓ 3.47 ± 0.05 3.60 ± 0.02 3.39 3.41 3.70 ± 0.19 3.31
RMSE ↓ 4.71 ± 0.06 5.03 ± 0.03 4.52 ± 0.03 4.50 4.72 ± 0.23 4.40

Table A9: Main task performance for ResNet34 model based
on different methods on age estimation task. The evaluation is
based on AFAD (Niu et al. 2016) test set.

sider this uncertainty to be aleatoric. Moreover, we argue
that the definition of epistemic uncertainty is rather vague in
this task. Therefore, in this section, we use AuxUE to esti-
mate the aleatoric uncertainty based on different distribution
assumptions.

A.4.1 Model Similar to the monocular depth estimation
experiments in Section 4.3.1 in the main paper, we choose
SRGan (Ledig et al. 2017) as the main task model and
BayesCap (Upadhyay et al. 2022) as the AuxUE and follow
the same training and evaluation settings as in (Upadhyay
et al. 2022). The goal is to analyze the fundamental per-
formance and robustness of aleatoric uncertainty estimation
under different distribution assumptions. We choose simple
Gaussian (Sgau) (Nix and Weigend 1994), Laplacian (Lap),
Generalized Gaussian (Ggau) (Upadhyay et al. 2022) and
Normal-Inverse-Gamma (NIG) (Amini et al. 2020) distribu-
tions on BayesCap (Upadhyay et al. 2022).

We modify the loss functions to output the desired param-
eters of the distributions. For the architecture adjustments,
we only modify the prediction heads on Bayescap. Origi-
nal BayesCap (Upadhyay et al. 2022) uses multiple Residual
blocks (He et al. 2016) followed by three heads which output
the three parameters for the Generalized Gaussian distribu-
tion, including one as the refined main task prediction. Each
head contains a set of convolutional layers + PReLU acti-
vation functions. As we apply different distribution assump-
tions, we use the different numbers of the same heads to
construct the variants of BayesCap. Specifically, we use two
heads for two Gaussian distribution parameters, two heads
for two Laplace distribution parameters, and four heads for
four parameters in NIG distribution.

A.4.2 Training We follow the same training settings
(batch size, learning rate, weight for the additional identity
mapping loss, and the number of epochs) as in the original
paper (Upadhyay et al. 2022).

A.4.3 Evaluation settings and datasets We fol-
low (Upadhyay et al. 2022) to use the Uncertainty
Calibration Error (UCE, lower is better) metric (Laves et al.
2020). It measures the difference between the predicted
uncertainty and the prediction error. Specifically, the
prediction error and estimated uncertainty are assigned
into bins, and the absolute difference between the mean
prediction error and mean estimated uncertainty in each bin
is calculated. UCE is the sum of the results from all bins.

We use ImageNet (Deng et al. 2009) as the training set for
both SRGan and BayesCap models. For uncertainty evalua-
tion, we use Set5 (Bevilacqua et al. 2012), Set14 (Zeyde,
Elad, and Protter 2012), and BSDS100 (Martin et al. 2001)
as the testing sets. Moreover, we generate Set5-C, Set14-C,



Super Resolution (Metric: UCE ↓)

Dataset S Original
(Ggau) + Sgau + NIG Ours σΘ1

(+ Lap)

Set5

0 0.0088 0.0083 0.0018 0.0019
1 0.0186 0.0180 0.0156 0.0157
2 0.0253 0.0243 0.0226 0.0227
3 0.0363 0.0341 0.0333 0.0332
4 0.0434 0.0394 0.0392 0.0389
5 0.0525 0.0462 0.0464 0.0040

Set14

0 0.0137 0.0092 0.0040 0.0040
1 0.0221 0.0195 0.0176 0.0174
2 0.0281 0.0255 0.0241 0.0240
3 0.0350 0.0318 0.0310 0.0308
4 0.0408 0.0368 0.0364 0.0362
5 0.0509 0.0465 0.0465 0.0461

BSDS100

0 0.0124 0.0071 0.0036 0.0033
1 0.0204 0.0174 0.0162 0.0160
2 0.0271 0.0237 0.0229 0.0227
3 0.0332 0.0288 0.0286 0.0358
4 0.0425 0.0363 0.0363 0.0358
5 0.0539 0.0459 0.0460 0.0453

Table A10: Aleatoric uncertainty estimation results on Super-
Resolution task. Datasets with an S (severity) greater than 1 are
the -C variants of the corresponding clean dataset.

Metrics Set5 Set14 BSDS100
PSNR ↑ 29.40 26.02 25.16
SSIM ↑ 0.8472 0.7397 0.6688

Table A11: Main task performance for SRGan model on super-
resolution task.

and BSDS100-C using the code of ImageNet-C (Hendrycks
and Dietterich 2019) to have different corruptions on the im-
ages. We apply the following eighteen perturbations with
five severities: Gaussian noise, shot noise, impulse noise, iso
noise, defocus blur, glass blur, motion blur, zoom blur, frost,
fog, snow, dark, brightness, contrast, pixelated, elastic, color
quantization, and JPEG. In the main paper, we mentioned
these perturbations in Section 4.3, yet due to the paper lim-
itation, we put the complete list here. Only low-resolution
images (inputs) are polluted by noise, while the correspond-
ing high-resolution ground truth images are clean. Castillo
et al. (Castillo et al. 2021) applied the noise to the input im-
ages during training, while we apply them during inference
for robust uncertainty estimation evaluation.

