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Modeling of damage and cracking in heterogeneous rock-like materials by phase-field method
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In this work, a phase-field method is applied to modeling damage and cracking in rock-like materials by considering spatial variability of materials heterogeneities. The formulation of phase-field method is first summarized for elastic brittle materials. The effective elastic properties of rocks are determined as functions of mineral compositions by using a linear homogenization method. The randomly distribution of mineral inclusions is assumed to follow the Weibull distribution. A series of five numerical specimens are chosen to investigate the onset and propagation of localized cracks. Comparisons between numerical results and experimental data are also presented for overall stress-strain responses.

Introduction

Onset and propagation of cracks are the main failure process of most brittle rock-like materials [START_REF] Evans | The brittle-ductile transition in rocks: Recent experimental and theoretical progress. The Brittle-Ductile Transition in Rocks[END_REF][START_REF] Wong | The brittle-ductile transition in porous rock: A review[END_REF]. The transition from diffuse micro-cracks to localized cracking or fracturing is the key pending challenge. During the recent decades, different numerical methods have been developed to deal with cracking problems with strain or displacement discontinuities. For example, with the introduction of enriched shape functions, enriched finite element methods (EFEM) have been proposed to account for displacement discontinuities along cracks at the elementary level [START_REF] Oliver | Modelling strong discontinuities in solid mechanics via strain softening constitutive equations, part 1: fundamentales[END_REF]. Differently, by using nodal enrichment techniques, extended finite element method (XFEM) have been formulated to modeling the propagation of discontinuous cracks [START_REF] Moes | A finite element method for crack growth without remeshing[END_REF]. However, the transition from diffuse damage to localized fracturing has not been properly incorporated in these methods. Further, modeling of multiple fractures in three-dimensional conditions remains a delicate issue. Some micro-mechanics based damage models have recently been proposed in view of modeling the transition from diffuse damage to localized cracking by using homogenization technique on a representative elementary volume containing an oriented crack (Zhao et al., 2018a). The efficiency of such models to solve boundary values problems still needs to be demonstrated.

During the recent years, the phase-method has attracted more and more attention for modeling damage evolution and cracking in engineering materials [START_REF] Miehe | A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF][START_REF] Borden | A phase-field description of dynamic brittle fracture[END_REF][START_REF] Ambati | A review on phase-field models of brittle fracture and a new fast hybrid formulation[END_REF]. Based on the variational principle for linear fracture mechanics [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF], this method was initially formulated for studying brittle fracturing in elastic materials. Inspired by the optimal approximation methods of functionals with jumps [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF][START_REF] Ambrosio | Approximation of functional depending on jumps by elliptic functional via t-convergence[END_REF][START_REF] Bourdin | Numerical experiments in revisited brittle fracture[END_REF], the evolution of sharp crack surface area is approximated by that of a regularized crack surface density function. This function depends on an auxiliary phase-field variable and its gradient. The non-local property of the crack surface density evolution allows the natural description of the transition from diffuse damage to localized cracking in some narrow bands.In view of modeling ductile cracking in plastic materials, in particular with an non-associative flow rule, a new formulation of the phase-field has recently been developed by using a rigorous thermodynamics framework [START_REF] Choo | Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow[END_REF].

However, most rock-like materials contain different types of heterogeneities such as mineral grains and pores at different scales. The initiation and propagation of cracks in these materials are inherently influenced by the presence of such heterogeneities. For instance, cracks may easily initiate at interfaces between mineral grains and matrix or around void surfaces. The objective of this work is to investigate the influence of spatial distribution of mineral grains and pores on the onset and propagation pattern of cracks in a typical elastic-brittle rock. For this purpose, the effective elastic of the rock are first determined as functions of its mineral compositions by using a linear homogenization method. The inclusion phase is assumed to randomly distributed in the matrix phase. The onset and propagation of localized cracks are described by using the phase-field method for elastic materials. Five different types of random distributions of inclusions are considered, and their effects on localized cracking patterns are investigated and discussed.

