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1. Operation at the exceptional point

The exceptional point corresponds to the PT-symmetry phase transition when the operating 
point of the system in the CDP (the two-dimensional -  space) evolves along the path 
compelled by the relation:
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The corresponding situation is depicted in Figs S1(a,b). The coordinates {,} of 
exceptional points EP- and EP+ occurring for negative and positive values of coupling 
coefficient are then {,-0} and {-,0}, respectively. As illustrated in Figs. S1(a) and S2(a), 
we observe a coalescence of the real parts of the eigenfrequencies [Re(+)=Re(-)] for the 
points situated on the interval [EP-,EP+] of the dotted line in Fig. S1 joining these exceptional 
points. This situation corresponds to the broken phase of PT symmetry occurring when |<||, 
i.e. in a weak coupling regime. On the other hand, for the rest of the points of this line, those 
situated outside the interval [EP-,EP+], a coalescence of the imaginary parts of the 
eigenfrequencies [Im(+)=Im(-)] presenting the condition of passive PT-symmetry is 
observed.

Note, however, that there are an infinite number of trajectories that pass through the EP. 
Since the sensitivity of generic devices is commonly expected to be greatly increased by an 
abrupt change in eigenfrequencies, the optimal path is the one that offers the fastest splitting 
of eigenfrequencies in the vicinity of the EP. From the conservation of the trace of the 
Hamiltonian matrix, it can be directly inferred that the maximum splitting of modes 
eigenfrequencies corresponds to the case of the PT-symmetry phase transition path, which 
therefore presents an optimal trajectory through the EPs with respect to the points of the CDP 
not being on the PT-symmetry phase transition path.



Fig. S1: Logarithmic scale colormap representation of real and imaginary components of eigenfrequencies difference 
=+--. Parameters of the coupled resonators system used in numerical modeling: 1=10, 1=0.8, 2=0.2. All values 
are given in normalized frequency units. Dotted line at angle  corresponds to the evolution along PT-symmetry 
phase transition path. Bold dots indicate exceptional points. a) Re(); b) Im(). 

The corresponding solutions for these latter are those of the non-Hermitian Hamiltonian 
not belonging to the class of PT-symmetry. Contrary to the case of PT-symmetry, their 
eigenfrequencies are just complex. This is illustrated in Fig. S2 on the example of path -- + 
(dash-dotted line in Fig. S1) corresponding to the modulation of coupling strength and for the 
path +- - (dashed line in Fig. S1) that corresponds to the modulation of detuning between 
resonators. As evident, the splitting of eigenfrequencies is smaller compared to the PT-
symmetry phase transition path, which indeed represents the optimal trajectory through the 
EP. However, as pointed out in [1,2], the divergent sensitivity of eigenvalues does not 
necessarily lead to an arbitrarily high sensitivity. The reason for this is related to the 
coalescence of the eigenstates around the EP, which exactly cancels out the singularity in the 
susceptibility.

Fig. S2: Evolution of real (a) and imaginary (b) components of eigenfrequencies along different paths in the - 
plane (the CDP): dotted line - PT-symmetry phase transition path given by a generalized evolution parameter 
=/cos(); dashed line - =·sin(), =const=; dash-dotted line - =const=0, =·cos(). The parameters of the 
coupled resonators system used in the numerical modeling are the same as those in Fig. S1.

2. Dark mode operation

The way to further sharpen the variation of the spectral response is to make the Fano 
resonance asymmetrical in order to obtain a cliff-like behavior. This can be achieved if the 
frequency ω̂  corresponding to the maximum of EIT where S11=0 is very close to the one of 



the frequencies ω
  where S12=0. To find the condition satisfying this requirement we use 

again the property of universality of the solutions and consider a particular example when 
k0. As noted above, in this case S12=0 when - 1ω ω  and + 2 1ω ω ω +2δ  . The 
absorption losses are neglected (1=2=0). As follows from Eq. (16) the maximum of EIT is 
fulfilled when:
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Since k0 it follows then that 1ω̂ ω  when γ1 << γ2 or 2ω̂ ω  when γ2 << γ1. Such a 
situation corresponds to a system of two predominantly radiatively coupled oscillators (i.e. 
k0), with very dissimilar radiative losses. The operation point is located in the near vicinity 
of the DM where Im(-)=0, also identified as bound state in the continuum (BIC). It 
corresponds to the blue diagonal wedge forming an angle  with the abscissa-axis, and close 
to the CDP ordinate-axis, as shown in Fig. S3.
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Fig. S3: Logarithmic scale colormap representation of the imaginary part of the antisymmetric mode 
eigenfrequency Im(-). Parameters of the coupled resonators system used in numerical modeling: 1=10, 
1=0.999, 2=0.001. All values are given in normalized frequency units. Dotted line corresponds to the PT-
symmetry phase transition path. Black bold dots indicate exceptional points. The bold white dots on 
ordinate axis correspond to the points in - space whose spectral responses are shown in Fig. S4. The 
bold black and cyan dots correspond to the points in - space on the PT-symmetry phase transition path 
whose spectral responses are shown in Fig. S5. 



For a given particular choice γ2 << γ1 when the radiation rate of one resonator tends 
towards zero, the BIC path approaches the -axis, i.e. -/2, while the PT-symmetry path 
approaches the -axis. The evolution of the spectral response corresponding to this case as a 
function of the frequency detuning  is shown in Fig. S4.

Fig. S4: Scattering matrix coefficients spectral response at different points along =0 ordinate path shown 
in Fig. S3. a) =-0.5; b) =-0.-75. Parameters of the coupled resonators system used in numerical 
modeling: 1=10, 1=0.999, 2=0.001. All values are given in normalized frequency units.

The evolution of the spectral response along the PT-symmetry phase transition path for 
this case where γ2 << γ1 which almost corresponds to the abscissa axis is represented in 
Fig. S5. As can be seen, the spectral response is perfectly symmetric with respect to the EIT 
peak frequency, as was also the case for the PT-symmetric phase-transition path shown in 
Fig. 3 of the main material corresponding to the balanced situation, whereby 1=2. 

Fig. S5: Scattering matrix coefficients spectral response at different points along PT-symmetry 
phase transition path shown in Fig. S3. a) = γ    EP; b) =1.5 γ   PT-symmetric. Parameters 
of the coupled resonators system used in numerical modeling: 1=10, 1=0.999, 2=0.001. All 

values are given in normalized frequency units.

3. Impact of absorption losses
To take into account how absorption losses affect the optimal design, we consider the 

situation most frequently encountered in practice where both plasmonic resonators are made 
of the same metal, i.e. 1=2. The eigenfrequencies of the effective Hamiltonian are then:
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where =(1+2)/2. As it can be seen the discriminant in Eq. (S4) is the same as in 
Eq. (11). The isometric properties of the Hamiltonian solutions given by Eq. (S4) are 
therefore not affected by the presence of absorption losses. On the other hand, the homothetic 



properties of the Hamiltonian are lost since the eigenfrequencies now depend on the χ γ  
ratio. 

From a general physical point of view, the ultimate sharpness of the resonance that can be 
achieved is determined by the level of absorption losses. In other words, this means that the 
only resonances observable in the system are those associated with eigenfrequencies for 
which:

 -Im ω χ (S5)
A general overview of the solutions to Eq. (S5) can be obtained from a mere observation, 

in Fig. 2(a) of the main material, of the distribution in the CDP of the antisymmetric mode 
eigenfrequency imaginary part. As it can be seen, the blue colored diagonal wedge 
corresponding to values of Im(-)<0.001 occurs only in the near vicinity of the line defined 
by Eq. (S3), the line corresponding to the BIC condition. The width of this region is smallest 
along the PT-symmetry phase transition path line, which is perpendicular to that of the BIC. It 
gradually widens when moving along the BIC path away from the origin point. 

The physical meaning of the solutions satisfying Eq. (S5) is that for the resonant behavior 
to be observed, the “effective detuning” between the two resonators must be greater than the 
minimum resonance width imposed by the absorption losses. To formalize this 
mathematically, we can take advantage of the isometric properties of the system and consider 
again the special case when 1=2. As mentioned previously it corresponds to the situation 
where the angle =/2 while =0. For this particular example the evolution parameter  
coincides with . As shown in the Appendix B of the main material, the following expression 
holds for the detuning  needed between two resonators as a function of the level of 
absorption  

 ρ= 2δ= χ γ-χ (S6)

Within the limits of low absorption losses (<< γ ), the following approximate expressions 
can be used to provide a better insight into the behavior described by Eq. (S6):

ρ= 2χγ (S7)
We may introduce the ratio Q= γ / as the measure of the spectral sharpness of the EIT 

resonance. Based on Eq. (S7), we can easily deduce that to obtain even a very modest Q10, 
the level of absorption losses must be as low as  γ 10-2. This explains the inherent 
difficulty in achieving highly resonant behavior using plasmonic resonators in the optical and 
even in the upper THz domain, where metal-related ohmic losses are becoming important.

As also evident, what matters is not the level of absorption losses per se, but rather the 
product  γ  of absorption and radiation losses. The ability to control radiation losses that 
depend on the dipole moment of individual antenna-type resonators therefore provides a 
degree of freedom for EIT resonance quality factor engineering. The evolution of the spectral 
response along PT-symmetry phase transition path as function of resonators detuning and for 
a fixed level of absorption losses =0.2 γ  is illustrated in Fig. S6.

As can be seen in Fig. S6(a), the EIT feature visible in Fig. 3(a) of the main material when 
=0.01, disappears completely in the presence of sizable absorption losses. As shown in 
Fig. S6(b), the EIT becomes clearly visible when Im(-). The contrast of the EIT increases 
as the operating point moves along the PT-symmetry phase transition path away from the 
origin, but at the cost of an increase in spectral width. Note that in the broken phase up to the 
EP, i.e. when = γ =(1+2)/2, the shape of the absorption spectrum is that of a single 
Lorentzian line [see Fig. S6(c)]. Beyond the EP, i.e. in the PT-symmetrical phase shown in 
Fig. S6(d), the resonances of the real parts of the eigenfrequencies do not merge and the 
absorption spectrum rather corresponds to the superposition of two detuned Lorentzian lines.



Fig. S6: Scattering matrix coefficients spectral response at different points along PT-symmetric 
path in the presence of absorption losses: a) =0.01  broken PT-symmetric phase; b) =0.6 γ  
 broken PT-symmetric phase meeting condition Im(-); c) = γ   EP; d) =1.5 γ   PT-
symmetric phase. Parameters of the coupled resonators system used in numerical modeling: 
1=10, 0=1=0.5, =0.1. All values are given in normalized frequency units.
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