Verine Alexandre
email: alexandre.verine@dauphine.psl.eu

Lamsade

Benjamin Negrevergne
email: benjamin.negrevergne@dauphine.psl.eu

Sreenivas Muni

Pydi

Yann Chevaleyre
email: yann.chevaleyre@dauphine.psl.eu

Precision-Recall Divergence Optimization for Generative Modeling with GANs and Normalizing Flows

Achieving a balance between image quality (precision) and diversity (recall) is a significant challenge in the domain of generative models. Current state-of-theart models primarily rely on optimizing heuristics, such as the Fréchet Inception Distance. While recent developments have introduced principled methods for evaluating precision and recall, they have yet to be successfully integrated into the training of generative models. Our main contribution is a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows, which explicitly optimizes a user-defined trade-off between precision and recall. More precisely, we show that achieving a specified precisionrecall trade-off corresponds to minimizing a unique f -divergence from a family we call the PR-divergences. Conversely, any f -divergence can be written as a linear combination of PR-divergences and corresponds to a weighted precisionrecall trade-off. Through comprehensive evaluations, we show that our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.

Introduction

Evaluation of generative models has always been a challenging task. The metric used must reflect both the quality of the sample generated (precision) and how much the sample covers the targeted probability distribution (recall). Inception Score (IS) or Fréchet Inception Distance (FID) have been introduced and are now widely used by the community to select the best models. Typically, these metrics are favored because they "correlate well with the visual fidelity of the samples" and are "sensitive to both the addition of spurious modes as well as mode dropping" [START_REF] Mehdi | Assessing Generative Models via Precision and Recall[END_REF]. However as pointed by Kynkäänniemi et al. [START_REF] Kynkäänniemi | Improved Precision and Recall Metric for Assessing Generative Models[END_REF], FID and IS group these two aspects into a single value without a clear trade-off. Depending on the use-case, generative models might require a good precision (high-resolution image and video generation, artistic synthesis, 3D model design) or a good recall (data augmentation, drug discovery, anomaly detection). For that reason, a number of more principled methods [START_REF] Cheema | Precision Recall Cover: A Method For Assessing Generative Models[END_REF][START_REF] Djolonga | Precision-Recall Curves Using Information Divergence Frontiers[END_REF][START_REF] Kynkäänniemi | Improved Precision and Recall Metric for Assessing Generative Models[END_REF][START_REF] Mehdi | Assessing Generative Models via Precision and Recall[END_REF][START_REF] Simon | Revisiting precision recall definition for generative modeling[END_REF] have emerged to assess precision and recall (hereafter abbreviated by 37th Conference on Neural Information Processing Systems (NeurIPS 2023). P&R) independently, however these methods cannot be optimized during training, because they are not differentiable or because they are too computationally demanding.

To enhance either the precision or the recall of a particular model, an array of strategies and techniques have been employed. Usually these techniques involve altering the latent distribution a posteriori (e.g. truncation and temperature post-training). Other methods exists such as through rejection sampling, boosting, or instance selection [START_REF] Lynton Ardizzone | Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification[END_REF][START_REF] Cranko | Boosted Density Estimation Remastered[END_REF][START_REF] Devries | Instance Selection for GANs[END_REF][START_REF] Grover | Boosted Generative Models[END_REF][START_REF] Issenhuth | Latent reweighting, an almost free improvement for GANs[END_REF][START_REF] Illing | Bootstrap Your Flow[END_REF][START_REF] Stimper | Resampling Base Distributions of Normalizing Flows[END_REF]. Although these approaches may utilize proxies of P&R, they are not theoretically grounded in the principled methods of evaluating these metrics, leaving their alignment with the foundational concepts of P&R unverified. This leads to the following question.

Question 1: Is it possible to train a generative model that achieves a specified trade-off between precision and recall?

In addition to this question, another of our goals is to understand existing generative models in terms of P&R. Modern generative models, such as Generative Adversarial Networks (GANs) or Normalizing Flows (NFs), are typically designed to minimize specific divergence measures. Given a target distribution P and a set of parameterized distributions {P θ |θ ∈ Θ}, a generative model aims to find the best fit P = P θ * that minimizes a divergence between P and P . These divergences induce different behaviors at convergence. For instance, optimizing the Kullback-Leibler (KL) divergence tends to favor mass-covering models [START_REF] Minka | Divergence measures and message passing[END_REF], contrasting with the mode-seeking behavior observed with other generative models, leading to the infamous problem of mode collapse. Transitioning from one divergence to another does indeed alter the model's behavior in terms of precision and recall, however, the implicit trade-offs made during the optimization of a general divergence remain somewhat ambiguous. This motivates the following question.

Question 2: What precision-recall trade-off does an arbitrary f -divergence minimize?

In this paper, we bridge the gap between principled methods of P&R evaluation and controlling their trade-off. In doing so, we address Questions 1 and 2 by making the following contributions:

• We show that achieving a specified precision-recall trade-off corresponds to minimizing a particular f -divergence between P and P . Specifically, in Theorem 4.3 we give a family of f -divergences (denoted by D λ-PR , λ ∈ [0, ∞]) that are associated with various points along the precision-recall curve of the generative model. • We show that any arbitrary f -divergence can be written as a linear combination of fdivergences from the D λ-PR family. This result makes explicit, the implicit precision-recall trade-offs made by generative models that minimize an arbitrary f -divergence. • We propose a novel approach to train or fine-tune a generative model on notoriously hard to train f -divergences, with guarantees on divergences defined by the lipschitz constant of f . • We use this approach to train models on a user specified trade-off between P&R by minimizing D λ-PR for any given λ. We specifically focus on GANs and NFs. For instance, Figure 1 shows how our model performs under various settings of λ. With a high λ, we can train the model to favor precision over recall and vice-versa. • Through extensive experiments, we show that our approach enables effective model training to minimize the PR-Divergence, particularly for fine-tuning pre-trained models, with a notable impact from the choice of trade-off parameters λ, while also demonstrating scalability with larger dimensions and datasets.

Related works

Generative model evaluation metrics: IS or FID are widely adopted due to their ability to assess visual fidelity and sensitivity to mode variations. However, these metrics fall short in providing a trade-off between P&R. Principled approaches were introduced by Djolonga et al. [START_REF] Djolonga | Precision-Recall Curves Using Information Divergence Frontiers[END_REF] and Sajjadi et al. [START_REF] Mehdi | Assessing Generative Models via Precision and Recall[END_REF], and later extended by Simon et al. [START_REF] Simon | Revisiting precision recall definition for generative modeling[END_REF], providing a definition P&R independently using PR-Curves detailed in Section 3.3. We adopt this extended approach in our work. In image generative modeling, the current consensus for P&R evaluation are two methods. First, the method presented by Kynkäänniemi et al. [START_REF] Kynkäänniemi | Improved Precision and Recall Metric for Assessing Generative Models[END_REF], which provides a simpler evaluation of P&R based on the estimation of the support of the distribution using a k-NN algorithm, akin to the most recent work by Cheema and Urner [START_REF] Cheema | Precision Recall Cover: A Method For Assessing Generative Models[END_REF]. Second, a method introduced by [START_REF] Ferjad Naeem | Reliable Fidelity and Diversity Metrics for Generative Models[END_REF], computing the Density (D) and the Coverage (C) which account for local density and are robust to outliers in contrast to [START_REF] Kynkäänniemi | Improved Precision and Recall Metric for Assessing Generative Models[END_REF]. In natural language processing, one popular method, MAUVE [START_REF] Pillutla | MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers[END_REF], consists of the area under PR-Curves defined by [START_REF] Djolonga | Precision-Recall Curves Using Information Divergence Frontiers[END_REF]. However, because of their mathematical foundation, these methods remain unsuitable for training due to non-differentiability and high computational requirements.

Trade-offs and techniques in generative model: The challenge of balancing P&R in generative model training has led to a variety of techniques. Methods for enhancing precision often involve manipulating the latent distribution post-training, such as hard truncation [START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF][START_REF] Karras | A Style-Based Generator Architecture for Generative Adversarial Networks[END_REF][START_REF] Karras | Analyzing and Improving the Image Quality of StyleGAN[END_REF][START_REF] Sauer | StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets[END_REF] or standard deviation adjustment, also called soft truncation [START_REF] Durk | Glow: Generative Flow with Invertible 1x1 Convolutions[END_REF]. One can also use rejection sampling in the image space [START_REF] Azadi | Discriminator Rejection Sampling[END_REF][START_REF] Tanielian | Learning disconnected manifolds: a no GANs land[END_REF], in the latent space [START_REF] Issenhuth | Latent reweighting, an almost free improvement for GANs[END_REF][START_REF] Stimper | Resampling Base Distributions of Normalizing Flows[END_REF], or in the dataset [START_REF] Devries | Instance Selection for GANs[END_REF]. There are also numerous strategies to prevent mode collapse and boost recall [START_REF] Tong Che | Mode Regularized Generative Adversarial Networks[END_REF][START_REF] Mescheder | Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks[END_REF][START_REF] Metz | Unrolled Generative Adversarial Networks[END_REF], gradient-boosting methods [START_REF] Cranko | Boosted Density Estimation Remastered[END_REF][START_REF] Giaquinto | Gradient Boosted Normalizing Flows[END_REF][START_REF] Grover | Boosted Generative Models[END_REF] and mixture based latent models [START_REF] Ben | Gaussian Mixture Generative Adversarial Networks for Diverse Datasets, and the Unsupervised Clustering of Images[END_REF][START_REF] Pandeva | MMGAN: Generative Adversarial Networks for Multi-Modal Distributions[END_REF]. However, it should be noted that these approaches lack a foundation in the principled methods of P&R evaluation. This underscores the need for a theoretically grounded approach to balance these crucial aspects in generative models, a gap that our current work aims to address. Note also that all these methods can be applied to any model, and in particular to the one trained using our proposed method.