A.4.4 Results As shown in Tab. A10, the Laplacian as-
sumption on the data-dependent noise performs better than
all the other assumptions, including the Generalized Gaus-
sian distribution proposed in BayesCap. When the noise
severity increases, using the Laplacian assumption can pro-
vide more robust uncertainty than the others.

A.4.5 Main task performance In the super-resolution
task, we take the main task SRGan (Ledig et al. 2017) model
used in BayesCap (Upadhyay et al. 2022). Thus we have the
same main task performance as they showed in the paper. We
list the results in Tab. A11 as a reminder. The evaluation is
based on Set5 (Bevilacqua et al. 2012), Set14 (Zeyde, Elad,
and Protter 2012), BSDS100 (Martin et al. 2001) dataset.

Hyperparameters Main task AuxUE
start learning rate 1e-4 1e-4
end learning rate 1e-5 1e-5
# epochs 50 8
batch size 4 4
λ - 0.01
K - 32

Table A12: Hyperparameters for monocular depth estimation.

A.5 Monocular depth estimation
A.5.1 Model We use SLURP (Yu, Franchi, and Aldea
2021) as the backbone in this experiment. We modify the
prediction heads to achieve the uncertainty estimates.

For σΘ1
, we do not modify the model when the distribu-

tion assumption only contains one parameter (except for the
main task prediction term). For the distribution assumptions
with more than one parameter output, we add one more con-
volutional layer with ReLU on the top for a fair comparison.

For σΘ2
, similarly to the one in age estimation, we replace

the original head (a single convolutional layer) with the co-
sine similarity layer followed by two convolutional layers
with ReLU activation functions. In the cases where we share
the encoders to make the general AuxUE lighter, based on
the original SLURP, we doubled the number of features fed
into the prediction head. We split them into two sets, feeding
them into two prediction heads. The two prediction heads
are consistent in the structures mentioned before. We fol-
low (Yu, Franchi, and Aldea 2021) to use the depth output
and the encoder features of the main task model BTS (Lee
et al. 2019) as the input of the AuxUE.

A.5.2 Training The hyperparameters used during training
are listed in Tab. A12. The learning rate decrement is con-
sistent with the main task BTS (Lee et al. 2019) model.

A.5.3 Main task performance In monocular depth es-
timation, we list in Tab. A13 the results for the meth-
ods using modified main task BTS (Lee et al. 2019) mod-
els, namely SinglePU (Kendall and Gal 2017), Deep En-
sembles (DEns.) (Lakshminarayanan, Pritzel, and Blundell
2017), LDU (Franchi et al. 2022), as well as the origi-
nal model, which is used for AuxUEs and the training-free
methods. Note that we use the evaluation code based on Ad-
aBins (Bhat, Alhashim, and Wonka 2021), which corrected
the error made in the BTS evaluation code, and the result
will be slightly better than the one claimed in the original
BTS. The evaluation is based on KITTI (Geiger et al. 2013)
Eigen-split (Eigen, Puhrsch, and Fergus 2014) validation set.
As we can see, modifying the model and training in (Kendall
and Gal 2017) way will affect the main task performance
even after doing Deep Ensembles, LDU can provide com-
petitive results to the original yet only on several metrics.
Overall, the AuxUE is necessary to be applied for uncer-
tainty estimation without changing and affecting the main
task.

A.5.4 Additional results on aleatoric uncertainty estima-
tion from Dirichlet outputs The class corresponds to the
maximum output value of the Dirichlet output, i.e., outputs



Methods absrel ↓ log10 ↓ rms ↓ sqrel ↓ logrms ↓ d1 ↑ d2 ↑ d3 ↑
Org 0.056 0.025 2.430 0.201 0.089 0.963 0.994 0.999
SinglePU 0.065 0.029 2.606 0.234 0.100 0.952 0.993 0.998
LDU 0.059 0.026 2.394 0.203 0.091 0.960 0.994 0.999
DEns. 0.060 0.026 2.435 0.202 0.092 0.961 0.995 0.999

Table A13: Main task performance for original and modified
BTS models on monocular depth estimation. The evaluation is
based on KITTI (Geiger et al. 2013) Eigen-split (Eigen, Puhrsch,
and Fergus 2014) validation set.

S Metrics + Sgau + NIG Ours (+ Lap)
shar. enc. σΘ1

Ours (+ Lap)
sep. enc. σΘ1

Ours (DIDO)
sep. enc. σΘ2

0

AUSE-REL ↓ 0.013 0.012 0.013 0.013 0.015
AUSE-RMSE ↓ 0.202 0.208 0.205 0.203 0.283
AURG-REL ↑ 0.023 0.024 0.023 0.023 0.021
AURG-RMSE ↑ 1.871 1.865 1.869 1.870 1.791

1

AUSE-REL ↓ 0.019 0.018 0.018 0.019 0.023
AUSE-RMSE ↓ 0.332 0.335 0.332 0.336 0.474
AURG-REL ↑ 0.031 0.032 0.032 0.031 0.027
AURG-RMSE ↑ 2.365 2.362 2.365 2.361 2.223

