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Abstract: MicroRNAs (miRNAs) are small, non-coding RNA species that control gene expression
and confer robustness to biological processes. Over the last two decades, their important roles during
kidney development, homeostasis and the treatment of diseases have been established, in particular
during the onset and progression of various forms of acute and chronic renal disorders. In recent
years, miR-21, one of the best-characterized miRNAs to date, has received much attention in renal
physiology in particular given its high degree of conservation and expression in kidneys, as well
as its potent pathogenic role in various debilitating renal diseases. This review summarizes the
current knowledge on miR-21’s involvement in both renal homeostasis and diseases, in particular
its double-edged-sword role in acute versus chronic kidney injuries. Finally, we also discuss the
potential of miR-21 as a biomarker and therapeutic target in renal diseases.

Keywords: microRNA; kidney; cancer; fibrosis

1. Introduction

More than 2500 microRNAs (miRNAs) are expressed in human cells (miRbase v22.1).
Some of them exhibit tissue- or cell-specific expression patterns, while others are considered
as house-keeping molecules [1]. Although miRNAs were discovered in the early 1990s
through the analysis of developmental timing mutants in C. elegans [2,3], their biological
significance was underestimated until 2001, with the identification of numerous endoge-
nously expressed small RNAs in worms, flies and mammals [4–6]. We have since learned
that miRNAs represent critical gene expression regulators that control major cellular func-
tions in various physiological and pathological settings [7]. Although a single miRNA
potentially regulates the expression of multiple protein-coding genes, it is now clear that
not all miRNAs are equally important. Indeed, lessons from various research studies have
identified a limited number of key functional miRNAs such as miR-21, one of the most
extensively studied miRNA [8]. Since its initial description in 2005 as the miRNA most
commonly and strongly up-regulated in human brain tumor glioblastoma [9] miR-21 has
received considerable attention, given its consistent upregulation and pathogenic role in
multiple distinct disease conditions. In this review, we summarize the current knowl-
edge of miR-21’s functions in kidney diseases, with emphasis on its potential as a disease
biomarker and novel therapeutic target. For easier reading, miR-21 will be used throughout
the manuscript instead of hsa-miR-21-5p or mmu-miR-21a-5p.

2. miR-21’s Genomic Organization, Biogenesis and Regulation

In contrast with most miRNAs which usually map in intergenic or intronic regions
of coding or non-coding genes, the mature sequence of miR-21 is located immediately
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downstream of the 3′-unstranslated region of the coding gene VMP1 (Vacuole Membrane
Protein 1), also known as TMEM49 (Transmembrane Protein 49) [10]. The gene encod-
ing miR-21 is transcribed by RNA polymerase II independently of VMP1 into a capped,
polyadenylated and unspliced primary transcript (pri-miR-21) and then processed by the
RNAse III enzyme Drosha to form an approximately 70 nucleotide precursor miRNA (pre-
miR-21). The pre-miR-21 is then shuttled into the cytoplasm and forms the mature miRNA
of 22 nucleotides following processing by a second RNAse III enzyme called DICER. The
mature miR-21 is then incorporated into the RNA-induced silencing complex (RISC), which
is able to recognize the “seed sequence” of the miRNA in target mRNA and negatively
regulate its expression (Figure 1) [10].
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Figure 1. Biogenesis of miR-21. miR-21 is transcribed by RNA polymerase II from chromosome
17 into pri-miR-21 transcript, which is then processed by a microprocessor into hairpin precursor
molecules (pre-miR-21) in the nucleus. These are exported to the cytoplasm by exportin 5 and are
further processed into mature miR-21 sequences, which are then incorporated into the RISC and
guided to miR-21 target mRNAs to repress their expression.

Like any other gene product, miRNAs are subject to transcriptional regulation, a fun-
damental process controlling gene expression [11]. Transcriptional regulation involves the
complex interplay of genomic cis-regulatory elements, transcription factors, co-activator/co-
repressor complexes, chromatin modifications and other epigenetic factors (Figure 2) [12].
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Figure 2. Genomic location of pri-miR-21. Gene encoding pri-miR-21 is located on chromosome
17q23.2 and overlaps with TMEM49, a coding gene. Two distinct transcriptional start sites with
respect to the miR-21 hairpin have been described and are indicated by bent arrows [13–16]. Binding
regions for transcriptional activators (AP-1, Ets/PU,1 and STAT3) and repressors (NFI, C/EBPα, Gfi1
and ER) are also shown.