Divergence training in generative models: Modern generative models, such as GANs and NFs, often employ specific divergence measures for model optimization. With works such as Grover et al. [START_REF] Grover | Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in Generative Models[END_REF], Nowozin et al. [START_REF] Nowozin | f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization[END_REF], models can be trained with a variety of divergences such as f -divergence, thus observing different results of P&R. Another notable work by Midgley et al. [START_REF] Illing | Flow Annealed Importance Sampling Bootstrap[END_REF] proposed training with α-Divergence, under the assumption of access to data density. The work of [START_REF] Ting | Mode-Seeking Divergences: Theory and Applications to GANs[END_REF], closely aligned with our approach, defines different orders of mode seeking and evaluates the corresponding f -divergences at these levels. Although its methodology employs the training of f -GAN models on simple datasets to illustrate the mode-seeking property, it does not offer the flexibility to establish a user-defined trade-off. The implicit trade-offs made by these divergence measures is still a challenge: the recent work of [START_REF] Siry | On the Theoretical Equivalence of Several Trade-Off Curves Assessing Statistical Proximity[END_REF] shows the links between P&R and any DeGroot's divergences.

Background

Notation: Throughout the paper, we use X ⊂ R d to refer to the input space and Z ⊂ R m to the latent space of the model we consider. We also denote P(X) and P(Z) the set of all probability measures over measurable subsets of X and Z respectively. P and P are consistently used to denote the target and estimated distributions (both members of P(X)). We also assume that P and P share the same support in X , and that they admit densities denoted by the corresponding lower case letters p and p, respectively. Finally, for any function f ∈ R → R, we define the convex conjugate (or Fenchel transform) of f given by f * (t) = sup u∈R {tu -f (u)}.

f -divergences

Given a convex lower semi-continuous (l.s.c) function f : R + → R satisfying f (1) = 0, the f -divergence between two probability distributions P and P is defined as follows.

D f (P ∥ P) = X p(x)f p(x) p(x) dx. (1
)
D f is invariant to an affine transformation in f i.e., D f (P ∥ P) = D f † (P ∥ P) for f † (u) = f (u) + c(u -1)
for any constant c ∈ R. Many well-known statistical divergences such as the KL divergence (D KL), the reverse KL (D rKL) or the Total Variation (D TV) are f -divergences (see Table 1). Importantly, any D f admits a dual variational form [START_REF] Nguyen | On surrogate loss functions and f-divergences[END_REF], with T denoting the set of all measurable functions X → R:

D f (P ∥ P) = sup T ∈T D dual f,T (P ∥ P), where D dual f,T (P ∥ P) = E x∼P [T (x)] -E x∼ P [f * (T (x))] (2)
We use T opt ∈ T to denote the function that achieves the supremum in [START_REF] Djolonga | Precision-Recall Curves Using Information Divergence Frontiers[END_REF].

Table 1: List of common f -divergences. The generator f is given with its Fenchel conjugate f * . The optimal discriminator T opt is given to compute the likelihood ratio p(x)/ p(x) = ∇f * (T opt (x)).

Then f ′′ (1/λ)/λ 3 is given to compute the D f as a combination of D λ-PR using Theorem 4.4.

DIVERGENCE NOTATION f (u) f * (t) T opt (x) f ′′ (1/λ)/λ 3 KL DKL u log u exp(t -1) 1 + log p(x)/ p(x) 1/λ 2 REVERSE KL DrKL -log u -1 -log -t -p(x)p(x) 1/λ χ 2 -PEARSON D χ 2 (u -1) 2 t 2 /4 + t 2 (p(x) p(x) -1) 2/λ 3

Generative models

Generative Adversarial Networks (GANs): A GAN consists of two functions, generator G : Z → X , discriminator T : X → R, as well as a prior distribution Q ∈ P(Z) which is usually the standard normal N (0, I m). The estimated data distribution P G is the push-forward distribution of Q by G. In the original work of Goodfellow et al. [START_REF] Goodfellow | Generative Adversarial Networks[END_REF], a specific D f is used to optimize the divergence between P and P G . In this paper, we consider the more general framework of Nowozin et al. [START_REF] Nowozin | f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization[END_REF] that can be used to train a GAN with any D f by solving the following min-max optimization problem:

min G max T D dual f,T (P ∥ P G) = min G max T E x∼P [T (x)] -E x∼ P G [f * (T (x))] , (3)
Normalizing Flows (NFs): An NF consists of an invertible function G : Z → X and a prior distribution Q ∈ P(Z). As for GANs, the estimated distribution P G is the push-forward of Q by G. However, because G is invertible, it is possible to compute the density p(•) using a simple change of variable formula, p(x) = q(G -1 (x))| det Jac G -1 (x)|, where det Jac G -1 (x) is the determinant of the Jacobian matrix of G -1 at x, and train the generator using the D KL between P and P F , or equivalently, by maximizing the log-likelihood:

min G D KL (P ∥ P G) = H(P) -max G E x∼P [log pG (x)] , (4)
where H(P) is the continuous entropy of P . In practice, the generator function G is typically represented by neural networks such as GLOW [START_REF] Durk | Glow: Generative Flow with Invertible 1x1 Convolutions[END_REF], RealNVP [START_REF] Jimenez | Variational Inference with Normalizing Flows[END_REF], or ResFlow [START_REF] Behrmann | Invertible Residual Networks[END_REF][START_REF] Ricky | Residual Flows for Invertible Generative Modeling[END_REF] for which det Jac G -1 (x) is easy to compute. Grover et al. [START_REF] Grover | Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in Generative Models[END_REF] showed that it is possible to train an NF using most f -divergences. In practice, the log-likelihood is added to the min-max objective to stabilize learning. This gives us the following optimization problem: 2: PR curves for two models P 1 and P 2 of P . Figure 2(a) shows P 1 , P 2 and P . Figure 2(b) shows PR curves for P 1 , P 2 against P . P 1 has good recall since it covers both modes of P , but low precision since it generates points between the modes. P 2 has good precision since it does not generate samples outside of P but low recall since it can generate samples from only one mode. Figure 2(c) are the PR curves corresponding to Figure 1 and are detailed in Section 6.

min G max T D dual f,T (P ∥ P G) -γE x∼P [log pG (x)] , (5)

Precision-Recall curve for generative models

Generative models are usually evaluated using a single criterion such as the IS [START_REF] Salimans | Improved Techniques for Training GANs[END_REF] or the FID [START_REF] Heusel | GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium[END_REF]. However, these criteria are unable to distinguish between the distinct failure modes of low precision (i.e., failure to produce quality samples) and low recall (i.e., failure to cover all modes of P). The following definition was introduced by Sajjadi et al. [START_REF] Mehdi | Assessing Generative Models via Precision and Recall[END_REF] and later extended by Simon et al. [START_REF] Simon | Revisiting precision recall definition for generative modeling[END_REF]. Definition 3.1 (PRD set, adapted from Simon et al. [START_REF] Simon | Revisiting precision recall definition for generative modeling[END_REF]). For P, P ∈ P(X), the P&R set PRD(P, P) is defined as the set of pairs of precision α and recall β in R + × R + such that there exist µ ∈ P(X) for which P ≥ βµ and P ≥ αµ. The precision-recall curve (or PR curve) is defined as ∂PRD(P, P) = {(α, β) ∈ PRD(P, P) | ∄(α ′ , β ′) with α ′ ≥ α and β ′ ≥ β}.

An equivalent definition of PRD(P, P) is found in Sajjadi et al. [START_REF] Mehdi | Assessing Generative Models via Precision and Recall[END_REF], where (α, β) ∈ PRD(P, P) if P and P can be decomposed as in [START_REF] Ben | Gaussian Mixture Generative Adversarial Networks for Diverse Datasets, and the Unsupervised Clustering of Images[END_REF] for some common component µ ∈ P(X) and complementary components ν P , ν P ∈ P(X).

P = αµ + (1 -α)ν P and P = βµ + (1 -β)ν P . (6)
Simon et al. [START_REF] Simon | Revisiting precision recall definition for generative modeling[END_REF] show that the PR curve is parameterized by λ ∈ [0, +∞] as ∂PRD(P, P) = α λ (P ∥ P), β λ (P ∥ P) | λ ∈ [0, +∞] , with α λ (P ∥ P) = X min (λp(x), p(x)) dx and β λ (P ∥ P) = α λ (P ∥ P)/λ. Here, λ is called the trade-off parameter and can be used to adjust the sensitivity to precision or recall.

An illustration of the PR curve is given in Figure 2 for a target distribution P that is a mixture of two Gaussians and two candidate models P 1 and P 2 . We can see on Figure 2 that P 1 offers better results for large values of λ (with high sensitivity to precision) whereas P 2 offers better results for low values of λ (with high sensitivity to recall).

Precision and Recall trade-off as an f -divergence

In this section, we formalize the link between P&R trade-off and f -divergences, and address Question 2. We will exploit this link in Section 5 to train models that optimize a particular P&R trade-off.

Precision-Recall as an f -divergence

We start by introducing the PR-Divergence as follows.

Definition 4.1 (PR-divergence). Given a trade-off parameter λ ∈ [0, +∞], the PR-divergence (denoted by D λ-PR) is defined as D f λ for f λ : R + → R given by f λ (u) = max(λu, 1) -max(λ, 1) for λ ∈ R + and f λ (u) = 0 for λ = +∞.