2

AUSE-REL ↓ 0.023 0.022 0.022 0.023 0.028
AUSE-RMSE ↓ 0.463 0.479 0.464 0.468 0.669
AURG-REL ↑ 0.039 0.039 0.039 0.038 0.033
AURG-RMSE ↑ 2.779 2.763 2.777 2.774 2.573

3

AUSE-REL ↓ 0.031 0.031 0.031 0.031 0.040
AUSE-RMSE ↓ 0.737 0.806 0.749 0.730 1.093
AURG-REL ↑ 0.049 0.049 0.049 0.049 0.040
AURG-RMSE ↑ 3.301 3.232 3.289 3.308 2.945

4

AUSE-REL ↓ 0.050 0.053 0.051 0.049 0.064
AUSE-RMSE ↓ 1.364 1.582 1.430 1.268 2.029
AURG-REL ↑ 0.058 0.054 0.056 0.059 0.044
AURG-RMSE ↑ 3.834 3.615 3.767 3.929 3.168

5

AUSE-REL ↓ 0.064 0.069 0.066 0.059 0.080
AUSE-RMSE ↓ 2.043 2.414 2.157 1.760 3.021
AURG-REL ↑ 0.063 0.057 0.061 0.067 0.046
AURG-RMSE ↑ 4.213 3.842 4.098 4.496 3.235

Table A14: Aleatoric uncertainty estimation results on Monoc-
ular Depth Estimation task. The additional aleatoric uncertainty
estimation results are listed in the last column.

of σΘ2
can also be regarded as aleatoric uncertainty esti-

mation. We provide the corresponding results in Tab. A14.
We also put the partial results from the other distribution as-
sumptions to make a comparison. From the last column, we
can see that the aleatoric uncertainty given by the Dirich-
let outputs underperforms the other solutions on quantitative
metrics since the discretization affects the original numerical
values of the prediction errors on the ID training data. Yet,
the performance reduction is not huge and unacceptable.

A.5.5 Full results on epistemic uncertainty estimation
Tab. A15 shows the results on the robustness of different
methods for epistemic uncertainty estimation under dataset
change. Tab. A16 provides the results on evaluating the ro-
bustness of the uncertainty estimation methods on unseen
patterns during training. As we can see, in Tab. A16, most
distribution assumptions can help AuxUE achieve good
AUC and AUPR results, which shows that these AuxUEs
all fit the ID data well. Yet, they can not assign consistent
and higher uncertainty to the sky areas.

A.5.6 Procedures and illustration for building sky pat-
tern as the OOD examples In pixel-wise regression,
when the main task model is applied to the same scenario
as the one used in the training process, there will still be
some OOD patterns in the image. For example, given an im-
age shown Fig. A4-A, the corresponding depth ground truth

Figure A4: Visualization on the OOD example detection in
monocular depth estimation. A: input image, B: ground truth
depth map, green points represent pixels with depth ground truth;
C: semantic ground truth map, blue areas represent pixels with sky
pattern; D: ID-OOD map, green points represent the depth ground
truth, i.e., the ID part. White parts represent the sky pattern, which
is the OOD part.

map is provided in Fig. A4-B, with the annotated pixels col-
ored in green. We can see that a big part of the pixels are
not annotated by LIDAR because the orientation and the na-
ture of LIDAR prevent it from covering all the ranges in
the scene. We consider that the sky pattern is not annotated
with depth value, but it can be labeled in the semantic map
shown in Fig. A4-C. In this case, when we have a monocular
depth estimation task, we can take the sky pattern as OOD
examples and the pixels with depth annotations as the ID ex-
amples, as shown in Fig. A4-D, where the OOD patterns are
colored in white and the ID patterns are colored in green.

B Loss functions based on different
distribution assumptions

B.1 Loss functions
We follow the notations in Sec 3 of the main paper and con-
struct the loss functions based on different distribution as-
sumptions. The following loss functions are used in the toy
example, age estimation, and monocular depth estimation.

Laplace (Lap) distribution

L(Θ1) =
1

N

N∑
i=1

log(2σΘ1
(x(i))) +

|y(i) − fω̂(x
(i))|

σΘ1(x
(i))

(A8)



Auxiliary Uncertainty Estimator (SLURP) Modified task DNN Training-free

Metrics Original + Ggau + Sgau + NIG Ours σΘ1sep.
enc.(+Lap)

Ours σΘ2sep.
enc.(DIDO)

Ours σΘ2shar.
enc.(DIDO)

Single
PU LDU Evi. DEns. Grad. Inject.

AUC ↑ 59.8 80.9 74.5 57.0 65.4 98.1 98.4 64.2 58.1 70.6 62.1 78.4 18.3
AUPR ↑ 76.7 90.9 88.4 75.5 82.5 99.3 99.4 78.3 79.5 77.8 76.7 92.6 62.3

Table A15: Epistemic uncertainty estimation results encountering dataset change on Monocular depth estimation task. The evaluation
dataset used here is NYU indoor depth dataset.

Auxiliary Uncertainty Estimator (SLURP) Modified main DNN Training-free

S Metrics Original + Ggau + Sgau + NIG Ours σΘ1
sep.

enc.(+Lap)
Ours σΘ2

sep.
enc.(DIDO)

Ours σΘ2
shar.

enc.(DIDO)
Single

PU LDU Evi. DEns. Grad.
(inv.) Inject.