Although notable exceptions exist, intergenic miRNAs are known to be transcribed
as independent transcription units while intronic miRNAs are believed to be processed
from the introns of their hosting transcription units, and hence share common regulatory
mechanisms and expression patterns with their host gene [17]. MiR-21 is one of the very
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few miRNAs which have been mapped in the 3′-untranslated regions (UTRs) of a coding
gene. It is indeed located immediately adjacent to the 3′UTR of the TMEM49 gene [12].
While it was initially assumed that miR-21 was expressed as part of the TMEM49 tran-
script, many studies have instead experimentally shown that miR-21 and its host gene
are independently regulated, and that local promoter regions initiate miR-21 transcription
through long, unspliced and non-coding pri-miR-21 transcripts [18]. A detailed analysis
of the upstream region of miR-21 identified several highly conserved enhancer elements,
including binding sites for AP-1, Ets/PU.1 or STAT3. Experiments using heterologous lu-
ciferase have notably revealed that the PMA (phorbol myristate acetate)-induced activation
of AP-1 or STAT3 activation results in the transcription of pri-miR-21 [8]. Given that these
two transcription factors have well-recognized roles in tumorigenesis, up-regulated miR-21
expression in cancers may in fact reflect their aberrant tumoral expression. Furthermore,
several transcriptional suppressors have also been reported, such as NF1, C/EBPα, Gfi1
and ER, indicating that miR-21 transcriptional levels are rather controlled by the balance
between stimulatory and inhibitory transcription factors [19].

Epigenetic modification is another mechanism modulating miR-21 expression. For
example, Baer et al., showed that the upregulation of miR-21 in chronic lymphocytic
leukemia is linked to the DNA methylation of the miR-21 upstream sequence. As a matter
of fact, the miR-21 promoter sequence was completely unmethylated in all leukemia
samples but showed significant DNA methylation in controls [20]. Similarly, Iorio et al.
demonstrated that miR-21 is strongly induced in ovarian cell line OVCAR3 treated with
the demethylating agent 5-AZA [21].

In addition to transcriptional regulation, Davis and colleagues have shown that miR-21
is also subjected to post-transcriptional regulation. Indeed, they demonstrated that miR-21
expression can be induced through a SMAD-mediated increase in the Drosha processing
of the pri-miR-21 transcript, and further showed that this novel regulatory mechanism is
not only critical for the control of the vascular smooth muscle cell phenotype but also has
functional consequences in the promotion of metastasis [22].

Mature miR-21 activity has been reported to be linked in vivo to its differential asso-
ciation with polysomes that reflects distinct strengths of interactions with mRNA targets
according to the cellular context. For example, whereas miR-21 displays poor association
with polysomes in healthy mouse hepatic tissue, associated with a low translation repres-
sion [23], a strong association of miR-21 with polysomes in HeLa cells has been shown to
be related to high inhibition activity in this context [24]. A rapid and reversible regulation
of miR-21 can also be mediated by a sequestration mechanism of mature miR-21 copies.
Androsavitch et al. have shown that the miR-21-mRNA interaction is thermodynamically
unstable due to a high adenine and uracil content within the seed sequence [23], resulting in
a high sensitivity of miR-21 to “miRNA sponge” molecules that can prevent miRNA from
binding to its targets. Endogenous “miRNA sponges” have previously been described. For
example, GAS5 lncRNA, which has been identified as a novel target for miR-21, also con-
tains a putative miR-21 binding site, resulting in the negative regulation of miR-21 [25,26].
In addition, pseudogenes frequently include nonsense mutations located at the beginning
of the coding sequence, resulting in a short transcript that will not be supported within the
polysomes. Pseudogenes-sequestered miRNAs are then located outside of the polysomes,
and remain inactive. This mechanism can be illustrated by the pseudogene PTENP, which
is targeted by PTEN-targeting miRNAs and could then contribute to miR-21 regulation
through its sequestration [27]. Synthetic “miRNA sponges” have already been extensively
used for experimental purposes in the last decades [28–32].