Note that f λ is continuous, convex, and satisfies f λ (1) = 0 for all λ. A graphical representation of f λ can be found in Appendix B.2. The following proposition gives some properties of D λ-PR . Proposition 4.2 (Properties of the PR-Divergence).

• The Fenchel conjugate f * λ of f λ is defined on dom (f * λ) = [0, λ] and given by, f * λ (t) = t/λ for λ ≤ 1 and f * λ (t) = t/λ + λ -1 otherwise. • The optimal discriminator for the dual form is T opt (x) = λsign {p(x)/ p(x) -1}.

• D λ-PR (P ∥P) = λD1 λ -PR (P ∥ P).

Observe that D λ-PR (P ∥P) ̸ = D λ-PR (P ∥ P) in general, but for λ = 1, D 1-PR (P ∥ P) = D 1-PR (P ∥P) = D TV (P ∥ P)/2. Having defined the PR-divergence, we can now show that P&R w.r.t λ can be expressed as a function of the divergence between P and P . Theorem 4.3 (P&R as a function of D λ-PR). Given P, P ∈ P(X) and λ ∈ [0, +∞], the PR curve ∂PRD(P, P) is related to the PR-divergence D λ-PR (P ∥ P) as follows.

α λ (P ∥ P) = min(1, λ) -D λ-PR (P ∥ P).

(7) Conversely, suppose that there exists a strictly decreasing linear function h : [0, 1] → R + and an f -divergence D f such that h(α λ (P ∥ P)) = D f (P ∥ P) for all P, P ∈ P(X), then

f (u) = c 1 f λ (u) + c 2 (u -1).
A direct consequence of Theorem 4.3 is that minimizing D λ-PR is equivalent to maximizing α λ . In a more explicit way, Theorem 4.3 suggests that D λ-PR is the only f -divergence (up to an affine transformation) for which this property holds. This makes D λ-PR a uniquely suitable candidate for training a generative model with a specific P&R trade-off. The proof of Theorem 4.3 is in Appendix B.1

Relation between PR-divergences and other f -divergences

In the previous subsection, we showed that for each trade-off parameter λ, there exists a D λ-PR that corresponds to optimizing for it. This raises the converse question of what trade-off is achieved by optimizing for an arbitrary f -divergence. We answer this by showing in the following theorem that any f -divergence can be expressed as a weighted sum of PR-divergences. Theorem 4.4 (f -divergence as weighted sums of PR-divergences). 1 For any P, P ∈ P(X) supported on all of X and any λ ∈ R + , with m = min X (p(x)/p(x)) and M = max X (p(x)/p(x)):

D f (P ∥ P) = M m 1 λ 3 f ′′ 1 λ D λ-PR (P ∥ P)dλ, (8)
As a sanity check, observe that the weights f ′′ (1/λ)/λ 3 remain invariant under an affine transformation in f much like D f . As we can see in this Corollary, both D KL and D rKL can be decomposed into a sum of PR-divergences terms D λ-PR , each weighted with 1/λ 2 and 1/λ respectively. Note that if λ < 1 then 1/λ > 1/λ 2 , and conversely, if λ > 1. D KL is thus associating more weights on recall than D rKL . This explains the mass covering behavior observed in NFs trained with D KL . Comparatively, the D rKL assigns more weight to terms with a large lambda, leading to the mode seeking behavior empirically observed with flows trained with the D rKL [START_REF] Illing | Bootstrap Your Flow[END_REF]. However, as it will be observed in the Section 6, D rKL is still favoring low values of λ. Other weights for other f -divergences are in Appendix A.1.

Minimizing the Precision-Recall divergence

In this section, we address Question 1 by introducing a new method that can be used to optimize a model with a specific precision-recall trade-off λ. A first naive strategy to achieve this is to use the f -GAN framework introduced by Nowozin et al. [START_REF] Nowozin | f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization[END_REF], and minimize the dual variational form of D λ-PR presented in Theorem 4.3. Together, this results in solving the min-max problem:

min G max T D dual f λ ,T (P ∥ P) = min G max T E x∼P [T (x)] -E x∼ P [f * λ (T (x))] , (10)
where G and T are both represented using neural networks. In practice, this strategy would fail because training a neural network with loss functions such as f * TV (or in this case f * λ) is notoriously difficult due to vanishing gradients2 that lead to poor training performance [START_REF] Grover | Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in Generative Models[END_REF][START_REF] Nowozin | f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization[END_REF]. Instead, training neural networks on functions f * such as f * KL or f * χ 2 , results in much better empirical performance [START_REF] Ting | Mode-Seeking Divergences: Theory and Applications to GANs[END_REF][START_REF] Nowozin | f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization[END_REF][START_REF] Tao | Chisquare Generative Adversarial Network[END_REF].

To avoid these issues, we show how to train the discriminator using an auxiliary divergence (based on a function g ̸ = f) to better estimate the target f -divergence. The main idea is to choose an auxiliary g-divergence that is adequate for training T (e.g. D KL or D χ 2) and use it to compute the likelihood ratio p(x)/ p(x).

Because, at optimality, we have ∇g * (T opt (x)) = p(x)/ p(x), we can then compute the f -divergence as follows:

D f (P ∥ P) = p(x)f p(x) p(x) dx = p(x)f (∇g * (T opt (x)))dx. (11)
In practice, we do not have access to T opt . Instead, we have a discriminator T trained to maximize D dual g,T . At any time during training, we can estimate the f -divergence based on T using the primal estimate, which we define as follows.). Let P, P ∈ P(X). For any function T : X → R, f : R + → R, and g : R + → R, we define the primal estimate D primal f,T as follows.

D primal f,T (P ∥ P) = X p(x)f (r(x)) dx, (12)
where r : X → R + is given by, r(x) = ∇g * (T (x)).

The success of this approach depends on how well r approximates p(x)/ p(x), which depends on T . We first show that the approximation error of r measured in terms of the Bregman divergence [START_REF] Amari | Methods of Information Geometry[END_REF] (also defined in Appendix A.2). It corresponds exactly to the approximation error of D dual g,T , so minimizing the latter will also minimize the former. Theorem 5.2 (Error of the estimation of an f -divergence under the dual form.). For any discriminator T : X → R and r (x) = ∇f * (T (x)),

D g (P ∥ P) -D dual g,T (P ∥ P) = E P Breg g r(x), p(x) p(x) . (13
)
On the basis of this result, the quality of the approximation will crucially depend on ∇g. We can show that if the auxiliary g is strongly convex, the error in the estimation of D primal f,T is bounded:

Theorem 5.3 (Bound on the estimation of an f -divergence using an auxiliary g-divergence). Let f, g : R + → R be such that g is µ-strongly convex and f is σ-Lipschitz. For the discriminator

T : X → R, let r (x) = ∇g * (T (x)). Then D g (P ∥ P) -D dual g,T ≤ ϵ =⇒ D f (P ∥ P) -D primal f,T (P ∥ P) ≤ σ 2ϵ µ .
If T successfully maximizes D dual g,T , then the primal estimation converges to D f . To implement this approach, we propose the following simplified version of the algorithm: Repeat until convergence these 3 steps:

1. Let x real 1 . . . x real N ∼ P and x fake 1 . . . x fake N ∼ P G . 2.
Update the parameters of T by ascending the gradient

∇L T = 1 N ∇ N i=1 T x real i - N i=1 g * T (x fake i) .
3. Update the parameters of G by descending the gradient

∇L G = 1 N ∇ N i=1 f ∇g * T (x fake i) .
This method closely parallels the GAN training procedure, with the key distinction that T and G optimize objectives based on different f . In practice, our implementation uses a stochastic gradient descent, fully detailed in Algorithm 1 in Appendix C.

Experiments

In this section, we employ the auxiliary loss approach outlined in Section 5 to train various models.

Specifically, we train NFs on 2D synthetic data, MNIST and FashionMNIST, while we train BigGAN on CIFAR-10, CelebA64, ImageNet128, and FFHQ256. All models are tested in terms of IS and FID with 50k samples, and on P&R with 10k samples using the method of Kynkäänniemi et al. [START_REF] Kynkäänniemi | Improved Precision and Recall Metric for Assessing Generative Models[END_REF] with k = 3 for MNIST and FashionMNIST and with k = 5 for CelebA64, ImageNet128 and FFHQ256. Also, we test every model in terms of Density and Coverage [START_REF] Ferjad Naeem | Reliable Fidelity and Diversity Metrics for Generative Models[END_REF] on 10k samples with k = 5. In this paper, we present a selection of experimental results. For a comprehensive set of results, including model parameters, optimizers, learning rates, and samples, please refer to Appendix D. We also included in this Appendix a set of experiments run using the naive approach based on Equation 10, thus showing that the discriminator fails to train as explained in Section 5. To ensure reproducibility, our models and code are available on the GitHub repository of the project 3 .

We show that: 1) the auxiliary loss approach effectively enables the training of a model to minimize the PR-Divergence, 2) this method is suitable for fine-tuning pre-trained models, 3) the choice of trade-off parameter λ significantly influences the results on P&R, and finally, 4) our method scales well with larger dimensions and datasets.