0
AUC ↑ 99.1 96.8 99.0 90.9 99.9 100.0 99.9 89.0 96.5 76.7 93.5 85.6 58.4
AUPR ↑ 94.6 80.3 91.6 57.6 99.7 100.0 99.0 62.0 93.8 42.6 70.0 76.3 28.1
Sky-All ↓ 0.643 0.277 0.934 0.983 0.961 0.015 0.018 0.005 0.278 0.986 0.005 0.001 0.800

1
AUC ↑ 98.4 96.0 99.0 90.4 99.8 100.0 99.9 86.9 96.3 69.7 92.8 76.9 58.5
AUPR ↑ 93.3 77.9 92.4 57.4 99.5 99.9 98.9 59.1 93.5 37.4 68.0 69.8 28.2
Sky-All ↓ 0.742 0.274 0.935 0.978 0.962 0.016 0.018 0.005 0.277 0.988 0.005 0.002 0.799

2
AUC ↑ 97.6 95.6 99.0 90.2 99.7 99.9 99.9 86.6 95.9 65.4 92.3 75.6 58.4
AUPR↑ 91.9 76.5 92.8 57.5 99.3 99.8 98.8 58.9 93.0 34.5 67.0 67.8 28.1
Sky-All ↓ 0.784 0.274 0.937 0.973 0.962 0.017 0.018 0.005 0.280 0.990 0.005 0.002 0.803

3
AUC ↑ 96.8 95.0 98.9 90.0 99.4 99.9 99.7 86.6 95.9 62.3 91.6 73.6 58.4
AUPR ↑ 90.5 75.1 92.9 58.2 98.9 99.7 98.1 59.5 92.8 32.8 65.7 64.5 28.2
Sky-All ↓ 0.815 0.277 0.938 0.965 0.960 0.018 0.020 0.005 0.283 0.992 0.005 0.002 0.809

4
AUC ↑ 94.9 93.2 98.5 89.8 99.0 99.6 99.5 87.2 96.1 58.8 91.8 71.3 58.4
AUPR ↑ 87.2 71.1 92.4 59.8 98.2 99.1 97.2 61.7 92.9 31.2 67.2 60.0 28.3
Sky-All ↓ 0.868 0.284 0.940 0.945 0.959 0.023 0.022 0.005 0.288 0.994 0.005 0.002 0.819

5
AUC ↑ 92.5 90.3 97.6 89.6 98.2 98.5 99.0 87.5 96.5 58.5 92.2 66.8 57.8
AUPR ↑ 83.8 66.6 91.4 63.6 96.8 97.1 96.1 64.6 93.7 32.8 70.4 53.8 28.2
Sky-All ↓ 0.902 0.299 0.943 0.909 0.959 0.035 0.026 0.005 0.295 0.996 0.005 0.002 0.839

Table A16: Epistemic uncertainty estimation results encountering unseen pattern on Monocular depth estimation task. The evaluation
datasets used here are KITTI Seg-Depth (S=0) and KITTI Seg-Depth-C (S>0).

we choose this distribution assumption for aleatoric uncer-
tainty estimation in our generalized AuxUE solution.
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with σΘ1
(x(i)) = (α̂(i), β̂(i)), which means σΘ1

will output
two other components (except for ỹ(i) defined in (Upadhyay
et al. 2022) which stands for fω̂(x(i)) in our case) for Gen-
eralized Gaussian distribution.

Normal Inverse Gamma (NIG) distribution
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) log((y(i) − fω̂(x
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L2(Θ1) =
1

N

N∑
i=1

|y(i) − fω̂(x
(i))| · (2ν(i) + α(i))

L(Θ1) = L1(Θ1) + λNIG · L2(Θ1) (A11)

where Ω(i) = 2β(i)(1+ν(i)). σΘ1
(x(i)) = (α̂(i), β̂(i), ν̂(i)),

which means σΘ1
will output three other components (ex-

cept for γ(i) defined in (Amini et al. 2020) which stands for
fω̂(x

(i)) in our case) for Generalized Gaussian distribution.
In our experiment, we set λNIG = 0.01.

B.2 Modifications in Super-resolution task
In the BayesCap pipeline, the authors discover that, in their
AuxUE, the reconstruction of the main task prediction can
increase the uncertainty estimation performance. The recon-
structed main task prediction is denoted as ỹ. We thus follow
this idea in practice but only in the super-resolution experi-
ment to have a fair comparison for different distribution as-
sumptions. The loss function will have a slight difference
and an additional identity mapping loss (Upadhyay et al.
2022) than the proposed one in the main paper. We list the
modified loss functions as follows. The weight for the iden-
tity mapping loss λIdentity is set the same as in the original
BayesCap.

Laplace (Lap) distribution

L(Θ1) =
1

N

N∑
i=1

log(2σΘ1
(x(i))) +

|y(i) − ỹ(i)|
b(i)

+ λIdentity · |fω̂(x(i))− ỹ(i)|2 (A12)

where σΘ1
(x(i)) = (ỹ(i), b(i)).
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where σΘ1(x
(i)) = (ỹ(i), α̂(i), β̂(i)).