Summary of the phase field method

Regularized crack surface density function

Let Ω ⊂ R be a fixed domain with an external boundary ∂Ω, which contains several cracks Γ. To overcome the difficulties in tracing the evolution of each individual cracks, in a regularized framework [START_REF] Choo | Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow[END_REF], it is proposed to approximate the total area of cracks by a crack surface density function Γ d defined as follows:

A Γ = Γ dA A Γ d = Ω Γ d (d, ∇d)dV (1) 
The auxiliary scalar d ∈ [0, 1] is the phase-field variable which denotes an undamaged state by 0 and a fully damaged state by 1. A common form of the crack surface density function was introduced in [START_REF] Ambrosio | Approximation of functional depending on jumps by elliptic functional via t-convergence[END_REF] and is used here:

Γ d (d, ∇d) = d 2 2l + l 2 |∇d| 2 (2)
where l > 0 is a length parameter describing the actual width of the smeared crack (or localized damage band). Further, the rate of crack surface area evolution is defined as follows:

ȦΓ d = d dt Ω Γ d (d, ∇d)dV = Ω Γd dV ≥ 0 (3) 
where:

Γd = d l ḋ + l∇d.∇ ḋ ≥ 0 (4)

Governing equations of phase-field variable

The assumption of small strains is adopted throughout the present paper. Consider an arbitrary volume V ∈ Ω with its surface boundary ∂V on which the surface traction vector T = σ•n acts, with σ being the Cauchy stress tensor and n the outward unit normal. Further, following the concept introduced in [START_REF] Gurtin | Generalized ginzburg-landau and cahn-hilliard equations based on a microforce balance[END_REF], a micro-force system is also introduced as the energy-conjugate to the phase-field variable. It is characterized by an internal micro-force π in V and a surface micro-force traction ξ • n on ∂V. Each system of force verifies its own balance equation [START_REF] Choo | Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow[END_REF]. According to the second principle of thermodynamics for isothermal processes, the non-negative intrinsic dissipation D is expressed by [START_REF] Choo | Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow[END_REF]:

D = σ : ε + ξ • ∇ ḋ -π ḋ -ψ ≥ 0 (5)
The scalar-valued function ψ denotes the stored energy density per unit volume of damaged materials. In the case of elastic materials damaged by micro-cracks, ψ is a function of strain tensor and phase-field variable such as ψ(ε, d).

On the other hand, the internal micro-force π can be conveniently decomposed into an energy part π en involved the evolution of phase-field variable and a dissipation part π dis related to the fracture dissipation process [START_REF] Gurtin | On the plasticity of single crystals: free energy, microforces, plastic-strain gradients[END_REF][START_REF] Henann | Continuum thermomechanics of the nonlocal granular rheology[END_REF]. With this decomposition, one gets the following state equations:

σ = ∂ψ ∂ε , π en = - ∂ψ ∂d (6) 
The intrinsic dissipation due to crack propagation becomes:

D = ξ • ∇ ḋ -π dis ḋ ≥ 0 (7)
As in the variational framework for fracture mechanics, it is assumed that the evolution of the phase field variable maximizes the energy dissipation [START_REF] Zhang | A variational framework to model diffusion induced large plastic deformation and phase field fracture during initial two-phase lithiation of silicon electrodes[END_REF]. Moreover, as suggested in [START_REF] Choo | Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow[END_REF], the fracture energy is assumed to be fully dissipative. Therefore, the determination of π dis and ξ consists in maximizing the fracture energy dissipation D. By solving this maximization problem by using a Lagrange multiplier method, one gets the following expressions of π dis and ξ :

ξ = g c l∇d, π dis = -g c d l (8) 
The parameter g c > 0 denotes the critical fracture energy. Accordingly, the governing equation for the evolution of phase-field variable can be written as follows:

- ∂ψ ∂d -g c d l -ldiv(∇d) = 0 (9) 
We consider here isotropic materials. In this case, it is convenient to express the stored energy function ψ(ε, d) in a product form of the elastic strain energy of undamaged materials W(ε) by a specific function of the phasefield variable g(d) such as ψ(ε, d) = g(d)W(ε). In such a way, the degradation of materials by micro-cracks is described by the reduction of stored elastic strain energy. In previous studies [START_REF] Miehe | A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF][START_REF] Choo | Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow[END_REF][START_REF] Zhou | Phase field method for quasi-static hydro-fracture in porous media under stress boundary condition considering the effect of initial stress field[END_REF], the most widely used form for g(d) is g(d) = (1d) 2 by satisfying the condition g (d = 1) = 0. Further, it is assumed that the induced damage affects the volumetric strain energy (or the elastic bulk modulus) only if the volumetric strain is positive (or dilatant). Thus, the stored energy of damaged materials is expressed as follows:

ψ(ε, d) = k 2 tr(ε) - 2 + [(1 -d) 2 + k l ] k 2 tr(ε) + 2 + µε D : ε D (10)
where k is the bulk modulus and µ the shear modulus of undamaged materials. ε D = ε -1 3 tr(ε)I is the deviatoric part of the strain tensor with I being the second order identity tensor. 0 < κ l 1 is a stability parameter for avoiding numerical singularities when the phase field d tends to 1. The bracket x ± denotes x + = (x + |x|)/2 and x -= (x -|x|)/2.

Considering the non-negative evolution of crack surface density given in (4), the fracture dissipation (5) can be rewritten as:

D = g c Γd ≥ 0 (11)
As g c > 0, the non-negative fracture dissipation implies that the evolution rate of crack surface density function does not decrease. As Γd = d l ḋ + l∇d.∇ ḋ, this non-local thermodynamics consistency enforces that the evolution rate of the local phase-field variable is non-decreasing, that is ḋ > 0. Physically, that means that the evolution of cracks is an irreversible process. In order to ensure this irreversibility condition, the concept of energy history function introduced in [START_REF] Miehe | A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF]) is here adopted. Substituting the derivative of ψ(ε, d) given in ( 10) for ( 9), the governing equation of d is modified to:

2(1 -d)H -g c d l -ldiv(∇d) = 0 (12)
The energy function H satisfies the following Karush-Kuhn-Tucker conditions for a general loading path:

W + -H ≤ 0, Ḣ ≥ 0, Ḣ[W + -H] = 0 (13)
The part of strain energy involved in the evolution of phase-field variable is given by:

W + = k 2 tr(ε) + 2 + µε D : ε D (14)
3. Microstructure and elastic properties of Beishan granite

Microstructure of Beishan granite

We consider here a typical brittle rock, the granite from Beishan area (Gansu Province, China) which is investigated in China as a potential host rock for geological disposal of radioactive waste. The mineralogical compositions and basic mechanical behavior of this rock have been reported in previous studies, for instance [START_REF] Zhao | Damage stress and acoustic emission characteristics of the beishan granite[END_REF][START_REF] Zhao | Influence of unloading rate on the strainburst characteristics of beishan granite under true-triaxial unloading conditions[END_REF][START_REF] Chen | Damage and plastic deformation modeling of beishan granite under compressive stress conditions[END_REF][START_REF] Zhou | Acoustic emission based mechanical behaviors of beishan granite under conventional triaxial compression and hydro-mechanical coupling tests[END_REF]. In particular, some quantitative mineralogical composition analyses have been conducted using the X-ray diffraction method. As an average estimation, the granite is mainly composed of 13.55 % alkali feldspar, 33.65% plagioclase, 31.10% quartz, 20.05% mica, and 1.65% clay minerals. At the microscopic level, the phases of alkali feldspar, plagioclase and mica constitute a cemented matrix phase. The quartz grains are scattered in that matrix. Therefore, as the first approximation, the representative volume element (RVE) of the granite is seen as a matrix-inclusion system. One denotes V, V i and V m respectively as the total volume of RVE, the volume of inclusions and that of matrix. Thus, the volume fraction of inclusions f is calculated by:

f = V i V = V i V i + V m (15)

Effective elastic properties

The effective elastic properties of Beishan granite are determined by using a linear homogenization method. Due to the matrix-inclusion morphology adopted, it is convenient to apply the Mori-Tanake scheme [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF]. With the assumption isotropic materials, the homogenized effective bulk and shear moduli, denoted as k hom and µ hom , are given by:

κ hom = 1 r=0 f r κ r 3κ r +4µ 0 1 s=0 f s 3κ s +4µ 0 , µ hom = 1 r=0 f r µ r µ 0 (9κ 0 +8µ 0 )+6µ r (κ 0 +2µ 0 ) 1 s=0 f s µ 0 (9κ 0 +8µ 0 )+6µ s (κ 0 +2µ 0 ) (16)
where the matrix phase and inclusion phase are denoted by the subscript 0 and 1 respectively. In practice, the elastic properties of different minerals involved in the granite are found in the existing literature, for instance [START_REF] Lide | CRC handbook of chemistry and physics[END_REF].