Normalizing Flows on synthetic data: NFs are typically trained to minimize D KL , in addition to their structural limitation [START_REF] Cornish | Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows[END_REF][START_REF] Verine | On the expressivity of bi-Lipschitz normalizing flows[END_REF], resulting in good recall but poor precision. Prior work has employed various techniques [START_REF] Durk | Glow: Generative Flow with Invertible 1x1 Convolutions[END_REF][START_REF] Stimper | Resampling Base Distributions of Normalizing Flows[END_REF] to improve model precision post-training, we use our method to directly train the model on a given trade-off. We demonstrate our approach by training RealNVP models on a 2D synthetic dataset using D λ-PR with various λ values and using D KL and D rKL for baseline comparison. As we can see in Figure 1, increasing λ leads to an increase in precision in the resulting models. Using our D λ-PR estimation, we compute the corresponding PR curves (Figure 2(c)). The λ = 0.1 model, while best at α 0.1 , performs poorly at α 1 and α 10 , clearly demonstrating the impact of maximizing α λ .This pattern across models validates the efficacy of our method in minimizing the desired trade-off.

Using D KL vs D χ 2 on MNIST and FashionMNIST: We now demonstrate that we can improve the precision by directly minimizing the D λ-PR with the correct λ using pre-trained GLOW models [START_REF] Durk | Glow: Generative Flow with Invertible 1x1 Convolutions[END_REF] on both MNIST [START_REF] Lecun | MNIST handwritten digit database[END_REF] and FashionMNIST [START_REF] Xiao | Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms[END_REF]. Figure 3 and Figure 4 present the samples obtained. First, we observe that while λ increases, the visual quality improves, but the models focus on a few modes only (0, 1, 7, 6, 9 for MNIST and "Trouser" for FashionMNIST). Then training with both D KL and D rKL divergences aligns with our expectations: D KL training leads to high recall, while D rKL , to higher precision. However, according to Corollary 4.5, D rKL still favors low λ values; consequently, our models trained with λ > 0.1 demonstrate better precision than standard flow-GAN models. Furthermore, we find that both auxiliary g functions (f KL and f χ 2) used to train the discriminator T perform well. In practice, training with f χ 2 proves to be more stable, particularly for FashionMNIST, with results reported in Appendix D.3. For larger models, we use exclusively g = f χ 2 .

(a) λ = 0.1 Training BigGAN on CIFAR-10 and CelebA64 Now we demonstrate that our method can also be used to train large generative models. Our choice to adopt the BigGAN architecture [START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF] was informed by several factors: its competitive performance close to state-of-the-art models; its versatility, permitting diverse experimental explorations; and the fact that it is publicly accessible, ensuring experiment reproducibility. We train Big-GAN using both the baseline method (i.e., hinge loss) and our proposed method on CIFAR-10 [1] and CelebA64 [START_REF] Liu | Deep Learning Face Attributes in the Wild[END_REF]. A notable observation when training with different precision-recall trade-offs is the early elimination of modes from the target distribution at higher values of λ. As illustrated in Figure 5, models with low values of λ converge to achieve maximum recall, while those with λ > 1 rapidly saturate to a lower recall value. A similar behavior can be observed for models trained on CelebA, as shown in Figure D. [START_REF] Grcić | Densely connected normalizing flows[END_REF]. In Table 2, we present the quantitative metrics (Precision, Recall, and FID) for the baseline BigGAN, the BigGAN models trained with varying trade-offs and the current state-of-the-art models: EDM-G++ [START_REF] Kim | Refining Generative Process with Discriminator Guidance in Score-based Diffusion Models[END_REF] for CIFAR-10 and ADM-IP [START_REF] Ning | Input Perturbation Reduces Exposure Bias in Diffusion Models[END_REF] for CelebA64. Employing our proposed method enables us to adjust the trade-off, allowing us to train models that closely approach the state-of-the-art recall and, for high λ, even outperform state-of-the-art models in terms of precision. Table 2: BigGAN trained with the vanilla approach [START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF] and with a variety of λ using our approach on CIFAR-10 and CelebA64. We compare our approach with hard truncation on the baseline model. In every experiment, we compare our approach with traditional post-training techniques. In Table 2, we give the results for the hard truncation (also called the truncation trick in [START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF]) of the latent distribution Q for different ψ. We observe that this method enables to improve solely the precision by trading off the recall; however, note that the truncation can be use in addition to our approach.

(b) λ = 1 (c) λ = 10 (d) λ = 0.1 (e) λ = 1 (f) λ = 10
Fine-tuning BigGAN on Imagenet128 and FFHQ Finally, we apply our method to pre-trained BigGAN models. To accomplish this, we implement a straightforward technique: initially, we train the discriminator for a brief period, allowing the model to transition from the vanilla training objective to the D dual g . This approach enables us to train BigGAN on large datasets such as ImageNet128 [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] and datasets with high dimensions such as FFHQ256 [START_REF] Karras | A Style-Based Generator Architecture for Generative Adversarial Networks[END_REF]. We compare our method with both hard truncation and soft truncation (also denoted temperature in [START_REF] Durk | Glow: Generative Flow with Invertible 1x1 Convolutions[END_REF]). Both methods can be used in addition to our approach. The metrics presented in Table 3 demonstrate that (1) we enhance a given model's precision (by +2.83%) or recall (by +1.17%) on ImageNet, thereby achieving state-of-the-art precision, and (2) our method compromises less on the trade-off than truncation. For instance, in FFHQ, for a similar precision improvement (≈ +15.5%), recall is decreased by more than 5% for truncation methods and only by 1.65% with our approach.

Table 3: BigGAN fine-tune with the vanilla approach [START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF] and with a variety of λ using our approach on ImageNet128 and FFHQ256. We compare our approach with hard truncation on the baseline model. FID (↓), Precision (↑), Recall (↑), Density (↑) and Coverage (↑) are reported. In bold, our best model is highlighted and the state-of-the-art FID is marked with an exponent

Conclusion

In this paper, we present a novel method for training generative models using a new PR-divergence, D λ-PR . Our approach offers a unique advantage over existing methods as it allows for explicit control of the precision-recall trade-off in generative models. By varying the trade-off parameter λ, one can train a variety of models ranging from mode seeking (high precision) to mode covering (high recall), as well as more balanced models that may be more suitable for various applications. Through extensive experiments, we demonstrate the validity of our method and show that it scales well with larger dimensions and datasets. Our approach also provides insights into the implicit P&R trade-offs made by models trained with other f -divergences. By introducing the D λ-PR divergence and providing a systematic approach for training generative models based on user-specified trade-offs, we contribute to the development of more customizable generative models. Our method currently applies to GANs and NFs only, it is still unclear if a similar approach can be applied to trained diffusion models: a promising work [START_REF] Kim | Refining Generative Process with Discriminator Guidance in Score-based Diffusion Models[END_REF] uses a discriminator to refine diffusion models, and could be used to estimate the D λ-PR .

A Supplementary background

A.1 f -divergences f -divergence between two probability distributions P and Q over a common support X is defined as:

D f (P ∥Q) = X q(x)f p(x) q(x) dx, (14)
where p(x) and q(x) denote the densities of P and Q, respectively, and f is a convex function such that f (1) = 0. Any D f admits a dual variational form [START_REF] Nguyen | On surrogate loss functions and f-divergences[END_REF], with T denoting the set of all measurable functions X → R:

D f (P ∥ P) = sup T ∈T E P [T (x)] -E P [f * (T (x))] , (15)
The properties of f -divergence are as follows:

• Non-Negativity: For any two probability distributions P and P on X , we have D f (P ∥ P) ≥ 0. The equality holds if and only if P = P .

• Convexity in f : If f (u) is a convex function, then D f (P ∥ P) is convex in the input distributions P and P .

• Non-Symmetry: Generally, f -divergence is not symmetric, i.e., D f (P ∥ P) ̸ = D f (P ∥P).

• Linearity: f -divergence is linear in f , i.e., for any two convex functions f 1 (u) and f 2 (u), and for any two real numbers a and b, the divergence D af1+bf2 (P ∥ P) = aD f1 (P ∥ P) + bD f2 (P ∥ P).

Specific choices of the function f in the f -divergence definition can yield various well-known divergence measures. We will review some of them of the principal properties. For every divergence, we report here the generator function f , its convex conjugate f * , the domain of the convex conjugate dom(f *), the typical activation function used to ensure that T (x) ∈ dom(f *) and finally the optimal discriminator T * .

Kullback Leibler:

• Notation: D KL ,

• Generator Function: f (u) = u log(u),

• Convex Conjugate domain: dom(f *) = R, • Convex Conjugate: f * (t) = exp(t -1), • Activation: v → v,
• Optimal discriminator: T * (x) = 1 + log p(x) p(x) .

Reverse Kullback Leibler:

• Notation: D rKL ,

• Generator Function: f (u) = -log(u),

• Convex Conjugate domain: dom(f *) = R -, • Convex Conjugate: f * (t) = -1 -log -t,
• Activation: v → -exp v,

• Optimal discriminator: T * (x) = -p(x) p(x) .

χ 2 Pearson:

• Notation: D χ 2 ,
• Generator Function:

f (u) = (u -1) 2 , • Convex Conjugate domain: dom(f *) = R, • Convex Conjugate: f * (t) = t 2 /4 + t,
• Activation: v → v,

• Optimal discriminator: T * (x) = 2 p(x) p(x) -1 .

GAN:

• Notation: D GAN ,

• Generator Function: f (u) = u log(u) -(u + 1) log(u + 1),

• Convex Conjugate domain: dom(f *) = R -, • Convex Conjugate: f * (t) = -log (1 -exp(t)), • Activation: v → -exp -log (1 -exp(v)),
• Optimal discriminator: T * (x) = log p(x) p(x)+ p(x) .

Total Variation:

• Notation: D TV ,

• Generator Function:

f (u) = |u -1|, • Convex Conjugate domain: dom(f *) = -1 2 , 1 2 , • Convex Conjugate: f * (t) = t, • Activation: v → tanh(v),
• Optimal discriminator: T * (x) = 1 2 sign p(x) p(x) -1 .