Normal Inverse Gamma (NIG) distribution

L1(Θ1) =
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L2(Θ1) =
1

N

N∑
i=1

|y(i) − ỹ(i)| · (2ν(i) + α(i)) (A15)

L(Θ1) = L1(Θ1) + λNIG · L2(Θ1)

+ λIdentity · |fω̂(x(i))− ỹ(i)|2 (A16)

where Ω(i) = 2β(i)(1 + ν(i)), and σΘ1
(x(i)) =

(ỹ(i), α̂(i), β̂(i), ν(i)). In our experiment, we set λNIG =
0.01.

C Epistemic uncertainty estimation on
AuxUE using prediction errors

C.1 Discretization for pixel-wise regression tasks
Given an image input x(i), we can achieve an output map
ŷ(i). We consider the error map ϵ(i) contains J (i) valid pix-
els, and subscript j as the indicator of the pixel. The values
are sorted in ascending order, denoted by ϵ′

(i), with the same
elements as ϵ(i). We divide ϵ′(i) intoK subsets of equal size,
represented by {ϵ(i)k }Kk=1:{

ϵ
(i)
k | ϵ(i)⌊J(i)∗ k−1

K ⌉ ≤ ϵ
(i)
j < ϵ

(i)

⌊J(i)∗ k
K ⌉

}K

k=1
(A17)

⌊·⌉ denotes the rounding operation. Each value in ϵ
(i)
k is in

the range of ⌊J (i) ∗ k−1
K ⌉th and ⌊J (i) ∗ k

K ⌉th value of the
whole prediction error set ϵ(i). Each error value ϵ(i)j is then
replaced by the index of its corresponding subset k ∈ [1,K]

and transformed into a one-hot vector, denoted by ϵ̄
(i)
j , as

the final training target. Specifically, the one-hot vector is
defined as:

ϵ̄
(i)
j = [ϵ̄

(i)
j,1 . . . ϵ̄

(i)
j,k . . . ϵ̄

(i)
j,K ]T ∈ RK (A18)

where ϵ̄(i)j,k = 1 if ϵ(i)j belongs to the kth subset, and 0 other-
wise.

C.2 Demo code for discretization operation
For the sake of clarification, we provide the demonstra-
tion code in DemoCode 1 directly in Python and Py-
Torch. The function discretization imagelevel
and discretization pixelwise represent the dis-
cretization for image-level and pixel-wise tasks, respec-
tively. Note that some modifications might be needed when
deploying them in practice.

C.3 Modeling epistemic uncertainty using
prediction errors

In a Bayesian framework, given an input x, the predictive
uncertainty of a DNN is modeled by P (y|x,D). We can
have the following assumptions and simplifications. Since
we have a trained main task DNN, and as proposed in (Ma-
linin and Gales 2018), we assume a point-estimate of ω, and
in auxiliary uncertainty estimation case, we have the trained
and fixed main task model with parameters ω̂, then we have:

P (ω|D) = δ(ω − ω̂) → P (y|x,D) ≈ P (y|x, ω̂) (A19)

with δ being the Dirac function.
We then follow the Gaussian assumption, i.e., the predic-

tion is drawn from N (y|µ, σ2) and according to the model-
ing in evidential regression (Amini et al. 2020), we denote α
as the parameters of prior distributions of (µ, σ2). Following
the same work, we first have:

P (µ, σ2|x,α, ω̂) = P (µ|σ2,x,α, ω̂)P (σ2|x,α, ω̂)
(A20)

According to Eq. A19, we regard the µ depends only on x
and the main task model ω̂:

P (µ, σ2|x,α, ω̂) = P (µ|x, ω̂)P (σ2|x,α, ω̂)

= δ(µ− fω̂(x))P (σ
2|x,α, ω̂) (A21)

We introduce α and re-write P (y|x, ω̂) in Eq. A19 as:

P (y|x,α, ω̂) =

∫∫
P (y|µ, σ2)P (µ, σ2|x,α, ω̂)dµdσ2

(a)
=

∫∫
P (y|µ, σ2)P (µ|σ2,x,α, ω̂)P (σ2|x,α, ω̂)dµdσ2

=

∫∫
P (y, µ|σ2,x,α, ω̂)P (σ2|x,α, ω̂)dµdσ2

(b)
=

∫
δ(µ− fω̂(x))dµ

∫
P (y|σ2,x,α, ω̂)P (σ2|x,α, ω̂)dσ2

=

∫
P (y|x, σ2)P (σ2|x,α, ω̂)dσ2 (A22)

where the equality (a) and (b) in Eq. A22 are given by
Eq. A20 and Eq. A21, respectively.

In summary, we have

P (y|x,D) =

∫∫
P (y|x, σ2)P (σ2|ω)P (ω|D)dσ2dω

=

∫
P (y|x, σ2)P (σ2|D)dσ2

(a)
≈

∫
P (y|x, σ2)P (σ2|x,α, ω̂)dσ2 (A23)
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Figure A5: Visualizations on desired behaviors of regression
results in auxiliary uncertainty estimation scenario. Different
types of uncertainty result in different distributions of the variance
under Gaussian assumption.

where the approximation (a) in Eq. A23 is given by Eq. A22.
In this case, we first consider ϵ to be drawn from a contin-

uous distribution parameterized by σ2. Furthermore, we ar-
gue that P (σ2|D) describes the epistemic uncertainty when
we have a trained and fixed main task model and the varia-
tional approach can be applied (Joo, Chung, and Seo 2020;
Malinin and Gales 2018): P (σ2|x,α, ω̂) ≈ P (σ2|D). It
shows the special case of the approximation for the poste-
rior over y, where the mean is fixed and only variances differ.
Similar to (Malinin et al. 2020), we can illustrate this by us-
ing the ensembles of the regression results as in Figure A5.
The discrepancy in variances determines the epistemic un-
certainty of the final prediction.