Description of heterogeneity of the materials

As given above, the macroscopic elastic properties of granite are explicitly expressed as functions of mineral compositions. As those mineral compositions may vary in space, the elastic properties of granite can also vary in space inside a tested sample and a structure. The spatial variability of elastic properties will affect the onset and propagation of localized cracks. In order to account for such effects, we assume here a random distribution of the volumetric fraction f of inclusions, for instance quartz grains, by using the standard Weibull distribution function [START_REF] Tang | Numerical studies of the influence of microstructure on rock failure in uniaxial compression-part i: effect of heterogeneity[END_REF]:

ϕ = m i β f β m i -1 exp - f β m i ( 17 
)
where f is the volume fraction of quartz grains; β is the scale parameter of the distribution which is usually estimated as the mean of the random variable; m i is the homogeneity index of the material. According to the definition, a larger value of m i implies a stronger material heterogeneity with respect to the considered parameter, for instance the volume fraction of quartz grains. In Figure1, some examples of probability density and cumulative probability for different values of m i are illustrated. 

Numerical assessment

In this section, five numerical specimens with different spatial distributions of quartz grains volume fraction are considered, respectively obtained by using five values of heterogeneity indices (m i =1.1, 1.5, 2, 5, 10). The specimen geometry is 50 × 100mm and discretized into 100×200 (20 000) elements for numerical study of mechanical behavior. The input elastic parameters are as follows: Young's moduli of quartz grains and matrix E i = 101GPa and E m = 18.4GPa and Poisson's ratios ν i = 0.06 and ν m = 0.122. The average volume fraction of quartz inclusion is β = 31.1%. The length scale parameter of regularized cracks is taken as l = 0.5mm. Furthermore, most rock-like materials exhibit a transition from brittle to ductile failure with the increase of confining stress [START_REF] Evans | The brittle-ductile transition in rocks: Recent experimental and theoretical progress. The Brittle-Ductile Transition in Rocks[END_REF][START_REF] Wong | The brittle-ductile transition in porous rock: A review[END_REF]. By developing a micro-mechanical modeling of rocks with a homogenization technique [START_REF] Hu | A micromechanicsbased elastoplastic damage model for rocks with a brittle-ductile transition in mechanical response[END_REF]Zhao et al., 2018b), it was also found that the brittle-ductile transition can be related to the increase of the local frictional coefficient of closed micro-crack surface with confining stress. In this study, that transition is indirectly taken into account by considering that the value of g c increases with confining stress. But without giving a continuous mathematical description of that variation, the values of g c used in numerical calculations varies from 3.25 × 10 -3 kN/mm to 10.48 × 10 -3 kN/mm when the confining pressure increases from 5 to 30 MPa. To avoid the singularity of elastic stiffness tensor of damaged material when d → 1, the stability parameter is taken as k l = 1 × 10 -5 . In Figure 2, one shows the spatial distributions of the volume friction of quartz inclusions and the corresponding macroscopic Young's modulus obtained by using the homogenization method (16). 

Global stress-strain curves

With the numerical specimens generated above, the mechanical behavior of Beishan granite is now investigated under conventional triaxial compression tests with different confining pressures. In Figure 3, the global axial stressstrain curves are presented for the five different numerical specimens. More specifically, in Figure 3(a), the numerical results obtained on the specimen with m i = 10 are compared with the experimental data reported in [START_REF] Zhou | Acoustic emission based mechanical behaviors of beishan granite under conventional triaxial compression and hydro-mechanical coupling tests[END_REF] for five different values of confining pressure. The elastic phase-field model well describes the mechanical response of granite in both the pre-and post-peak regimes. The effect of confining pressure on the peak strength is also well captured.

In Figure 3(b), the predicted axial stress-strain curves of five specimens with different heterogeneities are given and compared with the experimental data for the confining pressure of 5MPa. It can be seen that all five numerical specimens exhibit the same type of basic mechanical behavior in the pre-and post-peak regimes. The key difference between these curves is the peak strength value. That means that the compressive strength of granite sample can be influenced by material heterogeneity. 