PR-Divergence:

• Notation: D λ-PR for λ > 0,

• Generator Function: f (u) = max(λu, 1) -max(λ, 1),

• Convex Conjugate domain: dom(f *) = [0, λ],
• Convex Conjugate:

f * λ (t) = t/λ for λ ≤ 1 and f * λ (t) = t/λ + λ -1 otherwise, • Activation: v → λσ(v)
, where σ is the sigmoid function,

• Optimal discriminator: T * (x) = λsign p(x) p(x) -1 .

A.2 Bregman Divernce

The Bregman Divergence under a strictly convex function f : R n → R with a continuously differentiable interior, between two points x and y in the interior of the domain of f , is denoted by Breg f and is defined as:

Breg f (x, y) = f (x) -f (y) -⟨∇f (y), x -y⟩
where ∇f (y) is the gradient of f at y, and ⟨., .⟩ is the inner product in R n . It follows some properties as a distance metrics:

• Non-Negativity: For any x, y in the interior of the domain of f , we have Breg f (x, y) ≥ 0.

The equality holds if and only if x = y.

• Convexity: The Bregman Divergence Breg f (x, y) is convex in its first argument. That is, for any x 1 , x 2 , y in the interior of the domain of f and any t ∈ [0, 1], we have:

Breg f (tx 1 + (1 -t)x 2 , y) ≤ tBreg f (x 1 , y) + (1 -t)Breg f (x 2 , y)
• Non-Symmetry: Unlike some other distances or divergences, the Bregman Divergence is not symmetric, meaning that in general, Breg f (x, y) ̸ = Breg f (y, x).

• Additivity:

If f (x) = f 1 (x 1) + • • • + f d (x d)
where each f i is a convex function, then the Bregman Divergence decomposes into a sum of Bregman Divergences, i.e., Breg f (x, y) = Breg f1 (x 1 , y 1) +

• • • + Breg f d (x d , y d).
• Taylor Approximation: Bregman Divergence is essentially the error of the first-order Taylor approximation of f around the point y at the point x. We have to prove that α(λ) can be written as a function of an f -divergence for any λ ∈ R + . First we can develop the expression of α(λ):

α(λ) = X min (λp(x), p(x)) dx (16)
= X p(x) min λ p(x) p(x) , 1 dx (17)
For this integral to be considered as an f -divergence, we need f to be first convex lower semicontinuous and then to satisfy f (1) = 0. However, for every a, b ∈ R, the min satisfies min(a, b) = a + bmax(a, b). Therefore,

α(λ) = X p(x) λ p(x) p(x) + 1 -max λ p(x) p(x) , 1 dx (18) = λ X p(x)dx + 1 - X max λ p(x) p(x) , 1 dx (19) = λ + 1 - X p(x) max λ p(x) p(x) , 1 dx (20)
Thus, we can take f (u) = max(λu, 1) -max(λ, 1) such that f (1) = 0. The precision becomes:

α(λ) = λ + 1 - X p(x)f (p(x) p(x) -max(λ, 1) X p(x)dx (21)
= min(λ, 1) -

X p(x)f (p(x) p(x) dx = min(λ, 1) -D λ-PR (P, P). (22)
Consequently, α(λ) can be written as a function of an f -divergence D λ-PR with f (u) = max (λu, 1)max (λ, 1). Now we prove the converse. Suppose there exists a strictly decreasing linear4 function h : [0, 1] → R + and an f -divergence D f such that h(α λ (P ∥ P)) = D f (P ∥ P) for all P, P ∈ P(X).

For P = P , we get from the definition of α λ that α λ (P ∥P) = min(λ, 1). Hence,

0 = D f (P ∥P) = h(α λ (P ∥P)) = h(min(λ, 1)).
Combining the above with the fact that h is a strictly decreasing linear function, we see that for any fixed λ, h must be of the form, h(u) = c λ (min(λ, 1) -u), where c λ > 0 is a constant. Now,

D f (P ∥ P) = h(α λ (P ∥ P)) = c λ (min(λ, 1) -α λ (P ∥ P)) = c λ D λ-PR (P ∥ P),
where the last equality follows from the first part of the theorem, which shows that α λ (P ∥ P) = min(λ, 1) -D λ-PR (P ∥ P). Rewriting the above inequality, we get the following.

D λ-PR (P ∥ P) = 1 c λ D f (P ∥ P) = D 1 c λ f (P ∥ P).
By the uniqueness theorem of f -divergence

f (u) = c1 c λ f λ (u) + c 2 (u -1) for some constants c 1 , c 2 ∈ R.

B.2 Proof of Proposition 4.2

If the generator function f of the Precision-Recall Divergence is f (u) = max(λu, 1) -max(λ, 1) then its Fenchel conjugate function is:

f * (t) = sup u∈dom(f) {tu -f (u)} = max(λ, 1) + sup u∈R + {tu -max (λu, 1)} (23
)
If t > λ or λ < 0, then the sup u∈R + {tu -max (λu, 1)} = ∞ for respectively u → ∞ and u → -∞. The domain of f * is thus restricted to [0, λ]. Thus for 0 ≤ t ≤ λ, the supremum is obtained for u = 1/λ since 0 is in the sub-differential of the function in 1/λ as Figure 6(b).

1/ 2 1 1/ 3 u 0 f(u) 1 < 1 2 = 1 3 > 1 (a) Function f (u) for different values of λ.
∀t ∈ [0, λ] , f * (t) = max(λ, 1) + tλ -1 = t/λ if λ ≤ 1, t/λ -1 + λ otherwise. (24
)
Finally, the optimal discriminator T opt by taking the derivative of f in p(x) p(x) , we get:

T opt (x) = ∇f p(x) p(x) = λ if p(x) p(x) ≤ 1/λ, 0 otherwise. (25
)
Then we can compute the compute the reverse D λ-PR :

D λ-PR (P ∥P) = X p(x)f λ p(x) p(x) dx (26) = X max(λ p(x), p(x)) -p(x) max(λ, 1) dx (27) = λ X max(p(x), p(x)/λ)dx -max(1, 1/λ) (28) = λ X p(x) max(1, p(x) p(x) /λ) -p(x) max(1, 1/λ) dx (29) = λ X p(x)f 1/λ p(x) p(x) dx (30) = λD 1 λ -PR (P ∥ P). (31
)
With this results, we can show that :

D TV (P ∥ P) = X |p(x) -p(x)| dx (32) = X max(p(x) -p(x), 0) + max(p(x) -p(x), 0)dx (33)
Then since D 1-PR (P ∥ P) = X max(p(x), p(x)) -p(x)dx = X max(p(x) -p(x), 0)dx and D 1-PR (P ∥ P) = D 1-PR (P ∥P), we have:

D TV (P ∥ P) = D 1-PR (P ∥ P) + D 1-PR (P ∥P) (34)
= 2D 1-PR (P ∥ P).

B.3 Proof of Theorem 5.2

From now on, assume the support of P and P coincide. For any T : X → R,

D dual f,T (P ∥ P) = E x∼P [d (x)] -E x∼Q [f * (d (x))] = E x∼Q p(x) p(x) d (x) -f * (d (x))
Let T opt ∈ arg sup D dual f,T (P ∥ P). For any T :

X → R D f (P ∥ P) -D dual f,T (P ∥ P) = D dual f,T opt (P ∥ P) -D dual f,T (P ∥ P) = E P p(x) p(x) T opt (x) -T (x) -f * T opt (x) + f * (T (x))
It is known that for all x ∈ X we have ∇f * (T opt (x)) = p(x) p(x) :

D f (P ∥ P) -D dual f,T (P ∥ P) = E P ∇f * (T opt (x)) T opt (x) -T (x) -f * T opt (x) + f * (T (x))
Recall that for any continuously differentiable strictly convex functionf , the Bregman divergence of

f is Breg f (a, b) = f (a) -f (b) -⟨∇f (
D f (P ∥ P) -D dual f,T (P ∥ P) = E P Breg f ∇f * (T (x)), ∇f * (T opt (x)) = E P Breg f ∇f * (T (x)), p(x) p(x)
Let us define r (x) = ∇f * T (x) as our estimator of p(x)/ p(x). So finally, we have

D f (P ∥ P) -D dual f,T (P ∥ P) = E P Breg f r(x), p(x) p(x) B.4 Proof of Theorem 5.3 Now assume that f is µ-strongly convex, then Breg f (a, b) ≥ µ 2 ∥a -b∥ 2 If E P Breg f r(x), p(x) p(x)
≤ ϵ and if f is µ-strongly convex, then (P ∥ P) = E P g p(x) p(x) -g (r(x))

E P r(x) - p(x) p(x) 2 ≤ 2ϵ µ . (36)
≤ E P g p(x) p(x) -g (r(x)) (a) ≤ E P [σ |e(x)|] = σE P [|e(x)|] (b) ≤ σ E P [e(x) 2] (c) ≤ σ 2ϵ µ ,
where (a) follows from the σ-Lipschitz assumption on g, (b) follows from Jensen's inequality and finally, (c) follows from equation [START_REF] Ferjad Naeem | Reliable Fidelity and Diversity Metrics for Generative Models[END_REF]. s

B.5 Proof of Theorem 8

Let c : R + → R be a C 2 function and take u min and u max . The goal is to express f (u) for all u ∈ [u min , u max] as a weighted average of f PR λ :