D Ablation study
The ablation studies are based on the monocular depth esti-
mation task.

D.1 Hyperparameters
There are two main hyperparameters in our proposed DIDO:
the number of the setsK in discretization and λ for the regu-
larization term in the loss function (Eq. 4. in the main paper).
In this section, we analyze the effect of these two hyperpa-
rameters.

The evaluations are based on epistemic uncertainty esti-
mation on unseen patterns and dataset change detection.

The effect of K is shown in Fig. A6a and Fig. A6c. We
test K = {8, 16, 32, 64} and λ is fixed to 0.01. The AUC
and AUPR performance decrease when we have bigger K,
while on the Sky-All metric, bigger K provides better re-
sults. When the evaluation dataset is changed from KITTI
to NYU (Nathan Silberman and Fergus 2012), bigger K
can also provide better AUC and AUPR in identifying the
change. We chooseK = 32 to have a balanced performance.

The effect of λ is shown in Fig. A6b and Fig. A6d. We test
λ = {1e−4, 1e−3, 1e−2, 1e−1} andK is fixed to 32. We
can see the AUC and AUPR performance decrease when we
use bigger λ during training, while on the Sky-All metric,
it performs better when using bigger λ during training. For
the dataset change experiment, we can see when λ = 0.01,
the DIDO can provide the best AUC and AUPR. We choose
λ = 0.01 in the end for our model.

D.2 Necessity of using AuxUE
In this experiment, we apply DIDO on the main task
BTS (Lee et al. 2019) model to see the impact on the
main task performance and the uncertainty estimation per-
formance. The comparison will only be conducted with the

other modified main task models for fairness. In particular,
we first adjust the BTS model to Single Predictive Uncer-
tainty (Nix and Weigend 1994; Kendall and Gal 2017) vari-
ant (BTS-SinglePU), i.e., we first add an aleatoric uncer-
tainty estimation head parallel to and identical to the depth
estimation head on top of the original model. Then we add
the same head for DIDO applied on σΘ2

. Thus there are
three prediction heads on the modified BTS model corre-
sponding to depth prediction, aleatoric uncertainty estima-
tion and epistemic uncertainty estimation. We denote this
variant as BTS-DIDO. We will compare BTS-DIDO with
the original BTS model (Org) and the BTS-SinglePU model
to check the impact on the main task. We also compare the
BTS-DIDO with AuxUE + original BTS, BTS-DEns. and
BTS-SinglePU models to check the uncertainty estimation
performance.

To train the BTS-SinglePU models, we follow the original
BTS settings for hyperparameters in training. We change the
loss function to Gaussian NLL loss. For BTS-DIDO, we use
the same hyperparameters as we used in AuxUEs for DIDO
modeling, i.e., K = 32 and λ = 0.01. For the other hy-
perparameters, such as the batch size and learning rate, we
follow the original BTS settings.

During training, we found that combining DIDO directly
with the BTS will make the training unstable: the loss
will be exploded after around fifteen epochs. As shown
in Tab. A17, for the main task performance, the original
BTS can outperform the others even for BTS-DEns. We ar-
gue that there are two reasons that might result in the per-
formance reduction: BTS-DEns. component models (BTS-
SinglePU models) are adjusted for the uncertainty output;
SiLog loss (Eigen, Puhrsch, and Fergus 2014), which is
specifically applied to the MDE task, is replaced by the
Gaussian negative log-likelihood loss. However, when the
noise severity increases (S > 3), BTS-DIDO and BTS-
DEns. can perform better than the others. In particular, BTS-
DIDO shows a more robust performance given the inputs
with heavy perturbations.

For the uncertainty estimation performance, as shown in
Tab. A18, BTS-DIDO and AuxUE achieve similar perfor-
mance on AUC and AUPR metrics and on dataset change de-
tection. While on Sky-All, AuxUE works slightly better than
BTS-DIDO. For aleatoric uncertainty, since the main task
performances for different models are different, the compar-
ison can only be a reference. With a sacrifice on the main
task performance, BTS-DIDO has the potential to achieve
good uncertainty estimation performance.

We argue that it is necessary to use AuxUE to keep the
main task performance when the input is relatively clean.
Meanwhile, the good performance on BTS-DIDO under
high severity perturbations makes it meaningful to work on
stabilizing the training for DIDO-based models in the future.