3. miR-21 in Kidney Development and Normal Tissue
3.1. miR-21 in Kidney Development

miRNAs are critically implicated in the development of various organs [33], including
kidneys, as demonstrated by the Dicer1 conditional deletion in renal progenitor cells that
results in profound defects in nephrogenesis, characterized by a very severe nephronic
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reduction phenotype associated with increased apoptosis, architectural defects and 36
hr postpartum mouse mortality [34]. Moreover, Dicer conditional deletions in cortical
stroma cells, podocytes and juxta-glomerular cells lead to various nephrogenesis anomalies
affecting renal cells, including podocytes and tubular cells or microvascularizations [35–38].

In the zebrafish model, miR-21 expression has been reported at very-early stages of
development and in relatively high amounts (up to 40% of all miRNAs in fibroblasts) [39].
However, miR-21 knock-out mice do not exhibit any pathological phenotype with normal
viability and fertility, suggesting that miR-21 is not essential for normal development [40].
In particular, the mouse renal ultrastructure was strictly normal at 12 weeks of age [41].

3.2. miR-21 in Renal Regeneration

Whereas the number of mature nephrons is defined at birth in mammals, lower
vertebrates (and especially fish) display nephrogenesis abilities in response to renal aggres-
sion [42]. It has been shown in particular that after renal injury, a population of progenitor
cells is activated to de novo regenerate new nephrons, characterized by the presence of ba-
sophilic cells [43]. Interestingly, using the short-lived killifish Nothobranchius furzeri model,
Hoppe et al. observed an increase in miR-21 renal expression after gentamicin-induced
renal injury [44]. Moreover, prior administration of a miR-21 antagonist delayed renal
recovery. Gene ontology analysis reveals that most of the genes whose expression was
modulated by miR-21 antagonism were linked to apoptosis at an early stage or to cellular
reorganization (i.e., membrane invagination or cellular homeostasis) at a later stage [44].

3.3. miR-21 in Normal Tissue

miR-21-5p is recognized as one of the most abundant and highly conserved miRNAs.
In particular, the distribution of miRNA expression across human tissues according to the
“human miRNA tissue atlas” database shows its ubiquitous expression at high levels in
most tissues (https://ccb-web.cs.uni-saarland.de/tissueatlas, accessed on 31 October 2022).
Whereas miR-21 is one of the most highly abundant miRNAs in tissues [8], its role under
normal cellular conditions is not well understood. Indeed, following the pharmacological
inhibition or genetic deletion of miR-21 in a healthy mouse, only a limited number of genes
are deregulated in normal and unstressed tissues [40,45]. Moreover, a limited transcriptomic
response (i.e., a lack of gene derepression) to miR-21 inhibition was observed in the livers
of wild-type animals under basal conditions, as mRNA targets were not enriched for seed
sequence matches. Interestingly, stress-response genes were however significantly enriched,
particularly Taf7, a TBP-associated factor [23]. Compared with other abundant miRNAs
in normal tissues, miR-21 also displays a reduced ability to bind to polysome-associated
target mRNAs, and intriguingly, the derepression of the well-known miR-21 target Pdc4
was not observed [23]. Under similar conditions, miR-21 has been described to be poorly
efficient in the lungs and heart [45,46].

Taken together, these observations suggest that, under normal cellular conditions,
miR-21 activity is maintained below a threshold required for binding and silencing most of
its targets.

4. miR-21 in Kidney Injuries and Diseases

In contrast with normal kidney function, miR-21 switches to a powerful and overactive
mediator under stress conditions [23]. In particular, miR-21 is one of the most highly
upregulated miRNAs in a wide panel of tissue injuries, and may act as a cellular sensor of
injuries that mediates tissue regeneration.

4.1. miR-21 in Acute and Chronic Kidney Diseases

miR-21 has been associated with the development of a large number of both acute
and chronic renal diseases. The main studies investigating the contribution of miR-21 in
human renal disorders are summarized in Table S1. These studies consistently report a
ubiquitous and non-specific increase of miR-21 renal expression in both acute and chronic
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renal diseases. Numerous experimental models have also explored the role of miR-21 using
animal models of acute renal failure or chronic kidney diseases (Table S2).