∀u ∈ R + * , 1/umin 1/umax c ′′ (λ)f PR λ (u)dλ = 1/umin 1/umax c ′′ (λ) [max(λu, 1) -max (λ, 1)] dλ (37)
With such a results, with m = min X (p(x) p(x)) and M = max X (p(x) p(x)), we can write any f -divergence as:

D f (P ∥ P) = X p(x)f p(x) p(x) dx = X p(x) M m 1 λ 3 f ′′ 1 λ f PR λ p(x) p(x) dλdx = M m X 1 λ 3 f ′′ 1 λ p(x)f PR λ p(x) p(x) dλdx = M m 1 λ 3 f ′′ 1 λ X p(x)f PR λ p(x) p(x) dx dλ = M m 1 λ 3 f ′′ 1 λ D λ-PR (P ∥ P)dλ B.6 Proof of Corollary 4.5
In particular for the D KL , f (u) = u log u, therefore f ′′ (u) = 1/u which gives:

D KL (P ∥ P) = M m 1 λ 2 D λ-PR (P ∥ P)dλ. (49
)
And for the D rKL we can either use Equation 48with f (u) = -log u or use the fact that D λ-PR (P ∥ P) = λD 1/λ-PR (P ∥P):

D rKL (P ∥ P) = M m 1 λ D λ-PR (P ∥ P)dλ. (50)

C Minimizing the Precision-Recall divergence

In Section 5, we outline a novel strategy to train models for challenging f -divergences. Rather than directly employing the f -GAN framework and minimizing the dual variational form of D λ-PR , we introduce an auxiliary function, denoted by g, which is easier to train. Practical choices for g could include functions such as f KL or f χ 2 , which have been shown to be easily trainable.

Using this approach, a discriminator T is trained with the objective of maximizing D dual g,T . This is achieved by drawing samples from both P and P and computing the estimate in the dual form. Under optimal conditions, we find ∇g * (T opt (x)) = p(x)/ p(x), enabling us to estimate the f -divergence based on T using what we term the primal estimate.

The primal estimate is defined as D primal f,T We have shown that the choice of g affects the quality of the estimation of D f . We have shown that to have guarantees on the quality of the estimation, g must be strictly convex. We show empirically that g = f χ 2 leads to a better approximation than g = f KL . We train 200 discriminators on 20 Gaussian random two-dimensional mixtures to maximize D dual g,T with g = f KL and g = f χ 2 . In Figure C.8, we report the results. On the x-axis, we report the training loss quality D g (P ∥ P) -D dual g,T (P ∥ P) and on the y-axis we report the estimation quality : D f (P ∥ P) -D primal f,T (P ∥ P)|. The dotted lines correspond to the Mahalanobis distance of each set of experiments. In this experiment, we use a 4 linear layers 2-1024-512-256-1 neural network with LeakyRelu activation between layers. The last activation is set to match dom(f *) (see Section A.1). We use a learning rate of 2.10 -5 with Adam optimizer.

(P ∥ P) = X p(x)f (r(x)) dx, where r(x) = ∇g * (T (x)).
f χ 2 f KL Figure C.8:
We compare the quality of the primal estimation using two discriminators, one trained using the D KL and D χ 2 over 200 experiments. The lower the point is on the y-axis, the better the estimate. As we can see, even distant dual estimates of the f χ 2 (points on the right side of the chart) tend to provide better estimates of the primal.

We observe in this experiment that 1) the difference between D KL and its dual is usually lower (the blue circle is lower on x-axis) and yet 2) the estimation of D f is usually better with g = f χ 2 (the red circle is lower on y-axis). These observations corroborate our claim that employing f χ 2 as the auxiliary divergence is a more advantageous choice compared to f KL . Although both divergence measures exhibit satisfactory performance in the context of the MNIST and FashionMNIST experiments, we find f χ 2 to demonstrate superior stability, reinforcing its suitability in this training framework.

Complete version of the algorithm

In Section 5, we introduce a condensed version of our training algorithm. For practical purposes, however, we implement a more refined variant of this algorithm using stochastic gradient descent, detailed in Algorithm 1. This approach involves segmenting the dataset into batches of size N and computing the distinct losses for each individual batch. Our algorithm is closely related to the GAN training procedure, operating on an iterative principle of alternating updates to the discriminator T and the generator G until a convergence state is reached.

In particular, our method differs from the standard GAN training protocol in two key aspects. First, the generator G in our case is trained based on an estimation of a distinct f -divergence. Second, this specific f -divergence is calculated in terms of its primal form, rather than its dual form, a marked departure from the established GAN training practice.

Algorithm 1 Stochastic Gradient Descent for the two-step approach for minimizing D λ-PR . For each batch B composing the dataset D, the discriminator T is trained on L T , the empirical estimation of D dual f,T (P ∥ P) and the generator G is trained on L G , the empirical estimation of D primal λ-PR (P ∥ P).

Input: Generator G, Discriminator T , Dataset D g * ← f * χ 2 orf * KL f ← f λ for epoch e = 1, . . . , E do for B ∈ D do L T , L G ← 0, 0 for x real 1 , . . . , x real N ∈ B do for i = 1 to N do Generate x fake i = G(z) with z ∼ N (0 d , I d) L T ← L T + T (x real i) -f * (T (x fake i))
end for Update parameters of T by ascending the gradient ∇L T .

for i = 1 to N do L G ← L G + g ∇f * (T (x fake i) end for
Update parameters of G by descending the gradient ∇L G . end for end for end for

D Experiments D.1 Naive Approach

In this section, we juxtapose the straightforward method with our technique delineated in Section 5. We achieve this by evaluating the optimization process of two identical G models: one is trained using the conventional approach and the other using our methodology. In reality, there exist two significant variations between these two training procedures: training losses and the final layer of the discriminator T . In both procedures, we use f * (T (x)), implying that the co-domain must be encapsulated within dom(f *). More information on activation can be found in the Appendix A.1. Aside from these disparities, we utilize the identical training process as outlined in the previous section to train the models on CIFAR-10. The training procedures are compared in Figure D.9. To evaluate training procedures, we plot the loss L G , used to train G, either the dual estimation of D λ-PR in the naive approach or the primal estimation of D λ-PR in our method. To track the evolution of the discriminator, we plot discriminating predictions on the input conditioned on the class (real or fake). Precisely, we compute the accuracy on a batch of real or fake images, how many the discriminator achieves to identify as such. Finally, we plot the Precision and Recall computed at each epoch.

We observe that for varying values of λ, the discriminator T undergoes the training process using the naive approach, leading to an unsatisfactory estimation of D dual f,T . Figure D.9: Results for training BigGAN models on CIFAR-10 using the naive approach (in blue) and our method (in red). For λ = 0.2, λ = 1 and λ = 5, the loss represented by G in learned. We obverse that for the naive approach, this loss is constant. Then, we plot the accuracy of the discriminator. We plot the accuracy conditioned on the class: in the dotted line the accuracy on the images of dataset x real and in the solid line the accuracy on the generated images x fake . Then we plot the Precision and Recall during training.

D.2 Synthetic data: 8 Gaussians

For the synthetic data, we use a RealNVP [START_REF] Dinh | Density estimation using Real NVP[END_REF] for the generator G. We use an 8-coupling step composed of each of 2 linear layers 2-256-2 with LeakyRelu activation in between. For the discriminator, we used a 4 linear layers 2-1024-512-256-1 neural network with LeakyRelu activation between layers. For both, we use Adam optimizer with a learning rate of 2.10 -5 for G and 1.10 -4 for T . G has 540k parameters and 660k for T .

Then, to estimate the PR curves, both methods from Sajjadi et al. [START_REF] Mehdi | Assessing Generative Models via Precision and Recall[END_REF] and Simon et al. [START_REF] Simon | Revisiting precision recall definition for generative modeling[END_REF] are developed for image dataset. To estimate these curves, we use our own estimation of D λ-PR . We computed D λ-PR for λ = tan(θ) with θ between 0 and π/2. The observations from the generated curves underscore a compelling finding: Each model has been effectively optimized for a unique, specific λ, resulting in its superior performance on the corresponding D λ-PR . This indicates a clear correspondence between the intended optimization and the achieved performance, suggesting the efficacy of our training algorithm in optimizing models for specific performance metrics. Such a successful matching of model optimization to λ underscores the feasibility of tailoring model training according to a specific precision-recall trade-off objective.