Effects of heterogeneity on failure pattern

In Figure 4, one shows the patterns of localized cracks obtained in five numerical samples with different distributions of quartz inclusions in triaxial compression test of 5MPa confining pressure. It is found that the cracking pattern is clearly influenced by the material heterogeneity. However, it is not easy to provide a clear quantitative correlation between the cracking patten and material heterogeneity. According to the experimental study reported in [START_REF] Zhou | Acoustic emission based mechanical behaviors of beishan granite under conventional triaxial compression and hydro-mechanical coupling tests[END_REF], the main fracture in the tested samples was oriented at an angle of 80 • with the horizontal axis. In the numerical results, the main crack in different samples is rather inclined with an angle of 45 • . This result seems to suggest that the failure of the numerical specimens is mainly caused by the shear strain energy as defined in (10). The use of another form of stored energy involved in the evolution of phase-field variable should improve the orientation prediction of localized cracks. Furthermore, it is worth noticing that in most previous studies, a weak element was generally introduced in mesh in order to facilitate the onset of localized cracking. In the present study, the onset of crack localization is naturally driven by the material heterogeneity without needing to use any weak element. In order to investigate the progressive evolution of cracking process, the distributions of phase-field variable (or crack surface density) are presented in Figure 5 at five selected loading steps during a triaxial compression test with a confining pressure of 5MPa. When the differential stress reaches the peak value, the crack density remains relatively moderate and is clearly less than 1. The crack density increases and the cracking localization accelerates very rapidly in the post-peak regime. An inclined single localized crack is formed and crosses the whole sample in an orientation of 45 • . Furthermore, in order to better understand the energy origin of crack evolution, the respective contributions of the expansion part k 2 tr(ε) + 2 and the shear part µε D : ε D of the driving force given in ( 14) are calculated at the loading steps (a) and (b) as indicated in Figure 5. Their distributions along the localized crack length are presented in Figure 6, together with the value of g c . It is seen that the shear strain energy is the dominating part to drive the initiation and propagation of cracks. For instance, at the loading step (a) corresponding to the peak point, the maximum value of shear strain energy approaches to the critical fracture energy g c while the expansion energy remains close to 0. Then at the loading (b), the shear strain energy along the whole localized crack exceeds the critical fracture energy, whereas the expansion energy does not evolve. Further, due to the material heterogeneity, the distribution of strain energy along the localized crack is not uniform. Therefore, the onset of localized cracking is a progressive process in the sample. 

Conclusion

In this study, the phase-field method has been applied to modeling the transition from diffuse micro-cracks to localized macroscopic cracks by taking into account material heterogeneities. By using the standard Weibull distribution function, the spatial variation of mineral compositions in a typical brittle rock has been taken into account. With the help of linea homogenization method, the spatial variation of macroscopic elastic properties of the rock have been described as functions of mineral compositions. A series of triaxial compression tests have been investigated on heterogeneous numerical samples with different distributions of elastic properties. It is found that in the brittle rock studied, the localization of cracking starts around the peak strength state and accelerates in the post-peak regime. The pattern of localized cracks is directly influenced by the spatial heterogeneity of elastic properties of the rock. No artificial weak element is needed to capture the onset of crack localization. Under conventional triaxial compression tests, the shear strain energy is the dominating driving force of the evolution and propagation of cracks. The generation of a localized crack is a progressive process. In future studies, plastic deformation can be included in order to consider crack propagation in quasi-ductile materials. Thermo-hydromechanical coupling is also another process to be taken into account.
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 1 Figure 1: Probability density and cumulative probability for the distribution of volume fraction of quartz grains with different values of homogeneity index m i
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 2 Figure 2: Spatial distributions of quartz volume fraction obtained by five values of m i and corresponding macroscopic elastic modulus
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 3 Figure 3: Axial stress-strain curves for different values of confining pressure and material heterogeneity index: comparisons between numerical results and experimental data
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 4 Figure 4: Cracking patterns obtained in five numerical specimens in triaxial compression test of 5MPa confining pressure
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 5 Figure 5: Crack density evolution and localized cracking pattern in the specimen with m i =10 and in a triaxial compression test of 5MPa confining pressure
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 6 Figure 6: Distribution of expansion and shear strain energy parts along localized crack
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