4.1.1. A Protective Role of miR-21 in Acute Kidney Injury?

Acute renal diseases are mainly represented by acute tubular necrosis (ATN), whose
causes, although variable, are often related to two main mechanisms: ischemia (induced by
hypovolemia, hemorrhage...) and iatrogeny (aminoglycosides, iodine, renin-angiotensin
system blockers, cisplatin...) [47]. The evaluation of renal miR-21 expression in clinical
samples remains patchy, due to the fact that renal biopsies are rarely performed, ex-
cept for in the context of renal transplantation [48]. ATN is mainly associated with an
increased miR-21 level in renal tissue, serum, or urine of patients with ATN [48–51]. Fur-
thermore, a large number of ATN-mimicking animal models rely on ischemia-reperfusion
mouse models [40,49,52–60] or the administration of nephrotoxic compounds, mainly gen-
tamycin [49,55] or cisplatin [61]. All of these models demonstrated an early increase of
miR-21 renal expression [58] that may be prolonged up to 30 days after injury [52]. Follow-
ing repeated low-intensity injuries, miR-21 increase could thus initially plays a protective
role, inducing wound healing and tissue regeneration processes by targeting PTEN [51],
PDCD4 [53], PHD2 [60], the MKK3–MAPK–p38 pathway [58], thromospondin-1 [59] and
Rab11A [56]. However, there is conflicting evidence regarding the protective or deleterious
nature of miR-21. Indeed, in most studies, the inhibition of miR-21 leads to histological
damage worsening and decreased renal function [53,55,56] after ischemia reperfusion, even
if a protective preconditioning intervention, such as cobalt chloride injection [60], Xenon
inhalation [55] or ischemic preconditioning [53], was beforehand applied. By contrast,
Chau et al. reported that miR-21 inhibition improves histological injuries and albuminuria
seven days after ischemic injury [40]. The main elements that may explain the difference
between those studies are the variable miR-21 inhibitor injection schedule and endpoints
(in particular euthanasia delay post-injury). We can thus hypothesize that miR-21 plays
a protective role at the early stage of ischemia-reperfusion lesions, in particular in pre-
conditioning interventions, but plays a secondary deleterious role once ATN lesions have
been initiated.

4.1.2. Sustained and Persistent Expression of miR-21 Has a Deleterious Impact in Chronic
Kidney Diseases

miR-21 has been shown to be elevated in renal tissue, blood or urine in clinical samples
from various pathologies (Table S1). As is consistent with most studies, a miR-21 increase is
associated with more severe damages [41,62–68]. Similarly, an increased expression of miR-
21 is unanimously reported in a plethora of chronic kidney disease mouse models (Table S2),
underlining the deleterious role of miR-21 in chronic kidney diseases, including diabetic
nephropathy [69–73], unilateral ureteral obstruction [40,69,74] and Alport syndrome [75].

It is noteworthy that most disparate diseases, such as diabetes mellitus, hypertension,
Alport Syndrome or acute renal injuries, result in the development of either glomerular
or interstitial fibrosis. Converging evidence from computational, biochemical and genetic
experiments has indeed shown that miR-21 is a genuine profibrotic miRNA, regardless of
the injured organ. In particular, miR-21 is invariably upregulated during the fibrogenic
response to tissue injury and promotes the TGF-β signaling pathway, the major driver of
tissue fibrosis [76]. In particular, Chau et al. produced a miR-21-null mouse to investigate
the role of this miRNA in kidney fibrosis [40]. As is consistent with previous findings
reported in cardiac [77] and lung fibrosis [78], injured kidneys from miR-21-deficient mice
exhibited less fibrosis. Unexpectedly, the authors further showed that miR-21 primarily
regulates the genes involved in lipid metabolism and mitochondrial redox regulation,
rather than genes implicated in matrix turnover, inflammation or innate immunity. Indeed,
the authors identified PPAR-α, a major transcription factor that regulates a number of
lipid oxidation and metabolism pathways, and Mpv17l, which is thought to inhibit ROS
formation by mitochondria, as direct targets of miR-21 [40]. This distinct mechanism was
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explained by the identification of epithelial cells as the major cellular source of increased
miR-21 expression. Of particular interest, this study highlights that miR-21 can drive
fibrogenesis by several distinct mechanisms, depending on the cellular context (Figure 3).

Cells 2022, 11, 3525 7 of 14 
 

 

 

Figure 3. Role of miR-21 in kidney diseases. Following injury, the expression of miR-21 is increased 

in renal cells. miR-21 promotes kidney diseases by repressing various target genes. Levels of miR-

21 can be assessed in urine or blood samples as a biomarker of kidney injury. Given its established 

pathogenic role in kidney disorders, targeting miR-21 using antisense oligonucleotides may repre-

sent a new therapeutic strategy for renal diseases. 

4.2. miR-21 as an “oncomiR” 

miRNAs influence numerous cellular processes, including cell cycle regulation, dif-

ferentiation and apoptosis, and can therefore act as either tumor suppressors or oncogenes 

[79]. Consequently, alterations in miRNA gene expression have a major impact on tumor-

igenesis. In particular, the overexpression of miR-21 is associated with many forms of 

Figure 3. Role of miR-21 in kidney diseases. Following injury, the expression of miR-21 is increased
in renal cells. miR-21 promotes kidney diseases by repressing various target genes. Levels of miR-21
can be assessed in urine or blood samples as a biomarker of kidney injury. Given its established
pathogenic role in kidney disorders, targeting miR-21 using antisense oligonucleotides may represent
a new therapeutic strategy for renal diseases.
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4.2. miR-21 as an “oncomiR”

miRNAs influence numerous cellular processes, including cell cycle regulation, differ-
entiation and apoptosis, and can therefore act as either tumor suppressors or oncogenes [79].
Consequently, alterations in miRNA gene expression have a major impact on tumorigenesis.
In particular, the overexpression of miR-21 is associated with many forms of cancer, and
functional studies have established this miRNA as a genuine oncomiR (Figure 3). Indeed,
many studies have demonstrated that miR-21 has a central role in tumor initiation and
progression by targeting critical tumor suppressive genes, such as PTEN or PDCD4. Not
surprisingly, comprehensive studies assessing miRNA expression in renal cell carcinoma
(RCC) have shown widespread miRNA dysregulation, with many of these aberrantly
expressed miRNAs targeting components of key oncogenic networks associated with RCC,
including the HIF-, TGF-β- or mTOR-signaling pathways. Several studies on RCC have
shown that miR-21 is overexpressed in the clear cell (cRCC) and papillary (pRCC) subtypes
of RCC tumors compared with healthy kidneys and benign renal tumors [79–85]. In cRCC
tissue patients, there is no relationship between miR-21 expression and age, laterality or
gender [84,85]. Chen et al. have shown, in a cohort of 104 RCC tissue samples, that a higher
miR-21 level is associated with larger tumor size, more lymph node metastasis and an
advanced TNM stage [85]. In contrast, another study has shown in a cohort of 99 cRCC
tissue samples that miR-21 expression was not associated with stage, nuclear Fürhman
grade nor patient outcome [84]. Thus, miR-21 expression alone in primary tumors seems of
limited interest as a diagnostic or a prognostic biomarker, and should rather be included in
miRNA signature [86–89]. Furthermore, miR-21 is also detected in RCC patient serums,
and could be used as biomarker but only in combination with other miRNAs, such as
miR-106a, miR-310-3p, miR-150-5p and miR-145-5p [90–92]. cRCC accounts for 70–85% of
all RCC cases, and is typically highly resistant to conventional therapies [93,94]. Studies
from the TCGA uncovered that the altered promoter methylation of miR-21 is associated
with aggressive cRCC, suggesting that miR-21 may exert an important oncogenic function
in this neoplasia [81,95]. miR-21 is not only upregulated in cRCC but is also involved
in cancer progression (proliferation, migration, invasion, epithelial mesenchymal transi-
tion) and the cancer stem cell phenotype by targeting tumor suppressor genes such as
PTEN, PDCD4, TIMP3 or LATS1 [84,85,96–104]. As cRCC is typically highly resistant to
conventional systemic therapies [93,94], the identification of new molecular mechanisms
driving tumor progression is essential for the rational design of new therapeutic strategies
to cure cRCC. In this context, miR-21 has been shown to be involved in the resistance to
conventional chemotherapies (paclitaxel, 5-Fluorouracil, topotecan and platinum-based
therapy) and targeted therapies such as dovitinib and sorafenib by controlling the expres-
sion of genes associated with multi-drug resistance (MDR) and the apoptotic pathway
(PTEN, PDCD4) [85,105,106]. Similar to renal fibrosis, miR-21 seems to also be involved
in the metabolic shift characterizing renal cancer by targeting PPAR-α, a master regulator
of lipid metabolism [107]. miR-21 silencing using antisense oligonucleotide or miR-21
sponge strategies decreases the proliferation, invasion and migration of cRCC cells and
also increases the expression of pro-apoptotic markers. Furthermore, the inhibition of
miR-21 enhances the sensitivity of cRCC cells to conventional genotoxic drugs, as well
as to targeted therapies [84,105,106]. Finally, the inhibition of miR-21 also decreases the
expression of MDR genes by a mechanism that remains to be deciphered.