D.3 MNIST and FashionMNIST

The training procedure for MNIST and FashionMNIST is strictly the same. For both we use a multiscale glow [START_REF] Durk | Glow: Generative Flow with Invertible 1x1 Convolutions[END_REF]. The model has three levels processing images of size 4 × 16 × 16, 16 × 8 × 8, 64 × 8 × 8. Each level has 16 blocks of affine coupling with 3 layers of 512 channels of convolutional operations, leading to a total of 85.2M parameters. For the discriminator, we use a 4 linear layers 1024-1024-512-256-1 neural network with LeakyRelu activation between layers, with 1.7M parameters. Both are trained with Adam using a learning rate of 1.10 -5 for T and 1.10 -6 for G. For both dataset, we train a model for 250 epochs using maximum likelihood estimation (MLE) in 4 GPUs V100 (∼ 200 hours). The models are then fine-tuned with their different losses on 12 V100 GPUs for 30 epochs (∼ 2 hours). For two epochs we train the discriminator only and then both. For MNIST, we report results as graphs in From left to right, we plot IS (↑), FID (↓), P (↑) and R (↑). IS and FID are calculated using 50k samples, and P and R are calculated using 5k samples with k = 3 using Kynkäänniemi et al. [START_REF] Kynkäänniemi | Improved Precision and Recall Metric for Assessing Generative Models[END_REF]'s method. For comparison, we also report models trained with MLE (in black), for D KL (in blue) and for D rKL in red. From 12(a) to 12(d), we observe that visual quality improves while diversity decreases. Models geared towards high recall, specifically MLE and those with λ = 0.1, are found to generate a wide variety of samples. However, these are characterized by lower precision, and approximately 20% of the generated samples are incoherent. On the contrary, the model trained with λ = 10 appears to focus on a smaller subset of modes, demonstrating higher precision but limited diversity. Specifically, this model primarily generates classes 1, 6, 7, and 9. From left to right, we plot IS (↑), FID (↓), P (↑) and R (↑). IS and FID are calculated using 50k samples, and P and R are calculated using 10k samples with k = 3 using Kynkäänniemi et al. [START_REF] Kynkäänniemi | Improved Precision and Recall Metric for Assessing Generative Models[END_REF]'s method. For comparison, we also report models trained with MLE (in black), for D KL (in blue) and for D rKL in red.). From 14(a) to 14(d), we observe that visual quality improves while diversity decreases. Models geared towards high recall, specifically MLE and those with λ = 0.1, are found to generate a wide variety of samples. However, these are characterized by lower precision, and approximately 15% of the generated samples are incoherent. On the contrary, the model trained with λ = 10 appears to focus on a smaller subset of modes, demonstrating higher precision but limited diversity. Specifically, this model primarily generates the class "trouser".

D.4 Training BigGAN on CIFAR-10 and CelebA64

In this section we give the details of the experiments on training BigGAN [START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF] models. To do this, we modify the official implementation of PyTorch We observe that when λ increases, the recall decreases going to a various range of colored images to mostly brown images. We can observe that the precision quickly achieves its maximal value and saturates. We can also observe that the model is evicting modes of the target distribution early in the training, R is quickly saturates to different levels depending on λ. However, for low values of the recall does not increase when λ decreases, indicating that the model capacity limits the maximum recall. . IS and FID are computed using 50k samples and P and R are computed using 10k samples with k = 5 using Kynkäänniemi et al. [START_REF] Kynkäänniemi | Improved Precision and Recall Metric for Assessing Generative Models[END_REF]'s method.

For comparison, we also report a model trained hinge loss (in black), following the vanilla training procedure.

D.5 Fine-tuning BigGAN on ImageNet128 and FFHQ256.

In this section, we fine-tune the pre-trained BigGAN models. For ImageNet128, we use the weights of the model trained by Brock et al. [START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF], while for FFHQ256 we use a model pre-trained by our self, explaining why the FFHQ models is under performing. We train models on 4 V100 GPUs with a batch size of 128 for 10k iterations each. The graphic representation of the results is reported in Figures D. [START_REF] Heusel | GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium[END_REF] . IS and FID are calculated using 50k samples, and P and R are calculated using 10k samples with k = 5 using Kynkäänniemi et al. [START_REF] Kynkäänniemi | Improved Precision and Recall Metric for Assessing Generative Models[END_REF]'s method.

For comparison, we also report a model trained hinge loss (in black), following the vanilla training procedure.

E Training the AUC

In this paper, we propose a method to optimize any trade-off between precision and recall. In practice, we optimize a model to maximize any α λ (P ∥ P). We could also optimize for the area under the PR-Curves PRD(P, P)(P, P). In this section, we will show how we can compute the AUC in terms of α λ (P ∥ P) and train a model on a small dimension dataset and compare the results with the model trained on several λ. First, we must compute the AUC:

Using such expression, we can estimate the AUC and train model to directly optimize the AUC. It loses the focus on a specific trade-off between precision and recall, but instead optimizes overall performance. We trained a RealNVP model on a 2D 8 Gaussians example, similar to Section 6. We observe in Figure 27(d) that while the model trained to minimize the AUC performs poorly in terms of λ = 0.1 and λ = 1. However, we can clearly see that the AUC is greater and the model performs better in λ = 1 than the model trained for λ = 1 itself. We can also observe in Figure 27(d), the resulting model.

(a) λ = 0. 1 (

 1 b) λ = 1 (c) λ = 10 (d) DKL (e) DrKL

Figure 1 :

 1 Figure 1: NFs -RealNVP [14] trained on 2D Gaussians. Fig. 1(a) to Fig. 1(c): models trained to minimize D λ-PR . Fig. 1(d) and Fig. 1(e): models trained to minimize D KL and D rKL respectively. Samples drawn from the true distribution P are shown in black, samples drawn from the estimated distribution P are shown in green and the log-likelihood of P is shown in blue (darker means higher density). (a) λ = 0.1, favors recall over precision. (b) λ = 1, balanced precision vs. recall trade-off. (c) λ = 10, which favors precision over recall. As observed in [35], and demonstrated in Theorem 4.5, the D KL (1(d)) is mass covering and the D rKL (1(e)) in mode-seeking. The corresponding PR-Curve are presented in Figure 2(c).

 ∂PRD(P, P) for Fig.1

Figure

 Figure2: PR curves for two models P 1 and P 2 of P . Figure2(a) shows P 1 , P 2 and P . Figure2(b)shows PR curves for P 1 , P 2 against P . P 1 has good recall since it covers both modes of P , but low precision since it generates points between the modes. P 2 has good precision since it does not generate samples outside of P but low recall since it can generate samples from only one mode. Figure2(c) are the PR curves corresponding to Figure1and are detailed in Section 6.

Corollary 4 . 5 (1 λ 2 D 1 λ

 45121 D KL and D rKL as an average of D λ-PR). The D KL Divergence and the D rKL can be written as a weighted average of PR-Divergence D λ-PR : D KL (P ∥ P) = M m λ-PR (P ∥ P)dλ, and D rKL (P ∥ P) = M m D λ-PR (P ∥ P)dλ. (9)

Definition 5 . 1 (

 51 Primal estimate D primal f,T

Figure 3 :

 3 Figure 3: Samples from NFs -GLOW trained on MNIST (3(a) to 3(c)) and FashionMNIST (3(d) to 3(f)). Recall decreases as precision increases for λ between 0.1 and 10.

Figure 4 :

 4 Figure 4: Precision and Recall as a function on λ for GLOW trained on MNIST with T trained with f KL or f χ 2 , and for models trained D KL , D rKL and MLE.

Figure 5 :

 5 Figure 5: Recall during training of BigGAN optimizing different tradeoff on CIFAR-10. Models for high λ saturates in an early stage at decreasing values of recall.

1 ut

 1 max(u, 1) t1 = /10 t1 = /2 t1 = 9 /10 (b) Function u → ut -max(λu, 1) for values of t between 0 and λ.

Figure B. 6 :

 6 Figure B.6: Graphical illustration of f λ and f * λ . Both are piece-wise linear

 b), a -b⟩. So we have D f (P ∥ P) -D dual f,T (P ∥ P) = E P Breg f * T (x), T opt (x) Let us now use the following property: Breg f (a, b) = Breg f * (a * , b *) where a * = ∇f (a) and b * = ∇f (b).

 Consider an arbitrary f-divergence D g (P ∥ P) = g dP d P d P . Define D primal g,T (P ∥ P) = g (r(x)) d P . Then, D g (P ∥ P) -D primal g,T

 This strategy and its corresponding training procedure are visually represented in Figure C.7.

Figure C. 7 :

 7 Figure C.7: Training procedure: the discriminator T is trained based on D dual g,T and G is trained on D primal f, T .

 |D f (P P) -D primal f,T (P P)| D g (P P) -D dual g,T (P P)

Figure D. 10 :

 10 Figure D.10: PR Curves of the models in Figure 1. In shades of blue, the curves correspond to the model trained to minimize D λ-PR , with dark blue for λ = 0.1, medium blue for λ = 1, and light blue for λ = 1. The green curve corresponds to D KL and the red curve to D rKL .

 Figure D.11, the quantitative results in Table 4 and samples in Figure D.3. For FashionMNIST, we report the results as graph in Figure D.13, the quantitative results in Table 4 and samples in Figure D.3.

Figure D. 11 :

 11 Figure D.11: MNIST: Glow models[START_REF] Durk | Glow: Generative Flow with Invertible 1x1 Convolutions[END_REF] are trained for different λ. From left to right, we plot IS (↑), FID (↓), P (↑) and R (↑). IS and FID are calculated using 50k samples, and P and R are calculated using 5k samples with k = 3 using Kynkäänniemi et al.[START_REF] Kynkäänniemi | Improved Precision and Recall Metric for Assessing Generative Models[END_REF]'s method. For comparison, we also report models trained with MLE (in black), for D KL (in blue) and for D rKL in red.

= 10 Figure D. 12 :

 1012 Figure D.12: MNIST: Samples are drawn from different models (only models trained with g = f χ 2).From 12(a) to 12(d), we observe that visual quality improves while diversity decreases. Models geared towards high recall, specifically MLE and those with λ = 0.1, are found to generate a wide variety of samples. However, these are characterized by lower precision, and approximately 20% of the generated samples are incoherent. On the contrary, the model trained with λ = 10 appears to focus on a smaller subset of modes, demonstrating higher precision but limited diversity. Specifically, this model primarily generates classes 1, 6, 7, and 9.

Figure D. 13 :

 13 Figure D.13: FashionMNIST: Glow models[START_REF] Durk | Glow: Generative Flow with Invertible 1x1 Convolutions[END_REF] are trained for different λ. From left to right, we plot IS (↑), FID (↓), P (↑) and R (↑). IS and FID are calculated using 50k samples, and P and R are calculated using 10k samples with k = 3 using Kynkäänniemi et al.[START_REF] Kynkäänniemi | Improved Precision and Recall Metric for Assessing Generative Models[END_REF]'s method. For comparison, we also report models trained with MLE (in black), for D KL (in blue) and for D rKL in red.