D.3 Effectiveness of Dirichlet modeling
We show the effectiveness of the Dirichlet modeling instead
of using the standard categorical modeling based on dis-
cretized prediction errors. For categorical modeling, we also
chooseK = 32 classes for discretization. We change the ac-
tivation function on the top of σΘ2 from the ReLU function



1 import torch
2 import torch.nn.functional as F
3

4 def discretization_imagelevel(data_loader, x, y, f_omega, K):
5 """Discretization operation on image-level tasks.
6 Args:
7 data_loader: training or validation set data loader
8 x: input image
9 y: ground truth target

10 f_omega: trained main DNN
11 K: number of classes
12 Returns:
13 epsilon_bar: one-hot prediction error
14 """
15 epsilon = []
16 for x_item, y_item in data_loader:
17 epsilon.append(abs(y_item - f_omega(x_item)))
18 epsilon = torch.cat(epsilon, dim=0)
19 quantiles = torch.quantile(epsilon, torch.tensor(range(K+1)/K))
20 classes = torch.tensor(range(K))
21 for i, (q1, q2, c) in enumerate(zip(quantiles[:-1], quantiles[1:], classes)):
22 if i == 0:
23 mask_q1 = epsilon >= q1
24 else:
25 mask_q1 = epsilon > q1
26 mask_q2 = epsilon <= q2
27 mask_q = torch.logical_and(mask_q1, mask_q2)
28 temp[mask_q] = c
29 epsilon_bar = F.one_hot(temp, K)
30 return epsilon_bar
31

32 def discretization_pixelwise(x, y, f_omega, K):
33 """Discretization operation on pixel-wise tasks.
34 Args:
35 x: input image
36 y: ground truth map
37 f_omega: trained main DNN
38 K: number of classes
39 Returns:
40 epsilon_bar: one-hot prediction error map
41 """
42 epsilon = abs(y - f_omega(x))
43 temp = torch.zeros_like(epsilon)
44 quantiles = torch.quantile(epsilon, torch.tensor(range(K+1)/K))
45 classes = torch.tensor(range(K))
46 for i, (q1, q2, c) in enumerate(zip(quantiles[:-1], quantiles[1:], classes)):
47 if i == 0:
48 mask_q1 = epsilon >= q1
49 else:
50 mask_q1 = epsilon > q1
51 mask_q2 = epsilon <= q2
52 mask_q = torch.logical_and(mask_q1, mask_q2)
53 temp[mask_q] = c
54 epsilon_bar = F.one_hot(temp, K)
55 return epsilon_bar

DemoCode 1: Discretization code in Python. Both image-level and pixel-wise cases are provided. Note that the exact code in practice might
need some modifications based on this.



to the Softmax function, then apply classical cross-entropy
on the Softmax outputs. For measuring uncertainty, we use
the Shannon-Entropy (Shannon 2001) on the Softmax out-
puts. As shown in Fig. A7, the Dirichlet modeling outper-
forms the Categorical modeling on all three metrics w.r.t. the
OOD pattern detection. On the dataset change experiment,
Categorial modeling provides 90.37 for AUC and 96.83 for
AUPR, which underperforms the results given by Dirichlet
modeling. This study shows the effectiveness of DIDO and
the use of evidential learning in the AuxUE.

E More visualizations
Fig. A8 shows more visualizations on monocular depth es-
timation. For aleatoric uncertainty estimation maps, since
some of the values on the unseen part (mostly the upper
part of the map) are extremely high (>1e4), we clip the
values to the maximum predicted value on the pixels with
ground truth for better illustration. As uncertainty estimates
show, our proposed DIDO can highlight the patterns rarely
appearing throughout the whole dataset, e.g., the windshield
of the car, the underside of the car, the barbed wire fence,
and the upper part of the image like the sky. However, only
the sky part is a pattern that must have no ground truth depth
values and have semantic segmentation annotations. This is
the reason we chose only the sky as the OOD pattern. Note
that DIDO won’t always highlight the areas without ground
truth. For instance, we can see DIDO does not always as-
sign higher uncertainty on the parts with no ground truth for
the body of the car or the road, since some of these patterns
might have ground truth on the other images in the training
set or share similar patterns which have ground truth values.



Main task performance

S Methods absrel ↓ log10 ↓ rms ↓ sqrel ↓ logrms ↓ d1 ↑ d2 ↑ d3 ↑

0

Org + AuxUE 0.056 0.025 2.430 0.201 0.089 0.963 0.994 0.999
BTS-SinglePU 0.065 0.029 2.606 0.234 0.100 0.952 0.993 0.998
BTS-DEns. 0.060 0.026 2.435 0.202 0.092 0.961 0.995 0.999
BTS-DIDO 0.061 0.027 2.574 0.236 0.098 0.954 0.992 0.998

1

Org + AuxUE 0.077 0.036 3.185 0.370 0.129 0.919 0.977 0.992
BTS-SinglePU 0.094 0.043 3.581 0.476 0.149 0.890 0.969 0.989
BTS-DEns. 0.087 0.040 3.415 0.422 0.138 0.902 0.974 0.992
BTS-DIDO 0.088 0.040 3.453 0.456 0.143 0.898 0.972 0.991

2

Org + AuxUE 0.096 0.047 3.861 0.571 0.168 0.876 0.954 0.979
BTS-SinglePU 0.116 0.057 4.359 0.735 0.192 0.835 0.939 0.973
BTS-DEns. 0.109 0.053 4.189 0.661 0.178 0.848 0.947 0.979
BTS-DIDO 0.108 0.051 4.169 0.670 0.178 0.851 0.948 0.980

3

Org + AuxUE 0.130 0.069 4.905 0.985 0.237 0.805 0.908 0.949
BTS-SinglePU 0.149 0.078 5.357 1.140 0.253 0.760 0.890 0.944
BTS-DEns. 0.140 0.073 5.184 1.031 0.234 0.772 0.904 0.955
BTS-DIDO 0.134 0.067 5.134 1.003 0.228 0.789 0.912 0.961

4

Org + AuxUE 0.195 0.117 6.591 1.888 0.370 0.680 0.808 0.874
BTS-SinglePU 0.195 0.110 6.649 1.786 0.341 0.662 0.816 0.894
BTS-DEns. 0.186 0.103 6.485 1.649 0.317 0.667 0.833 0.911
BTS-DIDO 0.170 0.089 6.292 1.485 0.293 0.711 0.862 0.930

5

Org + AuxUE 0.265 0.172 8.259 2.932 0.508 0.555 0.696 0.783
BTS-SinglePU 0.231 0.135 7.731 2.328 0.410 0.585 0.757 0.853
BTS-DEns. 0.222 0.127 7.584 2.190 0.386 0.587 0.772 0.871
BTS-DIDO 0.211 0.116 7.484 2.065 0.367 0.621 0.799 0.890

Table A17: Ablation study on the necessity of using AuxUE. Main task performance comparison on KITTI and KITTI-C.

Aleatoric uncertainty estimation Epsitemic uncertainty: Unseen pattern Dataset change

S Methods AUSE-REL ↓ AUSE-RMSE ↓ AURG-REL ↑ AURG-RMSE ↑ AUC ↑ AUPR ↑ Sky-All ↓ AUC ↑ AUPR ↑

0

Org + AuxUE 0.013 0.203 0.023 1.870 100.0 100.0 0.015 98.1 99.3
BTS-SinglePU 0.016 0.222 0.026 1.978 89.0 62.0 0.005 64.2 78.3
DEns. 0.014 0.195 0.024 1.866 93.5 70.0 0.005 62.1 76.7
BTS-DIDO 0.013 0.207 0.028 1.990 100.0 100.0 0.017 98.5 99.5

1

Org + AuxUE 0.019 0.336 0.031 2.361 100.0 99.9 0.016

-

BTS-SinglePU 0.021 0.330 0.038 2.657 86.9 59.1 0.005
BTS-DEns. 0.019 0.285 0.036 2.573 92.8 68.0 0.005
BTS-DIDO 0.017 0.308 0.041 2.608 100.0 99.9 0.027

2

Org + AuxUE 0.023 0.468 0.038 2.774 99.9 99.8 0.017
BTS-SinglePU 0.026 0.443 0.046 3.150 86.6 58.9 0.005
BTS-DEns. 0.022 0.387 0.044 3.078 92.3 67.0 0.005
BTS-DIDO 0.021 0.396 0.050 3.093 100.0 99.9 0.033

3

Org + AuxUE 0.031 0.730 0.049 3.308 99.9 99.7 0.018
BTS-SinglePU 0.031 0.619 0.055 3.719 86.6 59.5 0.005
BTS-DEns. 0.027 0.526 0.054 3.685 91.6 65.7 0.005
BTS-DIDO 0.023 0.500 0.062 3.749 99.9 99.8 0.036

4

Org + AuxUE 0.049 1.268 0.059 3.929 99.6 99.1 0.023
BTS-SinglePU 0.038 0.905 0.067 4.345 87.2 61.7 0.005
BTS-DEns. 0.032 0.734 0.067 4.401 91.8 67.2 0.005
BTS-DIDO 0.029 0.680 0.074 4.446 99.8 99.7 0.041

5

Org + AuxUE 0.059 1.760 0.067 4.496 98.5 97.1 0.035
BTS-SinglePU 0.045 1.202 0.075 4.831 87.5 64.6 0.005
BTS-DEns. 0.036 0.890 0.080 5.044 92.2 70.4 0.005
BTS-DIDO 0.036 1.010 0.084 4.964 99.5 99.3 0.051

Table A18: Ablation study on the necessity of using AuxUE. Epistemic uncertainty estimation performance comparison on KITTI and
KITTI-C. On clean KITTI, the extra columns stand for the dataset change experiment.



(a) Ablation study on K for DIDO on unseen patterns detection in KITTI dataset. The results are given by DIDO-based AuxUE with
different numbers of classes (K) in discretization.

(b) Ablation study on λ for DIDO on unseen patterns detection in KITTI dataset. The results are given by DIDO-based AuxUE with
(K = 32) trained by using different λ for the regularization term in loss L(Θ2).

(c) Ablation study on K for DIDO on dataset change detection in monocular depth estimation. The evaluation is made by taking KITTI
outdoor dataset as the In-Distribution data and NYU indoor dataset as the Out-of-Distribution data.

(d) Ablation study on λ for DIDO on dataset change detection in monocular depth estimation. The evaluation is made by taking KITTI
outdoor dataset as the In-Distribution data and NYU indoor dataset as the Out-of-Distribution data.

Figure A6: Ablation study on hyperparameters for DIDO on monocular depth estimation.



Figure A7: Ablation study on the effectiveness of Dirichlet modeling for DIDO on monocular depth estimation. K = 32 for both
Categorical and Dirichlet modeling cases.
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Figure A8: Visualizations on monocular depth estimations and corresponding uncertainty quantification results. The color bars and
the image orders follow the ones in Fig.3 of the main paper.