5. Potential of miR-21 as a Therapeutic Target

The concept of RNA-based therapeutics was conceived over four decades ago when
Zamencnik et al. demonstrated that an oligonucleotide directed against the Rous sarcoma
virus (RSV) 35S RNA can efficiently inhibit RSV replication [108]. However, the first gen-
eration of antisense oligonucleotides (ASOs) showed little therapeutic benefit, given the
issues with their short half-lives, suboptimal affinity for mRNA and poor tissue penetration.
Recently, the explosion in ncRNA research has renewed interest in developing ASO therapy,
and substantial progress has been made in the therapeutic development of ASO with, in par-
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ticular, cost-effective methods for the synthesis of oligonucleotides and the demonstration
that chemical modifications improve the pharmacokinetics properties of these molecules
while reducing off-target effects and toxicity. These modifications notably include the use
of 2′-O-methyl RNA molecules, the replacement of the phosphodiester backbone with a
phosphorothioate backbone, and the use of locked bicyclic nucleic acids [32,109]. Addition-
ally, linking these modified RNA molecules to lipids or other moieties improves delivery by
enabling targeting to various tissues or even to specific cell types. Furthermore, modifica-
tions of the native RNA backbone reduced the type I interferon response, which is usually
induced in response to exposure to extracellular RNA or DNA [32,109]. High concentra-
tions of ASO are usually found in the kidney after systemic administration, in particular in
the proximal tubule. Moreover, it has also been shown that the diseased glomerulus also
accumulate ASO in all cell types. These findings indicate that this therapeutic strategy may
be beneficial in both glomerular and tubulointerstitial diseases [110].

Given that aberrant miRNA expression has been causatively linked to a vast array of
chronic diseases, the development of miRNA-based therapies has become a major goal of
the current research. Indeed, over the last decade, several miRNA targets have emerged on
the basis of strong in vitro and in vivo data, and drugs targeting canonical miRNAs have
been developed or are in development to treat specific patient populations with chronic or
rare diseases. Of these miRNAs, miR-21 has received particular attention given its abun-
dant baseline expression and strong induction in various physio-pathological conditions,
including development, oncology, stem cell biology and ageing. In particular, the successful
pharmacological silencing of miR-21 has been achieved in various experimental models
of AKI, as well as in chronic glomerular and tubulointerstitial diseases. This includes in
particular common kidney disorders such as diabetic nephropathy or renal fibrosis as,
well as rare renal diseases such as Alport syndrome [40,69]. For example, the targeting
of miR-21 in a genetic rodent model of Alport nephropathy significantly improved albu-
minuria, renal inflammation, glomerulosclerosis, tubular injury and interstitial fibrosis, as
well as survival [75]. Interestingly, these preclinical results gave rise to the development
of Lademirsen, an inhibitor of miR-21 currently under investigation for the treatment of
Alport syndrome (NCT02855268).

However, the targeting of miR-21 is fraught with many challenges, especially tissue
delivery or the determination of the optimal drug concentration to minimize off-target
effects without compromising effectiveness. This is of particular importance given the
ubiquitous and high expression of miR-21. For example, the systemic delivery of miR-21
ASO-therapy may expose patients to unintended side effects in extrarenal tissues despite
an improvement in kidney function. Nevertheless, preliminary results from a phase I
clinical trial using miR-21 antagonists in healthy volunteers showed that this drug was well
tolerated [111].

6. Conclusions

These examples illustrate the complex role of miR-21 during renal insults. They are in
favor of a protective role of miR-21 in the initial phase of an aggression (in particular in pre-
conditioning) protecting from subsequent renal damage, but deleterious in chronicity. The
exploration of the underlying molecular mechanisms, and in particular the identification of
the targets of miR-21, could improve the understanding of the ambivalent role of miR-21.
To conclude, although miR-21-5p has an established role in renal disorders, its diagnostic
use as biomarker is questionable, given the lack of specificity of its dysregulation. Indeed,
it is now well known that dysregulation of miR-21-5p is associated with many renal and
extrarenal diseases. Therefore, the therapeutic targeting of miR-21 seems to be a more
reasonable approach, and should be the focus of future research studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11213525/s1, Table S1: implication of miR-21-5p in human
renal pathologies; Table S2: implication of miR-21a-5p in animal models of acute and chronic
renal pathologies.
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