= 10 Figure D. 14 :

 1014 Figure D.14: FashionMNIST: Samples are drawn from different models (only models trained with g = f χ 2). From 14(a) to 14(d), we observe that visual quality improves while diversity decreases. Models geared towards high recall, specifically MLE and those with λ = 0.1, are found to generate a wide variety of samples. However, these are characterized by lower precision, and approximately 15% of the generated samples are incoherent. On the contrary, the model trained with λ = 10 appears to focus on a smaller subset of modes, demonstrating higher precision but limited diversity. Specifically, this model primarily generates the class "trouser".

 and D.18.

= 10 Figure D. 15 :

 1015 Figure D.15: CIFAR-10: Samples are drawn from different BigGAN trained on the PR-Divergence.We observe that when λ increases, the recall decreases going to a various range of colored images to mostly brown images.

Figure D. 16 :RecallFigure D. 17 :

 1617 Figure D.16: CIFAR-10: BigGAN models[START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF] are trained for different λ. From left to right, we plot IS (↑), P (↑), D (↑), FID (↓), R (↑) and C (↑). IS and FID are calculated using 50k samples, and P and R are calculated using 10k samples with k = 5 using Kynkäänniemi et al.[START_REF] Kynkäänniemi | Improved Precision and Recall Metric for Assessing Generative Models[END_REF]'s method. For comparison, we also report a model trained hinge loss (in black), following the vanilla training procedure.

RecallFigure D. 18 :

 18 Figure D.18: CelebA Evolution of the IS, FID, P and R during training. We can observe that precision quickly achieves its maximal value and saturates. We can also observe that the model is evicting modes of the target distribution early in the training, R is quickly saturates to different level depending on λ.

= 10 Figure D. 19 :

 1019 Figure D.19: CelebA64: Samples are drawn from different BigGANs with our apprach. For λ = 0.5, the model generated faces with various background, while the model generate only grey, black and brown backgrounds. However there are less artifacts on the latter model.

Figure D. 20 :

 20 Figure D.20: CelabA64: BigGAN models[START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF] are trained for different λ. From left to right, we plot IS (↑), P (↑), D (↑), FID (↓), R (↑) and C (↑). IS and FID are computed using 50k samples and P and R are computed using 10k samples with k = 5 using Kynkäänniemi et al.[START_REF] Kynkäänniemi | Improved Precision and Recall Metric for Assessing Generative Models[END_REF]'s method. For comparison, we also report a model trained hinge loss (in black), following the vanilla training procedure.

Figure D. 21 :

 21 Figure D.21: ImageNet128: BigGAN models[START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF] are trained for different λ. From left to right, we plot IS (↑), P (↑), D (↑), FID (↓), R (↑) and C (↑). IS and FID are calculated using 50k samples, and P and R are calculated using 10k samples with k = 5 using Kynkäänniemi et al.[START_REF] Kynkäänniemi | Improved Precision and Recall Metric for Assessing Generative Models[END_REF]'s method. For comparison, we also report a model trained hinge loss (in black), following the vanilla training procedure.

Figure D. 22 : 5 Figure D. 23 : 2 Figure D. 24 :

 22523224 Figure D.22: FFHQ: BigGAN models[START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF] are trained for different λ. From left to right, we plot IS (↑), P (↑), D (↑), FID (↓), R (↑) and C (↑). IS and FID are computed using 50k samples and P and R are computed using 10k samples with k = 5 using Kynkäänniemi et al.[START_REF] Kynkäänniemi | Improved Precision and Recall Metric for Assessing Generative Models[END_REF]'s method. For comparison, we also report a model trained hinge loss (in black), following the vanilla training procedure.

Proposition E. 1 (2 1 + λ 2

 122 AUC under the ∂PRD(P, P)). The area under the curve is:Proof. The AUC can be computed by integrating with respect to an angle θ in the first quadrant: λ = tan θ, we have r(θ) = α tan(θ) (P ∥ P)/ sin θ (seeFigure E.25). Thus: dλ with dλ = (1 + tan 2 θ)dθ,

Figure E. 25 :Figure

 25 Figure E.25: Illustration of the change of variable to compute the AUC. Instead of parametrising the frontier ∂PRD(P, P) with λ ∈ R ∪ [0, ∞], we take θ ∈ 0, π 2 with λ = tan θ.

 (a) λ = 0.1 (b) λ = 1 (c) λ = 10 (d) AUC

 • Connection with Dual Functions: If f is convex, then it has a convex conjugate (or dual function) f * . The Bregman Divergence Breg f (x, y) is related to the Bregman Divergence Breg f * (∇f (y), ∇f (x)) between the gradients of f at x and y, where the gradient map ∇f serves as a Legendre transformation between the primal and dual spaces.

B Proof and supplementary for Section 4 B.1 Proof for Theorem 4.3

Table 4 :

 4 Quantitative evaluation of various Glow[START_REF] Durk | Glow: Generative Flow with Invertible 1x1 Convolutions[END_REF] models on the MNIST and FashionMNIST datasets. Models differ by their choice of D f , D g , and λ. The performance metrics include the FID (↓), P (↓) and R (↑). The best model is highlighted in bold. FID is calculated for 50k samples.P and R are culculated for 10k samples and k = 3.

			Model			MNIST		FashionMNIST
		Dg	D f	λ	FID	P	R	FID	P	R
			MLE		7.68	70.03	76.52	66.64	58.19	47.35
		DKL	DKL	-	7.76	70.68 77.19	71.72	51.44	45.61
		DrKL DrKL	-	10.50 74.64	67.21	51.65	67.68	40.76
		D χ 2	D λ-PR	0.10	6.84	78.24	72.11	48.11	66.57	45.80
		D χ 2	D λ-PR	0.20	6.48	78.84	71.02	41.97	66.41	46.62
		D χ 2	D λ-PR	0.50	6.57	79.09	70.26	46.04	71.20	46.37
		D χ 2	D λ-PR	1.00	7.95	79.55	69.08	52.88	73.32	36.44
		D χ 2	D λ-PR	2.00	10.01 80.37	67.84 101.33 76.47 39.40
		D χ 2	D λ-PR	5.00	15.31 81.34	67.00 118.54 73.44	35.14
		D χ 2	D λ-PR 10.00 20.88 81.71	66.62	91.20	72.14	19.48
		DKL	D λ-PR	0.10	4.66	76.06	73.88	42.85	66.48 49.73
		DKL	D λ-PR	0.20	4.45	76.92	71.92	48.25	72.87	49.52
		DKL	D λ-PR	0.50	5.94	77.98	71.42	54.12	71.28	41.70
		DKL	D λ-PR	1.00	8.21	79.92	70.02	62.33	62.58	42.89
		DKL	D λ-PR	2.00	9.40	79.89	67.15	64.74	72.78	41.41
		DKL	D λ-PR	5.00	14.01 82.08	66.13	83.25	73.12	33.80
		DKL	D λ-PR 10.00 27.61 83.20 65.09	79.37	70.74	27.05
	2.500								
	2.475								
	2.450								
	2.425								
	2.400								
	2.375								
	10 -1	10 0	10 1						
		λ							

 5 of BigGAN by Brock et al.[START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF]. G and T respectively count 4.3M and 4.2M parameters for CIFAR-10 and 32.0M and 19.5M for CelebA64. CIFAR-10's models are trained on 2 A100 80GB GPUs with a batch size of 128 for approximately 100k iterations (∼ 7 hours), while CelebA64's models have been trained on 4 A1200 32GB GPUs with a batch size of 128 for 95k iteration (∼ 20 hours). Quantitative results are reported in Table2. The graphic representation of the results is in Figures D.[START_REF] Giaquinto | Gradient Boosted Normalizing Flows[END_REF] and D.20. The training curves representative of FID, IS, P and R during training are reported in Figures D.17

An equivalent result can be found in Corollary 19 of[START_REF] Siry | On the Theoretical Equivalence of Several Trade-Off Curves Assessing Statistical Proximity[END_REF]

The explanation for this vanishing gradient phenomenon primarily relies on the fact that the optimal discriminator for these functions is T opt (x) = sign(p(x)/p(x) -1). To approximate it,[START_REF] Nowozin | f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization[END_REF] recommends the use of a tanh activation function that is known to induce vanishing gradients.

https://github.com/AlexVerine/PrecisionRecallBigGan

We omitted the critical constraint of h being linear in the original statement of the theorem in our submission by mistake. We apologize for this oversight. We stress again that the first part of the Theorem, which is the most important part, remains completely unaffected.

https://github.com/ajbrock/BigGAN-PyTorch

Acknowledgment

We are grateful for the grant of access to computing resources at the IDRIS Jean Zay cluster under allocations No. AD011011296 and No. AD011014053 made by GENCI.

First, let us assume that u min ≤ 1 and u max ≥ 1, then the terms can be decomposed and the integral split to evaluate the max:

By integrating by parts, we have:

We would like 1/umin 1/umax c ′′ (λ)f PR λ (u)dλ to be equal to f between u min and u max . But since two f -divergences generated by f and g are equals if there is a c ∈ R such that f (u) = g(u) + c(u -1), the Divergence generated by 1/umin 1/umax c ′′ (λ)f PR λ (u)dλ is equal to the divergence generated by uc 1 u -c(1). Therefore, we require c to satisfy:

.

By differentiating with respect to u, we have:

And finally:

Consequently, with λ = 1/u, we have that: